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Abstract

Information regarding vaccines from sources such as health services, media, and social
networks can significantly shape vaccination decisions. In particular, the dissemination
of negative information can contribute to vaccine hesitancy, thereby exacerbating
infectious disease outbreaks. This study investigates strategies to mitigate anti-vaccine
social contagion through effective counter-campaigns that disseminate positive vaccine
information and encourage vaccine uptake, aiming to reduce the size of epidemics. In a
coupled agent-based model that consists of opinion and disease diffusion processes, we
explore and compare different heuristics to design positive campaigns based on the
network structure and local presence of negative vaccine attitudes. We examine two
campaigning regimes: a static regime with a fixed set of targets, and a dynamic regime
in which targets can be updated over time. We demonstrate that strategic targeting and
engagement with the dynamics of anti-vaccine influence diffusion in the network can
effectively mitigate the spread of anti-vaccine sentiment, thereby reducing the epidemic
size. However, the effectiveness of the campaigns differs across different targeting
strategies and is impacted by a range of factors. We find that the primary advantage of
static campaigns lies in their capacity to act as an obstacle, preventing the clustering of
emerging anti-vaccine communities, thereby resulting in smaller and unconnected
anti-vaccine groups. On the other hand, dynamic campaigns reach a broader segment of
the population and adapt to the evolution of anti-vaccine diffusion, not only protecting
susceptible agents from negative influence but also fostering positive propagation within
negative regions.

Introduction 1

Throughout history, diseases have posed a constant threat to human health and 2

wellbeing, with the COVID-19 pandemic serving as a recent and striking example. 3

Vaccination is a vital tool for combating disease prevalence. However, in many instances, 4

the availability of vaccinations does not necessarily lead to their uptake owing to several 5

factors, including vaccine hesitancy. According to the WHO, vaccination hesitancy is 6

one of the top ten threats to public health [1]. One significant factor contributing to it 7

is exposure to vaccine misinformation [2]. Furthermore, this behaviour can spread 8

socially through imitation [3], resulting in negative collective behavior towards 9
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vaccination. This highlights the social dilemma inherent in vaccination, a topic that has 10

been extensively studied in the literature (e.g., [4–7]). Therefore, achieving high vaccine 11

uptake to suppress vaccine-preventable diseases remains a significant challenge for 12

public health administration. The existing literature on coupled models of disease and 13

behavioral diffusion is extensive, addressing different perspectives. For example, one set 14

of studies focuses on the dynamics of awareness/misinformation/opinion-disease 15

interactions (e.g., [8–13]). Another set addresses the problem as a vaccination game 16

using game-theoretic frameworks (e.g., [3–5,14,15]). Other studies explore a 17

combination of these approaches (e.g., [16–18]). 18

Information about a disease and attitudes around vaccination play a significant role 19

in people’s willingness to get vaccinated and, therefore, the extent and severity of an 20

outbreak [19]. COVID-19 is the most recent example of the influence of misinformation 21

on epidemic dynamics [20,21]. Studying misinformation and vaccine opinion diffusion 22

not only helps in understanding the range of influences on people’s attitudes, but also 23

helps in understanding the flow of attitudes across the social network and, therefore, 24

allows for more effective intervention control strategies. Many studies have investigated 25

the role of information dissemination on the scale of transmission of an epidemic. This 26

information may positively serve as a trigger for self-protection, for example when 27

awareness of a disease spreads, as in [9,10,12,21], where the authors investigate how the 28

spread of awareness may reduce the size of an epidemic. On the other hand, it may 29

work as a stimulant for negative behavioural responses, such as the spread of false 30

information regarding vaccinations over a social network, which negatively influences 31

people’s inclination to vaccinate [8, 11,13,18,22–25]. 32

Opinions regarding vaccines spread among individuals as a social contagion and 33

significantly affect the distribution of vaccination coverage, subsequently influencing the 34

transmission dynamics of diseases. Previous studies have explored the interplay between 35

disease spread and the propagation of vaccine-related opinions. Some studies have 36

focused on dynamics of anti-vaccine opinions while neglecting the influence of 37

pro-vaccine propagation [11,24,25]. Others have examined both anti-vaccine and 38

pro-vaccine dynamics, with anti-vaccine dynamics being treated as a contagion 39

phenomenon [13,22], and a limited number of studies considered the propagation of 40

both anti- and pro-vaccine behaviour [8, 23]. In addition, researchers have employed a 41

range of techniques to model opinion transmission. For instance, epidemic models have 42

been used in [13,18,24,25], while others have employed opinion diffusion models, such 43

as threshold-based model [11], voter-like model [8], the m-model [23], and a variant of 44

Axelrod’s model [22]. The utilization of epidemiological models to describe the spread of 45

opinions provide simple contagion, where an individual can be influenced by a single 46

exposure. In contrast, empirical studies have demonstrated that influence propagation 47

exhibits complex contagion diffusion pattern [26,27], where multiple exposures are 48

required to influence an individual. Consequently, opinion diffusion models are better 49

suited to capture the dynamics of social interactions, as they incorporate more realistic 50

behavioral characteristics that govern the adoption of opinions and decision-making in 51

the real world. 52

Anti-vaccine opinion adopters tend to cluster in social networks [19,28–30]. This 53

leads to the existence of clusters of unprotected individuals which represent a threat to 54

public health and prevent attainment of high vaccination rates [31] as well as impeding 55

the effects of full herd immunity and high vaccination rates [8, 32]. Numerous studies 56

have investigated the risk of anti-vaccine clusters, focusing for instance on, the 57

relationship between anti-vaccine communities and the epidemic size [8, 11,22,28], 58

understanding the communication between vaccine social clusters [30], correlation 59

between spatial clusters and the associated vaccination rates [31], and using social 60

media data to identify vaccine opinion clusters and vaccination rates [28,33,34]. 61
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Mitigating the propagation of misinformation has received researchers’ attention in 62

the field of influence minimization, which is a subclass of the influence maximization 63

problem. The influence minimization problem focuses on minimizing the propagation of 64

undesirable influence in a social network. Researchers have addressed this problem 65

either by blocking specific nodes [35] or edges [36] in the network, or applying true 66

information campaigns [37–42]. In the context of vaccination hesitancy, empirical 67

research highlights the significance of healthcare providers’ advice in overcoming 68

vaccination hesitancy and promoting vaccine uptake through the dissemination of 69

accurate information about vaccines [43,44]. Unlike our main objective, which focuses 70

not only on reducing the number of anti-vaccine opinion adopters but also their 71

distribution in the network to mitigate the growth and connectivity of anti-vaccine 72

communities, existing research on misinformation mitigation has primarily concentrated 73

on single-diffusion processes aimed at reducing negative opinion adopters or increasing 74

positive opinion adopters. 75

Controlling epidemic spread by managing information dissemination through 76

external campaigns within coupled dynamics is an active research area [22,45,46]. For 77

example, [22] proposed an intervention scheme to control disease spread by governing 78

the spread of anti-vaccine opinions, assuming that agents who adopt anti-vaccine views 79

can be converted back to pro-vaccine views through dedicated influence. Similarly, [45] 80

examined the effects of an intervention campaign aimed at promoting preventive 81

behaviors, specifically by increasing social distancing between agents. A recent study 82

that follows an approach similar to our work [46] investigated the impact of different 83

static targeting heuristics for placing pro-vaccine seeds on epidemic size in a multi-layer 84

setting. Additionally, another study [47] with a similar goal of mitigating vaccine 85

hesitancy proposed strategic targeting methods as a single diffusion process, though it 86

did not consider the effects of these interventions on the dynamics of disease spread. 87

