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Abstract

Accurately modeling the distribution of asset returns enables better risk man-
agement, portfolio optimization, and financial decision-making especially in
uncertain and volatile markets. This paper presents a novel approach to es-
timating the distribution of asset log returns using quantile regression com-
bined with smoothed density estimation. Our proposed model, qLSTM,
leverages asset-neutral features to deliver robust and generalizable predic-
tions across diverse asset classes, outperforming baseline and dense models
in quantile loss metrics for real-world data. A hybrid model, averaging Gaus-
sian and model-predicted quantiles, qHybrid, further improves performance
on synthetic datasets with skewed and heavy-tailed distributions. Evalua-
tion using metrics like Wasserstein distance, CRPS, and VaR demonstrates
the models’ effectiveness in capturing tail risks and broader distributional
characteristics.

Keywords:
Distribution Estimation, Qauntile Regression, LSTM, Tail Risk, Financial
Modeling, Machine Learning

1. Introduction

In the financial world, accurate modeling of asset price movements and
their associated risks is a cornerstone of decision-making for investors, port-
folio managers, and risk analysts [1]. This modeling forms the foundation of
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derivative pricing, risk management, and portfolio optimization. One widely
used approach assumes that asset price changes over time can be modeled as
a stochastic process, with the distribution of returns playing a central role in
these models [2].

Machine learning has transformed several practices and processes withing
the finance domain by enabling models that capture the complex, nonlinear
relationships inherent in market data [3]. Applications range from price and
return prediction to risk management and portfolio optimization, leveraging
methods such as ARIMA, LSTM, and CNNs [4, 5, 6]. However, much of this
research focuses on point predictions rather than estimating the full return
distribution, which is essential for understanding uncertainty and tail risks.

Traditionally, logarithmic asset returns are often assumed to follow a nor-
mal distribution; a famous example is the Black-Scholes model, which is used
to find the fair value of option derivatives [2]. However, in practice, this as-
sumption frequently does not hold [7]. Returns often display non-normal
characteristics, such as skewness or heavy tails. Consequently, models that
rely on normality assumptions can lead to suboptimal or even incorrect re-
sults [8]. To address this issue, some approaches generalize assumptions or
adopt alternative distributions, such as the Student’s t- distribution, which
accommodates skewness, kurtosis, and heavy tails [9]. Furthermore, distribu-
tional approaches in machine learning, show recent advances in conditional
modeling and quantile regression, address this gap by providing a stronger
method for distribution estimation [10, 11].

More recently, a new approach has emerged, namely to model the distri-
bution directly [12]. This approach offers several key advantages. A more
accurate model of the return distribution could improve derivative pricing,
inform risk management, and enhance portfolio optimization. Although the
proposed method shows promising results, it only considers one day’s worth of
data and has a fixed look ahead period of 22 days. Furthermore, the method
relies heavily on derived features which are exclusive to stocks, meaning the
method does not generalize to other asset classes.

In this paper, we propose a model that estimates the distribution of re-
turns given current observations. Our model predicts the quantiles of the
log return distribution over n days given n days worth of data, thus extend-
ing previous work[12]. Although quantile regression is not a novel concept,
we convert these quantiles into a full distribution using a smoothed density
estimation function. This enables a more precise estimation of the return
distribution over a given time period. The model is trained on a dataset of
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asset returns and general market variables, ensuring that each characteristic
is asset-class neutral, which makes the approach applicable across different
asset classes.

This paper contributes to the literature in the following ways:

• Proposes a generalizable distribution estimation model that:

– Uses only asset-neutral features.

– Allows the consideration of multiple periods of return.

• Proposes a hybrid model that utilizes standard Gaussian quantiles in
combination with the generalized model.

• Introduces an experimental framework for enhanced reproducibility in
the field by using only data which is is publicly available.

The results are compared in two ways: quantile loss is used to evaluate
the performance of our approaches against a baseline linear quantile re-
gression model and the original dense approach in [12]. We find that our
proposed qLSTM model achieves the lowest overall quantile loss for real-
world data, demonstrating its robustness and versatility across diverse asset
classes, including cryptocurrencies, commodities, and equity indices. The
hybrid model, qHybrid, performs particularly well on synthetic data, espe-
cially for distributions with heavy tails or skewness, highlighting its flexibil-
ity. Additionally, we evaluate the models using standard metrics such as the
Wasserstein distance and the Continuous Ranked Probability Score (CRPS).
These metrics reveal that qLSTM excels in capturing extreme tail risks, while
the qHybrid model achieves better calibration for broader distributions.

The rest of this paper is structured as follows. In Section 2, we provide an
overview of the existing literature on machine learning in finance, focusing on
the state of machine learning in finance, distributional modeling, and quan-
tile regression methods. Section 3 outlines our methodology, including the
problem formulation, model architecture, and training procedure. The data
sources, including real-world and synthetic datasets, are described in detail,
along with feature engineering and hyperparameter optimization. Section 4
presents the results of our experiments, comparing the performance of our
proposed models with existing baselines using various metrics. Finally, Sec-
tion 5 concludes the paper by summarizing our contributions and findings.
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2. Literature Review

The application of machine learning to estimate phenomena within fi-
nance is well-explored, with much of the literature focusing on optimizing
returns by predicting directions, prices, or returns. As noted by Dessain [13],
the exponential growth in academic studies has made it increasingly diffi-
cult to synthesize existing knowledge within the domain. Similarly, Strader
et al. [14] and Shah et al.. [15] emphasize the diversity of methods, such
as ARIMA [4, 16], LSTM [5, 17], CNN [6, 18], and hybrid models [19, 20],
as well as the inconsistency in the benchmarks, which complicates the com-
parisons between studies. To address these issues, our study uses publicly
available data to ensure reproducibility and comparability.

In the domain of distribution estimation, significant advances have been
made in non-conditional density estimation [21, 10, 22]. In contrast, this
work focuses on conditional distributions allowing us to take various features
from both the asset in question as well as features from the market to inform
the shape of the distribution. Hu and Nan propose a method for estimat-
ing conditional distributions by modeling the hazard function and deriving
the cumulative distribution function (CDF) via integration [11], while Feindt
[23] demonstrates the utility of CDF-based methods across domains, includ-
ing finance. However, both approaches prioritize global density estimation.
Our work differs by directly estimating the quantile function, emphasizing fi-
nancial applications, and incorporating domain-specific knowledge to capture
tail risks.

Another notable contribution is by Rasul et al.. [10], who use normalizing
flows conditioned on time series data for multistep distributional estimation,
where the conditional distribution of rk depends not only on past observations
X , but also on intermediate estimations r1, . . . , rk−1. This allows uncertainty
to propagate across horizons. In contrast, we assume that each return on the
forecast trajectory is drawn from the same distribution (i.e., r1 ∼ f(X), r2 ∼
f(X)), simplifying the computation while focusing on quantile estimation
and tail risk for financial applications.

Focusing specifically on finance, Hickling and Prangle [24] leverage ex-
treme value theory inspired transformations within normalizing flows to model
heavy-tailed distributions. Similarly, Barun and Liu. [25] utilize quantile re-
gression to address distributional challenges in financial returns. Building on
this foundation, our work incorporates long-short-term memory (LSTM) net-
works to estimate quantiles over n day horizons, ensuring robustness across
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asset classes by utilizing asset-neutral features, in contrast to feature-heavy
approaches like those in [12], which rely on stock-specific characteristics and
macroeconomic variables.

Despite progress, challenges remain in balancing model complexity, inter-
pretability, and applicability across asset classes. This work addresses gaps
in tail risk modeling by combining quantile-based LSTM architectures with
asset-neutral features, providing robust and generalizable estimations across
diverse financial datasets.

3. Methodology

Our proposed methodology consists of several steps. First we formalize
the problem which this paper tackles, then we describe our two stage model
to take into account both asset specific features as well as market general fea-
tures. It is then followed by details about the two stage quantile loss function
deployed. Next, we describe both real and synthetic data sources used in the
training and evaluation of the models. Last, we detail the experimental setup
and the metrics used for evaluation.

The code used to implement all the approaches in this section, as well as to
evaluate the models, is publicly available at https://github.com/izzak98/dist-pred

3.1. Problem Definition

An asset is represented as a matrix of input features X ∈ R
m×t, where m

is the number of features, and t is the number of historical time steps. The
matrix X is structured as follows

X =















x1,1 x1,2 x1,3 · · · x1,t

x2,1 x2,2 x2,3 · · · x2,t

x3,1 x3,2 x3,3 · · · x3,t
...

...
...

. . .
...

xm,1 xm,2 xm,3 · · · xm,t















where xi,j is the value of feature i at time j. Accompanying the asset matrix is
the market data for the same t time steps, represented as a matrix Z ∈ R

g×t,
where g is the number of market features, that is

Z =











z1,1 z1,2 · · · z1,t
z2,1 z2,2 · · · z2,t

...
...

