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Abstract—Flexible intelligent metasurfaces (FIMs) constitute a

promising technology that could significantly boost the wireless
network capacity. An FIM is essentially a soft array made up
of many low-cost radiating elements that can independently emit
electromagnetic signals. What’s more, each element can flexibly
adjust its position, even perpendicularly to the surface, to morph
the overall 3D shape. In this paper, we study the potential of
FIMs in point-to-point multiple-input multiple-output (MIMO)
communications, where two FIMs are used as transceivers. In or-
der to characterize the capacity limits of FIM-aided narrowband
MIMO transmissions, we formulate an optimization problem for
maximizing the MIMO channel capacity by jointly optimizing
the 3D surface shapes of the transmitting and receiving FIMs,
as well as the transmit covariance matrix, subject to a specific
total transmit power constraint and to the maximum morphing
range of the FIM. To solve this problem, we develop an efficient
block coordinate descent (BCD) algorithm. The BCD algorithm
iteratively updates the 3D surface shapes of the FIMs and
the transmit covariance matrix, while keeping the other fixed.
Numerical results verify that FIMs can achieve higher MIMO
capacity than traditional rigid arrays. In some cases, the MIMO
channel capacity can be doubled by employing FIMs.

Index Terms—Flexible intelligent metasurfaces (FIMs),
multiple-input multiple-output (MIMO), reconfigurable intelli-
gent surfaces (RIS).

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technologies aim to
increase the data transmission rates by utilizing multiple anten-
nas at both the source and destination. By tapping into chan-
nel state information (CSI) available at the transceivers and
applying appropriate transmit precoding/receiver combining
techniques, increased data rates can be achieved [1], [2]. In the
fifth-generation (5G) networks, base stations (BSs) typically
use large-scale antenna arrays having over 100 antennas [3].
Looking ahead, next-generation communication systems are
expected to feature extremely large-scale antenna arrays with
thousands of antennas for further enhancing data transmission
capabilities [4], [5].

In practical MIMO communication systems, a significant
challenge, particularly for mobile terminals, is fitting a large
number of antenna elements into a limited physical area.
A promising solution that is gaining traction is metasurface
technology [6]. A metasurface is an artificially engineered
planar structure made up of many sub-wavelength metallic or
dielectric scattering particles [6], each of which is capable of
independently radiating or scattering electromagnetic waves
as desired [7]. Incorporating near-passive metasurfaces into
wireless networks has great potential for ‘reshaping’ the wire-
less propagation environments [8]. Moreover, metasurfaces

can also be used as reconfigurable antenna arrays due to
their tunability and programmability [9], [10]. The dense
arrays of metasurfaces enable electromagnetic operations at
an unprecedented level of precision [11], which has led to the
concept of holographic MIMO communications [12]–[15].

However, the existing MIMO technologies rely on rigid
antenna arrays (RAAs) or metasurfaces having fixed element
positions. As a further development, programmable flexible
intelligent metasurfaces (FIM) have been developed [16].
This dynamic FIM is composed of a matrix of tiny metallic
filaments, driven by reprogrammable Lorentz forces from
electrical currents passing through a static magnetic field1. As
a result, the FIM can promptly and precisely morph its surface
shape. [16]. By strategically adjusting the physical position of
each antenna element, multiple signal copies impinging from
different paths may add constructively at the antenna array,
thus effectively increasing the received signal power [17].

Motivated by this observation, we explore using FIMs as
transceivers in a point-to-point MIMO communication system.
Specifically, we focus our attention on maximizing the MIMO
channel capacity by jointly optimizing the transmit signal co-
variance matrix and the 3D surface shapes of the transmitting
and receiving FIMs, subject to realistic constraints on the total
transmit power at the source and the maximum morphing
range of the FIMs. Furthermore, we propose an efficient block
coordinate descent (BCD) algorithm for iteratively optimizing
the transmit covariance matrix and the 3D surface shapes of the
FIMs. In each iteration, the optimal transmit covariance matrix
is derived in a closed form based on the FIM’s 3D surface
shapes in the previous iteration, while the surface shapes of the
FIMs are updated for the sake of increasing the channel capac-
ity by utilizing a customized gradient ascent (GA) algorithm.
Extensive numerical results validate the superior performance
of the BCD algorithm compared to other benchmark schemes.
The results indicate that by judiciously morphing the 3D
surface shapes of the transmitting and receiving FIMs, the
MIMO capacity is doubled in certain setups.