Although this considerable literature on the dynamics of vaccine-related information 88

and opinion diffusion and their impact on epidemic spread [8, 11, 18, 22, 23], several gaps 89

have been identified in the field. First, there is limited consideration of both pro- and 90

anti-vaccine social interactions and preferences that drive epidemic dynamics. Second, 91

there have been limited efforts to address the mitigation of anti-vaccine contagion and 92

its implications for epidemic size through positive campaigns that strategically target 93

individuals to spread positive influence in the network, despite the rich literature on 94

such strategic targeting in other fields such as influence maximization [48,49], 95

misinformation mitigation [37–40], and vaccination strategies [50]. Additionally, despite 96

many studies emphasizing the risk posed by anti-vaccine communities and their 97

correlation with the extent of disease spread, a closer examination of the literature 98

reveals the need for research focused on mitigating the expansion and connectivity of 99

anti-vaccine clusters. Further investigation in these areas could be valuable for 100

advancing our understanding and enhancing our ability to manage and control the 101

spread of diseases. 102

To bridge these gaps, and with our primary goal of minimizing epidemic size, we 103

develop a computational framework to examine the effects of mitigating anti-vaccine 104

opinions on the size of epidemics, given the correlation between epidemic spread 105

dynamics and the diffusion of vaccine behaviors. It involves implementation of a 106

strategic counter-campaign that effectively disseminates positive information about 107

vaccines to counteract the diffusion of anti-vaccine opinions. This model integrates 108

vaccine-related information dissemination, pro- and anti-vaccine opinion diffusion, and 109

disease spread. Our main contributions are as follows: 110

1. We address the mitigation of the diffusion of anti-vaccine opinions as a 111

misinformation mitigation problem, where the primary objective is to seek an 112

optimal set of targets to seed positive influence in a social network. Thus, we 113
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explore and compare different heuristics seeking to identify a set of nodes within a 114

network and investigate their effects on the structure of anti-vaccine communities 115

and, ultimately, the extent of disease spread. We examine the impact of various 116

targeting strategies on epidemic size and evaluate the extent to which it can be 117

mitigated. 118

2. We consider two approaches for the seed set selection: static and dynamic. In the 119

static approach, which has traditionally been considered [37, 40, 46], the seed set is 120

chosen at the beginning of the campaign launch and remains unchanged 121

throughout the campaign. In contrast, in the dynamic approach, the seed set is 122

selected repeatedly in different rounds based on specific criteria such as [51,52]. 123

We propose a novel dynamic approach where we update the target set with a new 124

target set based on certain criteria. The selection criteria in this approach are 125

based on the local presence of negative vaccine-related information. This is an 126

adaptive approach that responds to the evolving dynamics of the anti-vaccine 127

propagation. 128

3. We investigate the impact of resource constraints on various network-targeting 129

strategies, highlighting the tradeoff between the number of targeted nodes and the 130

positive influence budget across different campaign types. 131

Experiments reveal that different methods of distributing positive influence have 132

varying impact on anti-vaccine opinion diffusion and the structure of anti-vaccine 133

communities which consequently affects the epidemic spread. For instance, targeted 134

campaigns demonstrate higher efficiency compared to random campaigns, and the 135

dynamic approach is more efficient than the static approach. Nonetheless, depending on 136

other factors: the allocated positive budget, the level of social influence between 137

individuals, the size of the target set, and the time horizons of dynamic campaigns, we 138

observe variations in the effectiveness of controlling anti-vaccine propagation for each 139

strategy. In the results section, we provide a comprehensive analysis of the performance 140

of each campaign. 141

Model description and methods 142

In this study, we consider a scenario where opinion exchanges and the vaccination 143

process occur prior to the spread of the disease. This type of modelling is particularly 144

relevant for diseases like childhood illnesses, e.g., measles, where vaccinations typically 145

take place during the early years of childhood, and the disease manifests during school 146

or preschool age. As a relevant real-world example, in 2019, after almost two decades of 147

significant progress in global vaccination programs, there was a resurgence of 148

measles [53]. One cause of this resurgence is due to a significant decline in vaccine 149

coverage, resulting from the spread of anti-vaccine information. 150

Motivated by the model presented in [11], we developed a framework consisting of a 151

two-stage agent-based model. The first stage involves opinion diffusion and vaccination 152

processes in relation to individuals’ opinions about vaccines, and the second stage is the 153

disease spread among unvaccinated individuals. This modeling approach is a common 154

methodology found in the existing literature on vaccination programs for childhood 155

diseases [8] and flu-like diseases [3, 5, 14,54]. We assume that the vaccination provides 156

full immunity, implying that all who receive it are immune to the disease. For vaccine 157

opinion diffusion, motivated by the approach of [11], we developed a model for the dual 158

propagation of positive and negative opinions. Similarly, as in [11], we utilized the SIR 159

model for the disease spread stage, originally developed by [55], which is widely used by 160

researchers in epidemic modeling. 161
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The experiment workflow commences with the stage of opinion diffusion, during 162

which sentiments related to vaccines spread in the network, subsequently influencing 163

individuals’ vaccination decision-making. As influenced individuals adopt particular 164

opinions, their social influence starts to propagate through the network. This social 165

contagion inevitably leads to the formation of homogeneous communities, i.e. a 166

community with a particular attitude towards vaccination, with anti-vaccine 167

communities being our primary concern. In our model, we utilize complex contagion, 168

which implies that agents need multiple exposures to be influenced, as this phenomenon 169

has also been observed in influence propagation processes [26,27]. Following the stage of 170

opinion dissemination, the vaccination process takes place. Subsequently, the infectious 171

disease begins to spread among unimmunized individuals. The details of each stage will 172

be explained in the following sections. 173

We conduct our experiments using the Watts-Strogatz small-world network 174

model [56]. Small-world network provides an effective framework for modelling complex 175

systems, as many real-world networks including social networks [57], exhibit the 176

small-world property [58]. In addition, as the model is stochastic in nature, we conduct 177

a number of simulations per scenario to obtain the average epidemic size. In each 178

simulation, we generate the contact network, followed by the diffusion of opinions and 179

vaccination, and finally the disease spread. An illustration of the model stages is shown 180

in Fig 1.

Fig 1. Illustration of the model describing opinion formation and disease
propagation. Blue circles represent neutral individuals, green circles represent pro-
vaccine individuals, and red circles represent anti-vaccine individuals. The first stage
involves the generation of the social network and the initialization of agent opinion
states as agents with neutral opinions. Then, external exposures to positive and negative
information triggers the initial seed sets for both anti-vaccine and pro-vaccine contagion.
Opinion diffusion continues until a stopping criterion is reached. In this stage, a
vaccination takes place for all non-negative individuals. Subsequently, a randomly chosen
non-vaccinated individual is infected, and the spread of the disease continues until no
further newly infected agents are generated. Finally, we record the number of recovered
agents to measure the epidemic size.

181

Opinion diffusion 182

Our model consists of a network G composed of N nodes, represented by G(V,E), where 183

V is the set of nodes representing individuals, V = {1, 2, ...N}, and E is the set of edges 184
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representing contacts between individuals. We assume that this contact structure is the 185

same for both the flow of information and the transmission of the disease. We consider 186

two types of vaccine-related exposures: positive, which spread positive sentiment, and 187

negative, which spread negative sentiment. In addition, we consider exposures from 188

external sources, referred to as general exposure or campaigns, occurring with 189

probabilities µ− (negative) and µ+ (positive), as well as through social communication 190

where influence is exerted by opinion adopters on each of their neighbours with 191

probabilities ω− (negative) and ω+ (positive), per timestep. Each agent has their own 192

set of counters {ϕ−, ϕ+}, where ϕ−
i quantifies exposures to negative, and ϕ+

i quantifies 193

exposures to positive sentiments experienced by each agent. Furthermore, θ is an 194

opinion decision threshold that represents an individual’s sensitivity to influence. We 195

assume that an agent shifts its opinion from a neutral state to either negative or 196

positive when it has been exposed to θ more exposures of a particular influence. 197

Each agent i, i = {1, 2, .., N}, may adopt one of three opinion states 198

si ∈ {o−, o0, o+}, where o− is negative, o+ is positive, and o0 is neutral. We assume 199

that once an agent changes its state from a neutral to a negative (or positive) state, it 200

remains in that state, as we assume that individuals with a pro-vaccine opinion choose 201

to immunize, achieving full immunity, while anti-vaccine individuals refuse vaccination 202

and maintain their stances. This is consistent with real-world observations of the 203

growing polarization in the vaccine debate, driven by misinformation and social media 204

echo chambers, which reinforce entrenched views [59,60], making stances changes less 205

likely. To summarize, following a setup informed by the approach taken in [11], our 206

model operates in discrete time steps as follows: 207

• At time t = 0, all agents are neutral, i.e., si = o0,∀i ∈ V . 208

• At each time step t, negative general exposure exerts influence on the population 209

with probability µ− per individual. Similarly, positive general exposure exerts 210

influence on the targeted population with probability µ+ per individual. In 211

addition, each agent i with state si ∈ {o−, o+}, exerts influence on each of its 212

neutral neighbors with probability ω− for negative opinion adopters and ω+ for 213

positive opinion adopters. Exposures for an agent i, i.e, {i ∈ V |si = o0}, is added 214

to ϕ−
i if it is negative or added to ϕ+

i if it is positive. 215

• At each time step t, each neutral agent i, i.e, {i ∈ V |si = o0}, updates its opinion 216

state as follows: 217

si =


o− if ϕ−

i − ϕ+
i ≥ θ,

o+ if ϕ−
i − ϕ+

i ≤ −θ,

o0 otherwise.

