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Abstract—If an input-output data trajectory generated by a
2D quarter-plane causal system is “sufficiently informative”, then
any system trajectory restriction (an “unfolding”) is a finite linear
combination of data unfoldings. We also design experiments to
generically obtain sufficiently informative data.

Index Terms—Data-driven control; Linear systems; Computa-
tional methods

I. INTRODUCTION

IN [2] we showed that special restrictions (“unfoldings”,
see Section IV therein) of input-state (i-s) trajectories of

a controllable quarter-plane causal 2D system are linear com-
binations of unfoldings of one “sufficiently informative” (i-s)
trajectory. Assuming that the state is measurable postulates an
insight about the system structure that is at odds with a truly
data-driven approach, where problems should be formulated
at the level of external (input and output) variables. In this
paper we address such weakness and we show that given suf-
ficiently informative input-output (i-o) data, any i-o unfolding
is a linear combination of data unfoldings, thus providing a
data-driven parametrization of restrictions of i-o trajectories.
In the 1D case the relevance of such parametrizations for
simulation, control, and signal processing is well known, see
[9]. Our results for quarter-plane causal 2D systems have the
potential of delivering a comparable impact, given the wide
use of such models in image-processing, sensor networks, and
iterative learning control (see [13], [5], [7], [17], [18]; data-
driven approaches to other classes of nD systems are in [1],
[10]). Our main results are stated in terms of input-output
variables and their properties only: state-space representations
(specifically, Fornasini-Marchesini ones) are only used in the
proofs. In this paper we also state a sufficient persistency of
excitation condition for sufficient informativity.

The paper is structured as follows: in Section II we gather
some background material; we also introduce data matrices,
unfoldings, and informativity for identification. Section III
contains a 2D-version of the “fundamental lemma” of [20].
In Section IV we design input sequences corresponding to
sufficiently informative input-output data. In Section V we
summarize our results and illustrate our current research.

Notation

N, Z and R are respectively the set of natural, integer
and real numbers, and Z2 :“ Z ˆ Z. Rn is the space of n-
dimensional vectors with real entries. Rnˆm denotes the set
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of n ˆ m matrices with real entries; and Rnˆ8 the set of
real matrices with n rows and an infinite number of columns.
The transpose of M P Rnˆm is denoted by MJ and its
pseudoinverse by M :; the image of M is denoted by impMq.

If Ai, i “ 1, . . . , n, are matrices with the same number
of columns, we define colpAiqi“1,...,n :“

“

AJ
1 . . . AJ

n

‰J
.

We denote the set
␣

w : Z2 Ñ Rq
(

of q-dimensional doubly-
indexed sequences by pRqq

Z2

, and the set tw : Z Ñ Rqu

by pRqq
Z. If wi P pRqiq

Z2

, i “ 1, . . . , n, we define
colpwiqi“1,...npk, ℓq :“

“

w1pk, ℓqJ . . . wnpk, ℓqJ
‰J

P
`

R
řn

i“1 qi
˘Z2

. Analogous notation is used for sequences wi P

pRqiq
Z, i “ 1, . . . , n. Rrzs is the ring of polynomials with

real coefficients in z; Rrz1, zs the ring of polynomials with
real coefficients in z1, z, and Rnˆmrz1, zs the ring of n ˆ m
matrices with entries in Rrz1, zs. Given S Ă Rrz1, z2s, we
denote by xSy the module generated by the elements of S. The
same notation is used for modules of the ring R1ˆmrz1, zs of
polynomial row vectors with m entries.

We denote by σi, i “ 1, 2, the shifts on pRqq
Z2

:
pσ1wqpi, jq :“ wpi ` 1, jq and pσ2wqpi, jq :“ wpi, j ` 1q.
We define σ´1

i , i “ 1, 2 by
`

σ´1
1 w

˘

pi, jq :“ wpi ´ 1, jq and
`

σ´1
2 w

˘

pi, jq :“ wpi, j ´ 1q. We denote the composition of
σ1 and σ´1

2 by σ :“ σ1 ˝ σ´1
2 .

