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Abstract—Time-series classification (TSC) covers the super-
vised learning problem where input data is provided in the form
of series of values observed through repeated measurements over
time, and whose objective is to predict the category to which they
belong. When the class values are ordinal, classifiers that take
this into account can perform better than nominal classifiers.
Time-series ordinal classification (TSOC) is the field bridging this
gap, yet unexplored in the literature. There are a wide range
of time-series problems showing an ordered label structure, and
TSC techniques that ignore the order relationship discard useful
information. Hence, this article presents the first benchmarking
of TSOC methodologies, exploiting the ordering of the target
labels to boost the performance of current TSC state of the
art. Both convolutional- and deep-learning-based methodologies
(among the best performing alternatives for nominal TSC) are
adapted for TSOC. For the experiments, a selection of 29 ordinal
problems has been made. In this way, this article contributes
to the establishment of the state of the art in TSOC. The
results obtained by ordinal versions are found to be significantly
better than current nominal TSC techniques in terms of ordinal
performance metrics, outlining the importance of considering the
ordering of the labels when dealing with this kind of problems.

Index Terms—Ordinal classification, time-series analysis, time-
series classification (TSC), time-series machine learning (ML).
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I. INTRODUCTION

TIME series is an ordered sequence of values. This type

of data is found in a wide variety of domains, such as
medicine [1], financial analysis [2], and agriculture [3]. For
instance, electrocardiogram signals [4] are ordered by time,
and spectrograms [5] are ordered by frequency. There are
numerous tasks applicable to time series, such as forecasting
the next value [6], [7], clustering time series into groups
without class information [8], [9], performing extrinsic regres-
sion on time series [10], and detecting anomalies within the
data [11], among others. However, time-series classification
(TSC) is the most popular machine learning (ML) tasks, with
hundreds of different approaches proposed in [12] and [13].
For instance, [14] proposed a fuzzy-driven methodology,
while [15] focused on classifying time series based on the
distance between them. More recent approaches aim to classify
time series using subsequences that capture the characteristics
of the entire series [16], exploring the use of transformers
applied to time series [17], and reservoir models based on
spiking neural P systems [18]. Moreover, other time-series-
related domains are time-series segmentation [19] and the
discovery of motifs [20], [21], with an increasing interest in
the last years.

TSC involves predicting a discrete output variable for a
given time series. Depending on the number of variables
observed at each time point, time series are univariate (only
one channel) or multivariate (two or more channels) [22], [23].
The publication of the TSC archive! [24] allowed the devel-
opment of effective methods for TSC. This archive provides
a heterogeneous problem set that facilitates objective compar-
isons of new algorithms: a recent bake off study compared 33
TSC algorithms proposed in the last five years using the UCR
archive [13].

While there has been significant progress in the algorithmic
development for TSC, almost no attention has been paid to
time-series ordinal classification (TSOC). We aim to address
this absence. Some problems in the UCR archive are ordinal
in nature, i.e., labels associated with samples follow an ordinal
relationship. Up to now, these problems have been tackled by
nominal TSC methods, which can limit the learning process:
nominal methods generally require more data or iterations to
achieve the same performance as an ordinal classifier [25].

We can define ordinal classification (also known as ordinal
regression) as a classification problem where the output labels

1 https://timeseriesclassification.com/
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exhibit a natural ordering. This characteristic can be found in
many and varied domains, such as human age prediction [26],
climatological applications [27], and medical research [28].
This research takes advantage of information related to the
ordering of the categorical labels to increase the performance
of the models being applied. The most prominent type of
models in the literature on ordinal classification are the so-
called threshold-based models. In these methodologies the
existence of a real-valued variable underlying the ordinal
response is assumed. Hence, the training process focuses on
modeling the real variable and learning the optimal thresholds
determining which intervals corresponds to each ordinal label.
The cumulative link model (CLM) approach belongs to this
family of threshold-based models, and works with cumulative
probabilities of the input belonging to a certain class or classes
lower in the ordinal scale.

An example of ordinal classification can be seen in [28],
where a set of patients infected with the SARS-CoV-2 coro-
navirus is studied and grouped into three levels of illness
severity: 1) moderate; 2) severe; and 3) critical. These labels
follow an ordinal relationship, in that a critical patient is sicker
than a moderate or a severe patient. The main characteristic
of an ordinal variable, using this example, is that it is worse
to misclassify a critical patient as moderate, than it is to
misclassify them as severe. The magnitude of the error should
be higher in the first case.

As stated in [29], two types of ordinal problems can be
distinguished in the literature: 1) grouped continuous variables
and 2) assessed ordered categorical variables. The former
involves an underlying continuous variable that is divided
into different categories through a discretization procedure. In
contrast, the latter does not involve a continuous variable, and
instead, a domain expert assigns labels to patterns, establishing
the ordering based on their judgment. An example of the
first type is predicting the price of a computer for the next
week in Euros in several categories (e.g., 0—1000, 1001-2000,
2001-3000, and so on). In this case, the categories are more
objective as they are not influenced by human opinion. On
the other hand, an example of the second type is assessing
the severity of an investment risk based on its trajectory (e.g.,
none, mild, moderate, severe, and critical). In this scenario, the
categories may be subjective, as different experts in the domain
may have varying opinions and could assign the same risk to
different trajectories. In this work, our focus lies on the first
type of ordinal problems, as all the TSOC problems sourced
from various data repositories involve the discretization of an
underlying continuous variable. However, the methods are also
applicable to the second type of problems.

An example of dataset used in this study is the
DistalPhalanxOAG dataset [30]. It is specifically designed to
assess the effectiveness of detecting hand and bone outlines
and determine if they can aid in predicting bone age. The
dataset focuses on distal phalanges of the middle finger,
and the labels correspond to different age groups: 0-6 years
old, 7-12 years old, and 13-19 years old. Fig. 1 illustrates
three patterns from each of the classes, showcasing the
observable ordinality of the labels in certain parts of the time
series.
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Fig. 1. Example of time-series extracted from the DistalPhalanxOAG dataset.
The target ordinal scale represents different age ranges.