(1)

The above process is repeated for τ steps. A visual depiction of external campaigns 218

and social influence is shown in Fig 2A. Next, we make the assumption that all agents 219

with a non-negative opinion will receive the vaccine, while those with a negative opinion 220

will refuse it. 221

Epidemic spread 222

In this phase, an anti-vaccine opinion adopter is randomly chosen as a seed for the 223

disease, and disease spread is modeled using the SIR model. Each infected agent can 224

transmit the disease with a probability β per contact per time step, and can recover with 225

a probability γ per time step. The process continues until there are no more infected 226

individuals, and the epidemic size Sr is recorded. Sr is defined as the total number of 227

individuals who experience an infection during the course of the epidemic [61]. 228
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Fig 2. Illustration of opinion propagation and campaigning methods. The
figure shows the exchange of vaccine-related opinions and external exposures, as well
as the positive campaign types. (A) Random dissemination of negative and positive
vaccine-related sentiments from external campaigns to the public. (B) Targeted positive
campaign. µ−, and µ+ are the general exposure rates for negative and positive sentiments,
respectively. ω−, ω+ are the social exposure rates for negative and positive opinions,
respectively.

Table 1 below presents a list of the model parameters and their corresponding 229

descriptions.

Table 1. Model parameters and descriptions.

Parameter Parameter Description

N Population size
µ− Negative general exposure rate
µ+ Positive general exposure rate
ω− Negative social rate
ω+ Positive social rate
ϕ− Negative exposure counter
ϕ+ Positive exposure counter
θ Opinion formation threshold
T Target set size
tr Update time interval for the dynamic control
τ Opinion diffusion time steps (stopping criterion)
ζ Target number of anti-vaccine neighbours
Z Target number of neutral neighbours
β Disease infection rate
γ Disease recovery rate
I0 Initial number of infected individuals
Sr Epidemic size

230
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Campaign strategies 231

In this study, we define a positive campaign as a strategic allocation of the strength of 232

positive external vaccine information, denoted as µ+
i , to the agents i = 1, ..., N , with 233

1/N
∑N

i µ+
i = µ+. We compare the effectiveness of various types of such positive 234

campaigns against a random negative campaign that spreads negative vaccine 235

information, assuming that each agent can be negatively influenced with an influence 236

strength µ−
i = µ− at each time step. This section outlines the proposed selection 237

strategies for the target set for the positive campaign. Table 2 below provides an 238

overview of the proposed strategies. 239

Table 2. Campaign strategies and descriptions.

Campaign
type

Campaign
name

Acronym Description

Baseline Random StatRandAll All agents can be influenced
with a uniform positive alloca-
tion µ+ at each time step.

Static
Targeted random StatRandT An unchanged random subset

of the entire population.
Centrality-based StatCentT The T most central agents in

the network.

Dynamic
Dynamic random DynRandT A random subset of the entire

population, which is replaced
with a new target set at ran-
dom every tr.

Local information
based

DynAntiT Agents who have at least one
anti-vaccine neighbor.

Advanced Locl-
Info with single-
objective

DynLocT The T agents with the lowest
score according to the number
of adjacent anti-vaccine neigh-
bors, Eq 2.

Advanced local-
info with multi-
objective

DynAdvLocT The T agents with the lowest
score according to the number
of adjacent anti-vaccine and
neutral neighbors, Eq 3.

Random campaign (StatRandAll) 240

In this scheme, we extend the work introduced by [11], in which they explored the 241

impact of only anti-vaccine opinions on the formation of anti-vaccine communities. In 242

their model, all individuals can be influenced by a general negative exposure with a 243

specific rate. In our baseline campaign, all individuals are also exposed to a positive 244

exposure, with a positive allocation µ+
i = µ+ at each time step. The campaign scheme 245

is illustrated in Fig 2(A). 246

Targeted campaigns 247

In this approach, we aim to target a certain set of agents with neutral opinions, as 248

illustrated in Fig 2(B), to efficiently mitigate the spread of anti-vaccine influence. This 249

puts a greater emphasis on specific individuals and has been demonstrated as an 250

effective method, as evidenced by empirical studies [62]. There are several ways to 251
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target them: (i) random selection as a common and intuitive approach; (ii) based on 252

their topological position on the network; (iii) based on their neighbourhood status with 253

regards to local information about vaccine opinions. Each of these will be explained in 254

detail in the subsequent sections. 255

Furthermore, this approach involves two types of campaigning: static and dynamic. 256

In the static approach, the target set is selected based on predetermined criteria prior to 257

the launch of the campaign and this set remains unchanged. In the dynamic approach, 258

the initial targets are selected at random, however, every tr opinion updates the target 259

set is updated and replaced by new targets. 260

In the targeted approach, let Ti =1 if agent i is targeted and Ti = 0 otherwise. 261

Accordingly, the positive campaign allocation µ+
i = Ti × µ+ ×N/

∑N
i Ti. This 262

campaigning scheme directs the positive influence budget toward specific individuals 263

rather than distributing it across the entire population, optimizing resource use and 264

increasing the allocation dedicated to targeted individuals. In the following, we have 265

explored and compared the following six heuristics for selecting the target set. 266

Static campaigns 267

The following strategies outline the criteria for selecting the target set in the static 268

campaign approach. 269

1. Targeted random strategy (StatRandT): a random subset of the entire 270

population is selected as the campaign’s targets. 271

2. Targeted centrality-based strategy (StatCentT): this is a topology-based 272

campaign in which targets are selected based on betweenness centrality. The T 273

most central agents in the network are targeted. In the case of ties among agents 274

with the same score, we randomly select T agents from among the tied nodes. We 275

compute the betweenness centrality score for each agent following the algorithm 276

proposed by [63]. Betweenness centrality measures the extent to which a node lies 277

on the shortest paths between other nodes in the network [64]. Nodes with high 278

betweenness centrality are considered to be mediators [65] and are often located 279

on important bridges in the network, making them key players for information 280

flow and communication. Targeting these nodes can potentially have a greater 281

impact on the overall network dynamics, creating barriers for anti-vaccine 282

communities and preventing them from merging together. We explored additional 283

centrality measures but found very limited differences (see Fig 1 in S1 Appendix 284

for a comparison). For this reason, in the remainder of the paper we will only 285

consider betweenness centrality. 286

Dynamic campaigns 287

Dynamic campaign strategies rely on the local information about individuals’ opinions 288

regarding vaccines. Targeting based on neighborhood information has previously been 289

utilized in other fields, including cooperation in multi-agent systems [66] and 290

minimizing negative diffusion (e.g., [52]). The following strategies outline the criteria for 291

selecting the target set based on this information. 292

1. Dynamic random strategy (DynRandT): at each time interval tr, the target 293

set is replaced with a new target set by selecting from the remaining population of 294

agents with neutral opinions at random. We consider this campaigning strategy as 295

a reference to evaluate the effectiveness of other dynamic selection criteria. 296

2. Dynamic local information based strategies: in this approach, our objective 297

is to focus on agents with neutral opinions who are susceptible to negative 298
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influence from their social connections, i.e., agents with neutral opinion who have 299

at least one anti-vaccine neighbour. This is a neighborhood-based scheme with 300

two primary considerations: first, placing seeds to effectively inhibit the growth of 301

the negative cluster, which requires them to have a certain number of negative 302

neighbors; second, situating positive seeds in a way that maximizes the potential 303

for positive clusters to grow (and eventually block negative clusters), which means 304

targeting neutral agents with the greatest number of neutral neighbors. We expect 305

a trade-off here. If agents have too many negative neighbors, they may become 306

overwhelmed quickly, and thus positive influence might be wasted. Contrariwise, 307

targeting agents with too many neutral neighbors might place them too far from 308

negative clusters, thus becoming inefficient at blocking negative clusters from 309

growing. We formalise this trade-off as follows: 310

(a) Local information based (DynAntiT): at each time interval tr, the 311

target set is updated and replaced with a new target set by selecting at 312

random from the remaining population of agents with neutral opinions who 313

have at least one anti-vaccine neighbor. 314

(b) Advanced Locl-Info with single-objective (DynLocT): Here, we aim 315

to target neutral agents who are in neighbourhoods that meet a trade-off 316

between blocking negative influence and allowing positive influence to spread. 317

