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Abstract 

Common daily tasks require us to estimate surface area. Yet, area judgements are substantially and 

consistently biased: For example, triangles appear larger than same-area squares and disks. Previous 

work has explored small subsets of shapes, and related biases in area perception to one or two 

geometric features, such as height or compactness. However, a broader understanding of shape-

related biases is lacking. Here we quantify biases in area perception for a wide variety of shapes and 

explain them in terms of geometric features. In four online experiments (each N = 35), typical adult 

observers made 2AFC judgements (“which stimulus has larger area?”) for pairs of stimuli of different 

shape, orientation, and / or area. We found clear shape-related biases that replicate known biases 

and extend them to novel shapes. We provide a multi-predictor model (R2 = .96) that quantitatively 

predicts biases in perceived area across 22 shape / orientation combinations.  

 

Keywords: size perception, area perception, perceptual biases 
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Public Significance Statement 

If you had to choose between two pizza slices, you may compare their surface area to decide which 

one is bigger. Surprisingly, our ability to judge area is influenced by shape: For example, triangles 

appear bigger than same-area disks and squares. Here we ask: Can we predict how big a certain 

surface will appear, given its shape? Answering this question has implications that go well beyond 

lunch choices, and can help mitigate (or exploit) the effect of these biases in a variety of contexts, 

from visual design (creating size-matched displays), to marketing (choosing a product shape), and 

surgery (judging the size of bodily structures). 
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Introduction 

Estimating surface area is integral to many daily tasks, such as choosing a pizza slice for 

lunch (Krider et al., 2001), or perhaps more critically, judging the surface area / volume of a bodily 

structure when performing surgery (Schuld et al., 2012). As in the pizza case, judging area is an 

integral step in estimating volume and inferring weight in preparation for grasping and lifting. It is 

somewhat surprising, therefore, that humans exhibit substantial and systematic biases in area 

perception. For example, triangles appear larger than same-area squares or disks (Anastasi, 1936; 

Dresslar, 1894; Fisher & Foster, 1968; Martinez & Dawson, 1973; Warren & Pinneau, 1955), and 

rectangles appear larger than same-area squares (Krider et al., 2001). However, little is known about 

shape-related biases beyond a small number of simple shapes. Moreover, there has been little effort 

to quantify biases in area perception and no models exist to generate predictions of perceived area 

for novel shapes.  

In previous studies, triangles are consistently perceived as larger than same-area disks and 

squares. This suggests that compactness (e.g., the ratio of a shape’s perimeter to its area) may be 

negatively associated with perceived area (Dresslar, 1894). Various metrics of compactness (see  

Figure 1, Supplementary Table S8) all produce the same ordering across these shapes: disks > 

squares > triangles. However, inconsistent findings muddy the waters: disks have been reported as 

perceptually smaller (Anastasi, 1936; Di Maio & Lansky, 1990) or larger (Fisher & Foster, 1968; 

Warren & Pinneau, 1955) than same-area squares. Across other sets of shapes, compactness has 

been reported to correlate either negatively (Dresslar, 1894; Owen, 1970) or positively (Foster, 

1976; Smith, 1969) with perceived area.  
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Figure 1  

Shape Metrics Featured in the Best Model  

 

 
Note. The best model is described below. See Supplementary Table S8 for the full list of predictors 
with definitions. Elongation corresponds to the aspect ratio of the ellipse circumscribing the shape; 
orientation corresponds to the angle between the x axis and the major axis of the circumscribing 
ellipse. 
 
 

In volume perception, elongation is associated with increased perceived volume: the 

"elongation bias" (Krishna, 2006a). Whether this generalises to area perception is unclear, as more 

elongated rectangles have been reported as perceptually larger than (Holmberg & Holmberg, 1969, 

as cited in Krider, Raghubir, & Krishna, 2001; Mates et al., 1992), smaller than (Martinez & Dawson, 

1973), or not different from (Holmberg & Wahlin, 1969, as cited in Krider et al., 2001) less elongated 

rectangles and squares. Orientation also plays a role in perceived area: squares appear larger when 
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they are presented in a ‘diamond’ orientation (Mach, 1897). However, the wider effects of 

orientation, and their interaction with elongation, are unclear. 

As described above, many authors have identified a single geometric feature (e.g., height, 

elongation or compactness) as the source of shape-related biases. Others have suggested that 

observers use multiple geometric features but combine these via an incorrect rule to infer area 

(Carbon, 2016; Krider et al., 2001; Yousif & Keil, 2019). For example, Krider and colleagues (2001) 

propose that observers compare shapes according to the ratio of their most and least salient 

dimensions. However, saliency is ill-defined, and the model gives no quantitative predictions. Other 

authors have suggested that observers sum stimulus height and width (“additive area”) to estimate 

area (Yousif, Aslin, & Keil, 2020; Yousif & Keil, 2019).  