Other domains that could benefit from the development of
the TSOC field include cardiology [4], where the objective
is to develop methodologies for predicting the spontaneous
termination of atrial fibrillations (AFs). Here, the input time
series consists of two-channel electrocardiogram recordings
from patients affected by AFs, and the aim is to predict
whether the AF will terminate within 1 s, 1 h, or more than 1 h.
In the field of spirit authentication, researchers in [5] utilized
noninvasive near infrared spectroscopy time series to classify
alcohol content into one of the following levels: E35, E38,
EA40, and E45, which clearly demonstrate an order relationship.
Furthermore, another area is in stock market prediction [31].
The authors presented a methodology for predicting the
direction (decreasing, stationary, and increasing) of the mid-
price for various prediction horizons. In this scenario, there
exists a natural order between the labels, making it suitable
for TSOC analysis.

Our contributions can be listed as follows.

1) The development of seven novel TSOC techniques,

focusing on the state-of-the-art approaches in TSC.

2) The identification of 29 ordinal time-series problems
from different data sources (TSC, time-series extrinsic
regression (TSER), and development of new TSOC
datasets), and introducing the University of Cdérdoba
(UCO) TSOC repository.

3) A benchmarking study of all these seven techniques over
the whole set of 29 ordinal datasets.

4) The proposed approaches have been compared against
their nominal counterpart (TSC approaches), the state-
of-the-art HIVE-COTE2 (HC2), and standard ML
approaches. The results demonstrate that TSOC tech-
niques significantly enhance existing state-of-the-art
nominal TSC methods in ordinal problems. Notably,
HC2 is overall outperformed by TSOC methodologies,
particularly by O-MiniROCKET, including in terms of
accuracy.

5) Contributing to the literature with the first baseline
study for TSOC, which aims to encourage time-series
community for further enhancement in this novel field.
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The remainder of this article is organized as follows. Related
works are described in Section II. Section III formalizes pre-
liminary definitions needed to present the different proposals.
Section IV defines the proposed TSOC methods. Section V
specifies the experimental setup and the datasets considered.
Finally, in Section VI, we provide the conclusions and future
research of our work.

II. RELATED WORKS
A. Time-Series Classification

A range of TSC methodologies have been developed in
recent years. The first taxonomy grouping these approaches by
their typology was proposed in [12], and extended in [13]. This
taxonomy categorizes methodologies into eight distinct fami-
lies: 1) distance-based; 2) interval-based; 3) shapelets-based;
4) feature-based; 5) dictionary-based; 6) convolutional-based;
7) deep-learning (DL)-based; and 8) hybrid methods. In this
work, we focus on two of the best performing categories:
convolutional-based and DL-based techniques. In the follow-
ing, we provide a comprehensive introduction to both.

Convolutional-Based Techniques: This family of meth-
ods tries to extract features from the input time series by
applying a set of convolutional kernels. The random convolu-
tional kernel transform (ROCKET) method [32] was the first
approach in this group of algorithms. It consists in training a
Ridge regressor with features extracted from the application
of kernels to the time series. In addition, two enhanced
versions of this method were presented to the literature:
1) MiniROCKET [33], which proposes a computationally
lighter kernel extraction process while maintaining a high
accuracy and 2) MultiROCKET [34], which extends the
kernel extraction by applying it to the first-order difference
of the time series and performing more pooling operators.
MultiROCKET is significantly better than MiniROCKET
in accuracy, but it is computationally more expensive. A
recently established method in the literature is the hybrid
dictionary-rocket architecture (HYDRA) [35]. HYDRA is a
combination of dictionary and convolutional techniques that
achieves a highly competitive performance in comparison
with existing approaches. HYDRA can be used in combina-
tion with any ROCKET-based methodology. In the current
state of the art, MultiROCKET combined with HYDRA
(HYDRA+MultiROCKET) stands as the best TSC method-
ology when accounting for both accuracy and training time.
Additionally, several recent approaches utilize ROCKET as
the foundational method. Uribarri et al. [36] proposed Detach-
ROCKET, which introduces a sequential feature detachment
step in the pipeline to identify and prune nonessential features
from the feature extraction phase in ROCKET-based models.
Foumani et al. [17] combined two position encodings within
a transformer block alongside a convolutional layer, resulting
in a novel convolutional approach that achieves competitive
results compared to other state-of-the-art TSC methods.

DL-Based Models: DL has also been applied to TSC.
Among the most commonly used architectures for neural
networks are the multilayer perceptron (MLP) [37] and
the convolutional neural network (CNN), which typically

serve as a baseline architecture for DL-based TSC meth-
ods. Notably, InceptionTime [38] stands out as the leading
methodology within this category, being an ensemble of five
Inception Networks, which, as with other approaches, such
as ResNet [37], is based on residual networks. Various adap-
tations and extensions of InceptionTime have been explored
in the literature. For instance, InceptionFCN combines the
fully connected network (FCN) with the InceptionTime archi-
tecture [10], while H-InceptionTime employs handcrafted
filters in the convolutional layers of the network [39].
Recently, LITE has been introduced as a novel architec-
ture featuring a light inception module (IM) with boosting
techniques, using less than 3% of InceptionTime’s number
of parameters [40]. Recurrent neural networks (RNNs) is
another popular type of architectures for DL. However, their
application in TSC is relatively limited, primarily due to
their design, which focuses on predicting an output for
each timestamp in the time series [41]. Long short-term
memory (LSTM)-based approaches have also been proposed
for addressing the TSC task. For example, [42] introduced a
difference-guided representation learning network that utilized
LSTM to model the temporal dependencies and dynamic
evolution of time-series data. Additionally, transformer-based
DL has gained in popularity for TSC, often employing a
straightforward encoder structure comprising attention and
feedforward layers. Notable among these approaches is
AutoTransformer [43], which uses a neural architecture search
algorithm to identify the most suitable network architecture
before passing the output to a multiheaded attention block.
Furthermore, graph neural networks [44], [45] have recently
been developed, demonstrating their potential due to their
ability to model intertemporal/channel relationships, areas
where other DL-based methods often face challenges [7].

Despite the progress and strong performance achieved with
existing methodologies in TSC, the performance achieved for
the ordinal problems could be significantly improved with
appropriate approaches. Following, we specifically focus on
ordinal classifiers.