II. SYSTEM MODEL

As illustrated in Fig. 1, we examine a point-to-point MIMO
communication system where a pair of FIMs communicate
with each other. One FIM is positioned at the source, while
another is placed at the destination. The antenna arrays on
the two FIMs are modeled as a flexible uniform planar array

1Please refer to https://www.eurekalert.org/multimedia/950133 for a video
demonstrating the real-time surface-shape morphing capability of an FIM [16].
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Fig. 1. Schematic of a point-to-point MIMO system, where an FIM is
deployed at the source and another one is at the destination.

(UPA). In contrast to conventional MIMO systems, the posi-
tion of each radiating element on the FIMs can be dynamically
adjusted along the direction perpendicular to the surface, with
the aid of a controller [16].

Specifically, let it ∈ R3 and jt ∈ R3 represent the directions
of the two sides of the transmitting FIM, while kt ∈ R3 rep-
resents the normal direction of the transmitting FIM. Further-
more, let φt ∈ [0, π) and ϑt ∈ [0, π) denote the azimuth and el-
evation angles, respectively, of the normal direction. Hence, kt
can be expressed as kt = [sinϑt cosφt, sinϑt sinφt, cosϑt]

T .
Since it, jt, and kt are orthogonal to each other, it and jt can
be readily derived, but the specific expressions are omitted,
given the page limit. Similarly, let ir ∈ R3 and jr ∈ R3

represent the directions of the two sides of the receiving FIM,
with kr ∈ R3 representing its normal direction. Additionally,
let φr ∈ [0, π) and ϑr ∈ [0, π) represent the azimuth and
elevation angles, respectively, of the normal direction of the
receiving FIM. Therefore, the normal vector kr is expressed as
kr = [sinϑr cosφr, sinϑr sinφr, cosϑr]

T . Given that ir, jr, and
kr are orthogonal to each other, ir and jr can be also derived.

Let M = MxMy represent the number of transmitting
antennas, with Mx and My denoting the number of antenna
elements along the it and jt directions, respectively. Let
qm ∈ R3, m = 1, . . . ,M represent the position of the m-
th transmitting element. Similarly, let N = NxNy represent
the number of receiving antennas, with Nx and Ny denoting
the number of antenna elements along the ir and jr directions,
respectively. Let us furthermore denote the position of the n-
th receiving element as pn ∈ R3, n = 1, . . . , N . Then, upon
considering the position of the first element as a reference
point, we have

qm = q1 + xt
mit + yt

mjt, m = 1, . . . ,M, (1)
pn = p1 + xr

nir + yr
njr, n = 1, . . . , N, (2)

where xt
m = dt,x × mod (m− 1,Mx) and yt

m = dt,y ×
⌊(m− 1) /Mx⌋ represent the distances between the m-th
element and the first element along the it and jt directions,
respectively. Furthermore, dt,x and dt,y denote the spacings
between the adjacent antenna elements in it and jt directions,
respectively. Similarly, xr

n = dr,x × mod (n− 1, Nx) and
yr
n = dr,y × ⌊(n− 1) /Nx⌋ represent the distances between

the n-th element and the first element along the ir and jr

directions, respectively, while dr,x and dr,y denote the spacings
between adjacent antenna elements in the ir and jr directions,
respectively.

Furthermore, each radiating element on the transmitting
and receiving FIMs can be independently adjusted along their
respective normal directions kt and kr, yielding

q̃m = qm + ζmkt, m = 1, . . . ,M, (3)
p̃n = pn + ξnkr, n = 1, . . . , N, (4)

where ζm and ξn represent the deformation distances of the
m-th transmitting element and the n-th receiving element,
respectively. They satisfy −ζ̃ ≤ ζm ≤ ζ̃ and −ξ̃ ≤ ξn ≤ ξ̃,
with ζ̃ ≥ 0 and ξ̃ ≥ 0 characterizing the maximum range
allowed by the unilateral reversible deformation of the trans-
mitting and receiving FIMs, respectively [16]. As a result, the
surface shapes of the transmitting FIM at the source and the
receiving FIM at the destination are characterized by ζ =
[ζ1, ζ2, . . . , ζM ]

T ∈ RM and ξ = [ξ1, ξ2, . . . , ξN ]
T ∈ RN .