The first is related to the number of adjacent negative agents and the second 318

relates to the number of adjacent neutral agents. Let ζ be the target number 319

of anti-vaccine neighbours, here, we seek to target neutral agents who have as 320

close as possible to ζ. In more detail, we do this by scoring agents according 321

to the difference in their number of anti-vaccine neighbours from ζ as follows: 322

gi(ζ) = |n−
i − ζ|, (2)

where n−
i denotes the actual count of anti-vaccine neighbours for an agent i. 323

Then, we select the T agents with the lowest score (and selecting at random 324

in case of ties). If the number of agents selected is less than T, the selection 325

process continues by choosing from the remaining population of agents with 326

neutral opinions at random until T agents have been selected. We will vary ζ 327

to identify the heuristic that best suppresses disease outbreaks. 328

(c) Advanced local-info with multi-objective (DynAdvLocT): This 329

heuristic builds on the previous heuristic, but we now also include the 330

potential for positive information to spread by including the number of 331

neutral neighbours in the scoring process. Again, let ζ be the target number 332

of anti-vaccine neighbours and Z be the target number of neutral neighbours 333

of an agent. Next, presuming that agent i has n−
i anti-vaccine neighbours 334

and n0
i neutral neighbours, we calculate a score according to: 335

gi(ζ, Z) = |n−
i − ζ|+ |n0

i − Z|, (3)

and select the T agents with the lowest scores. In the case of ties among 336

agents with the same score, we randomly select T agents from among the 337

tied nodes. If the number of agents selected is less than T, the selection 338

process continues by choosing from the remaining population of agents with 339

neutral opinions at random until T agents have been selected. Below we will 340

explore the dependence of the effectiveness of the heuristic on both target 341

numbers of negative neighbours ζ and neutral neighbours Z. 342
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Results 343

In this section, we present the obtained epidemic size for the proposed positive 344

campaigns. During the first stage, i.e., opinion exchanges, we consider two cases as 345

stopping criteria: one where opinions spread until all agents have adopted an opinion, 346

referred to as τ = ∞, which represents the long-run scenario and enables the evaluation 347

of the long-term behavior. The other scenario where opinions spread over a certain 348

period of time τ , represents the short-run scenario. In the short-run case, we compared 349

the obtained epidemic size with that from a scenario where only anti-vaccine opinion 350

diffusion is considered, previously investigated in [11]. While our experimental setting 351

differs from that of [11], we have applied their work within our setting for comparison 352

purposes. We conducted extensive experiments to investigate the factors that determine 353

the efficacy of each campaign in promoting vaccination. 354

Unless otherwise stated, the results show the epidemic size as a function of the social 355

contagion rate parameter ω to compare the varying strengths of social influence on 356

vaccine decision-making and their impact on the emergence of anti-vaccine communities 357

and consequently disease spread. The social rate is a crucial component because it 358

controls the growth of anti- and pro-vaccine communities. A low social rate implies that 359

individuals are barely influenced by their social contacts, resulting in a low growth of 360

anti-vaccine communities. In contrast, a high social rate indicates that individuals are 361

highly influenced by their social contacts, leading to a large growth of anti-vaccine 362

communities. To simplify the analysis, we have assumed equal social rates for pro- and 363

anti-vaccine diffusion and evaluated the impact of different rates of positive general 364

exposure µ+ on the epidemic size, while keeping the negative general exposure µ− fixed. 365

The shaded area and error bars represents the 95% confidence intervals. Due to the 366

small error values and the large y-axis scale, the shaded confidence interval area might 367

not be clearly visible in some figures. 368

In all experiments, following a configuration similar to that used in [11], we consider 369

a small-world network with size N = 5000, rewiring probability p = 0.01, average degree 370

⟨k⟩ = 10, and the social rate range ω− = [10−4, 10−2] . We use an opinion formation 371

threshold of θ = 2 as we consider complex contagion. For the SIR parameters, also 372

following [11], we set the infection rate β = 0.1, recovery rate γ = 0.1, and seed set 373

I0 = 1. For the general negative exposure rate (µ−), we consider a value of 0.001, 374

chosen to be close to the positive influence µ+. For the additional parameters 375

introduced in this study, specifically (µ+, ω+, T , tr, ζ, Z ), we have investigated the 376

sensitivity to each. Unless otherwise stated, for each scenario we generate 500 different 377

networks and for each network we run 500 SIR infection simulations. 378

Results of the random campaign (StatRandAll) 379

This section presents the epidemic size obtained by applying the random campaign to 380

disseminate positive vaccine-related information, as illustrated in Fig 3. 381

Fig 3A illustrates the long-run scenario with τ = ∞ for varying social rates. This 382

campaign seeds positive influence widely by targeting the whole population at random, 383

resulting in a large number of seeds being generated, with the same occurring for 384

negative seeds. When the social rate ω is low (e.g., ω < 10−3 in Fig 3A), the social 385

influence of these seeds is slow, resulting in unconnected and smaller homogeneous 386

communities, namely anti-vaccine and pro-vaccine communities. In addition, the 387

existence of pro-vaccine communities prevents the merging of anti-vaccine communities. 388

This ultimately leads to a smaller epidemic size compared to a higher social rate. 389

In contrast, when the social rate is high (e.g., ω = 10−2 in Fig 3A), the social 390

influence of these seeds spreads rapidly, leading to fast expansion of the communities 391

and allowing merging of communities. In this scenario, due to the rapid diffusion of 392
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Fig 3. Average epidemic size for the random campaign (StatRandAll) as a
function of the social rate ω = ω+ = ω−. (A) τ = ∞ (B) τ = 400. The figure shows
results for different positive exposure rates µ+ with fixed negative exposure rate µ− =
0.001.

opinions, the positive campaign fails to exert more influence over time, as the majority 393

of individuals have already adopted an opinion. This ultimately results in large-sized 394

communities and subsequently a higher epidemic size within anti-vaccine communities. 395

This pattern is observable when the negative and positive general exposure rates diffuse 396

at nearly equal rates, represented by red and light-blue lines in the figure. Nevertheless, 397

with a much lower positive general exposure rate µ+ ≪ µ− (dark-red line), this pattern 398

is almost nonexistent, since the positive seeding rate is low, rendering the negative 399

influence dominant regardless of the social rate. In contrast, when the positive rate is 400

much greater than the negative rate µ+ ≫ µ−, represented by blue and dark-blue lines, 401

the epidemic size dramatically decreases to less than 50 at the lowest social rate, i.e., 402

ω = 10−4. Although the social rate does not play a significant role in such scenarios, 403

higher social rates, namely ω = 10−2, lead to an increase in the epidemic size to less 404

than 500. 405

Moreover, an increase in the positive external rate µ+ results in a decrease in the 406

epidemic size. The disparity in budget allocations for negative and positive external 407

rates plays a pivotal role in shaping the prevalence of anti-vaccine opinions. A higher 408

positive external rate than negative external rate leads to a dominance of positive 409

influence, resulting in a smaller number of anti-vaccine opinions and consequently a 410

smaller epidemic size, and vice versa. 411

Fig 3B gives results for τ = 400, and allows for a comparison between scenarios with 412

and without positive campaigns. The figure distinctly illustrates that the propagation of 413

positive vaccine-related information always yields a positive effect, resulting in a 414

reduction in epidemic size compared to the scenario in which only anti-vaccine opinions 415

are being spread (green line). Furthermore, the suppression of the epidemic increases as 416

the positive general exposure rate µ+ increases. However, as the social rate increases, 417

the growth of communities also increases, leading to a higher epidemic size. 418

Results of the static campaigns 419

This section presents the epidemic size obtained by using targeted static campaigns to 420

disseminate positive vaccine-related information. This includes the targeted random and 421

targeted centrality-based campaigns. 422

Fig 4A and Fig 4C illustrate the long-run scenario with τ = ∞ for the targeted 423
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random and centrality-based campaigns, respectively. In general, the centrality-based 424

campaign performs better in reducing the epidemic size than the targeted random 425

campaign. Additionally, as the positive rate µ+ increases, the performance of the 426

campaigns improves, leading to higher epidemic suppression. However, for the 427

centrality-based campaign, this improvement is relatively small due to the fact that this 428

campaign is efficient even when positive exposure rates are low. 429

Fig 4. Average epidemic size for static campaigns as a function of the social
rate ω = ω− = ω+. (A) and (B) for the targeted random campaign (StatRandT). (C)
and (D) for the centrality-based campaign (StatCentT). (A) and (C) τ = ∞, (B) and
(D) τ = 400. The figures show different positive exposure rates µ+ with fixed negative
exposure rate µ− = 0.001. Target set size is T = 500. For each scenario we generate 300
different networks, and perform 300 SIR model runs for each network.