In summary, our understanding of biases in area perception is limited to a small number of 

simple shapes; few studies have included polygons with more than four sides or concave polygons 

such as stars and crosses (Anastasi, 1936; Martinez & Dawson, 1973; Owen, 1970; Warren & 

Pinneau, 1955). In addition, discrepancies are hard to reconcile due to limitations such as the 

absence of formalised descriptions of geometric features (e.g. Anastasi, 1936; Martinez & Dawson, 

1973; Owen, 1970). We lack a quantitative account of area perception that characterises biases 

across a varied set of shapes and provides testable predictions for novel shapes.  

The current work seeks to address these limitations: Across four experiments we measured 

biases in area perception for a wide range of shapes / orientations. To preview the key results: 

Shape related biases are substantial; the perceptually largest shape (three-point star) was perceived 

to be around 41%, or 2 JNDs (Just Noticeable Differences) larger than the perceptually smallest 

shape (disk). We present a quantitative model that captures variations in area perception (R2 = .96), 

with a combination of shape metrics including compactness, elongation, and orientation. The model 

captures previously reported area biases (e.g., disks < squares < triangles; squares < rectangles; 

squares < ‘diamonds’) but extends to 22 different shapes/orientations. 
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General methods 

Participants 

Effect sizes for shape-related biases could only be calculated from Warren & Pinneau (1955). 

These were large (d = 5.07, 4.57, 1.06 for disks vs triangles, squares v. triangles, disks vs squares, 

respectively) suggesting 10 observers to give .8 power with alpha = .05. In order to quantify biases 

across a larger set of shapes, we chose a sample of 35. We did not address a specific participant 

population. Different sets of participants were recruited in 2020 and 2021 via Prolific 

(www.prolific.co) for each experiment. All participants were financially compensated. Mean ages 

(SD) in experiments 1–4 were 29.2 (7.5), 27.7 (7.4), 31.5 (11.6), 29.4 (9.0) years. Genders (female, 

male, non-binary) were represented as follows: 10 f, 24 m, 1 n-b; 14 f, 21 m; 17 f, 18 m; 20 f, 15 m. 

The study complies with the APA ethical standards for research with human participants and was 

approved by the University of Southampton Psychology Ethics Committee. All participants gave 

informed prior consent.  

 

Setup  

Experiments were conducted online, hosted on a JATOS (Lange et al., 2015) server at the 

University of Southampton and accessed via Prolific. The experimental software was written in 

HTML, CSS, and JavaScript using jsPsych (de Leeuw, 2015). The experiment was rendered in a fixed 

screen partition (width: 800 px) and required a physical keyboard. To control stimulus size across 

different displays, we used the jsPsych ‘resize’ plugin: participants adjusted a rectangle on the 

screen to match the size of a credit card. Participants were asked to sit at a viewing distance of 

approximately 57 cm. Some variation in viewing distance was deemed acceptable; as expected, 

shape related area biases proved to be broadly scale-invariant. We have no reason to believe that 

our results depend on other characteristics of the participants, materials, or context. 

 

http://www.prolific.co/
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Stimuli 

Each experiment employed a different subset of stimulus conditions (geometric shape-

orientation combinations) from a total of 22 (Figure 2 A). Stimuli were presented in four different 

sizes (5–10 cm2 in equal steps: 5, 6.67, 8.33, 10 cm2). All stimuli were pre-rendered in white on a 

grey background using MATLAB (The MathWorks Inc., 2020).  

Figure 2  

Stimuli and Trial Structure for All Four Experiments 

 

Note. (A) Stimuli are presented here with equal area. (B) Trial Structure not to scale. 

 

Procedure 

On each trial, participants were presented with a central fixation cross (500ms), followed by 

two stimuli, ± 5 cm from fixation (1000 ms, see Figure 2 B). Participants reported which of the two 
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stimuli appeared larger in area, via arrow keys (left vs right). An opportunity to take a break was 

given every 20 trials. The number of trials varied across experiments, see below.  

Each experiment was divided into two blocks (each included one repetition of the full trial 

set), separated by a break. Stimulus left and right positions were assigned randomly in block 1 and 

swapped in block 2. Trial order was randomised within blocks. The first experimental block was 

preceded by a variable number of practice trials (2 × number of shapes) which were identical to the 

experimental trials except that feedback was given (“Correct!” or “Wrong.”). To avoid providing 

information about shape-related biases, stimulus pairs in practice trials had very different sizes (5 

and 10 cm2). The pre-task instructions included a definition of area. Average completion times in 

minutes (SD) for experiments 1–4 were 40 (15), 56 (14), 48 (17), 49 (9). 

 

Data analysis 

We screened participants’ data for control trial errors (same stimulus, size 1 vs 4) and all 

participants exceeded threshold performance (85% correct). Control trials were excluded from 

subsequent analyses. 

