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Abstract—Early-Exiting is a strategy that’s becoming popular
in Deep Neural Networks (DNNs), as it can lead to faster execu-
tion and a reduction in the computational intensity of inference.
To achieve this, intermediate classifiers abstract information from
the input samples to strategically stop forward propagation and
generate an output at an earlier stage. Confidence criteria are
used to identify easier-to-recognise samples over the ones that
need further filtering. However, such dynamic DNNs have only
been realised in conventional computing systems (CPU+GPU)
using libraries designed for static networks. In this paper, we first
explore the feasibility and benefits of realising early-exit dynamic
DNNs on FPGAs, a platform already proven to be highly effective
for neural network applications. We consider two approaches for
implementing and executing the intermediate classifiers: pipeline,
which uses existing hardware, and parallel, which uses additional
dedicated modules. We model their energy needs and execution
time and explore their performance using the BranchyNet early
exit approach on LeNet-5, AlexNet, VGG19 and ResNet32, and
a Xilinx ZCU106 Evaluation Board. We found that the dynamic
approaches are at least 24% faster than a static network executed
on an FPGA, consuming a minimum of 1.32x lower energy. We
further observe that FPGAs can enhance the performance of
early-exit dynamic DNNs by minimising the complexities intro-
duced by the decision intermediate classifiers through parallel
execution. Finally, we compare the two approaches and identify
which is best for different network types and confidence levels.

Index Terms—dynamic neural networks, early-exiting, FPGA,
low resource, hardware architecture for machine learning.

I. INTRODUCTION

The success of modern Deep Neural Networks (DNNs) is
partly due to their increased depth and complexity, containing
a large number of sequentially connected layers. This leads
to higher effectiveness and accuracy in solving many real-
life machine learning problems, including computer vision [1]
and voice recognition [2]. However, this comes at the cost of
a higher computational burden, leading to increased latency
and energy demands, rendering their deployment on resource-
restricted devices very challenging or even impossible.

Dynamic inference is an emerging approach that utilises
information from input samples to selectively execute only
important subsets of the DNN, e.g. layers [3], channels [4]
or sub-networks [5]. More specifically, early exiting [6], [7],
[8] is a method that adds intermediate classifiers to the
network, terminating inference once the network is confident
enough to recognize the input. To achieve this, they compare
their exit with predetermined confidence thresholds that can
also take into account elements like target device capabilities
and workload. While these classifiers introduce additional
computational load, careful design and training can lead to

significant enhancement in the overall performance of the
network [9],[10].

This article is an extended version of our previous short
paper [11], which represented the first implementation of a
Dynamic DNN on an FPGA. We contend that there is a
gap between theoretical findings and real-world applications
[12]. The majority of early exit networks are designed using
libraries optimized for static models and evaluated on conven-
tional Central and Graphics Processing Unit (CPU-GPU) sys-
tems, resulting in inconsistency between anticipated and actual
effectiveness. Performance on CPUs still cannot meet the real-
time processing requirements in embedded devices [13], and
GPU power consumption is too high [14]. Field Programmable
Gate Arrays (FPGAs) have proven to be very effective in
accelerating DNNs [15]. They consist of a flexible collection
of logic elements and IP blocks that can be configured for a
specific application and can accommodate massively parallel
operations. They have been shown to offer enhanced capa-
bilities to efficiently accommodate matrix multiplications, the
majority of computations in DNNs while achieving very low
energy consumption [16]. However, the benefits of dynamic
DNNs have not been explored on reconfigurable hardware.
The novel contributions of this paper are:

• The first exploration into the benefits of dynamic DNNs
on FPGAs, experimentally evaluated on a ZCU106 FPGA
with four different models and compared against a desk-
top CPU, GPU and embedded Jetson Xavier. Results
show that the dynamic DNN accelerates the average
inference time by 1.5-3x on the FPGA while also execut-
ing faster than the desktop CPU and with lower energy
consumption than the embedded Jetson.

• We present and explore pipeline and parallel design
approaches for the intermediate classifiers, showing how
the latter eliminates both the halting of the backbone net-
work and the requirement to store outputs of intermediate
layers, reducing the worst-case inference latency to be
equal to the average latency of a static network.