More importantly, there is a notable difference between the random (StatRandAll) 430

and targeted campaigns in regard to the social influence rate ω. When the social rate is 431

low, individuals tend to exchange opinions less frequently, and their vaccination behavior 432

is largely influenced by the external campaigns. This is shown clearly in the long-run 433

setting, where all individuals adopt a vaccine opinion, as seen in Figs 3A, 4A, and 4C. 434

Under these circumstances, the random campaign, see Fig 3A, tends to yield a smaller 435

epidemic size compared to static campaigns, see Figs 4A, 4C. This is due to the fact 436

that the random campaign generates a larger number of positive seeds over time than 437

the targeted campaigns, which are restricted to a fixed set of agents. With lower levels 438

of social interaction, the growth of homogeneous communities is slower, resulting in the 439

formation of a large number of small, unconnected communities. More importantly, the 440

scattered spread of positive seeds prevents mergers between the anti-vaccine 441

communities. As a consequence, these smaller communities yield a smaller epidemic size. 442

In contrast, targeted campaigns generate limited seeds as they work with a specific 443

and static target set and not the entire population, so their impact is restricted to the 444

positions of these seeds. In the centrality-based campaign, these positions are the most 445

central nodes in the network, and as a result, they behave better in reducing the 446

epidemic as they efficiently mitigate the connectivity between anti-vaccine communities 447
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compared to the targeted random campaign, where the target set is chosen at random. 448

On the other hand, when the social rate is high, targeted campaigns work better in 449

containing the disease dynamics, resulting in smaller epidemic size as the strategically 450

positioned targets reduce the connectivity between the anti-vaccine communities. 451

To further explain, consider the scenario where µ− = µ+, represented by light-blue 452

curves. In the random campaign shown in Fig 3A, the epidemic size increases as the 453

social rate ω increases. However, the targeted random (StatRandT) and targeted 454

central campaigns (StatCentT) shown in Fig 4A and Fig 4C, respectively, exhibit an 455

inverse behavior, with the epidemic size decreasing as the social rate increases. The 456

reason for this is that with broad seeding and less social interaction, the seeds act as 457

obstacles distributed across the network, efficiently mitigating the merging between 458

anti-vaccine communities. However, with a limited number of targets in the targeted 459

campaign and a low rate of social interaction, these campaigns fail to mitigate the 460

propagation of anti-vaccine influence, which is reinforced by broad and continuous 461

exposures, as their effect only associates with their positions. On the other hand, with 462

higher social rates, opinions are diffused faster, making it challenging to exert more 463

influence over time. Thus, the random campaign becomes less efficient compared to the 464

targeted campaign, where the fixed positions of the targets successfully impede the 465

connectivity of the anti-vaccine communities. The same behavior is observed regardless 466

of the size of the positive campaign budget µ+. 467

Furthermore, Fig 4B and Fig 4D display the system at time τ = 400, allowing for a 468

comparison between the campaign and the anti-vaccine opinion only scenario for the 469

targeted random and centrality-based campaigns, respectively. The figure distinctly 470

illustrates that the propagation of positive vaccine-related information results in a 471

positive effect. As demonstrated in the figures, this approach reduces the epidemic size 472

when compared to the scenario where only anti-vaccine opinions exist. Furthermore, the 473

suppression of the epidemic increases as the positive general exposure rate increases. 474

However, as the social rate increases, the growth of communities also increases, leading 475

to a higher epidemic size. 476

A noteworthy observation is that the centrality-based campaign (StatCentT) is more 477

effective in reducing the epidemic size than random campaigns compared to the scenario 478

where only anti-vaccine opinions are spread. Additionally, the targeted random 479

campaign (StatRandT) is more effective than the random campaign (StatRandAll). For 480

instance, consider the scenario where µ+ = µ−, as shown by the light-blue lines in Fig 481

3B, Fig 4B, and Fig 4D. At the highest social rate, i.e., ω = 10−2, the epidemic size for 482

the random (StatRandAll), targeted random (StatRandT), and centrality-based 483

campaigns (StatCentT) is 1615 ± 27, 302 ± 13, and 161 ± 5, respectively, compared to 484

4174 ± 15 for the scenario where only anti-vaccine opinions are being spread. 485

Results for the dynamic campaigns 486

This section presents the epidemic size obtained by applying targeted dynamic 487

campaigns to disseminate positive vaccine-related information. This includes the 488

dynamic random (DynRandT) and dynamic local information-based (DynAntiT) 489

campaigns. 490

Fig 5 displays the results obtained by these campaigns. We evaluate the campaigns 491

for different update times and results are presented as a function of the target set 492

update time interval tr. Here if the target set is changed very often, since multiple 493

exposures are required for adopting opinions, the likelihood of each individual agent 494

being influenced is very low. Correspondingly, fairly small amounts of influence are 495

spread over a large set of agents that are targeted at different times. In contrast, when 496

leaving the target set unchanged for longer, agents in the target set can accumulate 497

multiple exposures which might lead to opinion adoption. However, this also implies 498
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that influence is not spread very widely and occasionally agents who already hold an 499

opinion might be targeted. From these considerations it becomes clear that there must 500

be an optimal switching time which maximizes the effect of the positive campaign. 501

Fig 5A and Fig 5C illustrate the long-run scenario with τ = ∞ for varying update 502

time intervals for the dynamic random DynRandT and DynAntiT campaigns, 503

respectively. The results demonstrate that an optimal update time interval exists at 504

around tr = 20. This is particularly obvious when the general positive exposure rate µ+
505

is lower than the negative one µ+ ≪ µ−. This optimal time results from the trade-off 506

explained above. Therefore, with a lower general positive exposure rate, the campaign 507

performs better with relatively slow updates. 508

Fig 5. Dependence of the average epidemic size on the campaign updating
interval using dynamic campaigns.(A) and (B) represent the dynamic random
campaign DynRandT, and (C) and (D) represent the DynAntiT campaign. (A) and (C)
τ = ∞, (B) and (D) τ = 400. The targets set T = 50, social rate is ω+ = ω− = 0.006.
The figures show different positive exposure rates µ+ with fixed negative exposure rate
µ− = 0.001.

On the other hand, as the general positive exposure rate increases, indicating a 509

stronger positive influence, the pronounced effect—i.e., an optimal time at 510

tr = 20—diminishes. This effect becomes almost negligible when µ+ > µ− in the 511

DynRandT campaign, and when µ+ ≥ µ− in the DynAntiT campaign. In such cases, 512

the fastest update strategy tr = 1 becomes an effective option. This phenomenon occurs 513

because a higher general positive exposure rate increases the probability of positive 514

influence, and when combined with quick updates, it allows us to attain widespread 515

coverage by targeting susceptible agents before they are negatively influenced. 516

Moreover, after a time interval of tr = 10, the epidemic size continues to increase as the 517

interval tr increases until reaching a stationary state, where there are no further changes 518

in the epidemic size. As we increase the update intervals, we reduce the scope of our 519

targeting coverage, resulting in a corresponding decrease of the positive effects we 520

initially achieved in mitigating the negative influence. 521

Furthermore, comparing the DynRandT and DynAntiT campaigns, Fig 5A and Fig 522
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5C demonstrate varying performance in reducing the spread of an epidemic. For the 523

smallest positive general exposure rates displayed in the figure, e.g., dark-red lines and 524

µ+ = 0.0006, which is much smaller than the negative general exposure rate µ− = 0.001, 525

the dynamic random strategy outperforms the DynAntiT strategy at the optimal time 526

tr = 20, resulting in a smaller epidemic size. At time tr = 20, the epidemic size is 1276 527

± 29 and 688 ± 19 with µ+ = 0.0006, and 375 ± 13 and 288 ± 8 with µ+ = 0.0008 for 528