Each participant’s 2AFC judgements were converted to estimates of relative perceived area 

in just noticeable differences (JNDs) using Thurstone case V scaling (Thurstone, 1927; see Adams et 

al., 2018; Perez-Ortiz & Mantiuk, 2017). Each unique stimulus (combination of shape, orientation, 

and size) is assumed to invoke perceived area with a unimodal mean (µ), perturbed by Gaussian 

noise with standard deviation σ. Figure 3 A illustrates the method: For every pair of unique stimuli 

(𝑠1, 𝑠2), the distance between the corresponding means gives the probability of perceiving 𝑠1 as 

larger than 𝑠2. In the examples given in Figure 3 A, p(𝑠̂2 >  𝑠̂1) =  0.75, p(𝑠̂3 >  𝑠̂2) =  0.83, p(𝑠̂3 >

 𝑠̂1) =  0.99. Thus, for each stimulus pair we calculate the probability of the observed responses 

(number of trials, number of 𝑠1> 𝑠2 responses), given values of µ1 and µ2. Using gradient descent 

(fminsearch, MATLAB), we find the set of µ values for all unique stimuli that maximises the 

probability of each participant’s complete dataset. 
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Figure 3  

Thurstonian Scaling and Data for Experiment 1. 

 
Note. (A) A simplified scenario with only three unique stimuli. Perceived area for each stimulus is 
represented by a Gaussian with σ = 1.05 JNDs. (B) Perceived area in JNDs for each condition as a 
function of stimulus size. (C) Data summarised by averaging across stimulus size. Error bars give 95% 
confidence intervals. 

 
The Thurstonian scaling approach allowed us to compare a larger number of shapes in each 

experiment compared to previous studies, while keeping the trial number appropriate for online 

experiments. Although the method assumes a common noise parameter for all stimuli, estimates of 

mean bias (averaged across size, as in Figure 3 C) are minimally affected even by substantial 

deviations from this assumption (see Simulations, Supplementary material).  
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We compared two nested models of perceived area. In the first, JNDs were fitted 

independently to all unique stimuli (degrees of freedom = nconditions × nsizes – 1). The second model 

assumes Weber’s law within each condition, i.e. that perceived area in JNDs increases linearly with 

log(area) (degrees of freedom = nconditions × 2 - 1); see the straight line fits in Figure 3 B. For all 

experiments, the second model was clearly preferable (likelihood-ratio tests, all p > .99).  

 

Transparency and openness 

The study was not preregistered. Determination of sample size, all experimental 

manipulations and all measures were reported; no data were excluded from the sample. Raw data 

are available at https://eprints.soton.ac.uk/482307/. All analyses were performed in MATLAB; 

versions and relevant packages are reported and referenced where appropriate.  

 

Experiment 1: Common shapes 

In Experiment 1 we quantified relative biases in perceived area for shapes commonly used in 

the literature (disk, triangle, square, 8:1 ratio rectangle). In addition, we included two concave 

shapes (i.e., at least one interior angle greater than 180°): an h-shape and an eight-pointed star. This 

set decoupled potential correlates of perceived area such as compactness, elongation, height and 

perimeter length. For example, the h-shape and square have similar height and width but different 

compactness. The star and rectangle are both low in compactness with similar height but differ in 

elongation.  

 

Trials 

Stimuli were presented in all four sizes. Experimental trials (N = 516) excluded the least 

informative stimulus pairings (same condition and size; same condition with size difference greater 

than one step; we expected the latter to be unambiguous). All other possible pairings were included, 

https://eprints.soton.ac.uk/482307/
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in two repetitions. Control trials (N = 12) were intermingled with experimental trials. Twelve practice 

trials preceded the first experimental block.  

 

Results 

Figure 3 B shows perceived area in relative JNDs as a function of true area. Our method gives 

relative, not absolute JNDs; the mean JND value (across conditions and sizes) was set to 0 for each 

participant. The fitted lines for each condition are roughly parallel, suggesting that biases in area 

perception are broadly scale-invariant; triangles were perceived as 19% larger than same-area disks, 

irrespective of absolute size. Figure 3 C summarises the same data, averaged across size. To provide 

a more intuitive representation of the area biases, we converted JNDs to perceived area in cm2 

(righthand y-axis) under the simple assumption that squares (common to all experiments) were 

perceived veridically. Selecting a different shape would simply scale the values up or down, without 

affecting the relative biases between shapes in percentage terms. 

Close inspection of Figure 3 B reveals that two shapes (rectangle, eight-point star) have 

slightly shallower slopes than the others. There are two possible explanations: First, biases may not 

be entirely scale invariant: at one viewing distance, a rectangle might appear larger than an equal 

area ‘h’, but on moving closer, this relationship is reversed. Alternatively, the rectangle and star 

might be associated with greater uncertainty than other shapes, i.e., a violation of the equal noise 

assumption of our fitting method (see Simulations, Supplementary Figure S1). The latter presents a 

more likely explanation for the observed small slope variations; note that the star and rectangle are 

also associated with the largest inter-observer variation (error bars in Figure 3 C). For this reason, we 

focus our analyses and interpretation on the mean shape-related biases (averaged across size, 

treated as scale invariant), whose estimation is negligibly affected by noise variations across stimuli. 