II. BACKGROUND MATERIAL

A. Fornasini-Marchesini second models
The Fornasini-Marchesini second model (referred to as FM

in the rest of the paper) is described by the equations:

σ1x “ A1x ` A2σx ` B1u ` B2σu

y “ Cx ` Du , (1)

where Ai P Rnˆn, Bi P Rnˆm, i “ 1, 2 and C P Rpˆn,
D P Rpˆm; the state xpi, jq P Rn, the input upi, jq P Rm,
and the output ypi, jq P Rp. The other standard representations
of quarter-plane causal 2D systems are Roesser models (see
[15]). These are equivalent to the FM ones (see [6]); thus we
use (1) without loss of generality.

We associate to (1) three sets of trajectories:
‚ the input-output behavior defined by

B :“
␣

colpu, yq : Z2 Ñ Rm`p | D x : Z2 Ñ Rn

s.t. colpu, x, yq satisfies (1)u ; (2)

‚ the input-state behavior defined by

Bx,u :“
␣

colpu, xq : Z2 Ñ Rm`n | (3)
colpu, xq satisfies the first equation (1)u ;



‚ the input-state-output behavior defined by

Bx,u,y :“
␣

colpu, x, yq : Z2 Ñ Rm`n`p |

colpu, x, yq satisfies (1)u . (4)

The first equation in (1) can be equivalently written as

pσ1In ´ A1 ´ A2σqx ` p´B1 ´ B2σqu “ 0 .

Define Apzq :“ A1 ` A2z and Bpzq :“ B1 ` B2z; then
Bx,u “ kerRpσ1, σq, where

Rpz1, zq :“
“

z1 ´ Apzq ´Bpzq
‰

P Rnˆpn`mqrz1, zs .

We denote by Lk the k-th diagonal line in Z ˆ Z:

Lk :“ tpi, jq P Z2 | i ` j “ ku , k “ 0, . . . , N ,

and define L0:N :“
Ť

i“0,...,N Li. Given f : Z2 Ñ Rq , we
denote by f|Lk

the restriction of f to Lk. We associate with
f|Lk

the 1D sequence with i-th term fk`i,´i, i “ 0, . . ..
We define global reachability (see [3]).

Definition 1. The model (1) is globally reachable if @ x˚ :
Z Ñ Rn there exist N P N, u : L0:N Ñ Rm and x : L0:N Ñ

Rn such that x|L0
“ 0, colpx, uq P Bx,u and x|LN`1

“ x˚.

The following characterization of global reachability is used
in Section IV to establish experiment design results.

Theorem 1. The following statements are equivalent:
1) The FM model (1) is globally reachable;
2) rank

“

Bpzq ApzqBpzq . . . Apzqn´1Bpzq
‰

“ n;
3) If vpzq

“

Bpzq ApzqBpzq . . . Apzqn´1Bpzq
‰

“ 0 for
v P R1ˆnrzs, then v “ 0.

B. Data matrices and unfoldings

Let colppu, pyq P B; we define the data set as colppu, pyqL0:N
.

Given j P N, we denote by Hjppy|Lk
q the block-Hankel

matrix with pj `1qp rows and an infinite number of columns:

Hjppy|Lk
q :“

»

—

—

—

—

—

–

. . . pyk´1,1 pyk,0 . . .

. . . pyk,0 pyk`1,´1 . . .

. . . pyk`1,´1 pyk`2,´2 . . .
...

...
...

...
. . . pyk`j´1,´j`1 pyk`j,´j . . .

fi

ffi

ffi

ffi

ffi

ffi

fl

; (5)

we define Hjppu|Lk
q P Rpj`1qmˆ8 analogously. Note that each

column of (5) consists of pj ` 1q consecutive values of py|Lk
.

Analogous considerations hold for Hjppu|Lk
q P Rpj`1qmˆ8.

We define the data matrix DN pcolppu, pyqq by

DN pcolppu, pyqq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

HN ppu|L0
q

HN´1ppu|L1
q

...
H0ppu|LN

q

HN ppy|L0
q

HN´1ppy|L1
q

...
H0ppy|LN

q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rpm`pq
pN`1qpN`2q

2 ˆ8 .

(6)

The columns of (6) are constructed by “unfolding” the
values of pu and py on an equilateral triangle of Z2 with vertex
at pk `N,´kq and side length N ` 1. We call the restriction
of pu and py on any such equilateral triangle an N -unfolding of
colppu, pyq at pk,´kq.