B. Ordinal Classification

Over the last few years, several ordinal classification tech-
niques based on nominal methodologies have been developed
to exploit ordinality in the training process. In [46], a novel
learning algorithm based on large margin rank boundaries
was proposed for ordinal classification tasks, and the result
can be seen as an adaptation of the support vector machine
(SVM) algorithm to ordinal problems. Subsequently, meth-
ods, such as support vector ordinal regression with explicit
constraints (SVOREX) or SVOR with implicit constraints
(SVORIM) [47], have been proposed. Both methods are
ordinal SVMs but with different constraints definition criteria
in the optimization process. In the same way, an extended
kernel discriminant learning [48] algorithm has been proposed
to work as an ordinal classifier by using a ranking constraint.
This method is known as kernel discriminant learning for
ordinal regression (KDLOR) and has been proposed as an
alternative to the ordinal SVM methods mentioned above.
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The key difference between these approaches is that SVOR
methods do not take advantage of the global information of
the data (especially SVOREX which only considers adjacent
classes when determining the thresholds) and also suffers from
higher computational complexity.

Other approaches to ordinal classification, such as [49],
rely on Gaussian processes (GPs) to develop an ordinal
regressor: GP for ordinal regression (GPOR). The performance
of this new method has been compared against SVORs
techniques in several datasets, and the results showed a
good generalization capacity and competitive performance.
Furthermore, inspired by this approach and previous SVOR
methods, Srijith et al. [S0] have proposed a sparse GPOR using
Leave-One-Out cross-validation to perform model selection
(LOO-GPOR), a probabilistic least squares ordinal regres-
sor (PLSOR) [51], and a semi-supervised ordinal regressor
using GP [52]. Several recent works have been published
in the literature, such as ORFEO [53], which focuses on
specific problems where the ordinal output is derived from
the original continuous output. ORFEO is an artificial neural
network that simultaneously optimizes both outputs using a
loss function that linearly combines ordinal classification and
regression outputs. Marudi et al. [54] presented a novel deci-
sion tree-based method for ordinal classification that utilizes
a generalization of the entropy measure for ordinal variables,
along with an ordinal information gain ratio to assess the
importance of each variable in the decision-making process.

DL for ordinal classification problems is an area that
has been less explored up to now, with some works, such
as [55] or [56], which studied the application of a new output
layer based on CLMs together with a quadratic weighted
kappa (QWK) loss function. This approach has been proposed
for tackling ordinal image classification problems, for which
excellent results are achieved in comparison to nominal
approaches. A recent work [57] has taken this idea to approach
the field of aesthetic quality control (AQC), developing a DL
architecture with CLM as the output layer and cross-entropy as
the cost function. The results have demonstrated the capacity
of the network to take advantage of the ordinal nature of
AQC problems, improving performance over previous nominal
approximations. Furthermore, Rosati et al. [58] proposed
two novel ordinal-hierarchical DL methodologies: 1) hier-
archical conditional likelihood models, based on the CLM
framework and 2) hierarchical-ordinal binary decomposition.
Both approaches effectively model the ordinal structure across
different hierarchical levels of the labels. Finally, [59] intro-
duced a soft labeling approach based on generalized triangular
distributions, which enables the model to minimize errors
associated in distant classes on the ordinal scale.

At this point, once both main fields tackled in this work
have been introduced, TSOC can be defined. TSOC consists
of the application of ordinal classifiers to ordinal time-series
problems, in such a way that the ordinal classifiers are able
to consider and exploit the ordinal information present in the
label space. TSOC is a recently established field only covered
by a small set of conference papers [60], [61], [62]. The first
two works have proposed an ordinal shapelet transformer
in which the ordinal information of the data is exploited
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in two ways: 1) by introducing a novel shapelet quality
measure in which ordinal information is taken into account
and 2) by using an ordinal classifier instead of a nominal
one, specifically the proportional odds model (POM) [63] and
SVORIM [47] have been tested as final classifiers. Results
have demonstrated that ordinal approaches significantly out-
perform nominal TSC approaches. Later, in [62], the effect of
using different L, norms for the computation of the shapelet
quality has been studied. As can be seen, TSOC has room for
significant improvement.

III. PRELIMINARY DEFINITIONS

In this section, we provide formal definitions of TSOC
concepts. Moreover, we also define a family of probabilistic
ordinal classifiers (known as CLMs), which will be used for
the TSOC methods proposed in this article.

A. Time Series and Related Supervised Learning Tasks

In supervised learning time-series problems, we are pro-
vided a training dataset, including a set of labeled time series,
D = {(t1,y1), (t2,¥2), ..., (ty,yn)}, where N is the number
of time series, t; is the ith time series, y; is the label assigned
toit, and i € {1, ..., N}. In general, the objective is to learn a
mapping function (model) able to accurately predict the labels
for the time series of the test set. Every time series is a set
of C ordered sets (also known as channels) of real values.
Although the most common type of time series are univariate
(C = 1), there is an increasing interest in multivariate time
series (C > 1). A multivariate time series with C channels is
defined as t; = (t}, el tl.c), where the cth channel is denoted
as tf = (tf,l, tﬁz, e, IET)’ cef{l,...,C}, and T is the length
of the time series. In this article, we focus on time series
with a constant spacing of observation times, and we consider
datasets where all the time series are equal length.

Depending on the nature of the labels, the supervised
time-series problems can be categorized in TSER [64], [65],
nominal TSC [13], or TSOC. TSER covers problems where
the label to be predicted is a real number, ie., y; € R.
For TSC, the label of each time series takes values in a
discrete set of categories, y; € {C1,C2,...,Cq, ..., Cp}, where
g € {l,...,0}, and Q is the number of classes of the
problem. Finally, TSOC problems are TSC problems (with
more than two classes) which include an order constraint in the
labels.

B. Time-Series Ordinal Classification

The focus of this article is TSOC, where the categories
show a natural order, in such a way that a relation C; <
Cy < ... < Cq is present in label space. This relation is also
present in TSER problems, where the < operator is directly
< because we are working with real numbers instead of
categories. However, the difference between TSOC and TSER
is that the distance between categories is not known.