A regression analysis revealed that biases in perceived area were significantly modulated by 

shape (p < .001, see Supplementary material, Table S1 for the full model). Disks were perceived as 
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significantly smaller (b = -0.44, p = .03) and triangles as significantly larger (b = 0.78, p < .001) than 

squares. See Supplementary material, Figure S2 for effect sizes (Cohen’s d) for all experiments.  

 

Interim discussion 

As expected, triangles were perceived as larger than squares or disks (Anastasi, 1936; 

Dresslar, 1894; Fisher & Foster, 1968; Martinez & Dawson, 1973; Warren & Pinneau, 1955). In 

accordance with the elongation bias (Krishna, 2006), rectangles were perceptually larger than 

squares, although this did not reach significance. That triangles were perceived to be the largest 

shape suggests that height, elongation, or compactness alone cannot explain the biases. 

Surprisingly, the eight-point star – the widest, tallest and least compact shape in the set – was 

perceived as one of the smallest. This is at odds with suggestions that less compact or taller shapes 

are perceived as larger (Dresslar, 1894; Owen, 1970; Smets, 1970). One possibility is that shapes 

with a circular, or near circular, convex hull (such as the star) are underestimated, in a similar way to 

disks. However, perception of the star was more variable across observers than other shapes (see 

error bars in Figure 3 C), suggesting that observers may use different strategies to assess this shape. 

 

Experiment 2: Convex hull and compactness 

In Experiment 2 we explore how the form of a shape’s convex hull affects perceived area 

and how this interacts with compactness. The stimuli included four convex shapes (disk, equilateral 

triangle, square, octagon) plus two subsets of concave shapes whose convex hulls matched the 
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polygons (triangle, square, octagon). The two subsets had moderate (rotated ‘v-’ and ‘h-shape’, and 

‘x-shape’) and low compactness (three-, four-, eight-pointed star shapes). 

 

Trials 

Stimuli were presented in sizes 1–3 in the experimental trials. Participants completed 870 

trials (850 experimental, 20 control) in two blocks. Selection criteria for trials were identical to those 

of Experiment 1.  

 

Results 

Figure 4 shows the results of Experiment 2. We uncovered larger relative biases than in 

Experiment 1. The perceptually largest shape (three-point star) was perceived to be considerably 

larger (52%) than the perceptually smallest shape (disk). For shapes common to Experiments 1 and 2 

(disk, triangle, square, eight-point star), the biases are broadly consistent except that the eight-point 

star was perceived as smaller than the square in Experiment 1, but this was reversed in Experiment 

2. However, the star was again associated with the most variability.  
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Figure 4  

Data for Experiment 2 

Note. (A) Perceived area in JNDs for each condition as a function of stimulus size. (B) Data 
summarised by averaging across stimulus size. Error bars give 95% confidence intervals. Open 
symbols on the x axis bottom row represent the shape of the convex hull for each stimulus.  

 
We fit biases in perceived area as a function of convex hull shape (octagon, square, triangle) 

and compactness (high, moderate low) (see Supplementary material, Table S2 for the full regression 

model). Compactness was modelled quantitatively as the average compactness (area / area of 

circumdisk) within each subset. This analysis confirmed that triangular shapes were perceptually 

larger than square shapes (b = .81, p = .001). In addition, less compact shapes were perceptually 

larger than more compact shapes (b = -2.83, p = < .001), with no significant interactions between 

convex hull shape and compactness.  

 
Interim discussion 

 As for Experiment 1, simple models of area perception based on height, width or their 

combination (Krider et al., 2001; Yousif et al., 2020; Yousif & Keil, 2019) cannot explain the pattern 

of biases.  
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Within both subsets of concave stimuli, shapes with a triangular convex hull were perceived 

as larger than their square and octagonal counterparts (i.e., ‘v’ shapes larger than ‘h’ and ‘x’ shapes, 

and three-point stars larger than four- and eight-point stars). This pattern replicates the bias 

observed for convex shapes and is consistent with previous reports for star-shaped stimuli (Martinez 

& Dawson, 1973). Within each convex hull shape, perceived area increased with decreasing 

compactness (e.g. triangle < v-shape < three-point star). Thus, compactness negatively correlates 

with perceived area but is not the whole story; the three-point star is more compact, but 

perceptually larger than the eight-point star.  

 

Experiment 3: Orientation 

Experiments 1 and 2 suggest that height, width or their combination cannot fully explain 

area biases. Nonetheless, changes in orientation (with corresponding changes to height and width) 

do affect perceived area, as when rotating a square by 45° (Mach, 1897). Here we explore the 

effects of orientation by presenting stimuli in their canonical orientation or with their longest linear 

length vertical to maximise stimulus height. Stimuli included the four convex shapes from 

Experiment 2, with the three polygons presented in both orientations (Figure 2 A).  