. . .
...

zg,1 zg,2 · · · zg,t










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where zi,j is value of market asset i at time j.
Our goal is to estimate the distribution of the log returns of the asset

for the future time steps from 1 to t, where t represents both the number of
time steps used for the estimation and the forecast horizon. The vector of
log returns ~r ∈ R

t is defined as:

~r =











r1
r2
...
rn











.

Given the input features X and Z, the objective is to model and estimate
the distribution of log returns, that is,

~r ∼ f(X,Z)

where f(X,Z) represents the model for the estimation of log returns based
on the asset and market features.

3.2. Model Architecture

To model the distribution of log returns, our objective is to estimate
the quantiles ~τ of the log return distribution over the estimation horizon.
Utilizing density estimation, these can later be converted into distributions.
The quantile vector is defined as

~τ =











τ1
τ2
...
τT











(1)

where T denotes the number of quantiles. For the purpose of this research, we
chose quantiles that represent broad ranging characteristics of a distribution,
including quartiles and deciles as well as more fine grained intervals at the
lower and upper end of the distribution to capture heavy tails. The quantiles
used in this research can be found in Appendix A.

For this task, we use long- and short-term memory (LSTM) networks, a
type of recurrent neural network (RNN) [26], which are well suited for se-
quential data modeling due to their ability to capture long-term dependencies
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and are less prone to issues such as vanishing gradients. LSTMs maintain
two states at each time step: the cell state ~ct and the hidden state ~ht, which
are updated using gating mechanisms. In addition there are the input and
output gates, ~it and ~ot, respectively. Specifically, the updates are governed
by the equations:

~it = σ(Wi~xt + Uiht−1 +~bi),

~ft = σ(Wf~xt + Uf
~ht−1 +~bf ),

~ot = σ(Wo~xt + Uo
~ht−1 +~bo),

~̃ct = tanh(Wc~xt + Uc
~ht−1 +~bc),

~ct = ~ft ⊙ ~ct−1 +~it ⊙ ~̃ct,

~ht = ~ot ⊙ tanh(~ct),

where σ(·) and tanh(·) are the activation functions of the sigmoid and hy-
perbolic tangent, respectively, and ⊙ denotes the multiplication of elements.
Unlike many other time-series models, LSTMs can flexibly handle variable-
length sequences, making them appropriate for our task as we are working
with a variable number of sequence lengths.

Loosely following the methodology outlined in [12], we adopt a two-stage
approach to estimate the distribution of future log returns.

3.2.1. Stage 1: Asset-Specific Quantile Estimation

In the first stage, the model focuses on estimating the quantiles of future
normalized returns ~̃r by leveraging the asset-specific features X . This is done
by estimating the quantiles Qτ

~̃r
of the volatility-normalized returns ~̃r, where

~̃r =
~r

~̄σ

with

~r =







r1
...
rt






and ~̄σ =







σ̄1
...
σ̄t







Here, ~̄σ represents the average volatility of assets in the same group at some
time step, where t is the estimation horizon.

The average volatility σ̄t is calculated as the exponentially weighted mov-
ing average (EWMA) of the log returns across all K assets in the group, with
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a decay factor of 0.94, in line with standard practices and the methodology
from [12]. Formally the expression is

σ2
t = λσ2

t−1 + (1 − λ)r2t−1

where λ = 0.94 is the decay factor. Here, σ̄t is calculated as

σ̄t =
1

K

K
∑

i=1

σi,t

where σi,t is the volatility of asset i at time t. We represent this first stage
with

f1(X) = Qτ
~̃r
,

that is, a function of the input features gives the quantiles of the volatility-
normalized log returns.

3.2.2. Stage 2: Market Data Scaling

In the second stage, the model incorporates the broader market data
features Z to refine the estimation from the first stage. The market data
is used to create a scaling factor ~̃σ, which adjusts the asset-specific quantile
estimation based on market conditions.

The scaling factor ~̂σ is generated by applying a transformation to the
market feature matrix Z, capturing the influence of market conditions on
future returns. This results in the final quantile estimation for the asset’s log
returns:

Qτ
~r = ~̂σ ·Qτ

~̃r
(2)

where Qτ
~r represents the final estimated quantile for the asset’s log returns, ~̄σ

is the scaling factor derived from the market data features Z, which adjusts
the asset-specific estimations based on the broader market environment, and
Qτ

~̃r
is the asset-specific quantile estimation from Stage 1, normalized by the

asset’s volatility. We can formally represent this stage as

f2(Z) = ~̂σ,

that is, a function of the market data gives a scalar value to scale the quantiles
from f1(X).

Now let fDE be a Quantile-Smooth Density Estimation. This method
takes quantiles and their associated probabilities to generate a smooth prob-
ability density function (PDF) while ensuring that the CDF is monotonic,
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bounded, and normalized. It smooths the density to prevent spikes, enforces
non-negativity, and normalizes the PDF to integrate to one, providing a
well-behaved representation of the underlying distribution; for more details
see the appendix ??. This leads to the final model which is given by the
representation

~r ∼ f(X,Z) = fDE [f1(X) · f2(Z)]

where fDE represents the Quantile-Smooth Density Estimation. We refer to
this model as qLSTM.

Hybrid model. We also propose a hybrid model, which we refer to as qHy-
brid, where after training the qLSTM model, we compute the average of the
quantile of the model and a Gaussian fit of the log returns in the lookback
period, −t to 0 used in X . Formally, we define this as

Qτ
H =

Qτ
N + Qτ

~̃r

2
, (3)

where Qτ
N represents the Gaussian quantiles across the ~τ defined in Eq. (1),

computed as
Qτ

N = [µ + σΦ−1(τi)]
T
i=1,

with Φ(x) being the standard normal cumulative distribution function:

Φ(x) =
1√
2π

∫ x

−∞

exp

(

−t2

2

)

dt.

Here, µ and σ denote the mean and standard deviation of the observed
returns in the lookback period, from −t to 0.

3.2.3. Loss Function

Following the methodology of [12], we use a custom loss function based on
quantile regression to train the model. The original loss function is designed
to minimize the error between the true returns and the estimated quantiles.
It is defined as

Lτ =
1

BK

∑

τ∈T

B
∑

i=1

[

ρτ

(

ri − Q̂ri(τ)
)

+ ρτ

(

r̃i − Q̂r̃i(τ)
)]

(4)

where T is the set of quantiles used for the estimation, B is the batch size
(i.e., the number of assets in each batch), K is the number of quantiles in
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the set T , ri is the raw return of the asset, r̃i is the standardized (volatility-
normalized) return of the asset and Q̂ri(τ) and Q̂r̃i(τ) are the estimated
quantiles of the raw and standardized returns for quantile τ , respectively
Furhtermore, ρτ (ξ) is the quantile loss function

ρτ (ξ) =

{

τ · ξ, if ξ ≥ 0

(τ − 1) · ξ, if ξ < 0

where ξ represents the error (residual) between the true return value and the
estimated quantile.

3.2.4. Modified Loss Function

Our proposed model generalizes the model in [12] by generating a singe
estimation for log returns over a look-ahead window, and we therefore mod-
ify the loss function in Eq.(4) to account for each future time step t ∈
{1, 2, . . . , T} within the estimation horizon. The modified loss function is
defined as

LT =
1

BTK

∑

τ∈T

T
∑

t=1

B
∑

i=1

[

ρτ

(

ri,t − Q̂~ri(τ)
)

+ ρτ

(

r̃i,t − Q̂~̃ri
(τ)

)]

where T is the number of future time steps (i.e., the estimation horizon) in
the look-ahead window, ri,t and r̃i,t are the raw and standardized returns of

the asset at future time step t, and Q̂~ri,t(τ) and Q̂~̃ri,t
(τ) are the estimated

quantiles of the raw and standardized returns for asset i at future time step
t.

This modification allows us to compute the loss over the entire estimation
window, training the model to minimize the quantile loss for each future time
step within the horizon. The inclusion of both raw and standardized returns
helps ensure that the model learns both absolute and volatility-adjusted re-
lationships.

3.3. Market Data
We utilize a diverse set of financial assets and market data for our analy-

sis. The assets span various categories and markets, ensuring comprehensive
coverage. The data spans from February 3, 2000 up to January 1, 2024,
sourced from the Yahoo Finance API. All data are normalized using rolling
Z-scores, with the window length set as a hyperparameter to be optimized
during model training.
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3.3.1. Asset Selection

Several asset classes are chosen to create a diverse representation to em-
phasize the generalizability of the model. An overview can be found in table
1. Four asset classes are chosen: stocks, currencies, commodities, and cryp-
tocurrencies to capture a diverse set of asset classes to test the robustness of
the model. Within stocks there are three sub-asset classes for the index the
stocks are listed on, S&P 500, Euro Stoxx 50, and Nikkei 225. Full details on
the selected assets as well as summary statistics, can be found in Appendix
Appendix C.1.