To provide a deeper understanding of this sort of problems,
let us consider the example in Fig. 1. In this case, the clas-
sification problem involves determining the age ranges using
the outlines of the middle finger. The ranges exhibit a natural
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relationship and can be categorized into three levels: 0-6 years
old, 7-12 years old, and 13-19 years old. TSOC problems
involve two important characteristics: 1) misclassification costs
are different depending on the error (an error that confuses the
0-6 years old class with the 13—19 years old class should be
penalized more heavily than one that confuses the 0-6 years
old class with the 7-12 years old class) and 2) including the
order information during learning should boost convergence.

1) Cumulative Link Models (CLMs): CLM belong to a
broad family of models known as threshold-based models,
which are built on two main ideas: 1) the existence of a real
variable underlying the (discrete) output response, such that
each class C, belongs to a certain interval in R. This hidden
variable will be denoted as y* and is often referred to in the
literature as latent variable and 2) the use of a function f
that transforms a pattern of the input space x € X C RP
(where D is the input dimensionality) into the 1-D real space
corresponding to the latent variable, f : x € X ¢ R¢ — R.
The aim is to segment the real line into Q consecutive ordered
intervals. Each interval along the real line corresponds to a
specific class C,. These intervals are defined by a threshold
vector @ = (61,...,00-1), where 0 € R2-! To guarantee
that P(y < C4|x) increases with g, the thresholds vector must
be nondecreasing, and, therefore, must satisfy the constraint
01 <6y <--- < 0p_1 [63]. Thus, 6, is learned during the
training process while the thresholds for g =2tog=0 — 1
can be obtained as 6, = 0, +Z?=2 yl-2. Yy=023---,Y0-1)
is also learned during the training process. In this way, the
aforementioned constraint is always satisfied. Considering this
setting, an input x; is associated with an output class C, if
f(x;) € [04-1,04]. To completely cover the domain of the real
line, 6y and 6y are set to —oo and +o00, respectively, and are
not considered part of the vector 6.

In view of the foregoing, the special case of CLM considers
the latent variable model: y* = f(x) 4+ €, where € is the
random error component with zero mean, E(¢) = 0, where E
represent the expected value, for which a certain distribution
F. is assumed. Moreover, it assumes a linear latent variable
f(x) = wi'x. On that account, it is satisfied that

P(y < Cqlx) = P(y* < 6,)
= P(WTX +e< Gq)
=P(e <0, — w'x) (1)

taking g as the probability distribution function (p.d.f.) of the
assumed F,, we get to

g(0; — w'x) = P(y < Cglx). )

Therefore, the learning objective of the CLM is to find the set
of optimal thresholds 6*, as well as the optimal parameters
w* of the function f, in such a way that, given a pattern of
the test set (X;, y;), the cumulative probabilities for each class
Cy» ie., P(y; < Cylx;), are as close as possible to the observed
ones.

To this end, we need to define a loss function ¢ that
represents the disagreement between the target label assigned
to an input x; and the output given by a prediction function
pred(p;), where p; = i, Pi,--- ,piQ) is the vector of

predicted probabilities, where p;, = P(yi = Cy4lx;) = P(y; <
Cylx;) — P(y; < C4—11x;). Hence, our objective is to find the
function pred that minimizes the expected risk

L(pred) = E(£(y;, pred(p:)))

where L is the risk function. There are different options for
the expected risk within the context of ordinal classification
(e.g., the absolute difference in number of categories between
the predicted and true labels). However, we cannot deal
directly with this expected risk, mainly for two reasons: 1) the
probability distribution that generates the patterns (xj, y;) of
a dataset D is unknown and 2) the function ¢ is naturally
discontinuous since its two arguments belong to the discrete
space defined by the output y. This, as stated in [66], can
lead to an NP-hard problem. Therefore, the common practice
is to approximate £ by the so-called surrogate risk, which,
considering the CLM setting, can be defined as

A(f) =EW @, f(x))

where i : R™! x R — R is generally referred to as the
surrogate loss function. The need to introduce this surrogate
terms is the main motivation for the existence of the previously
introduced latent variable. As the values of y* are not a
priori known, we work with the vector #, so that, for a
pair (x;,y;), where y; takes a value C;, we want the output
of f(x;) to be as close as possible to the 6, threshold. To
ensure the ordering of 6 introduced above, we essentially have
two options. The first is to generate its elements through an
incremental function, such as the one employed in the CLM
activation layer (see Section III-B3). The second option is to
design the cost function to naturally converge to a solution
that maintains this ordering, as demonstrated by the logistic
all-threshold (LogisticAT) method [66] used in our work.

2) Logistic All-Threshold: The LogisticAT method is a
special case of CLM where the considered F, distribution is
the logistic function. This leads to an interesting property that
characterizes the so-called POMs. This property states that the

ratio of the odds for two patterns inputs Xy, Xp [67] is
odds(y < Cylx1) T
odds(y < Cy%2) = exp(—w" (X] — X2)).

The main distinguishing feature of LogisticAT with respect
to the POM is its (surrogate) loss function, which is presented
as

N [yi—1 0-1
Yar =Y [ D @, —w'x) + Y h(w'x; —6,)
i=1 \ g=1 q=yi
A T
+ Ew w 3)

where (X;,y;) is a pattern of the training set defined in the
form h : R — R, h(z) = log(l + exp(z)), w is the array of
parameters associated with the function f(x) = w’x presented
above, and A is the regularization term, which is adjusted by
cross-validation in our experiments (see Section V). Observe
that in YT, by taking into account all the thresholds in @ for
each input (x;, y;), we ensure that at the point of convergence
the ordering of @ is satisfied.
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This model is used for the ordinal convolutional-based tech-
niques (O-ROCKET, O-Mini-Rocket, and O-MultiROCKET)
discussed in Section IV-A.

3) CLM Activation Layer: The aforementioned mathemat-
ical structure of the CLM can be utilized as link function
in DL architectures [55]. On this wise, the 1-D output of a
deep network is mapped to a set of predicted probabilities
through a CLM, for which we considered (as in the case of
the LogisticAT method) a logistic distribution for the error
component €. In order to ensure the ordering of the vector 6,
the next definition is considered: 6, = 6; + Z;:]l a?, with
qef2,...,0—1}, then 6y and «p, ..., g1 can be learned
without constraints.

