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Abstract 

Objective  This review assesses the progress of NLP in gastroenterology to date, grades the robustness of the meth-
odology, exposes the field to a new generation of authors, and highlights opportunities for future research.

Design  Seven scholarly databases (ACM Digital Library, Arxiv, Embase, IEEE Explore, Pubmed, Scopus and Google 
Scholar) were searched for studies published between 2015 and 2023 that met the inclusion criteria. Studies lack-
ing a description of appropriate validation or NLP methods were excluded, as were studies ufinavailable in English, 
those focused on non-gastrointestinal diseases and those that were duplicates. Two independent reviewers extracted 
study information, clinical/algorithm details, and relevant outcome data. Methodological quality and bias risks were 
appraised using a checklist of quality indicators for NLP studies.

Results  Fifty-three studies were identified utilising NLP in endoscopy, inflammatory bowel disease, gastrointestinal 
bleeding, liver and pancreatic disease. Colonoscopy was the focus of 21 (38.9%) studies; 13 (24.1%) focused on liver 
disease, 7 (13.0%) on inflammatory bowel disease, 4 (7.4%) on gastroscopy, 4 (7.4%) on pancreatic disease and 2 (3.7%) 
on endoscopic sedation/ERCP and gastrointestinal bleeding. Only 30 (56.6%) of the studies reported patient demo-
graphics, and only 13 (24.5%) had a low risk of validation bias. Thirty-five (66%) studies mentioned generalisability, 
but only 5 (9.4%) mentioned explainability or shared code/models.

Conclusion  NLP can unlock substantial clinical information from free-text notes stored in EPRs and is already being 
used, particularly to interpret colonoscopy and radiology reports. However, the models we have thus far lack transpar-
ency, leading to duplication, bias, and doubts about generalisability. Therefore, greater clinical engagement, collabo-
ration, and open sharing of appropriate datasets and code are needed.

Key Messages 

• What is already known on this topic–NLP can accurately detect polyp mentions in colonoscopy reports; however, no 
systematic review has yet been performed across clinical gastroenterology and hepatology.

• What this study adds–An overview of NLP applied to gastroenterology up to 2023 highlighting areas of current strength 
and opportunities for future focus in the age of the large-language model.
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• How this study might affect research, practice, or policy—This study helps inform future priorities for NLP research in 
Gastroenterology and Hepatology while focusing on increased transparency and bias reduction within the field

Keywords  Colonoscopy, Inflammatory bowel disease, Hepatocellular carcinoma, Gastroscopy, Pancreatic disease, 
Natural language Processing

Introduction
Electronic healthcare records (EHRs) contain a rich col-
lection of real-world clinical data that can be used to 
improve the understanding of gastrointestinal diseases. 
Human clinicians cognitively process this information, 
organising it into contextualised chunks. This semis-
tructured information presents particular challenges for 
computer analysis because morphology (how words are 
formed), syntax (the arrangement of words), semantics 
(the meaning of words and phrases) and pragmatics (how 
language is used) [1] vary depending on the context.

Natural language processing (NLP) describes comput-
erised methods for assessing, evaluating, synthesising, 
generating, and interacting with free text. A spectrum of 
NLP technologies exists, ranging from rule-based (RB) 
methods to machine learning (ML) and deep learning 
(DL) methods [2]. The field accelerated with the advent 
of DL-based transformer models in 2017 [3]. Many NLP 
models can now interpret complex language in clinical 
text to help structure clinical information. (Fig. 1)

DL methods have the advantage of coping with larger 
volumes of data, typically at the cost of explainability. In 
particular, bidirectional encoder representations from 
transformers (BERT) models [4] and generative pre-
trained transformers such as GPT-3 in 2020 [5], which 
were subsequently used to perform a literature review 
[6], have improved the profile and capabilities of clini-
cal NLP. In contrast, RB methods often work well with 
smaller datasets but are more challenging to scale.

Moreover, the rapid ongoing expansion in demand for 
gastrointestinal services worldwide [7–11] is leading to 
intense and building pressures on the workforce [12, 
13]. NLP is already used in other specialties to semi-
automate clinical workloads. However, as in radiology, 
significant involvement is needed by both researchers 
and healthcare professionals to ensure that these meth-
ods are trustworthy [14], robust and representative.

Researchers are increasingly using NLP in gastro-
enterology [15], as recently described in a systematic 
review studying NLP adenoma detection from free-text 
colonoscopy reports [16]. Future clinical applications 
include diagnostic decision-making, referral classifica-
tion, prediction of disease progression, clinical error 
flagging and personalised treatment planning.

Applying NLP in gastroenterology also presents some 
specific challenges. Most gastroenterological diagno-
ses, such as inflammatory bowel disease (IBD), can be 
diagnosed at multiple levels: histopathological, endo-
scopic and clinical. Thus, standalone algorithms based 
on singular reports will prove clinically insufficient. 
Although often semi-structured, liver, pancreatic, and 
endoscopic reports may vary substantially in content. 
Finally, neuro-gastroenterological problems are still 
open to some subjective interpretation, making NLP 
analysis incredibly challenging.