Example 1. Consider the lattice depicted in Figure 1 and set
N “ 2. In Figure 1 we use different colors to distinguish the
points on L0 (green), L1 (blue) and L2 (red). We compute

1

2

3

Fig. 1. Lattice for the construction of D2 for Example 1.

H2ppu|L0
q, H1ppu|L1

q and H0ppu|L2
q and stack these matrices

obtaining (7).

»

–

H2ppu|L0
q

H1ppu|L1
q

H0ppu|L2
q

fi

fl “

»

—

—

—

—

—

—

—

—

–

. . . pu0,0 pu1,´1 pu2,´2 . . .

. . . pu1,´1 pu2,´2 pu3,´3 . . .

. . . pu2,´2 pu3,´3 pu4,´4 . . .

. . . pu1,0 pu2,´1 pu3,´2 . . .

. . . pu2,´1 pu3,´2 pu4,´3 . . .

. . . pu2,0 pu3,´1 pu4,´2 . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7)

The first column of such matrix corresponds to the “equilateral
triangle” of Z2 labelled “1” in Figure 1, consisting of

tp0, 0q, p1,´1q, p2,´2q, p1, 0q, p2,´1q, p2, 0qu ;

the second column, to the triangle labelled “2”, consisting of

tp1,´1q, p2,´2q, p3,´3q, p2,´1q, p3,´2q, p3,´1qu ;

the third one, to that labelled “‘3” in Figure 1.
The definition of the matrices H2ppy|L0

q, H1ppy|L1
q and

H0ppy|L2
q, and consequently of

»

–

H2ppy|L0
q

H1ppy|L1
q

H0ppy|L2
q

fi

fl, is analogous. ■

C. Informativity for identification

The set of left-annihilators of the data is defined by

N pcolppu, pyqL0:N
q :“

!

η P R1ˆpm`pq rz1, zs |

ηpσ1, σq colppu, pyq|L0:N
“ 0

(

,

and we denote by xN pcolppu, pyqL0:N
y the module of

R1ˆpm`pq rz1, zs generated by its elements.
We define N pBq, the module of annihilators of B, by

N pBq :“
!

η P R1ˆpm`pqrz1, zs |

ηpσ1, σq colpu, yq “ 0 @ colpu, yq P Bu .

It is a standard result in 2D behavioral system theory that
given a kernel representation ker Rpσ1, σq “ B with R P



Rgˆpm`pqrz1, zs, N pBq consists of the module generated by
the rows of Rpz1, zq.

“Sufficient richness” of the data is defined as follows.

Definition 2. The data colppu, pyqL0:N
are informative for

identification if xN pcolppu, pyqL0:N
qy “ N pBq.

xN pcolppu, pyqL0:N
qy Ě N pBq, since each element in

N pBq annihilates all trajectories in B, in particular colppu, pyq.
Informativity for identification implies the opposite inclu-
sion: all annihilators of all trajectories of B belong to
xN pcolppu, pyqL0:N

qy. This property was characterized in The-
orem 2 in [14] for autonomous quarter-plane causal systems.
The result was generalized to the case when y “ x (directly
measurable state variable) in Theorem 1 of [2]. In the next
section we extend such characterization to input-output data.

III. AN I-O ‘FUNDAMENTAL LEMMA’

Let Mpzq “ M0`M1z`. . .`Mrz
r P Rgˆqrzs and let L ě

r. The coefficient matrix of Mpzq, denoted by coeffpMpzqq,
is the g ˆ qpL ` 1q matrix defined by

coeffpMpzqq :“
“

M0 M1 . . . Mr 0gˆq . . . 0gˆq

‰

.

Note that Mpzq “ coeffpMpzqq col
`

ziIq
˘

i“0,...,L
. Note also

that if f : Z2 Ñ Rq then for every k P Z it holds that

Mpσqf|Lk
“ coeffpMpzqq col

`

σif|Lk

˘

i“0,...,L
. (8)

Given (1), we define for k “ 0, . . . , N ´ 1 the matrices

Dk :“

»

—

—

—

–

D 0 . . . 0
0 D . . . 0
... . . .

. . .
...

0 0 . . . D

fi

ffi

ffi

ffi

fl

“ colpcoeff
`

ziD
˘

qi“0,...,N´1´k

Ok :“ colpcoeff
`

CziApzqk
˘

qi“0,...,N´1´k .