Table 1: Summary of selected assets

Asset Class Selection

Stocks (S&P 500) 10 stocks from the S&P 500 index.
Stocks (Euro Stoxx 50) 10 stocks from the Euro Stoxx 50 index.
Stocks (Nikkei 225) 10 stocks from the Nikkei 225 index.
Currencies 10 currency pairs.
Commodities 10 commodities.
Cryptocurrencies 10 cryptocurrencies.

3.3.2. Feature Engineering

Additional features are computed for each asset to enhance the models’
ability to capture various market dynamics. Table 2 shows an overview of the
engineered features. These features span returns, volatility metrics, moving
averages, technical indicators, risk metrics, and the asset class to which the
asset belongs. These features are common practice in technical analysis and
are widely used across studies [27, 28, 29, 30].

3.3.3. Market Data

In addition to the assets, general market data is incorporated to capture
broader trends and enhance the model’s ability to account for macroeconomic
factors. An overview of the market data sources can be found in Table C.12.
This data includes stock indices, commodities, other indices, and treasury
yields. For more details on market data, see Appendix Appendix C.2.

3.4. Synthetic Data

In addition to evaluating the model on real asset data, described in sec-
tion 3.3, we also test its performance on synthetic datasets generated from
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Table 2: Overview of engineered features

Feature Category Features

Returns 2-day, 5-day, 22-day returns, cumulative returns,
log returns.

Volatility Metrics 2-day, 5-day, 22-day volatility, skewness, kurtosis.
Moving Averages 2-day, 5-day, 22-day simple and exponential mov-

ing averages (SMA, EMA).
Technical Indicators RSI, MACD, Bollinger Bands, Stochastic Oscilla-

tor, VWAP.
Risk Metrics 2-day, 5-day, 22-day Sharpe Ratio.
Categorical Features Asset category.

Table 3: Overview of market data sources

Data Category Data Source

Stock Indices S&P 500, NASDAQ, Dow Jones, Russell 2000,
Euro Stoxx 50, Nikkei 225.

Commodities Crude oil, gold, silver futures.
Other Indices Baltic Dry Index, VIX, US Dollar Index, Corpo-

rate Bond Index (Bloomberg Barclays).
Treasury Yields 10-year and 3-month Treasury yields.

several probability distributions, including normal, gamma, log-normal, and
uniform. These synthetic datasets simulate various market conditions, where
the returns are sampled from distribution D, and then scaled according to
the desired mean µ̈ and standard deviation σ̈ as follows:

rsynthetic = D · σ̈ + µ̈

We generate the synthetic return data using the following distributions:

Normal Distribution.
D ∼ N (0, 1)

where N (0, 1) represents a standard normal distribution with mean 0 and
standard deviation 1.

12



Gamma Distribution.
D ∼ Γ(2, 1)

where Γ(2, 1) represents a gamma distribution with shape parameter 2 and
scale parameter 1. The shape and scale parameters were selected to pro-
vide variability while covering a realistic range of potential returns. The
distribution is then standardized to have a mean of 0 and a variance of 1.

Log-normal Distribution.

D ∼ Lognormal(0, 1)

where the log-normal distribution is parameterized by a mean of 0 and a
standard deviation of 1 for the underlying normal distribution, this too is
standardized before applying the scaling.

Uniform Distribution.
D ∼ U(−1, 1)

representing a uniform distribution between -1 and 1.

. For each distribution, the synthetic returns rsynthetic are scaled by the ran-
domly sampled mean µ̈ ∼ Uniform(−0.001, 0.001) and standard deviation
σ̈ ∼ Uniform(0.01, 0.03). This scaling ensures that the synthetic datasets
mimic realistic market conditions across a variety of asset types.

We generate 10 synthetic datasets per distribution, each consisting of 1000
samples, to assess the model’s robustness under these simulated conditions.
Additionally, we generate g synthetic datasets for the market data, where g

represents the number of market features. One feature is designed to have
a correlation of approximately 0.7 with the synthetic returns to simulate
market co-movement For more details see Appendix Appendix C.3.

3.4.1. Hyperparameter Optimization

The models’ hyperparameters are optimized using Bayesian optimization,
with separate sets of hyperparameters for the asset-specific model (Stage 1)
and the market data model (Stage 2) [31]. Each set of hyperparameters
is sampled independently. The common hyperparameters and the specific
hyperparameters for each stage are detailed in Table 4. The optimal hyper-
parameters found for qLSTM and subsequently qHybrid -because they use
the same hyperparameters- can be found in Appendix Appendix D.1.
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Table 4: Hyperparameters for qLSTM

Hyperparameter Asset Model (Stage 1) Market Model (Stage 2)

Batch size b ∈ {32, 64, 128, 256, 512, 1024, 2048}
Learning rate η ∈ [1 × 10−6, 1 × 10−3]
Normalization
window

w ∈ [5, 250]

Dropout rate D ∈ [0.0, 0.9]
L1 regularization λ1 ∈ [0.0, 1 × 10−3]
L2 regularization λ2 ∈ [0.0, 1 × 10−3]
Use layer
normalization Boolean: {1, 0}
LSTM layers lLSTM, asset ∈ [1, 5] lLSTM, market ∈ [1, 5]
LSTM units uLSTM, asset ∈ {16, · · · , 256} uLSTM, market ∈ {16, · · · , 256}
Dense layers ldense, asset ∈ [1, 5] ldense, market ∈ [1, 5]
Dense units per
layer

udense, asset ∈ {16, · · · , 256} udense, market ∈ {16, · · · , 256}

LSTM Activation
function

{relu, tanh,
sigmoid, leaky relu, elu}

{relu, tanh,
sigmoid, leaky relu, elu}

Dense Activation
function

{relu, tanh,
sigmoid, leaky relu, elu}

{relu, tanh,
sigmoid, leaky relu, elu}

3.5. Experimental Setup

Our proposed models qLSTM, defined in Eq. (2) and qHybrid, found in
Eq. (3) is evaluated and compared against the model architecture from [12]
-which will be called qDense. It should be noted that the comparison is not
entirely fair as the qDense model was trained under different circumstances
and utilized different data. However, to ensure fair comparison as much as
we can, in this paper, we always train the models on the same setup. As
the qDense model has a fixed forecast window of 22 days, the qLSTM and
qHybrid models will only utilize a 22-day-ahead window as well. This means
that on the test data, the assets are iterated sequentially taking 22 entries at
a time, and then the loss of the 22-day quantiles of both models is compared
using the loss function described in the next section. To act as a baseline for
all models, we compare them to a simple linear quantile regression (LQR)
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model 1 [32].

3.5.1. Data Split

The data is split into training, validation, and test sets based on the time
periods as follows

• Training set: All available data up to the end of 2017.

• Validation set: Data from 2018 to the end of 2019.

• Test set: Data from 2019 to 2024, which includes the COVID-19 pan-
demic and the 2022 bear market.

To create varying sequence lengths, each asset’s data is randomly divided
into sequences with lengths sampled uniformly from the range [15, 30] days.

3.5.2. Training Procedure

The qLSTM model is trained using the Adam optimizer with a fixed
number of 100 epochs. Early stopping is employed with a patience parameter
of 10, meaning that if the validation loss does not improve for 10 consecutive
epochs, training is halted. The weights that generated the lowest loss on the
validation data are chosen. The training details for qDense can be found in
appendix Appendix D.2.

3.6. Evaluation Metrics

To evaluate the performance of our propsoed modesl, qLSTM and qHy-
brid, we use several measures, which assess the distribution accuracy in dif-
ferent ways as described below.

3.6.1. Quantile Loss

The primary evaluation metric for comparing qLSTM, qHybrid, with
qDense and LQR is the quantile loss function, which has been slightly mod-
ified to ignore volatility normalization and to use only one return for the
evaluation. The quantile loss for a given asset is defined as

LT =
1

KN

∑

τ∈T

T
∑

i=1

ρτ

(

rt − Q̂rt(τ)
)

,

1The LQR model is trained and tested using the same data as qDense
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where T is the set of quantiles used for estimation, and K = |T | is the
number of quantiles, T is the number of time steps in the test data for the
given asset, rt is the raw return of the asset at time step t, and Q̂rt(τ) is the
estimated quantile of the raw return of the asset for quantile level τ at time
step t. ρτ (ξ) is the quantile loss function, defined as:

ρτ (ξ) =

{

τ · ξ, if ξ ≥ 0

(τ − 1) · ξ, if ξ < 0

with ξ = ri,t,j − Q̂ri,t,j(τ) representing the residual (error) between the true
return and the estimated quantile.

