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Supplementary material 
 

S1. Simulations 
 

Our Thurstonian scaling analysis method assumes that perception of stimulus area is 

perturbed by noise and that the spread (σ) of the Gaussian noise distribution is the same for every 

stimulus. Here we investigate the effect on estimated parameters (i.e. perceived relative area) when 

this assumption is violated, i.e., if shapes differ in noise/uncertainty with respect to their perceived 

area. To this end, we simulated data for three different variants of observers performing Experiment 

1. 

The first variant (V1) corresponds to an idealised observer completing Experiment 1, for 

whom all shape-related biases are perfectly scale invariant, and all stimuli are associated with the 

same noise (σ = 1.05, see Figure S1 A). The mean shape-related simulated biases (JNDs, averaged 

across stimulus size) were fixed to match those measured in Experiment 1. Discriminability within 

shapes was also matched to the average of those measured in Experiment 1. 
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Figure S1  

Data From Simulations Showing the Effects of Different Noise Distributions 

Note. Each row corresponds to one of the three observer variants. (A, D, G) Simulated noise 
parameters (σ) for each shape. (B, E, H) Perceived area in JNDs for each shape as a function of 
stimulus size for one observer completing 1000 trials per condition. (C, F, I) Perceived area in JNDs, 
averaged across stimulus size. Bars show data for the same single observer. Error bars give 95% CIs 
for the mean biases estimated from 35 simulated observers performing 2 trials per condition, from 
bootstrapping. Red stars give the mean simulated biases for each shape. 

 
For the second and third observer variants (V2, V3) the simulated means of perceived area 

(i.e., the simulation JNDs) were unchanged, but we adjusted the noise parameters, violating the 
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equal-noise assumption of our analysis. In V2, two shapes (rectangle, 8-pointed star) are associated 

with more uncertainty than the others (see Figure S1 D). Finally, in V3, the noise parameter for each 

shape was randomly assigned by sampling from a Gaussian distribution (Figure S1 G), resulting in 

huge variation across shapes. 

For each variant, we first simulated a single observer performing the experiment, with 1000 

trials for each stimulus pairing featured in the original experiment. This revealed the effects of 

different simulation parameters, with minimal sampling noise. The results are shown in  Figure S1 B, 

E, H (all stimulus sizes) and also by the bars in  Figure S1 C, F, I (biases averaged across size). For 

comparison, the simulated biases are shown by red stars.  

For variant one, as expected, the simulated data reflects the simulation parameters 

(alignment of bars and stars in  Figure S1 C). Under V2, the mismatched noise parameters result in 

small, spurious deviations from scale-dependent biases: the lines representing the rectangle and star 

in Figure S1 E have smaller slopes. For these shapes, perceived area is slightly overestimated for 

smaller stimuli and underestimated for larger stimuli (compare  Figure S1 D with the actual data 

from Experiment 1 in Error! Reference source not found. B). However, examination of  Figure S1 F 

reveals that, after averaging across stimulus size, the resultant errors in the estimates of perceived 

relative area for each shape are minimal. Similarly, even the extreme range of values of σ simulated 

in V3 produce very small errors in estimated bias, when averaged across stimulus size  Figure S1 I. 

Next, we investigated the reliability of estimates of perceptual biases for the three simulated 

observer variants, given the true number of observers and trials in Experiment 1. To this end, for 

each variant, we simulated 1000 independent observers, each of whom performed the same 

number of stimulus comparisons as in the real experiment. Then we simulated experimental data 

collection by randomly selecting 35 of the 1000 candidate observers, and recording the mean shape-

related biases, averaged across observers and stimulus size. This was repeated 1000 times, to derive 

95% confidence intervals for the mean estimated area biases; these CIs are shown by the error bars 

in  Figure S1 C, F, and I. It is apparent that large deviations from the equal noise assumption are well 
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tolerated by our method; such deviations do not introduce meaningful systematic errors in 

estimates of perceptual bias, nor do they alter the reliability of those estimates. As noted above, 

deviations from equal noise do introduce small systematic (and opposite) errors in estimation of 

perceived area for small and large stimuli (the different slopes in  Figure S1 E and H). In other words, 

our method can produce spurious scale dependencies in area biases. For this reason, our 

quantification and modelling of shape-related biases ignores the apparent small deviations from 

scale invariance. 
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S2 Effect sizes  

For each experiment, we calculated effect sizes for biases for each condition (shape / 

orientation combination, averaged across sizes 1–3 for each participant) compared against the 

reference condition (square, canonical orientation), i.e. perceived areacondition - perceived areareference. 

Figure S2 shows Cohen’s d for each comparison.  