In this paper, we adopt the multipath propagation model of
[18] for characterizing the wireless channels. Moreover, we
consider a quasi-static block fading environment and focus
our attention on a specific block. Additionally, we consider
narrowband transmission over frequency-flat channels. Note
that in contrast to conventional MIMO communication sys-
tems, the channels in FIM-aided MIMO systems depend on
the 3D surface shapes of the transmitting and receiving FIMs.
Specifically, let H (ζ, ξ) ∈ CN×M denote the MIMO channel
spanning from the transmitting FIM to the receiving FIM. Let
L represent the number of scattering clusters, each containing
G propagation paths. We also assume that all scatterers are
located in the far field of the transmitting and receiving FIMs.

Let φt
l,g ∈ [0, π) and ϑt

l,g ∈ [0, π) represent the azimuth
and elevation angles of departure (AoD), respectively, for
the g-th propagation path in the l-th scattering cluster w.r.t.
the transmitting FIM. Let furthermore φr

l,g ∈ [0, π) and
ϑr
l,g ∈ [0, π) denote the azimuth and elevation angles of arrival

(AoA), respectively, for the g-th propagation path in the l-th
scattering cluster w.r.t. the receiving FIM. The corresponding
propagation direction ot

l,g ∈ R3 and or
l,g ∈ R3 can be

expressed as

ot
l,g =

[
sinϑt

l,g cosφ
t
l,g, sinϑ

t
l,g sinφ

t
l,g, cosϑ

t
l,g

]T
, (5)

or
l,g =

[
sinϑr

l,g cosφ
r
l,g, sinϑ

r
l,g sinφ

r
l,g, cosϑ

r
l,g

]T
, (6)

respectively, for g = 1, . . . , G, l = 1, . . . , L.
According to (5) and (6), the array steering vectors

at

(
φt
l,g, ϑ

t
l,g

)
∈ CM of the unmorphed transmitting FIM and

ar

(
φr
l,g, ϑ

r
l,g

)
∈ CN of the unmorphed receiving FIM are

given by

at
(
φt
l,g, ϑ

t
l,g

)
=
[
1, . . . , ejκ(x

t
m⟨it,o

t
l,g⟩+yt

m⟨jt,o
t
l,g⟩),

. . . , ejκ(x
t
M⟨it,o

t
l,g⟩+yt

M⟨jt,o
t
l,g⟩)

]T
, (7)

ar
(
φr
l,g, ϑ

r
l,g

)
=
[
1, . . . , ejκ(x

r
n⟨ir,o

r
l,g⟩+yr

n⟨jr,o
r
l,g⟩),

. . . , ejκ(x
r
N⟨ir,o

r
l,g⟩+yr

N⟨jr,o
r
l,g⟩)

]T
, (8)



respectively, where κ = 2π/λ represents the wavenumber,
with λ denoting the radio wavelength, ⟨·, ·⟩ calculates the
cosine of the angle between two vectors.

Furthermore, the transmitting and receiving FIMs are
capable of imposing additional 3D deformation for fine-
tuning the position of each antenna deposited on them.
Specifically, the additional multiplicative response components
ft

(
ζ, φt

l,g, ϑ
t
l,g

)
∈ CM and fr

(
ξ, φr

l,g, ϑ
r
l,g

)
∈ CN can be

explicitly expressed as

ft
(
ζ, φt

l,g, ϑ
t
l,g

)
=

[
1, . . . , ejκζm⟨kt,o

t
l,g⟩, . . . , ejκζM⟨kt,o

t
l,g⟩

]T
,

(9)

fr
(
ξ, φr

l,g, ϑ
r
l,g

)
=

[
1, . . . , ejκξn⟨kr,o

r
l,g⟩, . . . , ejκξN⟨kr,o

r
l,g⟩

]T
,

(10)

respectively.
As a result, the array steering vectors ãt

(
ζ, φt

l,g, ϑ
t
l,g

)
∈

CM of the transmitting FIM and ãr

(
ξ, φr

l,g, ϑ
r
l,g

)
∈ CN of

the receiving FIM can be represented as

ãt
(
ζ, φt

l,g, ϑ
t
l,g

)
= at

(
φt
l,g, ϑ

t
l,g

)
⊙ ft

(
ζ, φt

l,g, ϑ
t
l,g

)
, (11)