3.6.2. Distribution Metrics

For the following metrics, we utilize the fact that we estimate the quantiles
across multiple observations. We used a forecast window of 30 to get the best
estimate for the empirical distribution.

RMSE for Moments. We further evaluate the qLSTM and qHybrid on root
mean squared error (RMSE) in moments estimation and compare them to
the assumption that the moments are unchanged. , We evalute them with
respect to the first four moments, mean (µ), standard deviation (σ), kurtosis
(γ), and skew (κ). The error is computes using the formula

RMSEj =

√

√

√

√

1

N

N
∑

i=1

(λi,j − λ̂i,j)2

where N is the test sample, λ is the realized moment, λ̂ is the estimated
moment and j is the moment number.

Wasserstain Distance. To evaluate the alignment between the estimated dis-
tribution of qLSTM, qHybrid, and the observed returns, we incorporate the
Wasserstein distance as an additional metric and compare it against the nor-
mal distribution as a benchmark. The Wasserstein distance measures the
cost of transforming the estimated distribution into the realized distribution.
For a estimated(PDF p(x), discretized over grid points {xi}Ni=1, and realized
returns {ri}Mi=1, the Wasserstein distance is defined as

W1(P,Q) = inf
γ∈Π(P,Q)

∫

R×R

|x− y| dγ(x, y),
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where P is the estimated empirical distribution and Q is the empirical dis-
tribution of realized returns. In practice, we approximate this by sampling
M estimated values from p(x) and matching them to the M realized returns,
resulting in

W1(P,Q) =
1

M

M
∑

i=1

|x∗
i − ri| ,

where {x∗
i }Mi=1 are the sampled values from the estimated PDF, and {ri}Mi=1

are the sorted realized returns. Lower Wasserstein distances indicate better
alignment between the estimated and realized distributions.

Continuous Ranked Probability Score. The Continuous Ranked Probability
Score (CRPS) evaluates the alignment between the estimated CDF and the
observed values. It measures the integrated squared difference between the
estimated CDF and the empirical CDF of the observations. The CRPS for
a single observation is defined as

CRPS(F, xobs) =

∫ ∞

−∞

(F (x) − 1(x ≥ xobs))
2
dx,

where F (x) is the estimated CDF for a given observation, xobs is the observed
value, and 1(x ≥ xobs) is the indicator function that equals 1 if x ≥ xobs and
0 otherwise. For discrete predictions, the CRPS can be approximated as

CRPS(F, xobs) =
1

N

N
∑

i=1

(F (xi) − 1(xi ≥ xobs))
2
,

where {xi}Ni=1 represents the discretized grid over which F (x) is evaluated.
The mean CRPS across all samples in the test set is calculated as:

Mean CRPS =
1

M

M
∑

j=1

CRPS(Fj , xobs,j),

where M is the total number of observations, Fj is the estimated CDF for
observation j, and xobs,j is the corresponding observed value.

This metric provides a comprehensive evaluation of the probabilistic cal-
ibration of the model by comparing the estimated distribution with the ob-
served results. Lower CRPS values indicate better alignment between the
estimated and observed distributions.
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Deviation from Quantile Level (VaR Distance). To evaluate the calibration
of the qLSTM and qHybrid models to estimate tail risks, we calculate the de-
viation from the desired quantile level at specific quantiles τ and compare it
against a Gaussian baseline. This metric measures how far the observed vio-
lation rate deviates from the expected quantile level, with smaller deviations
indicating better calibration.

The Violation Rate (VR) is defined as

VR =
1

N

N
∑

i=1

1(ri < Q̂r(τ)),

where N is the total number of observations, ri is the observed return at
time i,Q̂r(τ) is the edstimated quantile (VaR) at level τ , and 1(x < y) is the
indicator function that equals 1 if x < y, and 0 otherwise.

The deviation from the quantile level τ is then calculated as

Deviation = |VR − τ | ,

where VR is the Violation Rate, and τ is the expected quantile level (e.g.,
0.05, 0.01, 0.00075). This deviation is computed for both the estimated
quantiles and a Gaussian baseline.

The resulting metric provides a measure of the model’s calibration quality.
A perfectly calibrated model would have VR = τ , leading to a deviation of
0. Larger deviations indicate underestimation or overestimation of tail risk.

4. Results & Discussion

In this section we present the performance of our proposed models and
compare them to baseline models using various metrics.

4.1. Quantile Loss Performance

The results in Table 5 highlight the effectiveness of different models
(LQM, qDense, qLSTM, and qHybrid) across real-world and synthetic datasets.
Overall, the qLSTM model demonstrates superior performance, achieving the
lowest quantile loss in most real-world asset classes, including commodities,
cryptocurrencies, and equity indices such as the S&P 500, Nikkei 225, and
Euro Stoxx 50. Notably, for cryptocurrencies, LSTM reduces the quantile
loss to 1.0222 compared to 2.2843 for the Dense model and 2.4931 for the
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Table 5: Quantiles loss for synthetic and non-synthetic data across models.

Quantile loss
Data Type Asset Class LQM qDense qLSTM qHybrid

Real World

Commodities 1.4815 0.4136 0.3223 0.3693
Cryptocurrencies 2.4931 2.2843 1.0222 1.2323
S&P 500 1.4811 0.4255 0.3150 0.3572
Nikkei 225 1.4739 0.3991 0.3141 0.3552
Euro Stoxx 50 1.4772 0.4184 0.3124 0.3520
Currency Pairs 1.2003 0.0788 0.1528 0.0973
Total Real World 1.6012 0.6699 0.4065 0.4606

Synthetic

Normal 0.5029 0.9338 0.4201 0.4572
Log Normal 0.2115 0.7229 0.3230 0.1565
Gamma 0.3260 0.8268 0.3642 0.2781
Uniform 0.3366 0.6864 0.2940 0.3030
Total Synthetic 0.3443 0.7925 0.3503 0.2987

Total 1.0984 0.7190 0.3840 0.3958

Linear model, showcasing its ability to effectively capture the volatility and
non-linearity inherent in this asset class. However, for currency pairs, the
Dense model performs best, achieving a quantile loss of 0.0788, which may
indicate that simpler architectures can suffice for less complex financial data.

For synthetic data, the qHybrid model demonstrates an edge, particularly
for skewed and heavy-tailed distributions such as Log Normal and Gamma.
It achieves the lowest quantile losses of 0.1565 and 0.2781, respectively, sug-
gesting that the combination of Gaussian assumptions with learned quantiles
is advantageous in these scenarios. However, for simpler distributions such
as Normal and Uniform, LSTM outperforms the qHybrid model, indicating
its ability to generalize across different statistical patterns. In terms of over-
all performance, LSTM achieves the lowest total quantile loss for real-world
data (0.4065), while the qHybrid model marginally outperforms it for syn-
thetic datasets (0.2987 vs. 0.3503). When considering all datasets, the LSTM
model maintains the lowest overall total quantile loss (0.3840), reflecting its
versatility and robustness.

These findings underscore the strengths of the qLSTM models in handling
real-world sequential financial data, particularly for volatile asset classes like
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cryptocurrencies and equity indices. The qHybrid model’s success with syn-
thetic data highlights its potential for capturing diverse statistical properties,
which could complement LSTM’s strengths in real-world applications. Over-
all, the two proposed models are able to learn the quantile distribution of
sequential data.

4.2. Distribution Metric Performance

In this section, we explore the results of the distribution metrics for qL-
STM and qHybrid against a baseline. Note for the sake of conciseness and
relevance we omit the comparison against synthetic data and focus only on
real world data.

Table 6: Root mean square error of moments estimation compared against the assumption
that moments are constant.

Asset class
Stat-
istic

Model Crypto FX Comm
odities

Euro
Stoxx 50

S&P
500

Nikkei
225

µ

qLSTM 0.0118 0.0010 0.0034 0.0041 0.0032 0.0034
qHybrid 0.0119 0.0020 0.0035 0.0043 0.0033 0.0035
Constant 0.0166 0.0013 0.0050 0.0059 0.0048 0.0050

σ

qLSTM 0.0424 0.0287 0.0085 0.0091 0.0096 0.0068
qHybrid 0.0400 0.0422 0.0088 0.0109 0.0112 0.0084
Constant 0.0330 0.0021 0.0077 0.0101 0.0099 0.0074

γ

qLSTM 1.1129 0.7186 0.7667 0.7770 0.8350 0.7422
qHybrid 1.1133 0.7030 0.7496 0.7585 0.8145 0.7339
Constant 1.6036 0.9410 1.0207 1.0598 1.1718 1.0596

κ

qLSTM 8.1838 9.2768 8.9404 8.7593 8.7733 8.8889
qHybrid 5.3220 4.4449 4.2748 4.0337 4.1521 4.1221
Constant 4.3678 2.7381 2.8323 2.6574 3.1615 2.7176

Table 6 presents the root mean square error (RMSE) for moment esti-
mation across the models qLSTM, qHybrid, and Constant -the assumption
that moments are constant throughout −t to 0 and 1 to t- and asset classes.
For the mean µ, the qLSTM model consistently achieves the lowest RMSE
in all asset classes, highlighting its superior ability to accurately estimate the
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central tendency of the returns. While the qHybrid model performs compa-
rably, it slightly trails the qLSTM in most categories. The Constant model
demonstrates the highest RMSE, suggesting it struggles to capture the mean
effectively, particularly for cryptocurrencies and equity indices.