Figure S2  

Effect Sizes for All Experiments  

 
Note. Marker shapes show the condition being compared to the reference stimulus (square, 
canonical orientation; vertical dashed line). Error bars show 95% CIs for paired samples 
(meanEffectSize, MATLAB).  
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S3: Regression analyses for each experiment 

For Experiment 1, we ran a regression to predict biases in perceived area as a function of 

stimulus shape.  Each shape was dummy coded relative to the square (common to all experiments). 

Regression coefficients are shown in Table S1. 

Table S1  

Regression Coefficients for Experiment 1 

Effect Estimate SE p 

(Shape: square) -0.70 0.14 .60    

   Shape: disk    -0.44 0.20 .03    

   Shape: triangle 0.78        0.20     < .001 

   Shape: h 0.20     0.20     .31 

   Shape: 8:1 rectangle 0.29 0.20     .14 

   Shape: 8-point star -0.39 0.20 .05 

 
For Experiment 2, perceived area bias was regressed on convex hull shape (square, 

octagonal, triangular), compactness, and their interaction (Table S2). Compactness (3 levels) was 

modelled quantitatively as the average compactness (area / area of circumscribing disk) for stimuli 

of high (regular polygons), moderate and low compactness (stars). (Note that the full regression 

analyses across all shapes (see section S3 below) uses compactness as a continuous variable 

calculated for each shape). The disk was not included in the current analysis as it was the only shape 

with a circular convex hull. 

Table S2 

Regression Coefficients for Experiment 3 
 

Effect Estimate SE p 

(Convex hull: square) 0.40 0.15 .008 

   Convex hull: octagon -0.04 0.26 .88 

   Convex hull: triangle 0.81 0.23 .001 

   Compactness -2.83 0.53 < .001 

   Convex hull: octagon × Compactness 0.70 0.78 .37 

   Convex hull: triangle × Compactness 1.41 0.76 .06 
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For Experiment 3, the bias in perceived area was modelled as a function of the stimulus 

shape (square, octagon, triangle), orientation (canonical vs. longest length vertical) and their 

interaction (Table S3). The disk was excluded as it is orientation-invariant.  

Table S3  

Regression Coefficients for Experiment 3 

Effect Estimate SE p 

(Shape: square; Orientation: canonical) -0.80    0.11          < .001    

   Shape: octagon 0.26 0.16 .11 

   Shape: triangle 1.84 0.16 < .001 

   Orientation: longest vertical 1.11 0.16 < .001 

   Shape: octagon x Orientation: longest length vertical  -0.98        0.16 < .001     

   Shape: triangle x Orientation: longest length vertical -0.64 0.16 .004     

 
For experiment 4, biases in perceived area were regressed on stimulus orientation (longest 

length vertical vs. longest edge horizontal), elongation (aspect ratio) and their interaction (Table S4). 

We excluded the ‘longest edge vertical’ orientation as it is equivalent to the first for square shape. 

Table S4 

Regression Coefficients for Experiment 4 

Effect Estimate SE p 

(Orientation: longest length vertical) -0.58 0.17 .001 
   Orientation: longest edge horizontal -0.10 0.24 .69 
   Elongation 0.18 0.04 < .001 
   Orientation: longest edge horizontal x Elongation -0.08 0.05 .13 
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S3 Model selection  

We compared regression models using leave-one-out cross validation over shapes. The full 

list of candidate predictors is reported in Table S5. For each N (the number of predictors), the model 

with the lowest cross-validation error is considered as the best model. For each model, cross-

validation was performed by fitting it to 21 shapes (leaving out 1) and then using the fitted 

parameters to predict the left out shape, and noting the error. This process was repeated 22 times, 

leaving out a different shape each time, summing the squared errors. Thus, a model’s cross-

validation error reflects its ability to generalise from the fitted stimulus set to novel shapes, with a 

smaller error indicating better performance.  

Table S5  
 
List of Geometric Features Evaluated as Predictors in the Linear Regression Models Presented in the 
Main Paper 
 

Measure Description 

Surface measures (in cm2)  

1 Area of base (1) Area of the bottom 1/8 portion of the shape  

2 Area of base (2) Area of the bottom 1/4 portion of the shape 

3 Area of bounding box Area of the smallest rectangle, with horizontal and vertical edges, 
that encloses the shape 

4 Area of circumscribing 
disk 

Area of the smallest disk enclosing the shape 

5 Area of circumscribing 
ellipse 

Area of the smallest ellipse enclosing the shape; equals to the 
area of circumscribing disk for shapes of aspect ratio of 1 and 
triangular shapes 

6 Area of indisk Area of the largest disk enclosed by the shape 

7 Convex area  Area of the shape’s convex hull 

8 Convex area of base (1) Area of the bottom 1/8 portion of the shape’s convex hull 

9 Convex area of base (2) Area of the bottom 1/4 portion of the shape’s convex hull 
Linear measures (in cm)  

10 ‘Additive area’ Sum of the shape’s height and width (Yousif & Keil, 2019) 