ãr
(
ξ, φr

l,g, ϑ
r
l,g

)
= ar

(
φr
l,g, ϑ

r
l,g

)
⊙ fr

(
ξ, φr

l,g, ϑ
r
l,g

)
, (12)

for g = 1, . . . , G and l = 1, . . . , L, where ⊙ represents the
Hadamard product.

By combining (11) and (12), the narrowband MIMO chan-
nel H (ζ, ξ) between the transmitting FIM and the receiving
FIM can be written as

H (ζ, ξ) =

L∑
l=1

G∑
g=1

ςl,gãr
(
ξ, φr

l,g, ϑ
r
l,g

)
ãHt

(
ζ, φt

l,g, ϑ
t
l,g

)
,

(13)

where ςl,g ∈ C, g = 1, . . . , G, l = 1, . . . , L represents the
complex gain of the g-th propagation path in the l-th scattering
cluster. Specifically, ςl,g is assumed to be independent and
identically distributed (i.i.d.) CSCG variable, satisfying that
ςl,g ∼ CN

(
0, ρ2l /G

)
, where ρ2l represents the average power

of the l-th cluster [19]. Furthermore, let β2 represent the path
loss between the source and the destination. Consequently, we
have

∑L
l=1 ρ

2
l = β2.

For brevity, we define At ∈ CM×LG, Ft (ζ) ∈ CM×LG,
Ar ∈ CN×LG, Fr (ξ) ∈ CN×LG, and ς ∈ CLG×LG as

At ≜
[
at
(
φt
1,1, ϑ

t
1,1

)
, . . . ,at

(
φt
1,G, ϑ

t
1,G

)
, . . . ,

at
(
φt
L,1, ϑ

t
L,1

)
, . . . ,at

(
φt
L,G, ϑ

t
L,G

)]
, (14)

Ft (ζ) ≜
[
ft
(
ζ, φt

1,1, ϑ
t
1,1

)
, . . . , ft

(
ζ, φt

1,G, ϑ
t
1,G

)
, . . . ,

ft
(
ζ, φt

L,1, ϑ
t
L,1

)
, . . . , ft

(
ζ, φt

L,G, ϑ
t
L,G

)]
, (15)

Ar ≜
[
ar

(
φr
1,1, ϑ

r
1,1

)
, . . . ,ar

(
φr
1,G, ϑ

r
1,G

)
, . . . ,

ar
(
φr
L,1, ϑ

r
L,1

)
, . . . ,ar

(
φr
L,G, ϑ

r
L,G

)]
, (16)

Fr (ξ) ≜
[
fr
(
ξ, φr

1,1, ϑ
r
1,1

)
, . . . , fr

(
ξ, φr

1,G, ϑ
r
1,G

)
, . . . ,

fr
(
ξ, φr

L,1, ϑ
r
L,1

)
, . . . , fr

(
ξ, φr

L,G, ϑ
r
L,G

)]
, (17)

ς ≜diag (ς1,1, . . . , ς1,G, . . . , ςL,1, . . . , ςL,G) . (18)

Hence, the matrix form of the FIM-aided MIMO channel
in (13) is given by

H (ζ, ξ) = [Ar ⊙ Fr (ξ)] ς [At ⊙ Ft (ζ)]
H
. (19)

Furthermore, let T ∈ CM×M denote the transmit signal’s
covariance matrix, satisfying T ⪰ 0 and tr (T) ≤ Pt, with Pt
representing the power budget at the transmitter. Hence, the
MIMO channel capacity measured in bits per second per Hertz
(bps/Hz) is given by

max
T, ζ, ξ

log2 det

(
IN +

1

σ2
H (ζ, ξ)THH (ζ, ξ)

)
︸ ︷︷ ︸

C

. (20)

In conventional MIMO communication systems relying on
RAAs (ζ = 0 and ξ = 0), the capacity is fully determined
by the channel matrix H (0,0). By contrast, for MIMO
communications between a pair of FIMs, the channel capacity
H (ζ, ξ) also depends on the 3D surface-shape configurations
of the transmitting FIM ζ and receiving FIM ξ, which provide
extra design DoFs for further improving the channel capacity
in a more energy-efficient way.