However, as a starting point, a general overview of 
the field is required to accelerate future progress. By 
learning from recent examples in radiology [17], car-
diology [18] and psychiatry [19], this systematic review 

Fig. 1  Applied Example of Natural Language Processing in Gastroenterology. Figure 1 provides a visual applied example of clincial natural 
langugage processing (NLP) in gastroenterology flowing from semi-structured free-text to transformed data, then on to structured output 
and finally some examples of present gastroenterology(GI) NLP applications



Page 3 of 15Stammers et al. BMC Gastroenterology           (2025) 25:58 	

aimed to provide clinicians with an accessible under-
standing of NLP.

Aim
This review assesses the progress of NLP within gastro-
enterology, grades the robustness of the methodology, 
exposes the field to a new generation of authors, and 
highlights future opportunities for clinical usage and rec-
ommendations for research.

Methods
The review was registered on PROSPERO [20] as an orig-
inal protocol in January 2023, with prespecified criteria 
published beforehand to minimise bias while assessing 
RB and ML NLP in gastroenterology.

Article retrieval
This review follows the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [21] (Supplementary Material 1) for report-
ing in systematic reviews and the AMSTAR checklist 
[22]. Because it is well known that information special-
ists best develop search strategies [23], a medical librar-
ian was involved in developing the search strategy for this 
review. The Peer Review of Electronic Search Strategies 
(PRESS) checklist [24] was used for this process, and 
the Transparent Reporting of a Multivariate Prediction 
Model for Individual Prognosis or Diagnosis checklist 
(TRIPOD) checklist [25] was used to rate the methodo-
logical robustness of all the prediction studies. When a 
meta-analysis was impossible, the Synthesis Without 
Meta-analysis (SWiM) guidelines [26] were used to max-
imise reporting robustness. The adapted Risk of Bias in 
Nonrandomized Studies – of Interventions (ROBINS-I) 
[27] checklist was used to assess the risk of bias (ROB) in 
primary studies. Further details of the checklist are pro-
vided in Supplementary Material 3.

Articles were searched for in seven scholarly data-
bases covering medicine and computer science, 
namely, the ACM Digital Library, Arxiv, Embase, IEEE 

Explore, PubMed, Scopus and Google Scholar, between 
1/1/2015 and 1/1/2023, available in the English lan-
guage. Articles published in abstract form before 2023 
were included. The year 2015 was selected as the start-
ing year for this review because it covers the climax of 
the era of RB methods through the age following the 
discovery of the attention mechanism [3], which trans-
formed the field and allowed for part self-supervised 
DL in clinical NLP.

A combination of search terms relating to NLP and 
gastroenterology was selected based on the Medical 
Subject Headings vocabulary (U.S. National Library of 
Medicine) with additional terms identified from prior 
NLP-focused reviews, in particular the work of Nehme 
et  al. [15] who also collaborated with a medical infor-
mation specialist. Extensive details of the search strat-
egy are provided in Supplementary Material 2.

Study selection
We used Covidence, a specialist software package, 
to manage the production of this systematic review 
(www.​covid​ence.​org) [28]. The studies considered eligi-
ble were those in which NLP algorithms were used to 
assess clinical free text for (1) diagnosis, (2) investiga-
tion, (3) treatment, (4) monitoring and (5) management 
of gastrointestinal diseases. RB, ML, and DL algorithms 
were included, but only those featuring Type 2a valida-
tion or higher, as TRIPOD [25] specified, because Type 
1b validation or less is associated with unacceptable 
ROB in prediction/classification studies—Table 1.

Duplicate references and studies lacking a description 
of NLP methods and focusing only on gastrointestinal 
disease risk factors were also excluded.

Following this strategy, three reviewers (MS, AV, AO) 
performed two rounds of independent study selection, 
with titles and abstracts screened in the first round 
and full texts reviewed in the second round. Disagree-
ments between review authors over the eligibility of 
studies were resolved by a senior review author (MG). 

Table 1  TRIPOD Model Validation Hierarchy

Level of Validation Study Type

Type 1a Development Only

Type 1b Development and Validation Using Resampling

Type 2a Random Split-Sample Development and Validation

Type 2b Nonrandom split Sample Development and Valida-
tion performed robustly, allowing nonrandom variations 
between datasets

Type 3 Development and Validation Using Separable Data

Type 4 Validation Only

http://www.covidence.org
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Agreement between reviewers was measured using 
Cohen’s kappa statistic, with values above 0.8 indicat-
ing excellent agreement and above 0.6 indicating good 
agreement.

Data extraction and synthesis
Data from each included article were independently 
extracted by two reviewers (MS, BR), and discrepancies 
were resolved through discussion. The extracted data 
included general study information (design, objectives), 
clinical details (clinical subarea, patient characteristics), 
and natural language processing (NLP) details (methods, 
evaluation metrics and results). To reduce complexity, 

evaluation metrics were reported for primary study 
outcomes only and given as ranges when performance 
metrics for multiple cohorts or methods were reported 
separately. Where the primary outcome measure was not 
explicitly stated, an attempt was made to infer this from 
the study’s aims. All the reviewers worked with the same 
understanding of the standard NLP terms and methods 
described in Table 2.