For the standard deviation σ, the performance varies. The qLSTM model
outperforms others in most equity indices, commodities, and cryptocurren-
cies, reflecting its ability to capture volatility dynamics effectively. However,
the Constant model achieves the lowest RMSE for currency pairs, suggesting
that simpler methods may suffice for less complex financial assets. The qHy-
brid model provides competitive results but generally underperforms com-
pared to qLSTM.

The results of skewness γ indicate that the qLSTM and qHybrid models
perform closely, with the qHybrid model having a slight edge in most asset
classes. This suggests that qHybrid models may have an advantage in cap-
turing asymmetry in return distributions. However, the Constant model has
significantly higher RMSE values, indicating poor performance in estimating
skewness, especially for cryptocurrencies and equity indices.

Finally, for kurtosis κ, the Constant model achieves the lowest RMSE val-
ues, suggesting it captures tail behavior more effectively in this metric. Both
qLSTM and qHybrid models show higher RMSE values for kurtosis, which
may indicate that their emphasis on other moments slightly compromises
their accuracy in tail risk estimation. Nonetheless, qLSTM still maintains
competitive performance, particularly for more volatile assets like cryptocur-
rencies.

Table 7: Wasserstein distances for different models and asset classes. Lowest values are
highlighted in bold.

Asset class
Model Crypto FX Comm

odities
Euro
Stoxx 50

S&P
500

Nikkei
225

qLSTM 0.0260 0.0179 0.0079 0.0077 0.0081 0.0075
qHybrid 0.0213 0.0194 0.0072 0.0079 0.0080 0.0071
Gaussian 0.0221 0.0017 0.0074 0.0081 0.0079 0.0074

Table 7 presents the Wasserstein distances for different models and asset
classes, highlighting the alignment between the estimated and realized dis-
tributions. The qHybrid model achieves the lowest distances for most asset
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Asset class
Model Crypto FX Comm

odities
Euro
Stoxx 50

S&P
500

Nikkei
225

qLSTM 0.4320 0.4477 0.4422 0.4424 0.4422 0.4421
qHybrid 0.4179 0.4464 0.4331 0.4340 0.4338 0.4334
Gaussian 0.3544 0.4793 0.4308 0.4366 0.4369 0.4349

Table 8: CRPS values for different models, with the lowest values highlighted.

classes, particularly for cryptocurrencies (0.0213) and commodities (0.0072),
showcasing its ability to provide a close match to the empirical distributions.
However, for currency pairs (FX), the Gaussian model outperforms others
with a distance of 0.0017, likely due to the simpler statistical patterns in this
asset class. The qLSTM model remains competitive, delivering consistently
low Wasserstein distances across asset classes, indicating its robustness in
capturing the underlying return distributions.

Table 8 evaluates the Continuous Ranked Probability Score (CRPS) for
the models, which evaluates the probabilistic calibration of the estimated
distributions. The qHybrid model performs best for most asset classes, in-
cluding FX (0.4464), Euro Stoxx 50 (0.4340), S&P 500 (0.4338), and Nikkei
225 (0.4334), demonstrating its ability to provide well-calibrated probabilis-
tic forecasts. For cryptocurrencies, the Gaussian model achieves the lowest
CRPS (0.3544), suggesting its suitability for this highly volatile asset class.
The qLSTM model offers competitive results, with scores close to the best-
performing models, reflecting its strong calibration across diverse asset types.
These results highlight the complementary strengths of the qHybrid and qL-
STM models, with qHybrid excelling in calibration and qLSTM providing
robust distributional alignment.

Table 9 presents the Value at Risk (VaR) results for three models (qL-
STM, qHybrid, and Gaussian) across asset classes at different confidence
levels (0.05, 0.01, and 0.00075). At the 0.05 level, the Gaussian model
achieves the lowest VaR for most asset classes, particularly for cryptocur-
rencies (0.0505) and commodities (0.0466). However, the qHybrid model
demonstrates competitive performance, achieving the lowest VaR for FX
(0.0492), Euro Stoxx 50 (0.0485), S&P 500 (0.0506), and Nikkei 225 (0.0460),
indicating its strength in tail risk modeling across diverse assets. The qL-
STM model performs reasonably well but tends to have higher VaR values,
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Asset class
Level Model Crypto FX Comm

odities
Euro
Stoxx 50

S&P
500

Nikkei
225

0.05
qLSTM 0.1967 0.0499 0.0659 0.0539 0.0609 0.0549
qHybrid 0.0777 0.0492 0.0481 0.0485 0.0506 0.0460
Gaussian 0.0505 0.0505 0.0466 0.0537 0.0536 0.0469

0.01
qLSTM 0.1085 0.0100 0.0206 0.0190 0.0208 0.0176
qHybrid 0.0478 0.0100 0.0203 0.0220 0.0215 0.0198
Gaussian 0.0298 0.0287 0.0262 0.0326 0.0322 0.0268

0.00075
qLSTM 0.0353 0.0008 0.0028 0.0031 0.0024 0.0018
qHybrid 0.0176 0.0008 0.0036 0.0056 0.0047 0.0029
Gaussian 0.0139 0.0113 0.0104 0.0158 0.0157 0.0099

Table 9: VaR values at different levels for various models, with the lowest values high-
lighted.

particularly for volatile assets like cryptocurrencies.
At the 0.01 level, the qHybrid model shows robust performance across

most asset classes, achieving the lowest VaR for commodities (0.0203) and
S&P 500 (0.0215). The qLSTM model outperforms the other models for FX
(0.0100), Euro Stoxx 50 (0.0190), and Nikkei 225 (0.0176), demonstrating its
ability to capture extreme tail risks in these scenarios effectively. The Gaus-
sian model remains competitive, particularly for cryptocurrencies, achieving
a VaR of 0.0298, highlighting its utility in assets with higher volatility.

At the extreme tail (0.00075 level), the qLSTM model consistently achieves
the lowest VaR across most asset classes, including FX (0.0008), commodi-
ties (0.0028), Euro Stoxx 50 (0.0031), S&P 500 (0.0024), and Nikkei 225
(0.0018). This suggests that the qLSTM is particularly adept at capturing
risks at the far ends of the distribution. The qHybrid and Gaussian mod-
els are slightly less effective at this level, though the Gaussian model shows
competitive performance for cryptocurrencies (0.0139). These results empha-
size the qLSTM’s strength in extreme tail risk estimation and the qHybrid
model’s reliability across broader confidence levels.

4.3. Limitations and Challenges

While our approach yielded promising results, several limitations persist.
One significant limitation is the inability to fairly compare our proposed
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approach with that of the authors in [12]. This issue arises primarily due
to the lack of access to the original dataset used in their study and the
absence of publicly available code for their implementation. Consequently,
we were unable to replicate their exact methodology, which inherently limits
the comparison between the qLSTM approach and their dense model.

In terms of model performance, while the qLSTM model demonstrated su-
perior results in tail risk estimation and overall robustness, its slightly higher
Value at Risk (VaR) at broader confidence levels (e.g., 0.05) compared to the
Gaussian and qHybrid models suggests room for improvement in capturing
broader distributional patterns. Additionally, the qHybrid model, while ef-
fective in several scenarios, exhibited slightly higher RMSE for moments like
kurtosis, indicating potential difficulties in accurately modeling extreme tails
for certain asset classes.

Finally, our results reveal some variability in model performance across
asset classes. For example, while qLSTM excelled in cryptocurrencies and
equity indices, the qDense and qHybrid models outperformed it in currency
pairs and synthetic datasets with skewed distributions. These findings sug-
gest that no single model is universally optimal, underscoring the importance
of tailoring model architectures to specific data characteristics and use cases.

5. Conclusion

This paper introduces a novel approach to estimating the distribution of
log returns by combining quantile regression with smoothed density estima-
tion, providing a robust framework for capturing tail risks and distributional
characteristics across diverse asset classes. By leveraging asset-neutral fea-
tures and general market variables, our models are applicable to a wide range
of financial datasets, making them versatile tools for risk management, port-
folio optimization, and derivative pricing. The proposed qLSTM model con-
sistently demonstrated superior performance on real-world data, achieving
the lowest quantile loss across most asset classes, while the qHybrid model
excelled in synthetic datasets, particularly for skewed or heavy-tailed distri-
butions. These results underscore the strengths of both models in addressing
the limitations of traditional distributional assumptions, such as normality,
in financial returns.