III. JOINT SURFACE SHAPE MORPHING AND TRANSMIT
OPTIMIZATION FOR CAPACITY MAXIMIZATION

A. Problem Formulation

In this paper, we aim for maximizing the capacity of a
MIMO channel between a pair of FIMs by jointly optimizing
the 3D surface shapes ζ and ξ of the transmitting and receiving
FIMs, as well as the transmit covariance matrix T, subject
to the morphing range of these two FIMs and a total power
constraint at the source. Specifically, the joint optimization
problem is formulated as

max
T, ζ, ξ

log2 det

(
IN +

1

σ2
H (ζ, ξ)THH (ζ, ξ)

)
(21a)

s.t. tr (T) ≤ Pt, T ⪰ 0, (21b)

ζ = [ζ1, ζ2, . . . , ζM ]
T
, (21c)

ξ = [ξ1, ξ2, . . . , ξN ]
T
, (21d)

− ζ̃ ≤ ζm ≤ ζ̃, m = 1, . . . ,M, (21e)

− ξ̃ ≤ ξn ≤ ξ̃, n = 1, . . . , N, (21f)

where (21b) characterizes the transmit power constraint, while
(21c) – (21f) represent the constraints on adjusting the mor-
phing range of each antenna on the transmitting and receiving
FIMs.

Note that problem (21) is challenging to solve optimally,
because the objective function in (21a) is non-concave w.r.t.
the surface-shape configurations ζ and ξ of the transmitting
and receiving FIMs. Moreover, ζ and ξ are tightly coupled
with the transmit covariance matrix T in the objective function
(21a). In the next subsection, we will decompose problem (21)
into two subproblems and propose an efficient BCD algorithm
to sub-optimally solve it.



B. The Proposed Block Coordinate Descent Algorithm

Specifically, the BCD iteratively solves two subproblems
for optimizing the transmit covariance matrix T or the sur-
face shapes of the transmitting and receiving FIMs {ζ, ξ}
respectively, with the other set of variables being fixed.

1) Transmit Covariance Optimization with Given
{
ζ̂, ξ̂

}
:

In this subproblem, we aim for optimizing the transmit covari-
ance matrix T given a tentative surface-shape configuration{
ζ̂, ξ̂

}
for the transmitting and receiving FIMs. In this case,

the MIMO channel H
(
ζ̂, ξ̂

)
between the source and the

destination is determined by (19), and the original problem
in (21) simplifies to a conventional MIMO system optimiza-
tion problem, with the optimal T being determined by the
eigenmode transmission [17].

Specifically, let HH
(
ζ̂, ξ̂

)
H

(
ζ̂, ξ̂

)
= UΛUH denote

the eigenvalue decomposition of HH
(
ζ̂, ξ̂

)
H

(
ζ̂, ξ̂

)
, with

Λ = diag
(
λ2
1, λ

2
2, . . . , λ

2
M

)
∈ RM×M representing the

eigenvalue matrix. The optimal transmit covariance matrix
To is thus given by To = UPoUH , where we have
Po = diag (po1, p

o
2, . . . , p

o
M ) ∈ RM×M , and pom represents the

amount of power allocated to the m-th data stream. Specifi-
cally, the optimal value of pom can be obtained using the water-
filling strategy, which gives pom = max

(
µ− σ2/λ2

m, 0
)
, m =

1, . . . ,M , where µ is a threshold such that
∑M

m=1 p
o
m = Pt.

2) Surface-Shape Morphing with Given T̂: Next, we aim
for obtaining the optimal surface-shape configuration {ζ, ξ}
in (21) for a given transmit covariance matrix T̂. Specifically,
substituting T̂ into (21) yields

max
ζ, ξ

log2 det

(
IN +

1

σ2
H (ζ, ξ) T̂HH (ζ, ξ)

)
(22a)

s.t. (21c), (21d), (21e), (21f). (22b)

Since an optimal solution to (22) is still difficult to obtain,
instead we leverage the GA algorithm to find a sub-optimal
solution. Specifically, given the surface shapes of the transmit-
ting and receiving FIMs obtained from the previous iteration,
we can adjust their surface-shape configurations towards the
direction of the gradient for gradually increasing the channel
capacity. The GA algorithm involves two major steps: i)
gradient calculation, and ii) surface-shape update.

a) Gradient Calculation: The GA method requires
calculating the gradients of the objective function C w.r.t. the
surface-shape configurations ζ and ξ of the transmitting and
receiving FIMs, which can be obtained by using Propositions
1 and 2, respectively.