In addition, a cost function that takes greater account of
ordinality is considered [68]. This function, denoted as ¥ Qwk.,
is based on the QWK metric, and it is defined in terms of the
predicted probabilities

’ YL YL 0,gPO = Cylx)
QWK = ~ N
ZqQ=1 v Zj%l(wj,q > iz PO = Cjlx)

where ¥ qwk € [0, 2], (x;,y;) is the ith sample of the data,
N, is the number of patterns labeled with the gth class, and
wj,q are the elements of the penalization matrix, where w; 4 =
G- 9?/(Q~ 1L

This setting is implemented in the ordinal DL methodolo-
gies (O-InceptionTime, O-ResNet, O-LITETime, and O-CNN)
discussed in Section I'V-B.

IV. PROPOSED TSOC METHODS

In this section, we introduce the seven TSOC methodolo-
gies. Within the category of convolutional-based techniques
(Section IV-A), we present various adaptations to the
ROCKET-family methods: O-ROCKET, O-MiniROCKET, and
O-MultiROCKET. In addition, in line with DL techniques
(Section IV-B), we introduce the O-InceptionTime, O-ResNet,
O-LITETime, and O-CNN methodologies.

A. Convolutional-Based Techniques

This family of TSC algorithms was first proposed in [32]
with the development of the ROCKET method for TSC. The
main idea is to extract features from the input time series
by applying a set of convolutional kernels. This convolution
process involves a sliding dot product that depends on the
properties of the kernel being applied, which are: the values
of the kernels or weights (w), the length (n), which sets the
kernel extension (or number of weights); dilation (d), which is
a popular technique to increase the length of the kernel without
increasing the length of the resulting convolution. This is done
by ignoring one out of every two values of the time series,
effectively adding empty cells in the kernels [69]; padding (p),
which adds to the beginning and end of the series a vector
filled with zeros to control where the middle weight of the
first and last kernel to be applied falls; and bias (b), a real
value that is added to the kernel convolution result.

In addition to the original version of ROCKET, the
authors subsequently presented two improved versions:
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TABLE I
DIFFERENCES BETWEEN O-ROCKET APPROACHES

O-ROCKET O-MiniROCKET O-MultiROCKET

Kernel length  {7,9, 11} {9} {9}

Weights N(0,1) {-1,2} {-1,2}

Dilation Uu(-1,1) {29,...,29} {29,...,29}
Use of Padding random alternative alternative
Poohng [PPV, GMP] [PPV] [PPV, GMP, MPV,
operations MIPV, LSPV]
Num. Features 20,000 10,000 50,000

1) MiniROCKET [33] and 2) MultiROCKET [34]. They all share
the same architecture, comprising four sequentially applied
phases: 1) kernel convolution transform; 2) pooling operations;
3) standard scaler; and 4) the final LogisticAT classifier.

We propose the use of the LogisticAT method introduced
in Section III-B1 as the final classifier, with a built-in cross
validation of the A regularization parameter. With respect
to the standardization process and the final classifier, both
remain unchanged. Conversely, the first two phases (kernel
convolution and pooling operations), are different for each of
the three alternatives. A comparison between the configuration
of the three methods is presented in Table I.

1) O-ROCKET: ROCKET is a significant contribution to
the state of the art in TSC, as it is capable of achieving
excellent performance in a fraction of computational time.
ROCKET applies to the input time series a large set of kernels
generated with random properties: length n is randomly
sampled from {7,9, 11} with equal probability; weights are
sampled from a normal distribution Yw, € W, wy ~ N(0, 1);
bias b is sampled from a uniform distribution, b ~ U (—1, 1);
dilation d = [2¥*],x ~ U(0,A),A = log,([T — 11/[n — 1])
where T denotes the time-series length, and n the kernel
length; and padding, which is denoted by p and is applied or
not with the same probability in each kernel. In the case it is
applied, its value is computed with p = ((n — 1) x d)/2.

Once the kernel convolution is finished, two real-valued
features are extracted from each kernel. The first is derived
from global max pooling (GMP), which involves selecting the
highest value. The second feature is the proportion of positives
values (PPV), being PPV = (1/n) Z?:_ol [zi > 0], where z; is
the output of a single kernel convolution. Hence, PPV is a real
value ranging from zero to one that represent the percentage of
kernel convolutions that are greater than zero. These extracted
features are then fed as input to the LogisticAT classifier.

2) O-MiniROCKET: MiniROCKET [33] is a later version
of ROCKET which is up to 75 times faster than the original
version, achieving similar performances. The main novelties
with respect to ROCKET are the following, which make
MiniROCKET become mostly (sometimes fully) deterministic.

1) The kernel length 7 is set to a fixed value of 9.

2) Kernel weights w are restricted to two possible values,

—1 and 2.
3) A fixed dilation d is computed according to the input
length. The d value can be in {2°, ..., 29}, where a =

logo(T —1)/(n—1).
4) Padding p is applied or not alternatively for each
kernel/dilation combination. This way, half of the
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Fig. 2. O-ResNet architecture. The notation x3 means that we have
three stacked convolutional blocks inside each residual block. The final
activation layer is the CLM (see Section III-B1).

kernels are computed with padding and the other half
not. Whenever applied, its value is computed in the same
way as in the O-ROCKET method.

5) Only the PPV aggregated feature is computed for each

kernel.

3) O-MultiROCKET: This is the last version of the
ROCKET family. In this novel variant, known as
MultiROCKET [34], two main adjustments are made to
MiniROCKET: 1) the convolution is also done on the first-
order difference of the time series and 2) three additional
aggregated features are computed: a) the mean positives values
(MPVs); b) mean of indices of positives values (MIPV);
and c) the longest stretch of positive values (LSPVs). These
modifications substantially increase the computational expense
of the algorithm but in turn achieves a significant increase in
terms of accuracy.