Specifically, accuracy, precision, recall and harmonic 
mean (F1-score) were extracted for each study where 
available. Additional data extracted are described in the 
published protocol [20]. Synthesis was performed with-
out meta-analysis as per SWiM.

Table 2  Glossary of Core Terms and Metrics

Abbreviations: TP True Positive, FP False Positive, FN False Negative, TP True Negative

Computer Science Terms Models and Methods

Natural Language Processing (NLP) Natural Language Processing describes a set of techniques which allow computers to extract meaning from semi-
structured textual information

Electronic Health Record (EHR) Electronic Health Record. Software which manages patient and clinical records in typically either a hospital or pri-
mary care setting

Model A representation of a problem or solution typically in the form of numbers with an underlying structure/architec-
ture

Rule-Based (RB) Use of an established set of rules or logic to define a search pattern, which is then executed deterministically

Machine-learning (ML) Semiautomated learning from data using stochastic (~ randomness) models, which vary from well-known 
statistical models such as logistic regression to ‘deeper’ models such as XGBoost/Random Forest typically to make 
a prediction

Deep Learning (DL) Computational imitation of human neural networks. It can be used to overcome some of the limitations of more 
traditional machine learning models, detecting more subtle or ‘deeper’ patterns hidden in the data to make 
predictions

Decision tree (DT) A form of ML model where branching logic is utilized to make decisions by splitting on criteria thresholds. Simple 
and easy to understand

Logistic regression (LR) Classification variant of linear regression. Often, it copes reasonably well with limited data but cannot cope 
with significant interactions between data points

Random forest (RF) An ‘ensemble’ of decision trees is built to create a forest of DTs. The forest can better cope with complexities 
within the data at a cost to explainability

Evaluation Methods

Manual annotation Human annotation of concepts of interest or human marking/classification of documents

Cross-validation (CV) A technique to evaluate predictive models by partitioning the original sample into a training set to train 
the model and a test set to evaluate it with reduced risk of overfitting/bias

Holdout Set A section or part of the data is withheld from the model training process for testing only

Performance Metrics

Accuracy The percentage of results that were correct among all results from the system. Calc: (TP + TN)/(TP + FP + TN + FN)

Precision (PPV) Also called positive predictive value (PPV). The percentage of true positive results among all results that the system 
flagged as positive. Calc: TP/(TP + FP)

Negative Predictive Value (NPV) The percentage of results that were true negative (TN) among all results that the system flagged as negative. Calc: 
TN/(TN + FN)

Recall Also called sensitivity. The percentage of results flagged positive among all results should have been obtained. 
Calc: TP/(TP + FN)

Specificity The percentage of results that were flagged negative among all negative results. Calc: TN/(TN + FP)

F1-Score The harmonic mean of PPV/precision and sensitivity/recall, in this case unweighted. Calc: 2 × (Precision x Recall)/
(Precision + Recall)

Area Under the Curve (AUC) Typically, it relies on a receiver-operator curve and is synonymous with AUROC – this type of AUC we refer 
to in this review. It acts as a measure of model predictive capture, with 0.9 being a strong predictive model and 0.6 
weak
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Quality appraisal of study quality, reporting and risk 
of bias
Relevant reporting standards specific to NLP research 
have yet to be established. Therefore, a modified qual-
ity appraisal based on the approach described by Koleck 
and colleagues [29], which has been used successfully in 
cardiology [18], was combined with additional machine-
learning quality indicators, as defined by Nascimento 
[30]. This checklist included evaluations of tuning, gener-
alisability, use of appropriate statistical tests, model costs 
(time), potential for explainability, code sharing and doc-
umentation. The adequacy of the reporting was assessed 
according to the principles of SwiM [26] by two review 
authors (MS, BR), who also independently assessed 
quality and ROB as high or low according to an adapted 
ROBINS-I and Cochrane Specification [27, 31] avail-
able in Supplementary Material 3. QUADAS-2 [32] was 
not used because of its narrow scope. As internationally 
recognised NLP benchmarks are established, standard-
ised clinical NLP ROB frameworks will hopefully become 
formal.

Multiple checklists are used in this project to maximise 
the robustness of the approach in an emergent and cur-
rently somewhat heterogeneous field. For clarity, they are 
summarised below in Table 3 with their associated pur-
pose within the review.

Results
Article screening
After applying the eligibility criteria, 53 articles were 
included in the review (Fig.  2). A total of 1900 studies 
were initially retrieved from scholarly databases; how-
ever, 716 (39.6%) of these studies were removed as dupli-
cates. Of the 1184 unique references screened by title 
and abstract, 679 (57.3%) were excluded for not having 
a gastrointestinal focus, and 276 (23.3%) were excluded 
for not using NLP or describing NLP methods or valida-
tion. Eighty-six (7.3%) articles were reviews only, and 16 

(1.4%) articles focused only on gastrointestinal disease 
risk factors. See Supplementary Material 10 for details of 
all abstracts screened and Supplementary Material 6 for 
interobserver agreement results during screening. A full 
PRISMA flow diagram is provided in Fig. 2.