 

Trials  

Stimuli were presented in all four sizes. Participants completed 704 trials (690 experimental, 

14 control) across two blocks. Experimental trials included all possible pairings except (i) same shape 

and orientation: only stimuli separated by one step were compared, (ii) same shape and different 
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orientation: same-size and one size step away were compared. The 14 practice trials featured stimuli 

only in their canonical orientations (sizes 1 and 4). 

 

Results  

The results of Experiment 3 are shown in Figure 5. Rotated triangles (perceptually largest) 

were perceived as 33% larger than disks (perceptually smallest). The relative biases for shapes in 

their canonical orientations are consistent with those observed in Experiments 1 and 2.  

 
Figure 5  

Data for Experiment 3  

Note. (A) Perceived area in JNDs for each condition as a function of stimulus size. Line colours 
represent stimulus shape; line types represent stimulus orientation. (B) Data summarised by 
averaging across stimulus size. Bar colours represent shape orientation. Error bars give 95% 
confidence intervals.  

 
A regression analysis of perceived area as a function of stimulus shape and orientation 

(canonical vs longest length vertical) confirmed that triangles were perceived as significantly larger 

than squares (b = 1.84, p < .001), whilst octagons and squares were perceptually similar in size (b = 

0.26, p = .11). In addition, orienting shapes with their longest length vertical increased their 

perceived area (b = 1.11, p < .001). This orientation effect was larger for squares than triangles (b = -
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.64, p = .004) or octagons (b = -.98, p < .001). (See Supplementary material, Table S3 for the full 

regression model). 

 

Interim discussion 

To summarise, all shapes were perceived as larger when presented with the longest length 

vertical. However, this orientation effect varied across shapes: a greater change in stimulus height, 

or the height of centroid, was associated with a greater change in perceived area.  

Experiment 4: Orientation and elongation 

Here we further probe the effects of orientation and determine how this interacts with 

elongation. The stimulus set (Figure 2 A) included rectangles in four aspect ratios (1:1, 2:1, 4:1, 8:1), 

presented in three orientations. These were (i) longest edge vertical, (ii) longest length vertical and 

(iii) longest edge horizontal. (Orientations (i) and (iii) are equivalent for squares).  

 

Trials 

Experimental trials employed stimulus sizes 1–3. Participants completed 800 trials (778 

experimental, 22 control) across two blocks. Comparisons of identical stimuli (same size and 

condition) were excluded. All remaining condition pairs were compared up to one size away. The 12 

practice trials employed stimuli with their ‘longest edge vertical’ orientation (sizes 1 and 4). 

 

Results 

Experiment 4 results are shown in Figure 6. Vertical 8:1 rectangles were perceived as 22% 

larger than canonical squares. A regression analysis (perceived area as a function of aspect ratio 

(four levels) and orientation (longest length vertical vs longest edge horizontal) confirmed that 

perceived area increased with elongation (b = 0.18, p < .001), in accordance with the elongation bias 

previously observed for cuboids (Krishna, 2006). Similarly to Experiment 3, orientation also affected 

perceived area: all rectangles were perceived as smaller when presented horizontally than vertically, 
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with a larger orientation effect for more elongated shapes, although these effects were not 

significant in Experiment 4 (see Supplementary material, Table S4 for the full regression model). The 

difference between the two vertical orientations (longest edge vertical versus longest length 

vertical) was small and inconsistent.  

 

Figure 6  

Data for Experiment 4  

Note. (A) Perceived area in JNDs for each condition as a function of stimulus size. Line colours 
represent stimulus shape; Line types represent stimulus orientation. (B) Data summarised by 
averaging across stimulus size. Bar colours represent shape orientation. Error bars give 95% CIs.  

 
Interim discussion 

We found a clear effect of elongation, independent of orientation. Whilst the interaction 

between elongation and orientation did not reach significance, the observed pattern across 

Experiments 3 and 4 is consistent with the idea that perceived area is positively correlated (albeit 

imperfectly) with height (or negatively correlated with width). This is broadly consistent with the 

relative overestimation of vertical line length seen in the vertical-horizontal illusion (Valentine, 1912; 

Wolfe et al., 2005).  
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Modelling biases in area perception 

Our four experiments demonstrate that biases in perceived area are substantial and are 

associated with various shape metrics including compactness, elongation, orientation and width or 

height. Here we determine how different shape metrics combine to predict perceived area, across 

all stimulus conditions.  

Raw data (2AFC responses) for stimulus sizes 1–3 (common to all four experiments) were 

pooled across observers and experiments. This allowed us to determine the maximum likelihood set 

of JND values (i.e. perceived area for each condition in units of discrimination), given all data. The 

results are shown in Figure 7. Note that the range of JND values is compressed relative to the JNDs 

derived from individual observers (Figures 3–6). This is because inter-observer variation is conflated 

with uncertainty within the pooled data. Pooling, therefore, underestimates relative biases in units 

of discrimination (JNDs). However, relative biases in percentage terms (A is perceptually X% larger 

than B) are preserved. As above, JNDs were converted into perceived area in cm2 by assuming that 

the common shape (canonical square) is perceived veridically (see righthand y-axis of Figure 7).  