DynAntiT and dynamic random DynRandT, respectively. However, as the general 529

positive exposure rate increases, the DynAntiT strategy is more effective at mitigating 530

the negative influence. This is also noticeable when both positive and negative rates 531

spread at the same rate, i.e., µ+ = 0.001, where epidemic size at time interval tr = 1, is 532

139 ± 8 and 972 ± 23 for DynAntiT and dynamic random, respectively. Furthermore, 533

the epidemic size reduced even further when the positive general exposure rate was much 534

greater than the negative rate with µ+ = 0.002 and µ− = 0.001 and reached 3 ± 0.08 535

and 70 ± 2 for the DynAntiT and dynamic random campaigns respectively, at tr = 1. 536

Fig 5B and Fig 5D display the system at time τ = 400 for the dynamic random and 537

DynAntiT campaigns, respectively, allowing for a comparison between the campaigns 538

and the only anti-vaccine opinion scenario. Once again, the dissemination of positive 539

vaccine-related information yields a positive impact in mitigating the diffusion of 540

anti-vaccine sentiments compared to the scenario where only anti-vaccine opinions are 541

disseminated. Furthermore, the suppression of the epidemic increases as the positive 542

general exposure rate increases. 543

Results for the advanced local-info campaigns 544

This section presents the epidemic size obtained when applying the advanced targeted 545

dynamic campaigns to disseminate positive vaccine-related information. This includes 546

the targeted advanced local-info (DynLocT) and multi-objective advanced Locl-Info 547

(DynAdvLocT) campaigns. For the DynLocT campaign, the results are presented as a 548

function of the target number of anti-vaccine neighbors ζ to assess the impact of this 549

parameter on mitigating the growth of anti-vaccine communities and, consequently, 550

reducing the size of the epidemic. For the DynAdvLocT campaign, the results are 551

presented as a function of both ζ and Z, with different values of µ+ to explore the 552

trade-off between maximizing the growth of pro-vaccine communities and minimizing 553

the growth of anti-vaccine communities. The results are shown in Fig 6 and Fig 7 for 554

DynLocT and DynAdvLocT campaigns, respectively. 555

For DynLocT campaign, considering the long-run behavior with τ = ∞, see Fig 6A, 556

we found that optimal performance is obtained for ζ ≤ 1, which is particularly obvious 557

when the positive rates µ+ are significantly lower than the negative rates µ−, as 558

indicated by the dark-red line in the graph. We also observed the same behavior found 559

in the dynamic campaigns, where fast updates with weak influence rates are not 560

effective in convincing the target set before they are updated since agents require 561

multiple exposures to adopt a particular opinion. The challenge becomes greater when 562

selecting neutral agents who are surrounded by many anti-vaccine adopters, as they are 563

more likely to be negatively influenced by their social contacts. However, this behavior 564

diminishes as the positive influence rate increases and leads to a significant reduction in 565

the epidemic size, particularly when µ+ ≫ µ−, regardless of the ζ value. For example, 566

the epidemic size remains the same at ζ = 1 and ζ = 8, taking a value of 3 ± 0.1, see 567

Fig 6A at µ+ = 0.002. 568

In the case of the DynAdvLocT campaign, similar to DynLocT, we have observed 569

that an optimal reduction in the epidemic size is obtained for ζ ≤ 1, particularly when 570

the positive rates µ+ are considerably lower than the negative rates µ−, as depicted in 571

Fig 7A. Moreover, this reduction increases as Z increases, indicating a focus on 572

targeting individuals with a larger number of neutral neighbors. However, there is a 573
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Fig 6. Dependence of the average epidemic size on the target number of
anti-vaccine neighbors ζ using the DynLocT campaign. The updating time is
tr = 1, the social rate is ω = 0.006 for both negative and positive ω+ = ω−, and the size
of the target set is T = 50. The figures show different positive exposure rates µ+ with
fixed negative exposure rate µ+ = 0.001.

Fig 7. Average epidemic size using the DynAdvLocT dynamic campaign in
the long-run setting of τ = ∞. The figure shows the performance of the dynamic
campaigns with T = 50 targets. The epidemic size is shown as a function of the target
number of anti-vaccine neighbors ζ and the target number of neutral neighbors Z a
neutral has at time t. The updating time is tr =1, and the social rate is ω = 0.006 for
both negative and positive ω+ = ω−. The general exposure influence rate for negative is
µ− = 0.001 and the positive rate is shown in the figures captions.

remarkable observation that when Z ≥ 10, the epidemic size is significantly diminished 574

irrespective of the ζ value, which is equivalent to the average degree of the network 575

⟨k⟩ = 10. Furthermore, when Z > 10, the epidemic size remains relatively constant. 576

Furthermore, in the case of µ+ = µ−, as shown in Fig 7B, a more significant 577

reduction in the epidemic size is observed with fewer target number of neutral 578

neighbours Z compared to the previous scenario. The figure indicates that we can 579

achieve a greater reduction when Z > 7. As an example, this campaign efficiently 580

reduced the epidemic size to 12 ± 0.5 when ζ = Z = 10. Furthermore, beyond this 581
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point, this reduction remains relatively constant, and increasing the Z value does not 582

yield any additional effect. In this scenario, the number of anti-vaccine neighbors, does 583

not have a major effect. 584

To elucidate the targeting strategy of this campaign, we illustrate in Fig 8 the 585

neighborhood structure for the targeted agents of this campaign in conjunction with the 586

evolution of opinion diffusion for both anti- and pro-vaccine adopters. In this campaign, 587

by choosing a higher target number of neutral neighbors Z than the target number of 588

anti-vaccine neighbors ζ, we prioritize the number of neutral neighbors over the number 589

of anti-vaccine neighbors and vice versa. In the former scenario, this strategic shift 590

directs positive allocation to agents more likely to propagate positive influence to a 591

greater extent, as they have a larger number of neutral neighbors than anti-vaccine 592

neighbors. This potentially will maximize the growth of pro-vaccine communities while 593

restricting the growth of the anti-vaccine communities by being in proximity to them. 594

In Fig 8A, an illustrative example of such a scenario is presented, with Z = 8 and ζ = 1. 595

As observed in the figure, this scenario focuses on targeting agents with the highest 596

number of neutral neighbors and the smallest number of anti-vaccine neighbors. The 597

corresponding evolution of opinions, depicted in Fig 8D and E, demonstrates that this 598

targeting scheme maximizes the number of pro-vaccine adopters while simultaneously 599

minimizing the number of anti-vaccine adopters, as indicated by the green lines. 600

Consequently, it leads to a greater reduction in the epidemic size, as depicted in Fig 8F 601

with the green bar. 602

Fig 8. Targeting scheme for DynAdvLocT campaign. The top panels illustrate
the neighborhood structure of the target set at a single time step t=350 during the
opinion diffusion stage, specifically showing the number of anti-vaccine neighbors and
pro-vaccine neighbors. These panels represent the average number of agents with x
anti-vaccine neighbors and y neutral neighbors for various settings: (A) ζ = 1, Z = 8,
(B) ζ = 8, Z = 1, (C) ζ = 6, Z = 6. (D) and (E) illustrate the evolution of anti-
vaccine opinion adopters and pro-vaccine opinion adopters, respectively, while panel (F)
represents the corresponding epidemic size. ‘x’ indicates that no agent exists for that
neighborhood pattern. The targeting analysis is an average of 15 simulations.
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Conversely, when the target number Z is smaller than ζ, we prioritize agents with a 603

higher number of anti-vaccine neighbors than neutral neighbors. In this instance, we 604

shift the targeting to focus on agents with a higher number of anti-vaccine neighbors 605

and a relatively smaller number of neutral neighbors, see Fig 8B for an example with 606

Z = 1 and ζ = 8. Although emphasizing agents with more anti-vaccine neighbors can 607

protect them from the anti-vaccine influence, it is less efficient in mitigating the overall 608

propagation of this influence in the network. As depicted in Fig 8D and E, this 609

targeting scheme results in a higher number of anti-vaccine adopters and a lower 610

number of pro-vaccine adopters compared to the first scenario (i.e., Z = 1 and ζ = 8), 611

as seen in the green and red lines. Correspondingly, it leads to a higher epidemic size, 612

even though we are protecting the most vulnerable agents. 613

Moreover, in Fig 8C, we depict a scenario that assigns high priority to both Z and ζ, 614

where Z = ζ = 6. In this scenario, as observed, we target agents with a relatively high 615

number of neutral neighbors and a high number of anti-vaccine neighbors, avoiding the 616

smaller numbers of neutral neighbors targeted by the scenario Z = 1, ζ = 8. 617

Consequently, this approach proves more efficient than the scenario depicted in Fig 8B, 618

resulting in lower numbers of anti-vaccine adopters, as depicted in the black line in Fig 619