• We characterise the pipeline and parallel design ap-
proaches over latency, energy consumption and memory
needs and explore the effect of different early-exit con-
fidence thresholds, allowing the exploration of the most
appropriate approach for a given scenario.
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Fig. 1: Structure of a typical N layer early exit dynamic DNN with j early exits.

II. PRELIMINARIES

A. Early Exiting
Early Exiting is a structure-focused dynamic approach that

allows inference to stop in an intermediate stage when the
network has sufficient confidence in classifying the input. If
xi is the ith input sample, the forward propagation of a N-layer
deep network can be written:

y = Lni
◦ Lni−1

◦ · · · ◦ L1(xi), 1 ≤ ni ≤ N (1)

Where Lni
is the i-th output of the N network layers, ni is

the layer at which the inference stops and y is the network’s
output.

A common technique that enables early exiting is placing in-
termediate classifiers in between each or sets of layers (Fig. 1),
to determine if the execution of the remainder of the network
is required to produce an acceptable output. Park et. al. [17]
propose a two DNN architecture. If the difference between the
two largest outputs (softmax) of the first network exceeds a
threshold, an early exit occurs; otherwise, the second model
is executed. In classification tasks, confidence thresholds are
typically denoted by the highest value in the softmax output
[3], [18], although some works also consider measures such as
entropy [9], [6] and score margin [17]. For Natural Language
Processing (NLP) tasks, a concept of “model patience” [8]
is used, which means that if the predictions for a particular
instance remain constant, even after a series of classifiers, the
inference process concludes.

In this paper, we use the approach from Teerapittayanon
et. al. [9], which introduces intermediate classifiers between
layers that perform early exiting according to confidence-based
criteria. The classifiers are trained alongside the backbone
network as a joint optimisation problem, using the softmax
cross entropy loss function. Once the network is trained,
entropy is used to measure how confident the branch at an
exit point is. Entropy can be written as:

S(y) =
∑
c∈C

yc · log yc (2)

where y is the branch’s output that contains the probabilities
for every one of the C possible labels. Entropy is then

compared over a vector V , containin the thresholds for every
exit point. For example, in the j-th exit point after the Ln layer,
entropy is compared with Vj . If it is smaller, the inference
halts, and the branch’s predicted class is selected. Otherwise,
inference continues with the execution of the Ln+1 layer.

B. Architecture of a DNN Accelerating System

FPGAs excel at accelerating DNNs due to their high parallel
processing and customisation capabilities. These provide the
ability to create hardware architectures tailored for DNN
operations, facilitating highly optimized processing and low
latency and making them indispensable for real-time appli-
cations. Moreover, FPGAs are energy-efficient, crucial for
edge computing and embedded systems, and possess high
memory bandwidth that is able to reduce data movement,
overcoming common bottlenecks in deep learning. The large
number of layers in DNNs, however, renders the mapping of
entire networks onto a single FPGA very difficult. Instead,
most FPGA accelerator designs use a layer-by-layer accel-
eration style [19], [20], [21]. A typical accelerator consists
of the DNN accelerator, an external host processor, and off-
chip memory. The DNN accelerator consists of modules for
calculating convolutional and fully connected (FC) layers,
storage for weights, inputs and outputs, and a controller. The
programmability of FPGAs allows for full customisation of
these modules, leading to designs that can adapt both the
changing structures, sparsity, and convolution modes [22] and
popular DNN compression algorithms (e.g. pruning [23]).

C. Early-exit Networks on FPGAs

Current research into realising early-exit dynamic DNNs on
FPGAs focuses on exploring frameworks for automating the
hardware design process. ATHEENA [24] is a framework that
constructs a deeply pipelined, early-exit network accelerator
for inference on FPGAs, focusing on resource and throughput
trade-offs by leveraging the probabilistic nature of early exits.
AdaPEx [25], a related approach, explores dynamic network
inference on FPGAs using adaptive pruning and early exits to
optimize resource and throughput trade-offs at runtime. Both
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Fig. 2: Explored designs for (a) Pipeline and (b) Parallel approaches to Decision Early-Exit Networks.

approaches use frameworks (fpgaConvNet [26] and FINN [27]
respectively) that generate model-specific designs. We aim to
explore how the benefits of dynamic DNNs map to FPGAs,
and a more general DNN accelerator that can support multiple
models is necessary. Also, the efficiency of both approaches is
limited by the dependencies on intermediate layers’ outputs;
we aim to resolve that by taking advantage of the FPGA
parallelization capabilities.