B. Deep Learning Techniques

We propose four types of DL architectures: 1) the ordi-
nal ResNet (O-ResNet) methodology based on the residual
network architecture [37]; 2) the ordinal InceptionTime
(O-InceptionTime) methodology based on the InceptionTime
architecture [38]; 3) the ordinal light inception with boosting
techniques (O-LITETime) based on the LITETime model [40];
and 4) the ordinal CNN (O-CNN) methodology, based on the
CNN architecture [70].

1) O-ResNet: The original residual architecture was
proposed in [71]. The main idea behind this sort of architec-
tures was to add shortcut connections between nonadjacent
layers, which facilitates the flow of the gradient through the
network. This work was extended to the TSC paradigm in [37],
in which the input time series is passed sequentially through a
set of three residually connected convolutional blocks, which,
for ease of understanding, are referred to as super-blocks
(SBlocks). The reason for this notation is given by the fact
that each super-block SBlock; is composed of three simple
convolutional blocks with k filters each. In Fig. 2, we refer to
this fact with the x3 notation. In each SBlocky, the convolution
result is added to the original time series, and finally, a
batch normalization layer (BN) and a rectified linear unit
(ReLU) activation layer are applied. In our proposal, after the
concatenated three SBlocks convolution, the final output of
the network is obtained by applying a global average pooling
(GAP) layer followed by a CLM activation layer (see Fig. 2).
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Fig. 3. IM architecture. Two pipelines are applied in parallel to the input
time series. On the first one, the bottleneck layer is applied, followed by three
sliding filter operations with sizes 40, 20, and 10, respectively. On the second
one, a Max Pooling is performed, followed by another bottleneck layer.
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Fig. 4. O-IN architecture, two blocks of three IMs with residual connections
are stacked, the resulting multivariate time series is passed to a GAP layer,
followed by a fully connected and a CLM activation layer (see Section III-B1).

2) O-InceptionTime: The O-InceptionTime architecture
takes some of the main ideas of the ResNet architecture
and the original InceptionTime methodology [38], which
includes concatenated convolution blocks together with
residual connections between them. This method itself is an
ensemble of five O-Inception Networks (O-INs). An O-IN
comprises two residual blocks, each consisting of three IMs
that remain unchanged from the initial InceptionTime proposal
(see Fig. 3). O-IN applies a dimensionality reduction layer
known as bottleneck, whose main goals are reducing the
model complexity and avoiding overfitting. The convolution
operation of a bottleneck layer consists in sliding m filters of
length 1 with a stride equal to 1. Fig. 4 presents the O-IN
architecture.

Specifically, an O-IN is composed of two residual blocks,
each with three IMs. A GAP layer is applied to the output of
the second block. Finally, the resulting features are fed to a
fully connected layer, and finally, to the CLM activation layer.

As mentioned above, O-InceptionTime consists of five
O-INs initialized with random weights, where the final
prediction is performed by a majority voting system. This
ensemble is built with the purpose of reducing the variability
inherent to the ResNet architectures [72].

3) O-LITETime: This  method, built upon the
InceptionTime methodology, was developed to significantly
reduce the computational complexity of its predecessor while
maintaining competitive performance with other state-of-
the-art methodologies. LITETime [40] achieves this balance
by possessing only 2.34% of the number of parameters
of InceptionTime. This reduction is primarily achieved
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through the use of bottleneck layers in the convolution
process. To counteract this drastic simplification of the
architecture, LITETime employs several boosting techniques:
1) multiplexing, which involves convolving the time series with
kernels of different lengths simultaneously, allowing different
convolution layers to be learned in parallel; 2) dilation,
introduced in Section I'V-A, which helps to more easily capture
long-term patterns in the time series; and 3) custom filters,
i.e., handcrafted kernels that facilitate the learning of specific
patterns (typically difficult to learn) in the time series. Finally,
after the convolution process, the final classification step is
performed using a CLM layer, specifically adapted to ordinal
classification.

4) O-CNN: This approach is an adaptation of the standard
CNN methodology for 1-D data in the form of time series [70].
The CNN method was a significant contribution as it intro-
duced the use of convolutional networks to the field of TSC.
This methodology alternates between applying convolution
and pooling layers to the input time series. In the convolution
layers, kernels of lengths 5, 7, and 9 are used. For the pooling
layers, dimensionality reduction is achieved by segmenting
the convolution output and calculating the average of each
segment. Finally, the result of the convolution is used to feed
an MLP layer, coupled with a CLM layer, that performs the
final classification.

V. EXPERIMENTAL SETTINGS AND RESULTS

First, we present the methods used for the comparison.
Then we define the first version of the UCO TSOC repos-
itory, which contains a total of 29 datasets. After that, the
experimental setup is described. Finally, the results obtained
by the seven proposed TSOC methods are compared with
their nominal counterparts and with the rest of the nom-
inal TSC approaches. Note that we provide open source
scikit-1learn-compatible implementations of all the meth-
ods benchmarked, a guide on how to reproduce experiments,
and all the results obtained in an associated website.> All
ordinal approaches will be available in the acon toolkit? [73],
which has also been used for benchmarking and analyzing the
results obtained.

A. Methodologies Compared

To better understand how the proposed TSOC techniques
perform, four different approaches have been run as a sanity
check. The first two are a logistic regression [74] (LogReg)
and an extreme gradient boosting (XGBoost) [75] classifier.
For these, time series are flattened into a vector concatenating
all the channels. Thus, a multivariate time series with C
channels and length T is transformed into a single vector of
length C x T. The third baseline method is the time-series
forest (TSF) [76]. Finally, the state-of-the-art approach in TSC,
the HIVE-COTEvV2 classifier (abbreviated as HC2) [77], has
also been included to provide a deeper comparison. HC2
is an ensemble approach combining four approaches from

2https://uco.es/ayrna/gmpos/tsoc—d]—conv
3https://github.com/aeon—toolkiﬂaeon/

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 55, NO. 2, FEBRUARY 2025

different domains: 1) convolutional-based; 2) interval-based;
3) dictionary-based; and 4) shapelet-based. As explained
above, these techniques are considered to enrich the experi-
mentation, since they have been proven to be competitive in
a wide range of problems.