Note that Dk P RpN´kqpˆpN´kqm and Ok P RpN´kqpˆpN´kqn.
We also define the matrices Mk,j by M0,j :“ D0, j “

0, . . . , k ´ 1; and for k “ 1, . . . , N ´ 1

Mk,j :“ colpcoeff
`

CziApzqk´1´jBpzq
˘

qi“0,...,N´1´k .

Finally, we define

S :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0
D0 0 . . . 0 O0

M1,0 D1 . . . 0 O1

M2,0 M2,1 . . . 0 O2

...
...

. . .
...

...
MN´1,0 MN´1,1 . . . DN´1 ON´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (9)

The following result is instrumental to establish the main
result of this paper.

Proposition 1. Define S by (9). The following statements are
equivalent:

1) colpu, x, yq is a trajectory of (1);
2) The following equation holds:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

colpσiu|L0
qi“0,...,N´1

colpσiu|L1
qi“0,...,N´2

...
u|LN´1

colpσiy|L0
qi“0,...,N´1

colpσiy|L1
qi“0,...,N´2

colpσiy|L2
qi“0,...,N´3

...
py|LN´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ S

»

—

—

—

—

—

–

colpσiu|L0
qi“0,...,N´1

colpσiu|L1
qi“0,...,N´2

...
u|LN´1

colpσix|L0
qi“0,...,N

fi

ffi

ffi

ffi

ffi

ffi

fl

(10)
Moreover, let colpu, xq P Bx,u; then colpu, yq defined by (10)
is an input-output trajectory of B.

Proof. x and y are solutions of (1) if and only if their restric-
tions to consecutive diagonal lines Li satisfy the equations

x|Li
“ Apσqix|L0

`

i´1
ÿ

j“0

Apσqi´j´1Bpσqu|Lj
(11)

y|Li
“ CApσqix|L0

`

i´1
ÿ

j“0

CApσqi´j´1Bpσqu|Lj
` Du|Li

The equivalence of statements 1q and 2q follows. The second
claim is straightforward.

The main result of this section is the following.

Theorem 2. Let colppu, px, pyq be a trajectory of (1).
Every linear combination of a finite number of columns of

DN´1pcolppu, pyqq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

colpσi
pu|L0

qi“0,...,N´1

colpσi
pu|L1

qi“0,...,N´2

...
pu|LN´1

colpσi
py|L0

qi“0,...,N´1

colpσi
py|L1

qi“0,...,N´2

...
py|LN´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (12)

is an N -unfolding of a trajectory of B. Moreover, if

rank

¨

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

–

colpσi
pu|L0

qi“0,...,N´1

colpσi
pu|L1

qi“0,...,N´2

...
pu|LN´1

colpσi
px|L0

qi“0,...,N´1

fi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‚

“
NpN ` 1q

2
m ` Nn ,

(13)
then every N -unfolding of every trajectory colpu, yq P B is a
linear combination of a finite number of columns of (12).

Proof. Any linear combination of the columns of (12) is
the unfolding of a finite linear combination, with the same
coefficients, of σ-shifts of ppu, pyq P B. Since B is linear and
αℓ P R, ℓ “ 0, . . . , N , then

colppu, pyq P B ùñ

N
ÿ

ℓ“0

αℓσ
ℓ colppu, pyq P B .



This proves the first part of the claim. We prove the second part
of the claim. Using the shift-invariance of B we assume with-
out loss of generality that the given unfolding of colpu, yq P B
involves the first N diagonal lines. Since colpu, yq P B,
there exists a trajectory x such that colpu, x, yq P Bu,x,y;
moreover, colpu, yqL0:N´1

and colpu, xqL0:N´1
are related by

(10). Such relation defines an analogous one between every
unfolding of colpu, yqL0:N´1

and a corresponding unfolding
of colpu, xqL0:N´1

, i.e. between each column of the matrix on
the left-hand side of (10) and the corresponding column of the
matrix appearing on the right-hand side of (10). Such unfold-
ing of colpu, xqL0:N´1

is a real vector with
řN

j“1 jm ` Nn
components; since by assumption (13) the matrix on the right-
hand side of (10) is surjective, such vector can be written as
a linear combination of its columns. Combining the columns
of DN´1pcolppu, pyqq in (12) with the same coefficients yields
the given colpu, yq unfolding. This concludes the proof.