III. FPGA EARLY-EXIT NETWORK ARCHITECTURES

As discussed in Section II A, intermediate classifiers are
responsible for making important data-dependent decisions
that control the exit point of the network. They are also
the key difference between normal and dynamic DNNs, and
hence are the focus of this paper. They are small neural
networks containing convolutional, fully connected, or pooling
layers. For example in BranchyNet [9], the early exit mod-
ules consist of convolutional and FC layers alongside some
activation functions, while on EPNet [28] and dynaexit [10]
the convolutional layers are skipped. We propose and explore
two approaches, pipeline and parallel, for efficiently realising
early-exit dynamic DNNs on FPGAs.

A. Pipeline Design Approach

The pipeline approach (Fig. 2(a)) follows the traditional
early exit architecture, where inference halts until the early
exit decision is made. Inference is executed as normal until
the layer before the intermediate classifier Ln−1. Then, it’s
paused, and the layer’s output is fed to the branch’s input.
After executing the intermediate classifier and checking the
confidence, the network either exits (S(yj) < Vj) and requests
a next input sample or the inference continues with the next
layer Ln.

This architecture gives the opportunity of reusing the al-
ready designed IPs. With some careful setting of the control
module on the FPGA design, an additional area overhead of
close to 0% is achieved. This may lead to some underutiliza-
sion of the existing components, but can be proven to be very
useful for cases with very restricted resource.

However, using the intermediate output to make the early-
exit decision generates an issue, as these data are lost after
the intermediate classifier’s execution. In order to maintain
them, we can use registers or external memory. The use of
registers is often not feasible, as these outputs can be very
large, especially in deeper networks (4.7Mb on VGG19 [29],
1.6Mb on ResNet-32 [30]), while the use of external memory
has a significant detrimental effect on the latency and memory
footprint of inference.

B. Parallel Design Approach

FPGAs are inherently parallel devices, which means they
can perform multiple operations simultaneously. They allow
for a high degree of fine-grained parallelism, where multiple
operations can be executed simultaneously at the gate level.
To further exploit that, we propose an alternative parallel
approach (Fig. 2(b)) that executes both the backbone and the
intermediate classifier (Ln & EarlyExitj) at the same time.

The output of the previous layer is fed to both the next
layer of the backbone network and the intermediate classifier.
They start executing simultaneously, but as the intermediate
classifier is considerably smaller, it always finishes executing
first. Dictated by the generated decision, the execution of the
backbone either continues or stops and the network resets.
This eliminates the latency overhead while computing the
early exit branch but also, more importantly, the need to store
the intermediate layer’s output. However, the simultaneous
activation of both paths requires the design of separate IPs
for the intermediate classifier, increasing the area and power
demands of the design.

C. Modeling the Energy-Latency Trade-off

To estimate the total energy consumption of the designs
for the inference of I input samples, we use the following
equation:

Einf =

I∑
i=1

(PFPGA · Ti + EDRAM ·Mi) (3)
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where P FPGA and Ti are the power consumption of the
FPGA design and the total execution time of inference for
the ith input. M i is the number of Memory Accesses to the
off-chip Dynamic Random Access Memory (DRAM), and
can be calculated based on the systolic array size and the
workload parallelisation approach presented in Section IV.
Finally, EDRAM is the typical per-bit access energy of DDR3
memory (70 pJ/bit[31]).

In early-exiting approaches however, the execution time
is directly connected with every exit point’s triggering rate.
Essentially, this is the rate of the number of test inputs that
trigger a target exit. This is dictated by one of the most
influencing parameters in these dynamic approaches, which
controls how harsh or lenient the decision to exit is. For
example, in the target network BranchyNet, vector V is used
to determine if an input i should exit at a specific exit point.
It is calculated during training, using the proposed custom
optimisation function, and controls the trade-off between ac-
curacy and latency of the early-exit scheme. After training,
the rate of samples that would trigger every exit point can be
experimentally calculated, creating the following average per
sample execution time T equation:

T = a1 · (T1 + τ1) + a2 · (T1 + T2 + τ1 + τ2) + ...+

aj · (
j∑

i=1

(Ti + τi)) + ...+ aJ · (
J∑

i=1

(Ti + τi))
(4)

where aj is the rate of samples that exit in the jth exit
point, J is the total number of the dynamic network’s exits,
T is the execution time of the backbone layers between the
exit points, and τ is the execution time of each intermediate
classifier. However, due to its different architecture, for the
parallel approach, only the triggered exit point intermediate
classifier execution time is added. So we can correctly rewrite
equation (4) as:

Tpipe =

J∑
k=1

(ak ·
k∑

i=1

(Ti + τi)) (5)

Tpara =

J∑
k=1

(ak · (
k∑

i=1

(Ti) + τk)) (6)

The average execution time of the early-exit network exe-
cuted on the pipeline approach is the sum of the rates ak of
every exit point multiplied by the sum of the execution time of
the backbone network (Ti) and all intermediate classifiers up
to that point (τi). For the parallel approach, the same function
applies, but instead of adding the execution time of every
intermediate classifier, we just add the one that led to the stop
of inference τk. In this occasion, when no early-exit occurs,
τ is 0.

Additionally to the difference in execution time, the parallel
approach, as seen in Section III B, does not require storing
the layer’s output before an exit point like the pipeline
approach, decreasing the memory access needs. Considering

that we propose the following equations to calculate the energy
consumption of the two designs:

Epipe =

I∑
i=1

(Ppipe ·Tpipe+EDRAM · (Mi+

i∑
k=1

Mintk)) (7)

Epara =

I∑
i=1

(Ppara · Tpara + EDRAM ·Mi) (8)

where Mintk is the memory access needs to store and load
the intermediate layer output.

IV. HARDWARE IMPLEMENTATION

To investigate further the feasibility and benefits of dynamic
DNNs on FPGAs and compare the two approaches introduced
in the previous section, we developed a hardware implemen-
tation. It’s essential first to convert real numbers like inputs,
weights, and biases into a digital format. We use a fixed-point
representation, as it minimizes the computational demands
on hardware resources while maintaining the same levels of
precision. This representation comprises three components:
a sign bit, a two-bit integer, and a five-bit fractional value,
which was found to minimise the computational demands and
hardware resources while causing a very low accuracy drop
(maximum of 1.3%).

An array of processing elements is used to accelerate
matrix-vector multiplications. Systolic arrays are hardware
structures that replace a pipeline structure with an array of
homogeneous processing elements (PEs) that can perform a
common mathematical operation. These elements are locally
interconnected and able to communicate with each other in a
synchronous manner. An architecture like this is very benefi-
cial as it can naturally facilitate data reuse during matrix/tensor
algebra operations. A significant portion of PEs in the array
can perform their tasks without requiring communication with
external memory. Consequently, a maximum of p I/O ports has
the capacity to drive p2 PE units, which substantially reduces
in memory bandwidth demands.

Fig. 3(a) provides an overview of the design of the pro-
posed hardware implementation. The core of the design is
a 2D systolic array configuration containing a collection of
identical and interconnected PEs accompanied by onboard
memory/registers. Each PE (Fig. 3(b)) is constructed from
fundamental arithmetic and register components, enabling it to
execute multiply-accumulate operations. The data flows from
the Input Buffer into the PEs (weights through regW and
features through regI) and is multiplied and accumulated in
the MAC module. Partial sums are calculated using bufc, and
when all iterations are completed, the results are stored in the
Output Buffer.

To improve the performance of the systolic array, it is
necessary to consider how to explore the parallelism of the
workload to drive multiple PEs to work simultaneously. A
simple way is loop unrolling [32]. Algorithm 1, for example,
describes the calculation process of a FC Layer, where d
denotes the size of the mini-batch, c signifies the cth input,
and g represents the gth output. We can flatten loop1 and
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Fig. 3: Design overview of (a) the system and (b) the processing element.

Algorithm 1 3-nested loop of fully-connected (FC) layer
Input: I[D,C] and W [E,C]
Output: O[D,G]

1: for (d = 0; d < D; d++) do
2: for (g = 0; g < G; g ++) do
3: for (c = 0; c < C; C ++) do
4: O[d, g] = O[d, g] +W [g, c] · I[d, c]

loop2 to the spatial hardware and compute these loop instances
in parallel. To better describe this, we can use data-flow to
represent which loops in the workload are unrolling. We are
following the Output Stationary (OS) [33] approach, which
refers to mapping output elements to the corresponding PEs,
where each PE needs to complete all the computations required
for an output element.