The evaluation metrics, including Wasserstein distance, CRPS, and VaR,
highlight the complementary nature of the qLSTM and qHybrid models.
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The qLSTM model excelled in extreme tail risk estimation, capturing crit-
ical distributional behaviors for volatile asset classes like cryptocurrencies
and equity indices. Meanwhile, the qHybrid model provided improved cal-
ibration for broader confidence levels and distributions, demonstrating its
adaptability to various market conditions. However, some variability in per-
formance across asset classes suggests that no single model is universally
optimal, emphasizing the need for tailored approaches based on specific data
characteristics.

To enhance the literature, the paper allows for reproducibility by publicly
hosting the code used for this study on GitHub. Furthermore, all data is
sourced via an open API and the script to download the required data can
be found in the GitHub repository. This makes comparisons and iterations
on the works proposed, more accessible thereby fostering research robustness.

Future research can explore other methods to create better Hybrid mod-
els, particularly by leveraging certain quantiles with dynamic weighting schemes
to optimize the combination of Gaussian and model-predicted quantiles. This
could provide a more adaptable and context-specific qHybrid approach to es-
timating distributions. Moreover, extending the model to handle ultra-high-
frequency data or incorporating more sophisticated market features, such as
macroeconomic indicators or sentiment analysis, could further enhance its
applicability. These avenues represent exciting opportunities to refine and
expand the utility of distributional modeling in finance.
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Appendix A. Quantiles

The quantiles used in this study are:

[0.00005, 0.00025, 0.00075, 0.00125, 0.00175, 0.0025, 0.005, 0.01, 0.015, 0.02, 0.03,

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,

0.75, 0.8, 0.85, 0.9, 0.95, 0.98, 0.99, 0.995, 0.9975, 0.99925, 0.99975, 0.99995]
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Appendix B. Quantile-Smooth Density Estimation

This method generates a smooth probability density function (PDF) from
a set of quantiles and their associated probabilities, ensuring that the result-
ing representation adheres to the properties of a valid probability distribu-
tion. Starting with the quantiles, it removes duplicate or nearly identical
points to maintain numerical stability, then creates a denser grid for better
resolution. Using a monotonic cubic spline or fallback interpolation, it es-
timates the CDF, which is clamped to the range [0, 1] and adjusted to be
strictly non-decreasing. The method rescales the CDF to start at 0 and end
at 1, guaranteeing its validity as a cumulative function.

To derive the PDF, the method computes the CDF gradient, applying
smoothing techniques such as convolution to remove spikes and ensure a
well-behaved density curve. Non-negativity is enforced, and the PDF is nor-
malized to integrate to one. The final output includes the smoothed PDF,
the regenerated CDF, and the grid over which they are defined, offering a
high-quality approximation of the distribution. Optional visualization helps
validate the results, showing both the smoothed PDF and the corresponding
CDF with respect to the input quantiles. This makes it a robust method
for converting quantiles into a smooth and interpretable density function
suitable for further analysis or modeling.

The function is based on three priors, ǫ which controls how close different
quantiles are allowed to each other, min density which controls the minimum
amount of density allowed in the PDF, and window which controls how many
extreme the convolutions are for smoothing. The optimal priors are found via
TPE on the validation data, similar to how the hyperparameters are found
for the models themselves. Table B.10 shows the best values found during
optimization.

Model ǫ min density window
qLSTM 0.000253 0.027341 113
hybrid 0.000899 0.033704 43

Table B.10: Optimal priors for the smooth PDF approximation

Below is the Python code used for the Quantile-Smooth Density Estima-
tion conversion in this work.
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Listing 1: Quantiles to PDF using Quantile-Smooth Density Estimation

def generate smooth pdf ( quant i l e s , taus ,
min dens i ty=1e−3, eps=1e−6, window=61) :
”””
Generate a smoothed PDF from quan t i l e s wi th

a d d i t i o n a l c o n t r o l s to prevent s p i k e s
and ensure the CDF i s between [0 , 1 ] .
”””
# Constants
GRID POINTS = 1000
og quants = q u a n t i l e s . copy ( )
og taus = taus . copy ( )

unique mask = np . concatenate ( ( [ True ] ,
np . d i f f ( q u a n t i l e s ) > eps ) )

q u a n t i l e s = q u a n t i l e s [ unique mask ]
taus = taus [ unique mask ]

# Create denser g r i d
g r i d x = np . l i n s p a c e ( q u a n t i l e s [ 0 ] , q u a n t i l e s [ −1] ,

GRID POINTS)

# Monotonic s p l i n e f o r the CDF
try :

cdf monotonic = Pch ip In t e rpo l a to r ( quant i l e s ,
taus , e x t r a p o l a t e=Fal se )

cd f = cdf monotonic ( g r i d x )
except Exception as e :

cd f = np . i n t e r p ( gr id x , quant i l e s , taus )

# Clamp CDF to [ 0 , 1 ] , then ensure i t ’ s
monoton ica l l y non−dec rea s ing

cd f = np . c l i p ( cdf , 0 , 1)
cd f = np . maximum . accumulate ( cd f )
# Resca le so t h a t i t s t a r t s e x a c t l y a t 0 and ends

e x a c t l y a t 1
cd f −= cdf [ 0 ]
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i f cd f [ −1] > 0 :
cd f /= cdf [ −1]

# Approximate PDF from f i n i t e d i f f e r e n c e s ( or use
d e r i v a t i v e i f PCHIP)

dens i ty = np . g rad i en t ( cdf , g r i d x )

smoothed density = np . convolve ( density ,
np . ones ( window ) /window , mode=’ same ’ )

# Ensure non−nega t i v e and non−zero d en s i t y
smoothed density = np . maximum( smoothed density ,

min dens i ty )

# Normalize PDF to i n t e g r a t e to 1
area = np . t rapz ( smoothed density , g r i d x )
smoothed density = smoothed density / area

# regenera te CDF
cd f = np . cumsum( smoothed density ) ∗ ( g r i d x [ 1 ] −

g r i d x [ 0 ] )

return gr id x , smoothed density , cd f
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Appendix C. Data

The following sections detail the data used for this study.

Appendix C.1. Financial Assets

The table below provides a comprehensive list of financial assets, includ-
ing their ticker symbols, associated indexes, start dates, annualized mean
returns, and standard deviations of returns, rounded to two decimal places
where applicable.

Table C.11: List of assets with their tickers, index, start
date, annualized mean return, and standard deviation.

Name Ticker Index Start Date Mean
(%)

Std
(%)

Apple Inc. AAPL S&P 500 2000-02-03 1.46 40.43
Microsoft
Corporation

MSFT S&P 500 2000-02-03 0.66 30.49

Amazon.com,
Inc.

AMZN S&P 500 2000-02-03 1.00 49.22

Alphabet
Inc. (Class
A)

GOOGL S&P 500 2004-09-21 1.26 30.49

The Walt
Disney
Company

DIS S&P 500 2000-02-03 0.30 30.42

Johnson &
Johnson

JNJ S&P 500 2000-02-03 0.51 19.16

Visa Inc. V S&P 500 2008-04-21 1.13 29.07
NVIDIA
Corporation

NVDA S&P 500 2000-02-03 1.72 59.48

Mastercard
Inc.

MA S&P 500 2006-06-27 1.65 33.40

The Coca-
Cola Com-
pany

KO S&P 500 2000-02-03 0.37 20.58

TotalEnergies
SE

TOTF.PA Euro Stoxx
50

2000-02-02 0.43 26.51

33



Volkswagen
AG

VOW3.DE Euro Stoxx
50

2000-02-02 0.62 37.29

L’Oréal SA OR.PA Euro Stoxx
50

2000-02-02 0.59 25.12

BNP
Paribas
SA

BNP.PA Euro Stoxx
50

2000-02-02 0.42 36.88

Daimler AG DAI.DE Euro Stoxx
50

2000-02-02 0.57 32.36

Siemens AG SIE.DE Euro Stoxx
50

2000-02-02 0.27 35.95

Airbus SE AIR.PA Euro Stoxx
50

2001-10-03 0.83 37.68

Muenchener
Rueckver-
sicherungs
AG

MUV2.DE Euro Stoxx
50

2000-02-02 0.31 30.00

Intesa San-
paolo S.p.A.

INTC.MI Euro Stoxx
50

2000-02-02 0.35 39.94

BASF SE BAS.DE Euro Stoxx
50

2000-02-02 0.47 29.07

Toyota Mo-
tor Corpora-
tion

7203.T Nikkei 225 2000-02-02 0.41 28.49

Sony Group
Corporation

6758.T Nikkei 225 2000-02-03 0.13 36.51

SoftBank
Group
Corp.

9984.T Nikkei 225 2000-02-03 0.06 51.28

Nintendo
Co., Ltd.