Proposition 1: The gradient of C w.r.t. ξ, i.e., ∇ξC, and
the gradient of C w.r.t. ζ, i.e., ∇ζC, are given by

∇ξC = − 2

ln 2
Diag

[
B−1

r ⊙ℑ (Sr)
]
, (23)

∇ζC = − 2

ln 2
Diag

[
B−1

t ⊙ℑ (St)
]
, (24)

where the matrices Sr ∈ CN×N , Br ∈ CN×N , Ot ∈ CLG×LG,
Kr ∈ RLG×LG, St ∈ CM×M , Bt ∈ CM×M , Or ∈ CLG×LG,

and Kt ∈ RLG×LG are defined by

Sr ≜ [Ar ⊙ Fr (ξ)]KrOt [Ar ⊙ Fr (ξ)]
H
, (25)

Br ≜IN + [Ar ⊙ Fr (ξ)]Ot [Ar ⊙ Fr (ξ)]
H
, (26)

Ot ≜
1

σ2
ς [At ⊙ Ft (ζ)]

H
T̂ [At ⊙ Ft (ζ)] ς

H , (27)

Kr ≜diag
(
κ
〈
kr,o

r
1,1

〉
, . . . , κ

〈
kr,o

r
1,G

〉
, . . . ,

κ
〈
kr,o

r
L,1

〉
, . . . , κ

〈
kr,o

r
L,G

〉)
, (28)

St ≜T̂ [At ⊙ Ft (ζ)]KtOr [At ⊙ Ft (ζ)]
H
, (29)

Bt ≜IM + T̂ [At ⊙ Ft (ζ)]Or [At ⊙ Ft (ζ)]
H
, (30)

Or ≜
1

σ2
ςH [Ar ⊙ Fr (ξ)]

H
[Ar ⊙ Fr (ξ)] ς, (31)

Kt ≜diag
(
κ
〈
kt,o

t
1,1

〉
, . . . , κ

〈
kt,o

t
1,G

〉
, . . . ,

κ
〈
kt,o

t
L,1

〉
, . . . , κ

〈
kt,o

t
L,G

〉)
, (32)

respectively.
Proof: Please refer to Appendix A. ■

b) Surface-Shape Morphing: At each iteration, the 3D
surface shapes of the transmitting and receiving FIMs are
updated by

ζ ← ζ + ϵ∇ζC, (33)
ξ ← ξ + ϵ∇ξC, (34)

where ϵ > 0 represents the step size, which is determined by
applying a backtracking line search [14].

Additionally, a projection process is imposed on the posi-
tions obtained from (33) and (34) for scaling them into the
allowable morphing ranges of the FIMs, i.e.,

ζm = max
(
min

(
ζm, ζ̃

)
,−ζ̃

)
, m = 1, . . . ,M, (35)

ξn = max
(
min

(
ξn, ξ̃

)
,−ξ̃

)
, n = 1, . . . , N. (36)

By continually updating the surface shapes according to
(33) and (34), the optimal surface shapes ζo and ξo of
the transmitting and receiving FIMs can be obtained. The
proposed BCD algorithm is guaranteed to converge to at least a
locally optimal solution for two reasons. Firstly, the objective
function value in (21a) is non-decreasing as the iteration
proceeds by selecting an appropriate step size according to
the backtracking line search. Secondly, the objective function
is upper bounded due to the power constraint in (21b).