The rest of the design contains a controller module, a DMA
(Direct Memory Access) module, a host processor and an Off-
Chip DRAM. The controller ensures the synchronisation of
the different processing units and coordinates the sequence
of the dynamic DNN layer execution. It also communicates
with the host processor, which for most networks is used to
set-up the FPGA and post-process its results. In the case of
ResNet-32, it is used to execute the model, too. Finally, the
DMA is responsible for the efficient data movement between
the accelerator buffers and the Off-Chip DRAM.

A. Layer realisation

1) Convolution Layer: To implement convolution, input
data is fed from the buffers into the Systolic Array, as ex-
plained above. The PEs calculate input-kernel multiplication,
and outputs are then moved to another buffer. The activation
function (ReLU), a simple conditional branch, is promptly
applied, and its results are stored in buffers that feed the
subsequent layers.

2) FC Layer: The architecture of fully connected (FC)
layers is akin to that of convolutional layers, but instead

of using convolution, they rely on vector-matrix multiplica-
tion. The input vectors consist of numerous values generated
by flattening the output of the previous layer, resulting in
many multiplication operations. To handle this, the inputs
and weights are divided into equal segments and computed
separately.

3) Pooling Layer: Pooling layers take the values stored
in buffers from the preceding layer and apply a sliding
window with a size equal to the pooling filter and a step
size determined by the specified stride value. The operation
performed is either max or average pooling.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup

We implemented the dynamic network accelerator outlined
in the previous section using VHDL on a Xilinx FPGA board
for four different DNNs. To verify and compare the perfor-
mance of the FPGA design the networks are also executed,
using PyTorch, on a desktop computer with an Intel Core i9
9960X CPU and a Nvidia RTX 2080 TI GPU, and on the
Nvidia Jetson Xavier NX embedded platform.

1) FPGA Setup: The target platform is Zynq UltraScale+
MPSoC ZCU106 Evaluation Kit, including 504K logic cells,
1728 digital signal processing (DSP) slices, 38Mb of Block
RAM and one 4Gb DDR4 module. Table I compares the
resource utilisation for the two architectures.

To calculate the latency and power consumption of the
FPGA design, Xilinx Vivado Design Suite is utilized. For
precise latency measurements, an Integrated Logic Analyzer
(ILA) monitors selected internal signals in real-time. Power
consumption is estimated using Vivado’s Power Estimation
tool, which uses a Simulation Activity file (SAIF) specifying
environmental conditions, voltage levels, and signal activity
rates. This enables the tool to analyze the design and provide
a power estimate after implementation that has a ±10%
difference over the actual value [34].
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Fig. 4: Experimental results comparing average (a) Execution Time and (b) Energy Consumption per sample. Average values
are calculated based on each exit point trigger rate (ai).

TABLE I: Resource Utilisation

Design Data #PEs FF LUT BRAM DSP Clock
Pipeline 8-bit 300 50% 66% 96% 78% 150 Mhz
Parallel 8-bit 300 58% 73% 89% 81% 150 Mhz

2) DNN Networks: We experiment with four of the most
popular DNNs: LeNet-5 [35] , VGG19 [29], AlexNet [1] and
ResNet [30]. The networks are modified to add early exits
using the structure of BranchyNet [9], an open-source and
popular early exit network. Explicitly, on LeNet-5 one branch
consisting of 1 convolutional layer and a fully-connected
layer is added after the first convolutional layer (L1) of the
main network. On AlexNet, one branch consisting of two
convolutional layers and a fully-connected layer after the 2nd
convolutional layer (L2) of the main network. Finally on
VGG19 and ResNet two branches are added containing a
convolutional and a fully-connected layer, after the 2nd (L2)
and 10th (L10) convolutional layers on VGG19 and after the
2nd (L2) and 15th (L15) convolutional layers on ResNet32. We
have to note that for the execution of the ResNet32 network
we employ an external host processor, while the rest of the
networks are deployed entirely on the FPGA.

3) Datasets: We benchmark and compare our designs using
three widely used and open-source datasets: MNIST [36],
CIFAR-10 and CIFAR-100 [37]. MNIST contains 60,000
training images and 10,000 testing images, each of which is
a 28x28 pixel gray-scale image of a handwritten digit. The
two CIFAR datasets contains 32x32 pixel RGB natural images
across 10 and 100 classes respectively with, 50,000 training
and 10,000 validation samples.