11 Compactness: 
circumradius 

Radius of the smallest disk enclosing the shape 

12 Compactness: inradius Radius of the largest disk enclosed by the shape 

13 Convex perimeter Perimeter of the shape’s convex hull 

14 Height (maximum 
vertical distance) 

Longest distance between two boundary points on the y axis 
(Warren & Pinneau, 1955) 

15 Height of centroid Distance between the shape’s base and centroid on the y axis 

16 Width (maximum 
horizontal distance) 

Longest distance between two boundary points on the x axis 
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Measure Description 

17 Width of base (1) Average width calculated at the bottom 1/8 portion of the shape  

18 Width of base (2) Average width calculated at the bottom 1/8 portion of the shape 
convex hull 

19 Perimeter (Anastasi, 1936) 

Ratios  

20 Compactness (1):  
Area-to-area of 
circumdisk ratio 

Ratio of the shape area to that of the smallest circumscribing disk 

21 Compactness (2): 
Circularity 

Ratio of the shape area to that of a circle of the same convex 
perimeter (perimeter of convex hull); equals IPQ (below) for 
convex shapes 

22 Compactness (3):  
Convex area-to-area of 
circumdisk ratio 

Ratio of the shape convex area (area of convex hull) to that of the 
smallest circumscribing disk (circumdisk)  

23 Compactness (4): 
Isoperimetric quotient 
(IPQ) 

Ratio of the shape area to that of a circle of same perimeter 

24 Compactness (5): P2A Squared perimeter-to-area ratio (Smets, 1970) 

25 Compactness (6): 
Roundness 

Indisk-to-circumdisk ratio: Ratio of the area of the maximum 
inscribed disk (indisk) to the circumdisk of the shape 

26 Convexity Ratio of the shape perimeter to the perimeter of the shape’s 
convex hull 

27 Elongation Aspect ratio of the ellipse enclosing the shape; orientation-
invariant 

28 Elongation × 
sin(orientation)  

Elongation × sin(θ); θ is the angle from the x axis to the major 
axis of the ellipse circumscribing the shape 

29 Elongation × 
cos(orientation) 

Elongation × cos(θ) 

30 Extent Ratio of the shape’s area to the area of the shape’s bounding box  

31 Height of centroid-to-
height ratio 

Ratio of the shape’s height of centroid (see above) to the shapes’ 
height 

32 Height-to-width ratio Ratio of the maximum vertical distance (height) to the maximum 
horizontal distance (width); orientation-dependent (Holmberg & 
Holmberg, 1969; as cited in Krider et al., 2001) 

33 Solidity Ratio of the shape area to the area of the shape’s convex hull 

34 Width of base-to-height 
ratio (1) 

Ratio of the average width calculated at the bottom 1/8 portion 
of the shape to the shapes’ height 

35 Width of base-to-height 
ratio (2) 

Ratio of the average width calculated at the bottom 1/8 portion 
of the shape’s convex hull to the shapes’ height 

 
Note. The predictors featuring in the best model are listed in italics. Features within each subset 
(surface measures, linear measures, ratios) are presented in alphabetical order. The same features 
were used to construct principal component and partial least squares components to characterise 
the stimulus space in alternative models (see below). 
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Figure S3 A shows the goodness-of-fit (R2) and cross-validation error (MSE) for the best one- 

to seven-predictor models. The best model (i.e., the model with the lowest cross-validation error 

overall), described in the main text, includes six predictors.  

Figure S3  

Best Perceived Area Bias Regression Models: Model Comparisons  

 
 
 
Note. (A) Cross validation error (MSE, left-hand y axis, blue lines and markers) and goodness of fit 
(R2, right-hand y axis, red lines and markers) for the best perceived area bias regression models with 
1–7 predictors. Models were compared on their cross-validation error. Values for the best model 
overall are indicated by the large asterisks. (B) AIC (left-hand y axis, blue lines and markers) and BIC 
(right-hand y axis, red lines and markers) for the best perceived area bias regression models with 1–
7 predictors. Values for the best model overall (according to the cross-validation error) are indicated 
by the large asterisks. 

 
 We compared our cross-validation approach to two other methods for model selection: AIC 

and BIC, to support model comparisons for readers unfamiliar with cross-validation. Figure S3 B 

shows the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for the best 

one- to seven-predictor models. AIC supports the same conclusions as LOO XVAL (lowest AIC: 6 

predictors), whilst BIC supports a more complex model (7+ predictors). Predictors for the best 1- to 

6-predictor models are reported in  

Table S6. 