Example 2. Consider the SISO system described by

σ1x “

„

0 1
10

9
10 0

ȷ

x `

„

0 1
10

2
10 0

ȷ

σx `

„

1
1

ȷ

u `

„

0
1

ȷ

σu

y “
“

1 1
‰

x . (14)

It is straightforward to verify that

p9 ` 11σ ` 2σ2qy ´ 100σ2
1y (15)

`p100 ` 40σu ` 10σ2qu ` p200 ` 100σqσ1u “ 0 ,

equivalently for i P Z it holds that

p9 ` 11σ ` 2σ2qy|Li
´ 100y|Li`2

`p100 ` 40σu ` 10σ2qu|Li
` p200 ` 100σqu|Li`1

“ 0 .

We generate 102-samples long random sequences px|L0
and

pu|Li
, i “ 0, . . . , 3. We generate the corresponding sequences

px|Li
, i “ 1, 2, 3 via (14). The 18 ˆ 97 matrix

Hppu, pxq :“

»

—

—

—

—

—

—

—

—

—

–

col
´

σi
pu|L0

¯

i“0,...,3

col
´

σi
pu|L1

¯

i“0,...,2

col
´

σi
pu|L2

¯

i“0,1

pu|L3

col
´

σi
px|L0

¯

i“0,...,3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

has rank 18: the condition (13) is satisfied for N “ 4. The
20 ˆ 97 matrix

Hppu, pyq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

col
´

σi
pu|L0

¯

i“0,...,3

col
´

σi
pu|L1

¯

i“0,...,2

col
´

σi
pu|L2

¯

i“0,1

pu|L3

col
´

σi
py|L0

¯

i“0,...,3

col
´

σi
py|L1

¯

i“0,...,2

col
´

σi
py|L2

¯

i“0,1

py|L3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

has rank 17; its left-annihilators are associated with the coef-
ficients of the difference equation (15).

From Theorem 2 it follows that every 4-unfolding of the
input-output system trajectories is generated by the columns
of Hppu, pyq. To verify this, we generate another finite set of
samples following the same procedure but with a different
random initial condition x1

|L0
and different random inputs

u1
|Li

, i “ 0, . . . , 3, corresponding to Hpu1, x1q and Hpu1, y1q.
It can be verified that each column of Hpu1, y1q is a linear
combination of the columns of Hppu, pyq, as stated in the second
part of Theorem 2.

We restate the result of Theorem 2 more explicitly; to do
this, given N and colpu, yq P B, we denote by fpu, yqpj, kq

the N -unfolding of colpu, yq whose left-most vertex is pj, kq:

fpu, yqpj, kq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

uj,k

uj`1,k´1

...
uj`N´1,k´N`1

...
uj`N´1,k

yj,k
yj`1,k´1

...
yj`N´1,k´N`1

...
yj`N´1,k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (16)

Corollary 1. Assume that the rank condition (13) is satisfied.
Define M :“ rank pDN´1pcolppu, pyqqq and let the vectors Vi,
i “ 1, . . . ,M form a basis for the image of DN´1pcolppu, pyqq:

im DN´1pcolppu, pyqq “ im
“

V1 . . . VM

‰

loooooooomoooooooon

“:V

.

Let colpu, yq P B and let N 1 P N. For every pj, kq P Z2 there
exist αipj

1, k1q P R, i “ 1, . . . ,M , j1 “ j, . . . , j ` N ´ 1,
k1 “ k, . . . , k ` N ´ 1, such that

“

fpu, yqpj, kq . . . . . . fpu, yqpj ` N 1, k ´ N 1q
‰

“ V

»

—

–

α1pj, kq . . . α1pj ` N 1, k ` N 1q

... . . .
...

αM pj, kq . . . αM pj ` N 1, k ` N 1q

fi

ffi

fl

. (17)

Remark 1. Further research is needed to investigate under
which conditions the converse of the statement in Corollary 1
holds. The problem consists in determining conditions on the
data colppu, pyq, N , N 1, and on αipj

1, k1q P R, i “ 1, . . . ,M ,
j1 “ j, . . . , j ` N ´ 1, k1 “ k, . . . , k ` N ´ 1 such that the
left-hand side of (17) is a “frame” consisting of the values of
a system trajectories on N ´ 1 consecutive diagonal lines and
N 1 horizontal ones.