B. Design Validation and Evaluation

To validate and evaluate the FPGA architectures for the two
designs we deployed the four widely used DNNs described
above, trained based on the BranchyNet [9] approach. For
brevity Fig. 4(a) shows the per sample execution time of
VGG19 on the Cifar-10 dataset, both for the original static (or-
ange bars) and the dynamic network (green and purple bars).
The green bars show the time needed to execute the early-
exit network when the last exit is triggered, and comparing it

with the static network (orange bars), highlights the additional
latency introduced by the intermediate classifiers.

However, dynamic inference exits for 43% (a1) of the
samples on the first exit point, 45.6% (a2) on the second and
11.4% (a3) on the original output. The average execution time
(T ) for the 10k test samples is portrayed on the 4(a) (purple
bars). As illustrated by the difference of the Normal and Early
Exit bar, and explained by equations (5) and (6), this leads
to an execution speedup by at least 1.4x in all platforms,
while for the FPGA approaches the dynamic network is at
least 1.9x. Furthermore we see that the accuracy (top of bars)
of the network is barely affected, being only 1.5% less than
the original static network.

The effects on execution time of Dynamic DNNs however,
also impacts their energy demands (equations (7) and (8)).
Fig. 4(b) shows the per-sample energy consumption (Einf )
of VGG19 both for the original static (orange bars) and the
dynamic network (green and purple bars) on the Jetson and
the FPGA. Correspondingly to the execution time, in cases
where an early exit does not occur, energy consumption of
the dynamic network is higher than the static’s. However,
when the dynamic network is properly trained, the effects of
early-exiting lead to a reduction in energy consumption over
a static network by at least 1.4x on the Jetson and 1.8x on the
FPGA. As illustrated on Fig. 4(b) the FPGA is able to achieve
comparatively low energy consumption (at least 4x less than
the Jetson), highlighting the capabilities and effectiveness of
a custom hardware design.

We also assessed the performance against other FPGA-
based DNN accelerators, as illustrated in Table IV. All of
the designs employ systolic arrays of process elements and
explore different techniques to accelerate DNNs on FPGAs,
e.g. Winograd-GEMM [38], and pruning [39], [25]. Despite
the fact that the targeted early-exit networks maintain the
backbone network unchanged and actually burden it with
the intermediate classifiers, the proposed accelerator achieves
comparative power and better energy efficiency than other de-
signs, further highlighting the benefits of dynamic approaches.
The ATHEENA framework [24] achieves considerably lower
latency, explained by the fact that it generates custom designs
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Fig. 5: Comparison of the pipeline and parallel designs over average (a) execution time, (b) energy consumption and (c) data
movement across early-exit LeNet-5, AlexNet, VGG19 and ResNet32.

TABLE II: Execution Time (ms)

LeNet-5 AlexNet VGG19 ResNet32
Exit 1

(94.4%)
Exit 2
(5.6%) Avg Exit 1

(75.6%)
Exit 2

(24.4%) Avg Exit 1
(43%)

Exit 2
(45.6%)

Exit 3
(11.4%) Avg Exit 1

(48.4%)
Exit 2

(18.3%)
Exit 3

(33.3%) Avg

CPU 0.3 1.32 0.36 0.75 3.3 1.38 1.92 3.21 5.98 2.97 2.54 8.24 12.74 6.98
CPU-GPU 0.15 0.62 0.17 0.38 1.55 0.66 1.28 2.14 3.35 1.91 1.37 3.53 5.75 3.22
Jetson 0.71 5.05 0.95 1.78 12.63 4.43 8.98 14.2 24.12 13.08 9.9 15.62 26.53 16.48
Pipeline 0.24 0.99 0.29 0.6 2.48 1.06 1.49 2.99 5.31 2.58 1.84 5.1 9.4 4.95
Parallel 0.24 0.82 0.28 0.6 2.05 0.95 1.49 2.48 4.13 2.24 1.84 4.54 7.89 4.01