7974.T Nikkei 225 2001-02-05 0.51 38.81

Mitsubishi
UFJ Finan-
cial Group,
Inc.

8306.T Nikkei 225 2005-10-31 0.13 33.08
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Tokyo
Electron
Limited

8035.T Nikkei 225 2000-02-03 0.53 42.49

Mitsubishi
Corporation

8058.T Nikkei 225 2000-02-03 0.71 33.12

HOYA Cor-
poration

7741.T Nikkei 225 2001-01-31 0.68 32.51

Fast Retail-
ing Co., Ltd.

9983.T Nikkei 225 2000-02-03 0.72 42.37

Omron Cor-
poration

6645.T Nikkei 225 2001-02-05 0.41 35.85

British
Pound to
US Dollar

GBPUSD=X Currency
Pairs

2003-12-31 -0.10 9.54

US Dollar
to Japanese
Yen

USDJPY=X Currency
Pairs

2000-02-02 0.07 11.34

Australian
Dollar to
US Dollar

AUDUSD=X Currency
Pairs

2006-06-15 -0.03 59.98

Euro to
British
Pound

EURGBP=X Currency
Pairs

2000-02-02 0.09 8.72

Euro to
Japanese
Yen

EURJPY=X Currency
Pairs

2003-02-24 0.06 11.48

Euro to
Swiss Franc

EURCHF=X Currency
Pairs

2003-02-24 -0.13 7.89

Euro to
Australian
Dollar

EURAUD=X Currency
Pairs

2003-12-31 -0.01 10.39

US Dollar to
Indian Ru-
pee

USDINR=X Currency
Pairs

2003-12-31 0.18 7.76
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Swiss Franc
to Japanese
Yen

CHFJPY=X Currency
Pairs

2003-12-31 0.20 11.46

US Dollar to
Hong Kong
Dollar

USDHKD=X Currency
Pairs

2001-08-15 0.00 1.07

Copper Fu-
tures

HG=F Commodities 2000-10-02 0.39 26.89

Wheat
Futures

ZW=F Commodities 2000-08-16 0.26 32.82

Coffee
Futures

KC=F Commodities 2000-02-03 0.14 34.01

Cocoa
Futures

CC=F Commodities 2000-02-03 0.45 30.28

Cotton Fu-
tures

CT=F Commodities 2000-02-03 0.09 30.29

Live Cattle
Futures

LE=F Commodities 2001-04-02 0.23 18.43

Platinum
Futures

PL=F Commodities 2000-02-04 0.22 31.50

Palladium
Futures

PA=F Commodities 2000-02-04 0.21 38.62

Corn Fu-
tures

ZC=F Commodities 2000-08-16 0.27 29.14

Orange
Juice Fu-
tures

JO=F Commodities 2001-10-17 0.37 33.20

Bitcoin BTC-USD Crypto 2014-10-09 2.25 59.09
Ethereum ETH-USD Crypto 2017-12-01 1.16 76.15
Ripple XRP-USD Crypto 2017-12-01 0.64 96.11
Cardano ADA-USD Crypto 2017-12-01 1.14 94.15
Dogecoin DOGE-USD Crypto-

currencies
2017-12-01 2.69 115.10

Binance
Coin

BNB-USD Crypto-
currencies

2017-12-01 3.61 86.33

36



NEAR Pro-
tocol

NEAR-USD Crypto-
currencies

2020-11-05 2.65 109.42

Bitcoin
Cash

BCH-USD Crypto-
currencies

2017-12-01 -1.20 93.81

Litecoin LTC-USD Crypto-
currencies

2014-10-09 1.38 85.60

Solana SOL-USD Crypto-
currencies

2020-05-02 5.85 114.08
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Appendix C.2. Market Data

The table below lists the market data used in this study, including tickers,
a brief representation, start dates, annualized mean returns, and standard
deviations. This data spans a variety of indices, futures, and financial in-
struments, providing a broad view of market performance and trends over
time.

Table C.12: Market data with tickers, representation,
start date, annualized mean, and standard deviation.

Name Ticker Representation Start Date Mean
(%)

Std
(%)

S&P 500
Index

ˆGSPC U.S. stock mar-
ket performance

2000-02-03 0.50 21.05

NASDAQ
Index

ˆIXIC Tech-focused
stock perfor-
mance

2000-02-03 0.75 23.29

Dow Jones
Index

ˆDJI Large U.S.
company perfor-
mance

2000-02-03 0.46 19.93

Russell
2000 Index

ˆRUT Small-cap U.S.
stock perfor-
mance

2000-02-03 0.38 26.65

Euro Stoxx
50 Index

ˆSTOXX50E Top 50 Euro-
pean company
performance

2000-02-03 0.03 23.52

Nikkei 225
Index

ˆN225 Japanese stock
market perfor-
mance

2000-02-03 0.27 24.07

Crude Oil
Futures

CL=F Global economic
activity indica-
tor

2000-02-03 0.28 46.21

Gold
Futures

GC=F Inflation hedge
and safe haven

2000-02-03 0.47 18.39

Silver Fu-
tures

SI=F Industrial de-
mand and
inflation hedge

2000-02-03 0.24 34.22
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VIX Index ˆVIX Market volatility
(fear index)

2000-02-03 -0.07 125.89

10 Year
Treasury
Yield

ˆTNX Long-term in-
terest rates and
growth

2000-02-03 -0.08 47.40

3 Month
Treasury
Yield

ˆIRX Short-term in-
terest rates and
liquidity

2000-02-03 -0.28 478.84

US Dollar
Index

DX-Y.NYB U.S. dollar
strength against
a basket of
currencies

2000-02-03 0.08 8.12

Corporate
Bond
Index

AGG U.S. investment-
grade bond mar-
ket performance

2000-02-03 0.20 5.75
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Appendix C.3. Synthetic Data

In this study, synthetic data was generated across four different distribu-
tions: Normal, Log-Normal, Gamma, and Uniform. For each distribution,
multiple assets were created with specific µ (mean) and σ (standard devi-
ation) values. These synthetic datasets were designed to match a target
correlation with real-world market data, ensuring that the generated data
maintained realistic statistical properties. The table below summarizes the
µ, σ, and correlation values for the synthetic assets across the various distri-
butions.

Table C.13: Generated µ and σ values and correlation
with market data across different test datasets.

Dist
Type

Asset Generated µ, σ Correl
-ation
with
Market
Data

Normal

Asset 1 µ = −0.000663, σ = 0.022852 0.7047
Asset 2 µ = −0.000944, σ = 0.027103 0.6787
Asset 3 µ = 0.000427, σ = 0.010072 0.7149
Asset 4 µ = −0.000551, σ = 0.020746 0.6908
Asset 5 µ = −0.000796, σ = 0.023492 0.7261
Asset 6 µ = −0.000633, σ = 0.018013 0.7077
Asset 7 µ = 0.000044, σ = 0.028276 0.6712
Asset 8 µ = −0.000502, σ = 0.017238 0.6884
Asset 9 µ = 0.000452, σ = 0.021794 0.7028
Asset 10 µ = 0.000647, σ = 0.012101 0.6820

Log Normal

Asset 1 µ = 0.000922, σ = 0.015048 0.6900
Asset 2 µ = 0.000839, σ = 0.029755 0.7013
Asset 3 µ = −0.000659, σ = 0.025729 0.6859
Asset 4 µ = −0.000637, σ = 0.028419 0.6892
Asset 5 µ = 0.000824, σ = 0.029507 0.7040
Asset 6 µ = −0.000740, σ = 0.010353 0.7052
Asset 7 µ = −0.000874, σ = 0.025497 0.6918
Asset 8 µ = 0.000052, σ = 0.016105 0.6987
Asset 9 µ = −0.000106, σ = 0.022525 0.7048
Asset 10 µ = 0.000704, σ = 0.024870 0.6874
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Gamma

Asset 1 µ = −0.000725, σ = 0.013788 0.6954
Asset 2 µ = 0.000544, σ = 0.018391 0.7030
Asset 3 µ = 0.000613, σ = 0.023223 0.7012
Asset 4 µ = 0.000029, σ = 0.015418 0.7063
Asset 5 µ = −0.000095, σ = 0.026113 0.7214
Asset 6 µ = −0.000846, σ = 0.010134 0.7045
Asset 7 µ = 0.000724, σ = 0.028490 0.6717
Asset 8 µ = 0.000584, σ = 0.026327 0.7016
Asset 9 µ = 0.000503, σ = 0.029417 0.7100
Asset 10 µ = −0.000688, σ = 0.029474 0.6916

Uniform

Asset 1 µ = −0.000603, σ = 0.014227 0.8650
Asset 2 µ = −0.000417, σ = 0.016919 0.8603
Asset 3 µ = −0.000024, σ = 0.013627 0.8617
Asset 4 µ = −0.000554, σ = 0.026960 0.8579
Asset 5 µ = 0.000231, σ = 0.026206 0.8597
Asset 6 µ = −0.000763, σ = 0.028292 0.8590
Asset 7 µ = 0.000122, σ = 0.014288 0.8603
Asset 8 µ = 0.000404, σ = 0.017516 0.8587
Asset 9 µ = −0.000082, σ = 0.026868 0.8610
Asset 10 µ = −0.000876, σ = 0.012219 0.8545

[h]
In addition to the statistical properties shown in the table, the synthetic

data was generated using the following Python function. The function allows
for the generation of log returns that are correlated with real market data by
controlling the mean (µ) and standard deviation (σ) of the generated data.