 

Figure 7  

JNDs for Each Condition, for Data Pooled Across Observers and Experiments, Converted to Perceived 
Area and Averaged Across Size 

 
Note. Error bars give 95% CIs from bootstrapping (10,000 samples). Yellow stars show the model fit 
for each condition.  
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Perceived area was averaged across sizes, to capture scale-invariant biases in perceived area 

(as in Figure 7). We compared linear regression models that characterise these biases as a function 

of various shape metrics (these were calculated for the middle stimulus size, for each shape). Our set 

of candidate predictors included shape descriptors previously proposed in the literature (e.g. 

compactness, height, additive area, aspect ratio), enabling us to test earlier models, in addition to 

some of our own design (e.g. width of object base, height of centroid, see  

Figure 1). As we fitted biases in perceived area, predictors did not include true area (whose 

regression coefficient would be undefined). The full list of candidate predictors, with definitions, is 

given in Supplementary Table S8.  

Regression models were evaluated and compared via leave-one-out cross-validation (leaving 

out each of the 22 stimulus conditions, in turn). This approach prevents overfitting by quantifying 

how well each model generalises to novel stimuli. Whilst many candidate predictors are partially 

correlated, cross-validation only rewards the addition of predictors that explain additional 

systematic variance in the data. Further to this, we evaluated regression models using PCA (Principal 

Component Analysis) and PLS (Partial Least Squares) components as candidate predictors; two 

methods often employed with partially correlated predictors. Neither of these provided more 

parsimonious accounts of biases in perceived area. Cross-validation results, alternative candidate 

models, and model comparisons are presented in the Supplementary material (S3 Model selection; 

S4 Alternative models).  

The selected model includes six predictors ( 

Figure 1), and accounts for 96% of the variance in perceived area across the 22 unique stimuli 

(combinations of shape and orientation), see Figure 8. The influence of each predictor on every 

condition is given in Supplementary Figure S4.  
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Figure 8  

Variance In Perceived Area (cm2) Explained by the Addition of Each Predictor in the Model  

 
 
Note. The presented order of predictors follows the maximum increase in R2 (left-hand y axis) with 
each addition. See  
Figure 1 for a visual representation of each predictor. Each bar gives the best N factor model (for 
N=1:6), given the 6 predictors in the final model. The blue asterisks (right-hand y axis) show the 
cross-validation error (MSE) for each model. 

 
The first predictor, circumradius, is a measure of compactness. This is positively correlated 

with perceived area; less-compact shapes are perceived as larger (b = 3.36, 95% CI [2.87, 3.84]. The 

second and third predictors can be interpreted as modulating the relationship between compactness 

and perceived area (both are positively correlated with compactness but have negative coefficients). 

Elongation (the aspect ratio of the circumscribing ellipse, b = -0.31, 95% CI [-0.44, -0.18]) reflects the 

observation that the most elongated shapes (1:8 and 1:4 rectangles) were perceived as smaller than 

shapes of a comparable compactness but with aspect ratio close to 1:1. The area of the bounding 

box is also negatively associated with perceived area in the model (b = -0.03, 95% CI [-0.05, -0.01]), 

such that some of the least compact shapes (the stars) and in particular the eight-point star are 

associated with reduced perceived area than predicted by compactness alone.  
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The remaining predictors (fourth to sixth) are all orientation dependent, and together 

capture the observation that more bottom-heavy / wide shapes are perceived as smaller than tall / 

top-heavy ones. Base width (average width of bottom 1/8 of stimulus’ convex hull) has a negative 

coefficient (b = -0.71, 95% CI [-0.84, -0.57]), reflecting the observation that the triangle and square 

both appear larger when presented with their longest edge vertical (and resting on a corner). It also 

captures the orientation effect for rectangles, i.e. that they are perceived as smaller when presented 

horizontally. The sixth predictor is elongation × sin(orientation) (see  

Figure 1), reflecting the larger orientation effect for elongated stimuli (b = -2.59, 95% CI [-3.50, -

1.68]). The fifth predictor, height of centroid, can be thought of as a suppressor variable: it is 

negatively correlated with base width (r = -0.44), and with elongation × sin(orientation) (r = -0.45). It 

thus suppresses some of the (over-inflated) effects introduced by the fourth and sixth predictors, 

while reflecting the fact that the star is perceived as smaller than other shapes of low compactness 

(b = -2.03, 95% CI [-2.45, -1.62]).  

 

General discussion and conclusions 

We quantified biases in area perception for a wide range of shapes and orientations. These 

biases were substantial and highly consistent across participants and experiments, with the 

exception of one shape: the eight-point star. We used an assumption-free method, cross-validation, 

to derive a model that provides an excellent account of these biases, explaining 98% of response 

variance in terms of simple shape metrics. Our model quantifies biases that have previously been 

reported in qualitative terms (e.g. triangles > disks). Simultaneously, the model accounts for biases 

demonstrated here with novel shapes. 