B. TSOC Datasets

Given that we are covering the TSOC paradigm, all of
the datasets considered must be ordinal in nature. Therefore,
we made a selection from two well-known repositories, the
UCR TSC repository,* from which we identified nine TSOC
problems, and the Monash TSER repository,® from which 13
additional datasets have been chosen. In the latter case, as
these are regression datasets, the original continuous output
variable has been discretized into five uniformly distributed
bins. Furthermore, five other datasets have been built from
historical price data from five important companies in the
stock market, and other two were formed from data collected
from the National Data Buoy Center (NDBC) [78]. Hence,
a total of 29 TSOC datasets have been considered in this
work, with varying characteristics and backgrounds. This set
of TSOC problems conforms the first version of the UCO
TSOC repository”. Note that all the TSOC problems under
consideration belong to the category of grouped continuous
variables [29]. This is attributed to the fact that all the TSOC
problems, sourced from diverse data repositories, entail the
discretization of an underlying continuous variable. More
information of the datasets, as well as specific information of
the datasets, such as the number of classes, time-series length,
the number of channels, and so on, is displayed in Appendix
A in the supplementary material.

C. Experimental Settings

The seven novel TSOC methodologies detailed in Section III
as well as the baseline approaches have been applied to the
whole UCO TSOC repository. The datasets in their original
form are initially divided into train and test partitions. Due
to the stochastic nature of the methodologies and to mitigate
the risk of overfitting to the default training data partition,
each experiment is repeated 30 times under varied conditions.
Specifically, every experiment is conducted using a different
seed for the initialization of the methodologies and employing
a distinct partition. For consistency, the first experiment is
always executed with the default train/test partitions. Subsequent
experiments, however, involve different partitions; the default
train/test partitions are combined, and then 29 additional
partitions are generated using a holdout procedure. Each of these
partitions is created with a different seed (ranging from 1 to 29)
while maintaining the same train/test proportion as the original
dataset. We have to cross-validate only one hyperparameter
in our experiments, A, which is the regularization term of the
LogisticAT classifier used in the ordinal convolutional-based
methodologies. The set of A values to be tested are obtained
according to 1073+0/9)  where i € {0,1,...,9}. A fivefold

4https://timeseriesclassiﬁcation.com
5 http://tseregression.org/
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stratified cross-validation approach is used. The best A value is
selected by mean absolute error (MAE), as it best represents
the performance of ordinal approaches.

As this work deals with ordinal classification, specific
ordinal metrics should be considered. Concretely, MAE, 1-Off
accuracy (1-OFF) [79], and QWK [80] are considered. All
these metrics aim to quantify how close the predictions are to
the actual variable on the ordinal scale. In addition, the correct
classification rate (CCR), widely used in nominal problems, is
also computed.

D. Results

The first assessment is to determine whether the ordinal
algorithms outperform their nominal counterparts. For this, the
pairwise Wilcoxon signed-rank tests have been used with a
significance level of 0.05. Note that ranks have been averaged
across all datasets before conducting the statistical tests. The
results are presented in Table II. Overall, TSOC methods are
significantly better than nominal techniques. The exception is
O-ResNet, where there is no discernible difference in any of
the metrics.

The second experiment will determine which is the
state-of-the-art approach in TSOC. Specifically, the seven
ordinal versions of the proposed approaches are benchmarked
along with the four comparative approaches introduced in
Section V-A: XGBoost, LogReg, TSF, and HC2. For this, an
adaptation of the critical difference diagram [81] has been
used. The methodologies have been grouped into cliques,
suggesting no significant difference in rank. These cliques
were formed using the Holm correction for multiple test-
ing as detailed in [82], with a significance level of 0.05.
The results are graphically presented in Fig. 5, revealing
that O-MiniROCKET consistently outperforms other meth-
ods across all metrics. Convolution-based methodologies, in
general, demonstrate superior performance across all metrics.
For MAE, O-MiniROCKET emerges as the top-performing
approach, achieving significantly better results compared to all
the other methods. Focusing now on the performance of the
deep learners and keeping the convolution-based techniques
aside, the O-InceptionTime is the best in terms of MAE and
1-OFF, being outperformed by O-CNN and by O-LITETime
in terms of CCR and QWK, respectively. This is because
deep learners require more training patterns to improve
their performance. Notably, TSF and HC2 achieve their best
performance for CCR, which aligns with their design objec-
tive. Moreover, except for MAE, where the O-MiniROCKET’s
superiority is statistically significant, and QWK, where both
the O-MiniROCKET and O-MultiROCKET are the leading
approaches (top clique), there are no significant differences
among the top-performing methods for the remaining metrics.
Therefore, it can be said that there is still room for better
algorithms to be adapted and developed for TSOC problems.
Furthermore, another way of improvement could be extending
the problems archive, to include a wider range of datasets.

With the aim of evaluating the computational load of
the methods, Fig. 6 compares the execution times in rela-
tion to the MAE. It is evident that ordinal ROCKET-based

11 10 9 8 7 6 5 4 3 2 1
l 1 l 1 l 1 l 1 l 1 l 1 l 1 1 l 1 I
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Fig. 5. Comparison between the TSOC methodologies and the baseline
approaches described in Section IV. Methodologies are ordered based on the
average rank over 30 resamples of train and test splits. (a) Results in terms of
MAE. (b) Results in terms of CCR. (c) Results in terms of 1-OFF. (d) Results
in terms of QWK.

methodologies exhibit slower performance compared to other
TSOC approaches, such as O-ResNet or O-InceptionTime
(run in GPU), but are faster than the HC2, the state-of-the-
art nominal TSC approach. However, the O-ROCKET family
methods outperform other methodologies, achieving over a 7%
improvement in mean MAE compared to HC2 and over 10%
against TSF, in the case of the O-MiniROCKET classifier.
The increased computational load in the O-ROCKET-based
methodologies is due to two main factors: 1) the extraction
of kernels and computation of features and 2) the appli-
cation of the final ordinal classifier. The former can be
examined by comparing the different versions of ROCKET-
based methods. For example, O-MiniROCKET is the fastest
as it employs only one pooling operation, while O-ROCKET
and O-MultiROCKET are slower as they apply two and
five pooling operations, respectively, as specified in Table I.
The latter aspect represents a potential area for optimization
without compromising performance. Specifically, two potential
enhancements for the ordinal versions of the O-ROCKET
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TABLE 1T
p-VALUES OF THE WILCOXON PAIRED TESTS COMPARING TSC VERSUS TSOC VERSIONS OF THE METHODOLOGIES PROPOSED