During the full-text screening 126, studies were 
excluded because they were available only in abstract 
form 57 (45.2%), performed only weak validation 4 (3.2%) 
or did not provide sufficient details about NLP methods 
or validation 4 (3.2%). A total of 3 (2.4%) studies were 
excluded due to irrelevant indications (limited gastroen-
terology focus), 2 (1.6%) were first published outside the 
date range, 2 (1.6%) were focused primarily on review-
ing the literature, and one (0.8%) study was a substudy 
focused on consensus building. See Supplementary 
Material 9 for the full details of the excluded studies.

Key characteristics of the included studies
Of the 53 included studies, 29 (54.7%) were published in 
biomedical informatics or computer science journals, 19 
(35.8%) were published in gastroenterology clinical jour-
nals, and 5 (9.4%) were published in non gastroenterol-
ogy-focused clinical journals.

A total of 18 (34.0%) studies were based on data from 
a single centre, and 35 (66.0%) were multisite or regis-
try. Regarding technological maturity, 47 (88.7%) studies 
were performed in a development/laboratory environ-
ment. In comparison, 6 (11.3%) studies were launched as 
part of a clinical pilot, and only one (1.9%) was deployed 
as part of a production clinical human-in-the-loop sys-
tem [33]. No systems are currently being used unsuper-
vised in production.

In terms of clinical focus, 22 (41.5%) studies focused 
primarily on obtaining additional information from clini-
cal investigations, 20 (37.8%) studies focused on detect-
ing/extracting diagnoses, and 10 (18.9%) studies focused 
on improving the monitoring of a disease or calculating 
surveillance intervals. Only a single study (1.9%) focused 
on treatment/management [34].

Table 3  Checklist Summary

Checklist Purpose Within Review

PRISMA Provides a standardised framework for reporting the systematic review, ensuring clarity, transparency, and replicability as well as an under-
standing of the numbers of papers screened.

AMSTAR​ Evaluates the methodological quality and rigour of the systematic review, ensuring the reliability of study findings and reporting these faith-
fully.

TRIPOD Guides the transparent reporting of prediction models, covering development, validation, and evaluation aspects. In this review, particular 
attention is paid to the validation component of TRIPOD which has the greatest bearing on model generalisability.

SWiM Supports structured synthesis and reporting systematic reviews that do not include meta-analyses. In this study an adapted version 
of the quality checklists developed by Koleck [29] and Nascimento [30] were used.

ROBINS-I Assesses the risk of bias in interventional studies, ensuring the validity of their findings. In this review, the checklist has been adapted for NLP 
studies in Gastroenterology.
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The total number of documents available to investiga-
tors ranged from 101 [35] to 14.6 million [36], with up 
to 610,684 [37] individual patients in the available sample 

population. However, given the high costs involved in 
annotation, high-quality manually annotated model 
development document samples varied between 101 [35] 

Fig. 2  PRISMA Flow Diagram For Review. Figure 2 provides the full PRISMA flow diagram for the study from abstract identification and screening 
through to full paper screening and extraction
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and 6836 [38], and manually annotated validation docu-
ment samples ranged from 100 [39] to 2988 [40] in size.

Study tools/methods used
The authors used a wide array of methodologies/tools, 
including 26 (49.1%) studies using RB methods, 15 
(28.3%) using a hybrid (ML + RB) approach, 10 (18.9%) 
using singular ML models and 2 (3.8%) using an ML 
ensemble [38, 41]. Popular established open-source 
tools utilised included CLAMP [42], cTAKES [43] and 
PyCONtext [44]/MedSpacy [45], with Python, n = 15 
(28.3%) the most popular nonstructured query lan-
guage explicitly mentioned, followed by Java, n = 10 
(18.9%), Prolog 3 (5.7%) and PERL 1 (1.9%). Four com-
mercial algorithms (I2E™, EHRead™, ClixNLP™ and 
EasyCIE™) were mentioned across 5 (9.4%) studies. 
Table  4 provides an overview of the primary open-
source NLP tools described.

Substantial heterogeneity in study datasets, ontolo-
gies, tools, models, and methods makes direct compari-
sons between study methods extremely challenging. 
Only 4 studies provided code links, and only one used 
a publicly available dataset (MIMIC-II), substantially 
limiting replicability. These are highlighted in Supple-
mentary Material 7 for reference.

Demographics of the included studies
Only 30 (56.6%) of the studies reported patient demo-
graphics. Ages ranged from 16 [46] to 85 [47] years, while 
sex balance ranged from 1.8% [48] to 63% [49] female. 
Only 17 (32.1%) studies reported underlying ethnicity 
and detailed information on participant socioeconomic 
status or comorbidities was provided in only 5 (9.4%) 
studies. A full breakdown of the reported study popula-
tions is provided in Supplementary Material 7.