IV. NUMERICAL RESULTS

We consider a 3D Cartesian coordinate system, where the
locations of the reference antennas at the source and des-
tination are set as (0 m, 0 m, 10 m) and (0 m, 100 m, 0 m),
respectively. Both the source and destination are equipped
with an FIM, with M = MxMy antennas at the source and
N = NxNy antennas at the destination. The antenna spacings
at the source and destination are {dt,x, dt,y} and {dr,x, dr,y},
respectively. In our simulations, we set dt,x = dt,y = dr,x =
dr,y = λ/2. The FIMs’ orientations are configured by setting
φt = φr = π/2, ϑt = ϑr = 3π/4, unless otherwise specified.

Furthermore, the distance-dependent path loss of the wire-
less channel is modeled as β2 = β2

0 (d/d0)
−α [20], where

β2
0 = −60 dB denotes the path loss at the reference distance
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Fig. 2. (a) Channel capacity C versus the number of scattering clusters L; (b) Channel capacity C versus the morphing range of the FIMs ζ̃ = ξ̃; (c) Channel
gain under different values of the maximum morphing range.

of d0 = 1 m, and α = 2.2 is the path loss exponent used in
our simulations. The propagation environment consists of L
scattering clusters, each containing G propagation paths. We
assume that all scatterers experience the same channel gain,
resulting in ρ2l = β2/L for l = 1, . . . , L. Within the l-th
cluster, the G azimuth and elevation AoDs, φt

l,g and ϑt
l,g, are

assumed to be randomly distributed with mean cluster angles
of φt

l and ϑt
l respectively, and constant angular spreads of σt

φ

and σt
ϑ, respectively. Similarly, the G azimuth and elevation

AoAs, φr
l,g and ϑr

l,g , within the l-th cluster are randomly
distributed around the mean cluster angles of φr

l and ϑr
l,

with angular spreads of σr
φ and σr

ϑ, respectively. We assume
that the L cluster centers are uniformly distributed, satisfying
φt
l, ϑt

l, φr
l, ϑr

l ∼ U [0, π) for l = 1, . . . , L. For simplicity, we
further assume σt

φ = σr
φ ≜ σφ and σt

ϑ = σr
ϑ ≜ σϑ. Moreover,

the system operates at 28 GHz with a bandwidth of 100 MHz.
Assuming a noise power spectral density of −174 dBm/Hz
yields an average noise power of σ2 = −94 dBm.

Moreover, four transmission schemes are considered for
evaluating the performance of the FIM, namely 1) FIM, WPA:
A pair of FIMs with optimized surface shapes are utilized as
transceivers, and the water-filling power allocation is used. 2)
FIM, EPA: The equal power allocation scheme is utilized at
the source. The transmitting and receiving FIM surface shapes
are updated by using the GA method. 3) RAA, WPA [1]:
Conventional RAAs are employed, while the classic water-
filling power allocation is utilized at the source. 4) RAA, EPA
[1]: The equal power allocation is utilized at the conventional
RAA-based MIMO transmitter. Additionally, for the proposed
BCD algorithm, the maximum tolerable number of iterations
is set to 50, and the convergence threshold in terms of the
fractional increase in channel capacity is set to −30 dB.
All simulation results are obtained by averaging over 100
independent channel realizations.

Furthermore, Fig. 2a examines the performance as the
number of scattering clusters in the environment increases. The
downlink transmit power constraint is set to Pt = 10 dBm. It is
demonstrated that as L increases, the MIMO channel capacity
improves since the signal components from multiple propaga-
tion paths are more likely to form a favorable profile across the
array. Moreover, the FIMs outperform conventional RAAs by
morphing their surface shapes to find the optimal configura-
tions that experience shallow fading. Notably, the performance

gain offered by the FIMs becomes more significant as the
number of scattering clusters increases. Specifically, when the
number of clusters increases from L = 1 to L = 19 the
performance gain increases from 78% to 92%. This indicates
that multipath propagation plays a crucial role in FIM-aided
wireless communications.

Fig. 2b plots the channel capacity of different schemes as the
morphing ranges of the FIMs increase. We assume that there
are L = 8 scattering clusters. For simplicity, we also assume
ζ̃ = ξ̃. Note that a conventional RAA is a special case of an
FIM when ζ̃ = ξ̃ = 0. Observe from Fig. 2b that as ζ̃ and ξ̃
increase, the transmitting and receiving FIMs exhibit increased
flexibility to adapt their 3D surface shapes, thus gradually
increasing the channel capacity. When the classic water-filling
power allocation is utilized, the FIMs with a morphing range
of ζ̃ = ξ̃ = λ/2 could improve the MIMO channel capacity by
about 80%. Although the equal power allocation suffers from
a moderate capacity penalty when the CSI is only available
at the destination, the performance gain from morphing the
surface shapes of FIMs increases to 132%. Nevertheless, we
observe that further increasing the morphing range leads to
diminishing returns.