Listing 2: Synthetic Data Generation with Target Correlation

import numpy as np
import pandas as pd
from s c ipy . s t a t s
import gamma, lognorm , uniform

def
g e n e r a t e s y n t h e t i c d a t a w i t h t a r g e t c o r r e l a t i o n ( market data ,
t a r g e t c o r r e l a t i o n , mu, sigma ,
d i s t r i b u t i o n=’ normal ’ ) :
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”””
Generate a s yn t h e t i c d a t a s e t wi th re turns t h a t

have a t a r g e t c o r r e l a t i o n to the market data .

Parameters :
− market data : numpy array o f l o g re turns from the

market data
− t a r g e t c o r r e l a t i o n : the t a r g e t c o r r e l a t i o n f o r

s yn t h e t i c data ’ s l o g re turns to the market data
− mu: mean of the s yn t h e t i c d a t a s e t
− sigma : s tandard d e v i a t i on o f the s yn t h e t i c

d a t a s e t
− d i s t r i b u t i o n : the d i s t r i b u t i o n to sample

s yn t h e t i c data from ( ’ normal ’ , ’gamma ’ ,
’ lognormal ’ , ’ uniform ’)

Returns :
− d f : DataFrame with s yn t h e t i c p r i c e s
”””

num periods = len ( market data )

# Step 1 : Generate independent no i se based on the
s p e c i f i e d d i s t r i b u t i o n

i f d i s t r i b u t i o n == ’ normal ’ :
no i s e = np . random . normal ( l o c =0, s c a l e =1,

s i z e=num periods ) # Standard normal no i se
e l i f d i s t r i b u t i o n == ’gamma ’ :

shape = 2 # Shape parameter f o r the gamma
d i s t r i b u t i o n

no i s e = gamma . rvs ( a=shape , s c a l e =1,
s i z e=num periods )

no i s e = ( no i s e − np . mean( no i s e ) ) /
np . std ( no i s e ) # Standard i ze no i se

e l i f d i s t r i b u t i o n == ’ lognormal ’ :
no i s e = lognorm . rvs ( s =1, s c a l e=np . exp (0 ) ,

s i z e=num periods )
no i s e = ( no i s e − np . mean( no i s e ) ) /
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np . std ( no i s e ) # Standard i ze no i se
e l i f d i s t r i b u t i o n == ’ uniform ’ :

no i s e = uniform . rvs ( l o c =−1, s c a l e =2,
s i z e=num periods ) # Uniform d i s t r i b u t i o n
[−1 , 1 ]

else :
raise ValueError ( ”Unsupported  d i s t r i b u t i o n .  

Choose  from  ’ normal ’ ,  ’gamma ’ ,  ’ lognormal ’ ,  
or  ’ uniform ’ . ” )

# Step 2 : S tandard i ze market data
market std = ( market data − np . mean( market data ) )

/ np . std ( market data )

# Step 3 : Create a l i n e a r combination o f market
data and no i se f o r c o r r e l a t e d re turns

s y n t h e t i c l o g r e t u r n s = t a r g e t c o r r e l a t i o n ∗

market std + np . s q r t (1 − t a r g e t c o r r e l a t i o n ∗∗2)
∗ no i s e

# Step 4 : Adjust the s yn t h e t i c r e turns to have the
d e s i r e d mean and standard d e v i a t i on

s y n t h e t i c l o g r e t u r n s = s y n t h e t i c l o g r e t u r n s ∗

sigma + mu

# Step 5 : Convert s yn t h e t i c l o g re turns to p r i c e
data

i n i t i a l p r i c e = np . random . uniform (5 , 1000) #
Random i n i t i a l p r i c e

s y n t h e t i c p r i c e s = i n i t i a l p r i c e ∗

np . exp ( np . cumsum( s y n t h e t i c l o g r e t u r n s ) )

# Step 6 : Create a DataFrame with s yn t h e t i c p r i c e
data

df = pd . DataFrame ( s y n t h e t i c p r i c e s , columns=[ ’ Adj  
Close ’ ] )

# Add High , Low , Volume columns to a l l ow a l l
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f un c t i on s to work
df [ ’ High ’ ] = df [ ’ Adj  Close ’ ] ∗ (1 +

np . random . normal (0 , 0 . 01 , s i z e=len ( df ) ) )
df [ ’Low ’ ] = df [ ’ Adj  Close ’ ] ∗ (1 −

np . random . normal (0 , 0 . 01 , s i z e=len ( df ) ) )
df [ ’ Volume ’ ] = 0

df = g e n e r a t e t e c h n i c a l f e a t u r e s ( df )

return df

The function generates synthetic log returns that are then converted to
price data, while ensuring a target correlation with the real market data.
This allows for a more controlled and realistic evaluation of the model’s
performance on different types of financial data.
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Appendix D. Training Details

The following sections give details on training procedures including both
training of the models as well as optimal hyper parameters.

Appendix D.1. qLSTM Hyperparamters

The following table shows the optimal hyperparameters for the qLSTM
model.

Table D.14: Final Hyperparameters for the qLSTM
model, rounded down to the 4th decimal place

Hyperparameter Asset Model (Stage
1)

Market Model
(Stage 2)

Batch size 64
Learning rate 0.0006
Normalization window 219
LSTM layers 1 1
LSTM units 16 16
Dense layers 5 3
Dense units per layer 128, 64, 64, 32, 32 16, 16, 32
Dropout rate 0.1778
Market activation Tanh
Hidden activation ELU
Use layer normalization no (0)
L1 regularization 0.0006
L2 regularization 0.0009
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Appendix D.2. qDense Training Details & Results

The following tables summarize the hyperparameters used during the
training of the qDense model. The first table presents the ranges explored
during the hyperparameter tuning process, and the second table lists the
final hyperparameters used in the model, rounded down to the fourth decimal
place.

Table D.15: Hyperparameters explored for qDense Asset-
Specific and Market Data Models

Hyper-
parameter

Asset Model (Stage
1)

Market Model
(Stage 2)

Batch size b ∈ {32, 64, 128, 256, 512, 1024, 2048}
Learning rate η ∈ [1 × 10−6, 1 × 10−3]
Normalization
window

w ∈ [5, 250]

Dropout rate D ∈ [0.0, 0.9]
L1 regulariza-
tion

λ1 ∈ [0.0, 1 × 10−3]

L2 regulariza-
tion

λ2 ∈ [0.0, 1 × 10−3]

Use layer nor-
malization

Boolean: {1, 0}

Raw hidden
layers

lraw, asset ∈ [1, 5] lraw, market ∈ [1, 5]

Hidden layer
units

uraw, asset ∈
{16, · · · , 512}

uraw, market ∈
{16, · · · , 512}

Hidden activa-
tion function

{relu, tanh,
sigmoid, leaky relu, elu}

{relu, tanh,
sigmoid, leaky relu, elu}

Table D.16: Final Hyperparameters for the qDense
model, rounded down to the 4th decimal place

Hyperparameter Asset Model (Stage
1)

Market Model
(Stage 2)

Batch size 32
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Learning rate 0.0003
Normalization window 207
Raw hidden layers 3 1
Hidden layer units 32, 32, 64 64
Dropout rate 0.4623
Market activation ELU
Hidden activation Leaky RELU
Use layer normalization No (0)
L1 regularization 0.0005
L2 regularization 0.0001

47


	Introduction
	Literature Review
	Methodology
	Problem Definition
	Model Architecture
	Stage 1: Asset-Specific Quantile Estimation
	Stage 2: Market Data Scaling
	Loss Function
	Modified Loss Function

	Market Data
	Asset Selection
	Feature Engineering
	Market Data

	Synthetic Data
	Hyperparameter Optimization

	Experimental Setup
	Data Split
	Training Procedure

	Evaluation Metrics
	Quantile Loss
	Distribution Metrics


	Results & Discussion
	Quantile Loss Performance
	Distribution Metric Performance
	Limitations and Challenges

	Conclusion
	Quantiles
	Quantile-Smooth Density Estimation
	Data
	Financial Assets
	Market Data
	Synthetic Data

	Training Details
	qLSTM Hyperparamters
	qDense Training Details & Results