Table 4  Key NLP Tools Currently Used in Gastroenterology/Hepatology

Tool Description Link Example Usage

Commonly Used Ontologies/Clinical Data Models

ICD-10 WHO International Classification of Dis-
eases version 10

https://​icd.​who.​int/​brows​e10/​2010/​en Coding of gastroenterology diagnoses 
on discharge summaries as a validation 
standard

SNOMED-CT SNOMED Clinical Terminology system https://​www.​snomed.​org/​get-​snomed Coding of gastroenterology diagnoses 
on discharge summaries as a validation 
standard

UMLS Metathesaurus Open-source compendium of controlled 
vocabularies curated by the US Library 
of Medicine

http://​www.​nlm.​nih.​gov/​resea​rch/​umls/ Standardisation of Free-Text terms to aid 
with tokenisation (breaking up) of free-text

OMOP Observation of Medical Outcomes Part-
nership Common Data Model

https://​www.​ohdsi.​org/​data-​stand​ardiz​
ation/

Mapping of clinical information to a stand-
ardised data model to aid interoperability

Java-Based Open-Source Tools

cTAKES Open-source NLP system for informa-
tion extraction from electronic medical 
record clinical free text

http://​ctakes.​apache.​org/ Used to process and extract concepts such 
as from free text

GATE Suite of tools for NLP tasks, includ-
ing information extraction

https://​gate.​ac.​uk/ Used to extract concepts such as hepatitis 
from clinical free text

MALLET Java-based package for statistical NLP, 
document classification, clustering,
topic modelling and information extrac-
tion

http://​mallet.​cs.​umass.​edu/ Used to build a text-to-model pipeline, 
perhaps to diagnose IBD and perform NLP 
analysis on that model

CLAMP Clinical Language Annotation, Modelling 
and Processing Toolkit

https://​clamp.​uth.​edu/ Used to annotate clinical free-text, 
perhaps for training a model for diagnosis 
of pancreatic cysts in radiology reports

Python-Based Open-Source Tools

NLTK Python’s natural language processing 
toolkit

https://​www.​nltk.​org/ Identify abdominal pain tokens in clinic 
letters

Spacy Self-described as industrial-strength 
natural language processing in python

https://​spacy.​io/ Label patients with polyps with coloring 
and build a pipeline

MedSpacy Successor to PyContextNLP combining 
the original implementation with Spacy

https://​github.​com/​medsp​acy/​medsp​
acy

Build a fully functional app annotating 
endoscopy reports

Chexpert-labeler Initially, developed to help label chest 
X-rays adapted in some studies to review 
CTs and MRIs

https://​github.​com/​stanf​ordml​group/​
chexp​ert-​label​er

Label radiology reports of patients with, 
for instance, pancreatic cysts

https://icd.who.int/browse10/2010/en
https://www.snomed.org/get-snomed
http://www.nlm.nih.gov/research/umls/
https://www.ohdsi.org/data-standardization/
https://www.ohdsi.org/data-standardization/
http://ctakes.apache.org/
https://gate.ac.uk/
http://mallet.cs.umass.edu/
https://clamp.uth.edu/
https://www.nltk.org/
https://spacy.io/
https://github.com/medspacy/medspacy
https://github.com/medspacy/medspacy
https://github.com/stanfordmlgroup/chexpert-labeler
https://github.com/stanfordmlgroup/chexpert-labeler
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Study purpose and primary findings
Specifically, 21 (39.6%) of the studies focused on colo-
noscopy, 13 (24.5%) on liver disease, 7 (13.2%) focused 
on inflammatory bowel disease (IBD), 4 (7.5%) focused 
on gastroscopy, 4 (7.5%) focused on pancreatic pathol-
ogy, 2 (3.8%) focused on gastrointestinal bleeding, one 
(1.9%) focused on endoscopic retrograde cholangio-
pancreatography (ERCP) and one (1.9%) focused on the 
optimisation of sedation in endoscopic practice more 
generally. Figure 3 presents a summary of the primary 
clinical areas of application.

As anticipated, classification tasks accounted for 32 
(59.2%) studies, given that prediction and automation 
typically depend upon accurate classification. Nineteen 

(59.4%) of these studies focused on disease case iden-
tification. A broader array of clinical tasks presently 
exists within colonoscopy studies. The complete results 
of all the included studies are provided in Supplemen-
tary Material 8.

Colonoscopy
Gourevitch et  al. examined pathologist variation 
in colorectal adenoma classification and reported 
substantial average variations in reported ade-
noma detection rates (ADRs) between endoscopists 
(28.5%−42.4%), depending purely on the reporting 
pathologist [46]. Blumenthal et  al. managed to pre-
dict colonoscopy nonattendance with an AUC of 0.70 

Fig. 3  Distribution of Available NLP Studies across Gastroenterology and Hepatology. Figure 3 visually examines the distribution of available NLP 
studies across varied clinical, data science and task domains
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[47]. Li et al. achieved 100% precision and recall while 
stratifying a sample of 300 Lynch syndrome mismatch 
repair status reports [48]. Shi et al. achieved 94% pre-
cision and recall in identifying cancers in family histo-
ries [49]. Paterson et  al. achieved precision and recall 
values of 0.861 and 0.885, respectively, for predict-
ing colonoscopy indication [50]. Hoogendorm et  al. 
achieved an AUC of 0.896 for predicting colorectal 
cancer at the population level by including informa-
tion derived from NLP [36].