ROCKET vs  MiniROCKET vs  MultiROCKET vs ResNet vs InceptionTime vs LITETime vs CNN vs
O-ROCKET O-MiniROCKET = O-MultiROCKET O-ResNet O-InceptionTime O-LITETime O-CNN
MAE < 0.001 <0001 0.156 0.442 <0001 0.305 <0001
CCR 0.053 0.086 0.304 0.831 < 0.001 1.000 0.139
QWK <0001 <0001 < 0.001 0.381 0.345 <0001 0.203
1-OFF < 0.001 <0001 <0001 0.155 <0001 0.048 <0001
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Fig. 6. Run time in milliseconds (log scale average over all problems) plotted ~ Fig. 7. Boxplot of relative MAEs.
against mean MAE in the test sets.
1.4
family methods include: 1) replacing the LogisticAT ordinal 1.2
classifier with an ordinal version of the ridge classifier, which Lo
enables the computation of the projection matrix only once or '
. . . . . w
2) leveraging numba,® a just-in-time compiler for python. 08
Both enhancements could lead to a significant improvement 0.6
in computational time. A special mention should be given 04
to TSF, which demonstrates a favorable MAE-computational '
time tradeoff, being orders of magnitude faster than ordinal 0.2
O-ROCKET-based methodologies while achieving an accept- 0.0
able mean MAE. FEE 0 B o P
.. . . & SN
Additionally, the performance of each algorithm is com- © Ox'\\“\oxt\&‘\ N ’\Q&"‘ o™
pared in terms of relative MAE. The relative MAE is Methods
calculated by scaling the MAE of each approach with the
median MAE for each dataset. Fig. 7 presents the relative Fig- 8. Boxplot of the results obtained in MAE.

MAE for each method using boxplots. In this figure, values
greater than 0.5 indicate that the approach performs worse
than the average method, while values smaller than 0.5
indicate that the approach performs better than the average
method. It can be observed that the O-ROCKET family
exhibits a larger spread in the values, with most values being
smaller than 0.5. On the other hand, O-ResNet, O-CNN, the
two standard approaches (LogReg and XGBoost), and the
TSF approaches have values around 0.6, indicating that they
perform worse than the average algorithm. To complement
the analysis presented in Figs. 7 and 8 displays standard
boxplots illustrating the complete distribution of the results.
As observed, the majority of the results obtained by the ordinal
convolutional approaches are consistently below a MAE of 1.0.

6https://numba.pydata.org/

The performance of the DL models is quite similar. Among
the baseline nominal methodologies, HC2 stands out, demon-
strating competitive performance relative to O-MiniROCKET.
However, O-MiniROCKET consistently achieves the smallest
QI and Q3 values and the smallest median value (on par
with HC2), indicating its robustness and superior performance
across the current TSOC repository.

Finally, in Fig. 9, a global comparison in terms of MAE
between the presented ordinal techniques is provided in the
form of a full pairwise multicomparison matrix (MCM) [83].
As can be observed, the MiniROCKET method is positioned as
the best performing technique, obtaining a significant p-value
(< 0.05), against the rest of techniques.

Finally, to provide a deeper understanding of the charac-
teristics of the datasets for which the different techniques are



AYLLON-GAVILAN et al.: CONVOLUTIONAL- AND DEEP LEARNING-BASED TECHNIQUES FOR TSOC 547
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Fig. 9. MCM between ordinal methodologies in MAE. In each cell, three values are provided: 1) average of differences in MAE; 2) win/ties/losses counts;

and 3) p-value of a Wilcoxon signed-rank test.

most suitable, the results have been analyzed based on the
number of classes, the number of training patterns, time-series
length, and the number of channels. This comparative analysis
is presented in Appendix B in the supplementary material due
to space constraints.

VI. CONCLUSION

This article presents the first application of convolutional-
and DL-based techniques to TSOC, to the best knowledge
of the authors. This area remains largely unexplored in
comparison to nominal TSC. One of our contributions is
the release of the UCO TSOC repository, including a total
of 29 datasets from various domains. We also contribute to
the literature with ordinal versions of two main categories
in TSC: 1) convolutional- (ROCKET, MiniROCKET, and
MultiROCKET) and 2) DL-based approaches (InceptionTime,
CNN, ResNet, and LITETime). The ordinal versions of
these techniques have resulted in significant performance
improvements on the selected ordinal datasets against the
nominal ones. Specifically, O-MiniROCKET outperforms all
other approaches across all performance metrics, with signif-
icant differences in MAE, and does so with an acceptable
computational time. Remarkably, even in terms of CCR, a
nominal performance metric, O-MiniROCKET outperforms
HC2, the state-of-the-art approach in nominal TSC. Overall,
O-InceptionTime stands out as the most promising DL model,
significantly improving upon the results of other deep learners.
All results, source code, and guidance on reproducing exper-
iments are available.

We recognize the potential for further advancements in
TSOC algorithms. Incorporating alternative TSC techniques
offers additional opportunities to explore this area and can
serve as a baseline for future developments in this field.
Another way of improvement is extending the experiments
to develop ordinal counterparts of heterogeneous ensembles,
such as HC2 [77]. It may be possible to adapt and apply this
approach to TSOC with careful consideration. Another poten-
tial research direction in TSOC is multiobjective optimization,
where two or more performance metrics may need to be
simultaneously optimized, focusing on different aspects of
ordinal classification [84].

Another area for improvement is in the UCO TSOC
repository. Currently, the datasets are uniformly spaced, do

not present missing values, and all time series are of equal
length. However, we are conscious that many real-world TSOC
datasets may not conform to these ideal conditions. Real-world
TSOC problems often exhibit diverse characteristics, which
may pose challenges, such as irregular spacing, presence of
missing values, or variable lengths of time series. We believe
that as the TSOC field matures, there will be opportunities
to develop novel methodologies capable of accepting this
diversity in input data characteristics. We also would like
to extend our repository with new problems. We greatly
appreciate any contributions to this archive.
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