Consistent with previous suggestions (Dresslar, 1894; Owen, 1970), compactness is strongly 

correlated with perceived area, with less compact shapes appearing to be larger. Within squares and 

rectangles, perceived area also increases with elongation, as previously suggested for volumetric 

judgments of cuboids (Krishna, 2006). However, elongation has a negative coefficient in the model: 
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shapes that are concentrated along one axis (i.e. rectangles) are not perceptually enlarged to the 

same degree as stimuli with similar compactness but an aspect ratio close to 1. Elongation interacts 

with orientation in its effects on perceived area: when very elongated shapes are rotated there is a 

bigger change in perceived area than for less elongated stimuli. Note that this elongation × 

orientation interaction did not reach significance when considering data from Experiment 4 alone. 

More generally, shapes that are wider or more bottom-heavy appear to be smaller. 

Previous work has, in general, focussed on a small set of objects and identified a single 

feature that correlates with perceived area. For example, one might assume that triangles look 

larger because they are taller (and wider) than squares and disks (Krider et al., 2001), but this rule 

fails when comparing equilateral triangles and rectangles. Similarly, ‘additive area’ (Yousif & Keil, 

2019; Yousif et al., 2020) captures the difference in perceived area for squares presented in different 

orientations but fails to explain the effect of orientation for other common shapes, such as triangles 

and elongated rectangles, or the difference in perceived area between disks and squares in their 

canonical orientation.  

Unlike these previous studies, our model does not provide a simple rule or heuristic, 

representing how we estimate area. A simple heuristic could involve the model’s first predictor only: 

circumradius (i.e., compactness): ‘imagine a circle enclosing the shape – its diameter is an estimate 

of area’. Shapes with a greater circumradius (i.e., less compact shapes) are generally perceived as 

larger, as previously suggested (Dresslar, 1894; Owen, 1970). Indeed, the best single predictor of all 

candidates (identified via cross-validation, see Supplementary Figure S3 A, Supplementary Table S9) 

is an alternative compactness metric (area-to-area of circumdisk ratio). These measures of 

compactness have lower (i.e., better) cross-validation error (0.35 and 0.29) than additive area (0.53). 

However, these single predictors are all inferior to our multi-predictor model in terms of predicting 

novel shapes (i.e. cross-validation error) or explaining variation in perceived area across shapes (see 

Figure 8 and Supplementary Figure S3 A). For example, compactness alone does not explain 

orientation effects and overestimates the perceived area of shapes with low compactness but high 
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elongation. Thus, whilst these simple heuristics might appear more elegant, they fail to capture 

systematic biases in area perception and therefore have limited utility.   

In the current study, we used leave-one-out cross-validation over shapes to assess the 

model’s generalisability. Whilst this is a standard approach to avoid over-fitting, it cannot test how 

well our model will generalise to all possible novel shapes, particularly those that are more dissimilar 

to the current set than our shapes are to each other. Further studies could, therefore, use a similar 

approach to ours to test and refine our model with new classes of shapes. These might be randomly 

generated blobby shapes, or silhouettes of recognisable objects. The latter may introduce additional, 

higher-level biases, if perceived area is biased towards the surface area of the corresponding known 

3D objects. 

A big unanswered question remains: why do biases in perceived area occur? Our model 

provides an excellent fit to the data but does not provide insight into why area biases exist in 

general, or why they correlate with the particular predictors of our model. Here we consider three 

classes of explanation that might apply to area biases: (i) misapplied constancy scaling, (ii) 

affordances, and (iii) limitations of visual system.  

Gregory (1963) has proposed that misapplied size constancy scaling can explain a variety of 

2D illusions including the Ponzo, Müller-Lyer, and Hering illusions. In essence, when we ask 

observers to judge some aspect of a proximal image, they can’t help but perceive the corresponding 

aspect of the inferred distal object, i.e., the object that is most likely to have given rise to the image. 

This after all is the goal of perception – to understand and interact with the world around us.  Whilst 

this explanation has been questioned for the Müller-Lyer illusion (DeLucia & Hochberg, 1991), it 

remains a plausible explanation for the Ponzo illusion (Yildiz et al., 2007). A similar explanation has 

been proposed for the horizontal-vertical illusion. Armed with LiDAR, Howe and Purves (2002) 

looked at the relationship between the extent of 3D objects in natural scenes and the length of the 

contours that they project to in the image. They found that vertical contours arose from longer 

objects than horizontal ones, due to a difference in the orientations of the corresponding sets of 
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objects. In essence, we overestimate the length of vertical lines (relative to horizonal ones) because 

their source in the world is likely to be longer.  

Can this be generalised to the analogous bias in area perception, i.e., that vertically 

extended objects are perceived as having greater area than horizonal ones? Not easily: the relative 

overestimation of vertical contours should apply equally to the long edge on a vertical rectangle and 

the short edge on a horizontal one, and thus does not predict an orientation effect for area. 