A necessary condition is that the sequence αipj
1, k1q yields

a matrix on the left-hand side of (17) consists of adjacent
unfoldings of some 2D-sequence. Such condition is satisfied
in the following case. Let D be a matrix of rank M “

rank pDN´1pcolppu, pyqqq consisting of a finite number M 1 of



adjacent columns of DN´1pcolppu, pyqq. It is straightforward to
verify (see the first part of Theorem 2) that for every r P N,
r ă M 1, and every choice of αi, i “ 0, . . . , r, the matrix

DN´1pcolppu, pyqq

»

—

—

—

—

—

—

—

—

—

—

—

–

α0 0 . . . 0
α1 α0 . . . 0
...

...
. . .

...
αr αr´1 . . . α0

0 αr
. . .

...

0 0
. . . αr´1

0 0 . . . αr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

consists of successive unfoldings of a trajectory pu, yq P B,
namely colpu, yq “

řr
i“0 αiσ

i colppu, pyq. Note that unless B is
finite-dimensional (and consequently autonomous i.e. without
input variables, see [4], [19]), there exist system trajectories
that are not finite linear combinations of shifts of colppu, pyq.

Remark 2. Equation (17) is an image representation, with

αpj, kq :“
“

α1pj, kq . . . αM pj, kq
‰J

,

being the sequence of latent variable values. Equation (17)
provides a parametrization of all unfoldings of system trajec-
tories in terms of a finite matrix V computed directly from
sufficiently informative input-output data. Such parametriza-
tion is currently being used to solve the finite-extent LQ-
optimal control problem for 2D quarter-plane causal models,
defined on r0, N sˆr0,M s Ă Z2, where N,M P N (a Roesser
model-based formulation of this problem, a characterization
of optimality and computational methods for its solution are
illustrated in [11], [12]). It can be shown that a substantial class
of finite-extent LQ-optimal control problems can be reduced
using (17) to the solution of a quadratic optimization problem
with equality constraints arising from the boundary conditions.
Such results will be presented elsewhere.

IV. PERSISTENCY OF EXCITATION AND EXPERIMENT
DESIGN

Theorem 2 is the counterpart of Theorem 1 p. 327 of
[20]: every finite “window” of values of an i-o trajectory
(i.e. an unfolding) produced by a quarter-plane causal system
is the linear combination of analogous windows computed
from “sufficiently informative” data. The notion of “sufficient
informativity” is characterized in the rank condition (13) that
involves the state trajectory corresponding to colppu, pyq. If
the state is not directly measurable such condition cannot
be directly checked, and alternative sufficient conditions are
needed. To this purpose we introduce persistency of excitation.

Definition 3. Let L P N. A signal u : L0:L´1 Ñ Rm is
persistently exciting of order k if

»

—

—

—

—

—

—

—

–

col
´

σiu|L0

¯

i“0,...,L`k

col
´

σiu|L1

¯

i“0,...,L`k´1
...

col
´

σiu|LL´1

¯

i“0,...,L´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (18)

has full row rank.

Proposition 2. Assume that (1) is globally controllable, that
x|L0

“ 0, and let L ě n. If u|L0:L´1
is persistently exciting of

order k, then
col

´

σix|LL

¯

i“0,...,k
(19)

has full row rank.

Proof. We define

Cpzq :“
“

ApzqL´1Bpzq . . . ApzqBpzq Bpzq
‰

.

With this position, it follows from the first equation in (11)
and the assumption x|L0

“ 0 that

σix|LL
“ σiCpσq

»

—

—

—

–

u|L0

u|L1

...
u|LL´1

fi

ffi

ffi

ffi

fl

, i “ 0, . . . , k .

We rewrite such equations using coeff
`

ziCpzq
˘

(see (8)):

σix|LL
“ coeff

`

ziCpzq
˘

»

—

—

—

—

—

—

—

–

col
´

σju|L0

¯

j“i,...,L`i

col
´

σju|L1

¯

j“i,...,L`i´1
...

col
´

σju|LL´1

¯

j“i,...,i`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

i “ 0, . . . , k. From this equation it follows that
col

´

σix|LL

¯

i“0,...,k
equals

col
´

coeff
`

ziCpzq
˘

i“0,...,k

¯

»