A systematic review has already been performed 
regarding the automated detection of adenomas using 
NLP, for which a pooled precision of 99.7% was found 
[16]. However, the studies included in this review were 
rule-based and thus likely brittle. Table  5 summarises 
the key results of all colonoscopy result extraction 
studies focusing on polyp detection, where data were 
available.

Harrington et  al. attempted to personalise colo-
rectal cancer screening follow-up plans, achieving a 
maximum AUC of 0.65 for this task [61]. Three stud-
ies focused on clinical decision support for colorectal 
cancer surveillance interval calculations, each taking a 
different approach. Wadia et al.’s decision support sys-
tem divided reports into actionable and nonactionable, 
achieving precision and recall of 92.8% and 98.9%, 
respectively [62]. Peterson et  al.’s algorithm achieved 
an accuracy of 92% for assigning recommended 

surveillance intervals for colonoscopy [39], while 
Karwa et al. reported 100% accuracy on the same task 
[63]. In comparison, human surveillance judgments 
exhibited significantly more deviation from guidelines 
with a tendency toward earlier surveillance.

Endoscopic retrograde cholangiopancreatography (ERCP) 
and endoscopic sedation
Shen et al.’s. human-in-the-loop clinical decision support 
system (CDSS), aimed to identify patients at higher risk 
of sedation errors preemptively [33], reduced the seda-
tion-type error rate from 0.39% to 0.037%. Although the 
system had a high recall (sensitivity) of 89.2%, it suffered 
from low precision (28.5%). Imler et al.’s study focused on 
automated RB quality metric extraction for ERCP [64]. 
The model identified 13 pre, intra- and postprocedure 
quality measures from free text; however, the algorithm 
struggled more with complex concepts such as precut 
sphincterotomy (84% precision) and pancreatic stent 
placement (90% precision).

Gastrointestinal bleeding
These studies used a combination of RB and ML/DL 
models to detect gastrointestinal bleeding in clinical free-
texts—one in the emergency department (ED) [40] and 
the other in intensive care (ICU) [65]. Taggart et al.’s ICU 
study achieved the following precision: RB: 62.7%, ML: 
55.9% and recall: RB: 91.1%, ML: 84.9% on MIMIC-III 

Table 5  Colonoscopy Result Extraction Studies

Footnote: NR-Not reported. Precision (PPV) = TP/(TP + FP). Recall (sensitivity): TP/(TP + FN). Confidence intervals are reported in only a minority of studies

Study Study Aim Outcome Model Accuracy Precision Recall F1 Score

Adenoma Studies

Syed 2022 [51] Extract clinical concepts 
from colonoscopy reports

Polyp Detection DL(BERT) NR 0.91 0.94 0.92

Vithayathil 2022 [52] Develop a large colonoscopy-
based longitudinal cohort

Adenoma Detection RB 1 1 1 1

Nayor 2018 [53] Automate calculation of ADR Adenoma Detection RB 1 1 1 1

Laique 2021 [54] Extract clinical information 
from colonoscopy reports

Polyp Detection RB 0.96 0.99 0.92 0.96

Tinmouth 2023 [55] Identify colorectal adenomas 
in pathology reports

Non-Advanced Adenomas RB 0.99 1 0.99 0.99

Lee 2019 [56] Identify colonoscopy quality 
and polyp findings

Polyps > 10 mm Commercial – I2E 0.95 1 0.91 0.95

Fevrier 2020 [37] Extracting Polyp Variables Adenoma Detection RB NR 0.99 0.97 0.98

Bae 2022 [57] Focusing on polyp detection Adenoma Detection RB 0.99 1 0.99 0.99

Non-Adenoma Studies

Redd 2022 [58] Identify colorectal cancer in US 
military Veterans

Colorectal Cancer ML – LDA & DNN 0.99 0.91 0.97 0.94

Parthasarathy 2020 [59] Automatically Diagnose Ser-
rated Polyposis Syndrome (SPS)

Serrated Polyposis Syndrome RB 0.93 NR NR NR

Ternois 2018 [60] Automatic coding system 
for colonoscopies

Attribute reports to CCAM 
codes

RB NR 0.92 0.92 0.92
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[66], while Shung et al.’s study achieved the following pre-
cision: RB: 72.0%, DL: 84.0% and recall: RB: 87.0%, DL: 
90% for detecting bleeding among ED clinical text nar-
ratives. In both studies, the NLP approach exceeded the 
results of using ICD codes alone, but the transformer-
based approach was strongest overall.

Gastroscopy
Half of these studies focused on identifying gastric 
pathology from reports. The ML-ensemble model pro-
posed by Ding et al. achieved an AUC of 0.891 for pre-
dicting gastric cancer from gastroscopy report text [38]. 
However, even this model was associated with a 25.6% 
missed diagnosis rate. Song et  al. achieved even more 
impressive results while attempting to extract ten differ-
ent gastric diseases from 1,000 validation gastroscopy 
reports, achieving a precision of > = 97.2% [67] in their 
centre.