Nonetheless, we have tested this flavour of hypothesis in a further study (not yet published) in 

which observers compared the surface area of the front face of 3D prisms with various cross 

sections (e.g., square, triangular, rectangular, circular).  The same biases remained, including 

orientation effects, even though 3D attitude relative to the image plane was unambiguous, due to 

structure from motion cues.   

Can we explain other aspects of our findings with misapplied constancy scaling?  Bottom 

heavy objects (e.g. trees) are more common in nature than top-heavy ones, for obvious reasons. 

Thus, we might argue that a bottom-heavy triangle is likely to invoke a more voluminous bottom-

heavy distal object, i.e. a pyramid, than that evoked by a rotated triangle resting on its corner. 

Moreover, the corresponding surface of a pyramid is slanted away from the observer, and thus has a 

larger surface area than a fronto-parallel one. Unfortunately, this line of reasoning predicts the 

opposite of the observed bias: bottom-heavy stimuli are perceived as smaller in area than rotated 

ones.   

Secondly, biases in area perception might relate to affordances, i.e. planned or potential 

interactions with the 3D objects corresponding to the stimuli. Proffitt and colleagues have proposed 

affordance-based perceptual illusions: hills look steeper when we wear a heavy backpack (Bhalla & 

Proffitt, 1999); doorways look narrower to broad-shouldered individuals (Stefanucci & Geuss, 2009). 

Some of these findings have faced strong criticism, however, as being due to response bias, rather 

than perceptual bias (Firestone, 2013). In terms of our stimuli, less compact objects will, in general, 

require a larger grasp aperture and a larger space if we imagine lifting and re-locating them, relative 
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to more compact objects. However, this is a highly speculative explanation and is at odds with a key 

goal of perception: to accurately perceive and interact with the world.  

A final class of explanation is that some illusory size biases may be caused by constraints of 

the visual system. For example, the Müller-Lyer Illusion has been explained by spatial pooling. 

Morgan and colleagues (1990) suggested that the visual system employs spatial pooling via 

large, overlapping cortical receptive fields in order to locate objects in space (see also Whitaker et 

al., 1996).  Whilst beneficial for rapid object localisation, spatial pooling sacrifices positional acuity, 

as local features are blurred. The Müller-Lyer illusion would arise when segment ends and flankers 

are spatially pooled, causing perceptual displacement of the endpoints’ centroids (Bulatov et al., 

2011; Morgan et al., 1990). How would this translate into biases in area perception? Spatial pooling 

is broadly equivalent to Mates and colleagues’ (1992) proposal that observers estimate area from a 

shape’s blurred contours. This hypothesis predicts that biases in perceived area are correlated with 

perimeter length. Unfortunately, perimeter length is a poor predictor of our reported biases. It does 

not, for example, capture orientation effects, or the biases observed for concave shapes (e.g., that 

three-point stars are perceptually larger than four- and eight-point stars).   

Given finite neural resources, what might a ‘quick and dirty’ algorithm to efficiently compute 

area look like?  One might approximate area by using an alternative ‘reference’ shape.  One could 

find the smallest disk or rectangle that encompasses a shape and use its diameter or area as a proxy 

for the shape’s area.  Indeed, as noted above, the single best predictor of the area biases reported 

here is compactness (as quantified by the circumdisk’s area). Thus, any algorithm that correlates 

with compactness can explain some (but not all) of the variance in perceived area across different 

shapes. Spatial pooling, or a mechanism that approximates area via a circumscribing disk (or ellipse 

or bounding box) might therefore constitute a partial explanation for area biases, but we suspect 

that multiple factors may be at play to explain the full gamut of biases. 

In general, our sensorimotor system recalibrates in order to reduce perceptual biases 

(Adams et al., 2001, 2010; Burge et al., 2008). However, this mechanism appears to fail in the case of 
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area perception. There is some evidence that biases in area perception have correlates in volume 

perception: Tetrahedrons are perceived to be larger than cubes and spheres (Kahrimanovic et al., 

2010), and elongated cuboids appear larger than cubes (Krishna, 2006), and own work with 3D 

prisms found similar biases to those reported here. This apparent translation of area biases into 

erroneous volume and weight perception (Kahrimanovic et al., 2011) makes it all the more peculiar 

that these perceptual biases are not corrected during everyday object handling. On the other hand, 

it is well known that grasping forces adapt rapidly in the size-weight illusion, while the perceptual 

illusion persists (Flanagan & Beltzner, 2000).  

Although we have no clear explanation of why these systematic biases in area perception 

occur, we can try to mitigate their effects. When selecting a partner for a wife-carrying contest 

(https://en.wikipedia.org/wiki/Wife-carrying), go for a tall, skinny one rather than a deceptively 

compact stout one. When subsequent hunger strikes, if in doubt, choose the circular pizza.  

https://en.wikipedia.org/wiki/Wife-carrying
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