TABLE III: Energy Consumption (mJ), with (w/ EE) and without (w/oEE) early exits

FPGA - Static
(16.7W) Nvidia Jetson Xavier Pipeline

(16.7W)
Parallel
(21.2W)

w/o EE w/ EE w/o EE w/ EE Power (W) w/o EE w/ EE w/o EE w/ EE
LeNet-5 16.5 n/a 48.5 9.1 9.6 13.7 4.8 17.4 5.9
AlexNet 34.2 n/a 142.7 50.1 11.3 41.4 17.7 45.5 21.1
VGG19 68.9 n/a 361.8 196.2 15 88.7 43.1 87.6 47.5

ResNet-32 99.3 n/a 398 247.2 15 143.82 75.7 141.8 85

for each network. Conversely, our approach targets the imple-
mentation of a general early-exit dynamic DNN accelerator.
In fact, there is still adequate opportunity to enhance the
accelerator’s performance. We observe that DSP utilization is
relatively low due to insufficient block RAM resources. By op-
timizing the storage structure or utilizing a platform with more
resources, the processing element array can be expanded to
enhance DSP utilization, thereby achieving higher throughput.
Furthermore combining dynamic approaches with acceleration
techniques, such as the ones used by the cited designs, latency
and resource demands could be further reduced.

C. Evaluating pipeline vs parallel Approaches
Table II contains the average per sample execution time

(T ) for each network and for every exit point, alongside the
percentage of samples (ai) that would trigger them (under-
neath every exit). Focusing on the FPGA architectures and
comparing them with the rest of the platforms, we see that their
performance is competitive compared to the CPU/CPU-GPU,
and much better than the Jetson. We also notice the benefits
of executing the intermediate classifiers in parallel with the
backbone networks, as the parallel approach is constantly
faster than the pipeline.

To further explore and characterise the two proposed designs
we compare their latency, energy and memory demands. Fig.
5(a) shows the average execution time (T ) of the deployed
early-exit networks on the two approaches. The aforemen-
tioned parallel advantages are more pronounced on deeper

networks; the latency of LeNet-5 is improved by 3.7%, while
VGG19 and ResNet32 are improved by 15.2% and 23.9%,
respectively. This is because the design avoids halting the
backbone network, which is very effective in cases where
there are many samples that would require the execution
of deeper layers. That occurs when more complex data sets
with a higher number of non-canonical samples are targeted.
Also, deeper networks usually consist of larger layers with
bigger feature maps and more filters. This unavoidably affects
the intermediate classifiers, too, increasing their size and,
consequently, the required computation. Conversely, smaller
networks targeting simpler data sets have a high proportion
of samples triggering exits in shallow layers, reducing the
effectiveness of parallel execution.

Table III shows the energy per sample for every network
with and without early exiting. Based on the previously stated
rates of early-exiting at each branch, it can be seen that the
average energy consumption is always at least 25% lower than
the static network on the embedded device and almost 50%
on the FPGA (Einf ). We also see that the parallel approach
on average, is at least 15% more energy (Fig. 5b) demanding
on smaller networks than deeper networks. This is explained
by the same reasons elaborated on the previous paragraph. In
simpler networks, fewer samples require inference at deeper
layers, while the size of the intermediate classifiers are pro-
portional to the size of the backbone, rendering the parallel
approach less effective.

Furthermore, as explained above, the pipeline approach
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TABLE IV: Performance Comparison With Existing Implementations

[38] [40] [41] [39] [24] [25] Ours (pipeline) Ours (parallel)

DNN model AlexNet/
VGG16 ResNet50 AlexNet/VGG16

/ResNet50
LeNet/AlexNet

/VGG16
LeNet/

AlexNet
AdaPEx

(Cifar-10)
LeNet/AlexNet/

VGG19/ResNet32
LeNet/AlexNet/

VGG19/ResNet32

Device FPGA
VX690T

FPGA
ZC706

FPGA
ZCU102

FPGA
XCVU9P

FPGA
ZC706

FPGA
ZCU104

FPGA
ZCU106

FPGA
ZCU106

Frequency (MHz) 200 200 200 300 125 100 150 150
Precision Fixed 16 Fixed 16 Fixed 16 Fixed 8 Fixed 8 2 Fixed 8 Fixed 8