8D, and accordingly, a smaller epidemic size in Fig 8F with the black bar. Despite this 620

improvement over the previous scenario, the first scenario prioritizing neutral neighbors 621

(Fig 8A) yields the best mitigation of negative influence and reduction in epidemic size. 622

We further compare all three scenarios to random and dynamic random campaigns, 623

depicted by the blue and orange colors, respectively, in opinion evolution and the 624

corresponding epidemic size. As demonstrated in the figure, the DynAdvLocT scenario 625

outperforms the benchmark cases in all scenarios. 626

The impact of the target set size 627

The size of the target set is a crucial factor in determining the effectiveness of the 628

targeted campaigns. Fig 9 demonstrates the correlation between the size of the target 629

set and the extent of the epidemic in targeted campaigns. In the case of static 630

campaigns, see Fig 9A and Fig 9B, a larger target set results in better mitigation of 631

anti-vaccine diffusion than a small target set. This is due to the positive allocation 632

sticking around only these agents, and a relatively larger set ensuring a fair coverage in 633

the network. However, we observed that a very large target set might act as noise and 634

impede the focus of the campaign. For example, in the centrality-based campaign, after 635

a certain point, i.e., T=500 which represents 10% of the population, the curve starts to 636

increase again due to the inclusion of numerous low centrality agents in the target set, 637

which hampers the centrality effects and introduces more randomness in the selection 638

process. 639

In dynamic campaigns, on the other hand, the results have shown that smaller target 640

group sizes, particularly in DynAntiT, DynLocT, and DynAdvLocT, yield better 641

reduction compared to larger sizes, as depicted in Fig 9(D-F). The dynamic random 642

campaign demonstrates a slight increase as the target size increases. This suggests that 643

it is more effective to direct resources to a smaller yet changeable target set. This 644

observation can be attributed to the fact that a smaller size allows for more selective 645

targeting of individuals who meet the campaign’s criteria and are more likely to be 646

influenced. On the contrary, a larger target set may include individuals who are less 647

susceptible to the negative influence, introducing more randomness in the selection 648

process and resulting in decreased effectiveness. Furthermore, the positive strength 649

allocated to a campaign is typically distributed evenly across the target group. As a 650

result, a change in the target size can lead to a change in the strength allocated per 651

individual. 652
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Fig 9. Epidemic size obtained with varying target sizes for targeted
campaigns in the long-run setting where τ = ∞. The figure illustrates the
epidemic size obtained for all campaigns with general exposure rates µ− = µ+ = 0.001.
The social rate is ω+ = ω+ = 0.006 for all scenarios. For dynamic campaigns, the
updating time interval is tr =1, for DynLocT ζ = 1, and DynAdvLocT campaigns the
target numbers of negative and neutral neighbours are ζ = 10, Z = 10. For each scenario
we generate 500 different networks, and perform 500 SIR model runs for each network.

Cross-campaign comparison 653

In this section, we present a comparison of the proposed campaigns to evaluate their 654

performance in reducing the epidemic size. Further performance evaluation of the 655

campaigns’ impact on disease dynamics during the course of the epidemic can be seen in 656

Fig 2 in S1 Appendix. As we see in Fig 2 in the S1 Appendix, our campaign achieves a 657

reduction in peak numbers of infections proportionate to the sizes of the outbreaks. In 658

Fig 10, we compare the best scenarios for each campaign, depicting three distinct states 659

of strength allocation in the general exposure for negative and positive campaigns, 660

considering a high social rate—a crucial scenario in which anti-vaccine communities can 661

expand significantly. The aim is to investigate which campaign can mitigate this 662

expansion most effectively. The figure also demonstrates the long-run behavior of the 663

system. Across all scenarios, advanced local information campaigns, particularly 664

DynAdvLocT , achieve the best performance in reducing the epidemic size. 665

In situations where the positive general exposure rate is much smaller than the 666

negative general exposure rate (i.e., µ+ ≪ µ−), the best practice is to use DynAdvLocT 667

with slower updates (i.e., tr = 20) if we assume complete knowledge of the population’s 668

vaccine-related attitudes. The next best option is the centrality-based campaign when 669

we have incomplete knowledge about vaccine attitudes. The former results in an 670

epidemic size of 345 ± 13, while the latter results in 493 ± 15. 671

When both negative and positive general exposures exert the same rate of influence 672

(i.e., µ+ = µ−), DynAdvLocT with fast updates (i.e., tr = 1) is the most effective, while 673

centrality-based and other dynamic campaigns produce relatively similar performance. 674

Finally, when the positive general exposure rate is higher than the negative one (i.e., 675

µ+ > µ−), the best practice is to use either DynLocT or DynAdvLocT with fast 676

updates (i.e., tr = 1). 677
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Fig 10. Cross-campaign epidemic size comparison with τ = ∞. The figure
illustrates the epidemic size obtained for all campaigns with different positive rates µ+

compared to negative rate µ−. For all campaigns, µ− = 0.001. First group: µ+ = 0.0006,
second group: µ+ = 0.001, and third group: µ+ = 0.002. Social rate is ω = 0.006 for all
scenarios. Target set size T = 500 for static campaigns, i.e., StatRandT, and StatCentT,
and T = 50 for the other dynamic campaigns. For dynamic campaigns, the updating
time is tr = 20, in addition we include tr = 1 for DynLocT and DynAdvLocT campaigns.
In addition, for DynLocT ζ =1, for DynAdvLocT ζ = Z =10.

From Fig 10, it is observed that although the random strategy StatRandAll shown 678

by green bars reduced the epidemic size, it is not the most efficient strategy compared 679

to other campaigns, as the resulting epidemic size is higher than that of the others. The 680

static random campaign StatRandT shown by blue bars follows a similar pattern but 681

performs better than the random campaign. This observation, as investigated earlier, is 682

due to the fact that the random campaign StatRandAll fails to exert more influence 683

over time, and opinions become socially-driven. In contrast, the targeted random 684

campaign StatRandT targets fixed positions in the network, creating barriers that 685

prevent the clustering of anti-vaccine communities, making it slightly more effective 686

than the random campaign StatRandAll. This observation is consistent with the study 687

conducted by [42], where the authors demonstrated that a random selection of the seed 688

set resulted in poor mitigation of misinformation propagation. 689

In Figure 11, we consider a scenario where negative information spreads faster than 690

positive information, i.e., ω− > ω+. This is motivated by existing literature, which 691

highlights distinct diffusion dynamics between positive and negative information, with 692

negative information spreading more rapidly and extensively than positive 693

information [67]. This raises critical questions: Can the diffusion of negative 694

information still be effectively controlled in such a context? Moreover, how do the 695

proposed campaigns perform under these conditions? As shown in Fig 11, although the 696

performance is slightly worse compared to the scenario with faster positive spreading 697

depicted in Fig 10, it is still possible to effectively contain the diffusion and maintain a 698

low epidemic size, particularly with the use of the DynAdvLocT strategy. Furthermore, 699

we also note that the performance improves significantly as the positive budget 700

increases. 701

Discussion 702

In this paper, we have investigated the impact of different strategic positive campaigns 703

for spreading positive vaccine-related information to combat the spread of negative 704

vaccine-related information. We also examined how these campaigns affect the diffusion 705
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Fig 11. Cross-campaign epidemic size comparison with τ = ∞. The figure
illustrates the epidemic size obtained for the best campaigns with different positive
rates µ+ compared to negative rate µ− and for lower positive social rate. For all
campaigns, µ− = 0.001. First group: µ+ = 0.001 and second group: µ+ = 0.002.
Social rate is ω− = 0.006, ω+ = 0.003 for all scenarios. Target set size T = 500 for
static campaigns, i.e., StatRandT, and StatCentT, and T = 50 for the other dynamic
campaigns. For dynamic campaigns, the updating time is tr = 20 for DynRandT and
tr = 1 for DynAdvLocT. For DynAdvLocT ζ = Z =10. The results are the average of
50 simulations.