—

—

—

—

—

—

—

–

col
´

σju|L0

¯

j“0,...,L`k

col
´

σju|L1

¯

j“0,...,L`k´1
...

col
´

σju|LL´1

¯

j“0,...,k`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We show that global controllability of (1) implies that

col
´

coeff
`

ziCpzq
˘

i“0,...,k

¯

(20)

has full row rank. Assume that row vectors vj exist, j “

0, . . . , k, such that
“

v0 . . . vk
‰

col
´

coeff
`

ziCpzq
˘

i“0,...,k

¯

“ 0 ;

then
`

v0 ` v1z ` . . . ` vkz
k
˘

Cpzq “ 0. Since L ě n and
since (1) is globally controllable it follows (Theorem 1) that
rank Cpzq “ n, which implies vi “ 0, i “ 1, . . . , k.
Consequently, (20) has full row rank.

To conclude the proof of the claim, assume that
“

v0 . . . vk
‰

col
´

σix|LL

¯

i“0,...,k
“ 0 ;

then
“

v0 . . . vk
‰

col
´

coeff
`

ziCpzq
˘

i“0,...,k

¯

(21)



left-annihilates
»

—

—

—

—

—

—

—

–

col
´

σju|L0

¯

j“0,...,L`k

col
´

σju|L1

¯

j“0,...,L`k´1
...

col
´

σju|LL´1

¯

j“0,...,k`1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By persistency of excitation we conclude that (21) is the zero-
vector; because of the assumption of global controllability we
conclude that vj “ 0, j “ 0, . . . , k, and consequently that the
matrix (19) has full row rank. This concludes the proof.

To state our next result, we need to introduce the concept
of algebraic genericity. Let L be a linear finite-dimensional
space; then given a basis tℓiui“1,...,d for L, every ℓ P L can
be written as ℓ “

řd
i“1 xiℓi for some coefficients xi in the

field on which L is defined. A map p : L Ñ R is a polynomial
if ppℓq is a polynomial in the variables xi, i “ 1, . . . , d. An
algebraic variety is a subset V of L consisting of all zeroes of
some polynomial p. A subset S Ă L is called generic if there
is a proper algebraic variety V Ĺ L such that S Ą pLzVq.

Proposition 3. Assume that (1) is globally controllable, that
x|L0

“ 0, and let L ě n. If u|L0:L´1
is persistently exciting of

order k, then generically for every j “ 0, 1, . . . the matrix
»

—

—

—

—

—

—

–

colpσiu|LL
qi“0,...,k

colpσiu|LL`1
qi“0,...,k´1

...
u|LL`k

colpσix|LL
qi“0,...,k

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(22)

has full row rank.

Proof. The row rank of (22) is not full if and only if all its
maximal order minors are zero. For a fixed xLL

, each of these
minors is a polynomial in the variables uLL`ℓ

pi1, i2q, ℓ “

0, . . . , k, pi1, i2q P Z2. It follows that (22) has not full rank if
and only if the intersection of the varieties of such polynomials
is non-empty. The intersection of such varieties is a proper
algebraic variety itself; the claim follows.

Remark 3. To achieve sufficiently informative data, one can
proceed as follows. Starting with the system at rest, i.e.
colpu|Lj

, y|Lj
q “ 0, j ď 0, one applies a persistently exciting

signal of order N at Lj , j “ 0, . . . , N obtaining a full rank
matrix (19) (see Proposition 2). Subsequently, one applies
a persistently sequence uLL`ℓ

, ℓ “ 0, . . . , N (for example,
consisting of random values). It follows from Proposition 3
that generically the persistency of excitation condition

rank

¨

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

–

colpσiu|LL
qi“0,...,N´1

colpσiu|LL`1
qi“0,...,N´2

...
u|LL`N´1

colpσix|LL
qi“0,...,N´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‚

“
NpN ` 1q

2
m ` Nn

is satisfied. From Theorem 2 it follows that any unfolding of
any system trajectory is expressible as a linear combination of
the columns of DN´1pcolpu, yqq.

V. CONCLUSIONS AND FURTHER WORK

In Theorem 2 we generalized the results of [2] to input-
output measurements. We also illustrated how sufficiently
informative data can be generated (see Remark 3).

Current research aims to apply these results to the data-
driven simulation problem (see [8]) and to the data-driven
“finite-horizon” LQ-optimal control problem (see Remark 2).
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