Finally, we demonstrate the capability of FIMs for morphing
their surface shapes. Specifically, a pair of FIMs having
7 × 7 square antenna arrays are deployed at the source and
destination. When considering a maximum morphing range
of ζ̃ = ξ̃ = 0.1λ. It is demonstrated that the FIMs are
capable of morphing their surface shapes by positioning all
elements to improve the channel gain. As shown in Fig. 2(c),
weak eigenchannels are enhanced by over 40 dB compared
to traditional RAAs. Furthermore, we increase the maximum
morphing range of the transmitting and receiving FIMs to
ζ̃ = ξ̃ = 0.5λ. With a larger space to morph their surface
shapes, the eigenchannel channel gain is further increased by
about 20 dB.

V. CONCLUSIONS

In this paper, the FIM technology that has the capability
of morphing its 3D surface shape was utilized as MIMO
transceivers to enhance the channel capacity. Specifically, a
capacity maximization problem was formulated and addressed
by developing a customized BCD method for iteratively op-
timizing the transmit covariance matrix and the 3D surface



shapes of the transmitting and receiving FIMs. Numerical
results validated the significant capacity improvement gleaned
from morphing the surface shapes of the FIMs compared to
the conventional MIMO systems relying on RAAs. Notably,
the performance gains become even more pronounced as
the maximum morphing range of the FIM and the number
of propagation paths increase. Despite the remarkable per-
formance gains achieved by dynamically morphing the 3D
surface shapes of FIMs, further research is required to address
challenges such as channel estimation.

APPENDIX A
PROOF OF PROPOSITION 1

First, the channel capacity C in (20) can be rewritten
as C = log2 detBr. According to Eq. (3.60) of [21], the
differential of the logarithm of the determinant is given by
dC = 1

ln 2 tr
(
B−1

r dBr
)
. Furthermore, we have

dBr
(a)
=d [Ar ⊙ Fr (ξ)]Ot [Ar ⊙ Fr (ξ)]

H

+ [Ar ⊙ Fr (ξ)]Otd [Ar ⊙ Fr (ξ)]
H

(b)
= [Ar ⊙ dFr (ξ)]Ot [Ar ⊙ Fr (ξ)]

H

+ [Ar ⊙ Fr (ξ)]Ot [Ar ⊙ dFr (ξ)]
H
, (37)

where (a) holds due to d (AB) = d (A)B +Ad (B), while
(b) holds due to d (A⊙B) = d (A)⊙B+A⊙ d (B).

Hence, the partial derivative of the matrix Fr (ξ) w.r.t. the
deformation distance ξn of the n-th receiving element is given
by

∂

∂ξn
Fr (ξ) = jF̃r

n (ξ)Kr, n = 1, . . . , N, (38)

where F̃r
n (ξ) ∈ CN×LG is defined as

F̃r
n (ξ) =

[
0(n−1)×LG; [Fr (ξ)]n,: ; 0(N−n)×LG

]
. (39)

Substituting (38) into (37), we arrive at
∂

∂ξn
Br =

(
Ar ⊙ jF̃r (ξ)Kr

)
Ot (Ar ⊙ Fr (ξ))

H

+ (Ar ⊙ Fr (ξ))Ot

(
Ar ⊙ jF̃r (ξ)Kr

)H

=− 2ℑ
(
S̃r
n

)
, n = 1, . . . , N, (40)

where S̃r
n ∈ CN×N is defined as

S̃r
n =

0(n−1)×(n−1) 0(n−1)×1 0(n−1)×(N−n)

01×(n−1) [Sr]n,n 01×(N−n)

0(N−n)×(n−1) 0(N−n)×1 0(N−n)×(N−n)

 . (41)

Substituting (40) into dC and collecting N partial deriva-
tives into a matrix, the proof of (23) is completed. Rewriting
the channel capacity as C = log2 detBt, the proof of (24) is
completed.
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