McVay et  al. used a 250-patient holdout set to detect 
dysphagia [68] and achieved a precision of 98.6% and an 
F1 score of 91.1% on this task. Finally, Nguyen Wenker 
et  al. attempted to detect Barrett’s dysplasia in gastros-
copy reports. In this task, they achieved 93.2% precision, 
although the algorithm could not effectively discriminate 
between low- and high-grade dysplasia [69].

Inflammatory bowel disease (IBD)
Stidham et al. used an RB algorithm to identify the sta-
tus of many skin, eye and joint-related IBD extraintestinal 
manifestations (EIMs), achieving average recalls of 92% 
for EIM presence [70]. Kurowski et al. created a compu-
tational Crohn’s disease state model with symptomatic/
asymptomatic, active/inactive and tested/untested states. 
They reported that 20% of patients were lost to follow-
up every 24 months [71]. Zand et al. classified flare-line 
conversations with IBD patients and reported that 90% of 
the dialogues could be assigned to one of seven catego-
ries [72]. Walker et al. achieved a precision of 79% and a 

recall of 92% for detecting liver test derangement in an 
IBD cohort [73].

Montoto et  al. achieved precision and recall values of 
88% and 98%, respectively, for the diagnosis of Crohn’s 
disease, 91% and 71%, for disease flares and 86% and 94%, 
for vedolizumab [74] across a Spanish cohort. Gomollón 
et al. built upon this work by attempting to predict dis-
ease flares in that cohort, achieving a precision and recall 
of 67% and 71%, respectively, using a random forest 
model and two years of input data [75]. Finally, Hou et al. 
achieved precision and recalls of 87% and 96.6%, respec-
tively, for detecting low-grade dysplasia in IBD surveil-
lance biopsies within a US cohort [76].

Liver
Bell et  al. reported that donor text narratives strongly 
predict liver utilisation(AUC = 0.81) but not 30-day 
(AUC = 0.53) or 1-year mortality (AUC = 0.52) [34]. 
Koola et  al. phenotyped hepatorenal syndrome (HRS) 
with precision and recall ranging from 53–73% and 
65–84%, respectively, with the final phenotyping algo-
rithm achieving an AUC of 0.93 [77] on a small cohort.

Chang et  al. achieved 98.4% precision and 90% sensi-
tivity in identifying patients with cirrhosis [78]. Redman 
et  al. and Van Fleck et  al. achieved 89–91.8% precision 
and 90–93% recall for identifying obesity-related liver 
disease from liver imaging reports [79, 80]. Heidemann 
et  al. attempted to identify drug-induced liver injury 
(DILI) cases [81]. However, with their four-term RB sys-
tem, they achieved precision and recall values of 64% 
and 53%, respectively; in another study, Wang X et  al. 
attempted to attribute the causality of idiopathic DILI, 
reaching a precision of 86% and recall of 82%, respec-
tively, with their system [82].

The six remaining studies focused on identifying liver 
cancer, predominantly hepatocellular carcinoma (HCC), 
in radiology reports are summarised in Table 6.

Table 6  NLP Liver Cancer Identification Results

Table Footnote: NR Not Reported. Precision (PPV) = TP/(TP + FP). Recall (sensitivity): TP/(TP + FN)

Study Clinical Focus Imaging Modalities Accuracy Precision Recall F1 Score

Yim 2017 [35] Identifying and Classifying Tumour-
event Attributes

Not Specified NR 0.83–0.88 0.68–0.76 0.72

Tariq 2022 [83] HCC US/MR using templating NR 0.97 for MR
0.68 for US

0.96 for MR
0.66 for US

0.95 for MR
0.67 for US

Liu W 2022 [41] Liver Metastases in Colorectal Cancer CT/MRI 0.96 NR NR NR

Liu H 2021 [84] Predicting the Phrase: ‘hyperintense 
enhancement in the arterial phase.’

CT Only 0.98 0.98 0.99 0.98

Sada 2016 [85] HCC CT/MRI NR 0.68 0.75 0.71

Wang T 2022 [86] HCC Predominantly US with some CT/MRI 0.99 0.86 1 0.92
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Pancreas
Three systems reported precisions ranging between 33 
and 99% and recalls ranging from 25 to 99.9% for detect-
ing pancreatic cysts in radiological examinations [87–89]. 
These studies included 269,221 individual patients, but 
substantial heterogeneity in the methods, environments, 
and underlying imaging studies renders reliable meta-
analysis challenging. Xie et  al. achieved precision and 
recall values of 85.5–100% and 88.7–98.7%, respectively, 
for various chronic pancreatitis features [90], finding a 
more significant ten-year mortality (32.5% vs 21.2%) in 
those with more advanced radiological features.