of anti-vaccine opinions and the connectivity between emerging anti-vaccine 706

communities, thereby leading to a reduction in the epidemic size. We demonstrated that 707

the existence of positive influence propagation has a positive impact on mitigating the 708

flow of negative influence, leading to improved vaccination coverage and, as a result, 709

reduces the epidemic size. However, this impact varies across different campaigning 710

approaches. 711

One crucial factor in the diffusion of anti-vaccine sentiments within a social network 712

is the level of social influence between individuals; as the social contagion rate increases, 713

the size of the anti-vaccine communities grows, consequently increasing the epidemic 714

size. This phenomenon can be observed in Figure 3, specifically within the benchmark 715

case where the scenario involves only anti-vaccine diffusion (depicted by the green line), 716

and it persists despite the concurrent presence of pro-vaccine propagation through a 717

random campaign. These results are consistent with previous studies that investigated a 718

similar problem and demonstrated the role of social interactions in promoting the 719

growth of anti-vaccine communities, thus increasing the epidemic size [11,22]. We then 720

demonstrated that targeted campaigns can effectively contain the spread of anti-vaccine 721

diffusion in such a scenario (see Fig 4). 722

In this study, we demonstrated that a targeted campaign based on the network 723

structure, specifically aimed at individuals with high centrality, proves effective in 724

reducing the spread of negative opinions and mitigating social contagion. This approach 725

places positive seeds strategically on the most central bridges within the network, thus 726

preventing the merging of anti-vaccine communities more efficiently. However, this 727

method requires a large number of targets to be efficient, making it impractical in 728

limited-resource settings, see Fig 9B. 729

As demonstrated above selecting targets based on local negative information proves 730

to be the most effective strategy. By focusing on individuals who are more vulnerable to 731

negative influences, this technique outperforms random selection and even outperforms 732

the centralized approach. It also demonstrates efficacy even with a small target set. 733
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Quantifying the amount of negative influence on neutral social contacts yields further 734

reductions in the size of the epidemic. Moreover, incorporating the potential for 735

maximizing positive influence, by considering the number of neutrals for each candidate, 736

leads to higher effectiveness, as seen in DynAdvLocT strategy. However, it is important 737

to note that these local information-based campaigns assume complete knowledge of the 738

vaccine-related attitudes within the population. 739

Moving beyond the exploration of effective targeting strategies, several historical 740

instances exemplify the detrimental effects of vaccine misinformation, where negative 741

beliefs have profoundly impeded public health efforts. The spread of misinformation 742

during the COVID-19 pandemic resulted in increased vaccine hesitancy and low 743

vaccination rate [68]. Similarly, during the Ebola outbreak in North Kivu, a notable 744

association was observed between the mistrust in health systems and the belief in 745

misinformation, which led to reduced inclination in adopting preventive behaviors, 746

including acceptance of Ebola vaccines [69]. Additionally, the year 2019, witnessed a 747

resurgence of measles due to a significant decline in vaccine coverage, resulting from the 748

spread of anti-vaccine attitudes as a significant cause [53]. Such cases exemplify the 749

pivotal role of accurate information in managing and mitigating the effects of 750

misinformation associated with various infectious diseases. 751

Locally tailored approaches to improving health promotion are vital. Our 752

approaches here need further development, but the modelling is designed to be flexible 753

to support local needs and thus can incorporate localised scenarios with regard to the 754

rate of dissemination of good and bad public health information, and the number of 755

positive, neutral and negative nodes. It can also be adapted to mimic online or offline 756

dissemination. In addition, the current model operates on the assumption of 757

comprehensive knowledge regarding vaccine-related attitudes within the social network. 758

Full knowledge of the attitude of every individual is not realistic in practice; however, 759

obtaining some information is feasible from processes such as social network analysis of 760

data from social media platforms. For instance, empirical studies leveraging data from 761

online social networks have applied sentiment analysis and machine learning algorithms 762

to categorize individuals’ attitudes into distinct states such as pro-vaccine, anti-vaccine, 763

and neutral towards vaccination [28,70–72]. Additionally, public attitudes toward 764

vaccines have been explored through the analysis of real-time, spatial-temporal, and 765

socio-demographic data from social media, unveiling the spatial distribution of these 766

attitudes [34,73,74]. Such platforms and techniques facilitate real-time, 767

socio-geographic monitoring of public attitudes, aiding health campaigns in 768

implementing optimal interventions. 769

The effectiveness of many real-world interventions in addressing vaccine hesitancy 770

and improving vaccination uptake has been demonstrated through a variety of 771

real-world campaigns. For example, a social media campaign promoting COVID-19 772

vaccination in Nigeria showed a positive effect of the campaign in the targeted states 773

compared to other states, with higher pro-vaccination norms strongly associated with 774

increased vaccination rates [75]. Similarly, a recent study [76] examines the effectiveness 775

of a culturally tailored outreach campaign aimed at improving COVID-19 vaccine 776

uptake among African immigrants in Philadelphia. The study found that 777

community-based programs effectively addressed barriers such as mistrust and 778

misinformation, leading to increased vaccine uptake and reduced hesitancy. Moreover, a 779

systematic review of various parental intervention campaigns aimed at childhood 780

immunization, presented in [77], found that reminder-based and education-based 781

interventions significantly enhance children’s vaccination uptake. Another study 782

investigates the ’PromoVac’ strategy which uses motivational interviews method [78], 783

conducted during postpartum hospitalization to target mothers and encourage infant 784

immunization. The findings revealed that this intervention significantly improved 785
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vaccination rates at key milestones (3, 5, 7, 13, 19, and 24 months) and increased the 786

likelihood of complete vaccination coverage throughout infancy. 787

Although the model provides valuable insights, several inherent limitations should be 788

acknowledged to fully understand its scope and applicability. First, the presented 789

results are limited to the assumption of committed agents who do not change their 790

opinions. However, the proposed heuristics could be extended to a broader range of 791

opinion diffusion models and integrated into models that allow opinions to switch back 792

and forth, such as the voter model and epidemic models like the SIS model. 793

Additionally, opinions in our model are not influenced by disease spread, as we address 794

the diffusion processes of information and disease separately (in line with similar 795

studies, e.g., [8]). Information spread is assumed to occur before the onset of disease, 796

aligning with patterns typically observed in vaccine-preventable childhood diseases. An 797

additional limitation of this study is the use of a single network to represent both 798

information and disease diffusion, modeled as a physical or face-to-face network 799

structure. Future research would benefit from exploring the implications of employing 800

distinct network structures tailored to each diffusion process in a multi-layer settings 801

(e.g., [18, 46]). Another limitation of the model is the resolution of the available local 802

information on individuals’ vaccine attitudes, as assessing these attitudes with complete 803

accuracy can be challenging. Consequently, further investigation is required to improve 804

our understanding of campaign resilience to gaps in knowledge. Similarly, the proposed 805

heuristics, particularly those based on information, though efficient, are relatively 806

simple and can potentially be further improved. 807

Conclusion 808

The purpose of this study is to investigate effective mechanisms to mitigate the spread 809

of anti-vaccine attitudes and reduce the size of epidemics by applying positive 810

counter-campaigns that spread positive vaccine-related sentiments. We proposed 811

efficient heuristics to combat negative influence propagation. We have demonstrated 812

that these campaigns can impede the flow of anti-vaccine attitudes and changed the 813

distribution of unvaccinated individuals within the population, which in turn changed 814

the structures of anti-vaccine communities and suppressed the spread of epidemics. Our 815

study has proposed strategies based on two main paradigms: social network structure 816

and negative local information, in addition to two control schemes static and dynamic. 817

Through extensive experiments, we systematically studied and analyzed the 818

performance of the proposed strategies in reducing the size of epidemic, identifying their 819

strengths and limitations. 820

We have demonstrated that targeted campaigns that select a subset of the 821

population based on certain criteria have been found to be more effective in suppressing 822

the epidemic compared to random campaign, particularly in scenarios with high levels 823

of social interactions. The latter approach results in poor mitigation compared to other 824

methods. In contrast, centrality-based and local information-based strategies have 825

shown superior performance. The centrality-based campaign targets central nodes 826

which effectively hinder the merging of emerging communities, while the local 827

information-based methods prevent the most vulnerable agents from being negatively 828

influenced. Moreover, the dynamic control approach, which involves continuous 829

updating of the target set, has been found to be more effective in suppressing the 830

epidemic compared to a static control approach. This approach provides continuous and 831

iterative exposure to positive messaging while keeping the campaign involved with the 832

evolution of anti-vaccine attitudes. Furthermore, prioritizing those susceptible based on 833

their neighborhood state performs even better in mitigating negative influence 834

propagation. 835
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