Power (W) 17.3 6.23 23.6 - - 1.26 16.7 21.2
Performance

(GOPs)
433.6/
407.2 107.9 2068.5/2641

/1240
1490.5/913.9

/862.2 - - 783.1/911.3
/1732.5/185.1

811.9/1009
/2011.6/243.9

DSP Efficiency
(GOPs/DSP) 0.30/0.28 0.24 1.81/2.31/1.08 3.88/1.79/1.68 - - 0.78/0.96

/1.82/0.20
0.66/0.82
/1.64/0.19

Latency (ms) - - - - 0.01/0.06 3.52 0.29/1.06
/2.58/4.95

0.28/0.95
/2.24/4.01

Fig. 6: On an 3 point early-exit Resnet-32 a) shows each exit’s trigger rate and b) the percentage difference of parallel over
pipeline approaches over Energy and Time for different Confidence Thresholds.

requires the storing of the intermediate layer’s output (Mintk);
the total data for each networks can be seen in Fig. 5(c). We
notice that it is considerably larger on deeper, more complex
networks. While smaller networks like LeNet-5 and AlexNet,
the data can be buffered on-chip, VGG19 and ResNet32 can
reach up to 4MB, rendering the use of external memory
mandatory. This significantly affects the latency and energy
demands of the pipeline approach, and illustrates the effec-
tiveness of the parallel approach on deeper networks. Overall,
however, for smaller networks, the extra energy demands
that are introduced in the parallel approach overshadow its
benefits, making the pipeline the better design.

D. Effect of Decision Threshold on Performance

Section III C. presented the modelling of the two approaches
regarding energy consumption and execution time. The impor-
tance of the decision threshold (V ) is highlighted, as it controls
the effects of early-exiting in the DNN. The number and the
location of the intermediate classifiers also have significant
effects on the behaviour and exiting rates of the dynamic
DNN; however, an exploration of this is outside the scope
of this paper, and interested readers are directed to [42].
Fig. 6(a) shows the triggering rates (ai) of 10k samples on
the three exit points of early exit ResNet32, alongside the
achieved accuracy. For higher confidence thresholds, most of
the samples would trigger the first exit point (black line).

Decreasing the confidence threshold results in a significant
decrease in the number of samples that would exit on the
first exit point (black line), while those that would exit on the
third and final exit increase (blue line). Apart from affecting
the exit point rates, by changing the threshold, we essentially
change the amount of abstracted information needed to make
a prediction. This consequently affects the accuracy of the
network, too. As shown in Fig. 6(a), higher threshold values
lead to accuracy drops, while the opposite happens when they
are lower. This is explained by the fact that more samples exit
at an earlier stage without the network being able to abstract
enough information to make a correct classification.

Following equations (5) - (8), we also see that, by changing
the thresholds, we can control the latency and energy demands
of the network. Fig. 6(b) shows the difference between the two
approaches over execution time and energy consumption. We
see that while using higher thresholds, the parallel approach
is considerably more energy-demanding without similar gains
in execution time. On the contrary, when the threshold values
are lower, deeper layers are executed more often, resulting
in reducing the energy consumption difference between the
two approaches and increasing the time difference, making the
parallel approach considerably faster. Consequently, we see
that, apart from the dynamic network architecture, changing
the threshold of the decision to exit controls the accuracy-
latency trade-off and affects the effectiveness of the designs
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realising it. Overall, we see that using equations (5) - (8)
and controlling the thresholds of the early-exit decision, the
trade-offs between accuracy, latency and resource needs can
be explored and help decide the best design approach for any
application needs.

VI. CONCLUSIONS

This paper has presented the design and in-depth eval-
uation of early-exit dynamic DNNs on FPGAs. Two alter-
native approaches to the design of intermediate classifiers
were explored: pipeline and parallel. Both approaches, when
compared with conventional systems and an embedded device,
showcased faster execution and lower energy consumption,
highlighting the potential benefits of using FPGAs, espe-
cially when targeting resource-constrained application scenar-
ios. Furthermore, the parallel approach showed how the paral-
lelization capabilities of FPGAs can be used to eliminate the
additional latency and memory requirements of intermediate
layer dependencies of early-exit networks. The two approaches
were compared over latency, energy consumption and memory
use on four different DNN models, illustrating how their char-
acteristics affect the hardware performance. An exploration of
the effects of the decision threshold on the FPGA accelerators
was also presented, which, in combination with the design
comparison outcomes, provides suggestions for how designers
might select the most appropriate implementation for a target
application and design constraints.
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