Quality assessment
Only 6 (11.3%) studies explored algorithm running costs, 
while model explainability was mentioned in only 5 
(9.4%) studies. However, 34 (64.1%) of the studies explic-
itly mentioned generalisability. Open-source code was 
only available for 5 (9.3%) studies. Supplementary Mate-
rial 4 summarises the quality appraisal results for each 
study.

Risk of bias assessment
All studies were assessed across ten areas of potential 
bias. All studies were scored low for deviation bias (a 
measure of unclear aims). Only 5 (9.4%) studies had a low 
risk of bias across all domains. Supplementary Material 
5 summarises the ROB results. Validation bias was the 
most common, with only 13 (24.5%) studies scoring as 
low risk in this domain.

Discussion
In gastroenterology, NLP algorithms have successfully 
extracted diagnoses and clinical features from radiol-
ogy, histopathology, and endoscopy reports. This enables 
healthcare providers to identify patients at risk of liver 
disease, polyps/cancer, and sedation-related endoscopy 
errors. Furthermore, NLP systems have demonstrated 
effectiveness in analysing clinicians’ notes to predict dis-
ease flare in the context of IBD, thereby facilitating timely 
intervention.

The author lists suggest that few research groups are 
presently active in this field. Most NLP work within 
gastroenterology is concentrated on only a few clinical 
domains, most obviously colonoscopy. A relatively nar-
row range of clinical tasks, such as automated endoscopic 
or radiological report interpretation, is being prioritised. 
Encouragingly, most studies focus on open-source soft-
ware, although code sharing is rare.

The employed methodologies were highly heterogene-
ous, suggesting poor consensus regarding optimal meth-
ods at this point, impeding meta-analysis and consensus 
building. Positive results have been obtained in some 

areas, such as automated adenoma, pancreatic cyst, and 
hepatocellular carcinoma detection. However, limited 
external validation and a preference for rule-based meth-
ods cast doubt on model robustness and generalisability.

Rule-based (RB) methods are widely used due to 
their transparency and ease of understanding, foster-
ing greater clinician trust. Their limitations are well-
defined, and when carefully designed, RB methods often 
achieve higher recall rates than machine learning (ML) 
approaches. This makes them particularly useful for 
excluding patients unlikely to have a specific condition. 
Additionally, RB methods are cost-effective to develop 
and execute, making them an economical choice in 
many settings. Conversely, when trained on high-quality 
data, ML methods can achieve significantly higher pre-
cision and handle greater complexity than RB systems. 
However, they often require substantial computational 
resources that may not be available in all clinical environ-
ments, and they can act as ‘black-boxes’. Moreover, ML 
models are more susceptible to errors arising from flaws 
in training data. While large language models (LLMs) 
have garnered considerable attention, their high opera-
tional costs, comparative slowness and unpredictability 
currently limit their clinical utility.

However, the quality of the included studies varied 
considerably, with explainability, costs, and parameterisa-
tion generally being poorly explored. A total of 43.3% of 
the studies provided no demographic information, mean-
ing that inherent algorithm biases cannot be examined at 
all in these models. None of the studies in the review dis-
cussed demographic parity, equal opportunity, or dispa-
rate impact analysis, which means that fairness cannot be 
adequately assessed in any of the models studied. Where 
demographic information was provided, patient samples 
were predominantly Caucasian and male, limiting the 
generalisability and, thus, the applicability of any trained 
models. This poses significant ethical questions about 
using these algorithms in clinical practice and suggests a 
need for more robust future reporting.

As colonoscopy studies have highlighted, model shar-
ing is almost nonexistent, leading to substantial duplica-
tion of effort. Incentivising transparency must become 
a priority for publishers and grant-awarding bodies, or 
future progress will be stunted.

Future work should also focus on managing and 
investigating functional bowel disorders, nutrition, and 
intestinal failure, which are presently absent in the peer-
reviewed literature. Opportunities for future research 
abound. Potential future research directions are sug-
gested below:

1.	 Developing and applying NLP approaches which can 
accomplish complex tasks such as generating disease 
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timelines, monitoring clinical progress and develop-
ing complex clinical phenotypes.

2.	 Encouraging open-sharing of published NLP models 
while maintaining data protection and patient pri-
vacy. Enabling algorithm fine-tuning by others.

3.	 Applying NLP to study a broader range of gastroin-
testinal diseases and more diverse, representative 
patient samples to reduce bias in trained models.

4.	 Exploring open-source code sharing internationally 
across health systems to facilitate testing of inter-
operability and model assessment in varied clinical 
practice settings.

5.	 More robust evaluation of NLP algorithms, consid-
ering cost-effectiveness, bias/fairness, time savings, 
carbon footprint, and acceptability within a clinical 
workflow.

Conclusion
NLP can unlock substantial clinical information from 
free-text notes stored in EPRs and is already being used, 
particularly to interpret colonoscopy and radiology 
reports. However, the models we have thus far lack trans-
parency, leading to duplication, bias, and doubts about 
generalisability. Therefore, greater clinical engagement, 
collaboration, and open sharing of appropriate datasets 
and code are needed before validated, trusted, semiau-
tonomous NLP systems can be deployed widely and sig-
nificant clinical benefits can be realised.
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