S11 
BIASES IN THE PERCEIVED AREA OF SHAPES: SUPPLEMENTARY MATERIAL 

Table S6  

Predictors For the Best N-predictor Models Identified Via Cross-Validation 
 

N  Predictors 

1 Compactness (1): Area-to-area of circumdisk ratio 
2 Convex area  

Area of circumscribing ellipse 
3 Height  

Convex area  
Area of circumscribing ellipse 

4 Height  
Perimeter 
Compactness (1): Area-to-area of circumdisk ratio  
Elongation × cos(orientation) 

5 Convex area  
Circumradius  
Elongation  
Elongation × cos(orientation)  
Width of base (1) 

6 Circumradius 
Elongation 
Area of bounding box 
Width of base (1) 
Height of centroid 
Elongation × sin(orientation) 

Note. Best N-predictor models were identified via cross-validation. See Table S1 for descriptions and 
the full list of predictors.  

 
Figure S4 shows the influence of each predictor in in each condition (i.e., shape / orientation 

combination) for the best model. 
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Figure S4  

Best Model: Influence Of Each Predictor in Each Condition 

Note. Each condition is a shape / orientation combination. Conditions are reported in order of 
perceived size (smaller to larger). 
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S4 Alternative models 

The regression model presented in the main paper provides a very good fit to biases in 

perceived area, using 6 predictors, and was selected via cross-validation, as summarised in Figure S3. 

However, it is a little difficult to interpret, due to partially correlated predictors and suppressor 

effects. In addition, candidate predictors were arbitrarily chosen from literature, with further 

candidate predictors added to capture the observed pattern of biases.  

Here we explore whether it is possible to develop a model that is more parsimonious and 

easily interpretable. PCA (Principal Component Analysis) and PLS (Partial Least Squares) are two 

methods used to address the issues of correlated predictors and high dimensionality. Both methods 

entail the construction of new components (latent variables) that more efficiently capture variation 

across the stimulus space (and, with PLS, the response space). These new components serve as 

predictor variables in linear regression models.   

Using PCA, independent (orthogonal) components can be identified that efficiently capture 

shape variations across our 22 stimulus shapes. However, this method is blind to the dependent 

variable (area bias). Thus, whilst the first few principal components will efficiently capture shape 

variability, these dimensions might be poor correlates of biases in perceived area.  In contrast, PLS 

regression considers variation in both the stimulus space and response space. Components are 

identified in the multidimensional stimulus (shape) space that explain the maximum variance in the 

responses (area biases). 

Using PCA and PLS, we explored two different characterisations of our stimulus space. Our 

22 stimuli were either represented by each shape’s geometric feature values (i.e., compactness, 

elongation etc., as in the original regression model, see Table S5) or by the x-y coordinates of 32 

points on the shapes’ perimeters. These points were equidistant along each shape’s perimeter, with 

the first point directly above the shape’s geometric centre (preserving orientation).  In both cases, 

these input variables were z-scored. Resultant regression models using the PCA (PCR, Principal 

Component Regression) or PLS (PLSR, Partial Least Squares Regression) components were compared 
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using leave-one-out cross validation over shapes.  To preview the key results: PCA produces poor 

models of biases in perceived area, either using geometric features or perimeter points. Whilst the 

stimulus shapes are efficiently described by a subset of components, these are poor predictors of 

area biases. PLS is somewhat better in capturing area biases but is not more parsimonious or 

interpretable than the regression model presented in the main text. However, PLS components from 

perimeter points (see below) provides a useful visualisation of shape variations that correspond to 

variation in perceived area.  

PCA, PCR on geometric features 

The first seven PCA components of the geometric feature data approximate our shape 

stimuli very well (98% variance explained). However, the best PCR model (i.e. regression model using 

the principal components as predictors of area bias, Figure S5) is poor: it includes seven predictors 

(R2 = 0.7567, XVal MSE = 0.1876), providing a much worse fit than the original multiple linear 

regression model on geometric features, compare with Figure S3 A.  

Figure S5 

Best PCR on Geometric Features Models: Cross-validation Error and Goodness of Fit 

  
 

Note. Cross validation error and goodness of fit for the model fitted to the full dataset for the best 1- 
to 8-predictor PCR models. Plotting conventions as in  Figure S3 A. Predictors are PCA components of 
the shape’s geometric features. Models were compared on their cross-validation mean squared 
error (lower = better).  
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PCA, PCR on perimeter locations 

Using the 32 equidistant points on each shape’s perimeter, 8 principal components provide 

a good approximation to our shapes (98% variance in shape perimeter locations). Figure S6 shows 

these components (dashed blue line = mean shape, red and green = + / - 3 SDs of component). The 

first component appears to represent how tall vs. wide a shape is, whereas the second appears to 

roughly correspond to triangularity (long side vertical vs. horizontal).   

Figure S6 

Representation of the First Eight Principal Components of Shape Perimeter Points. 

  
Note. The dashed blue line shows the mean shape. Red and green lines indicate +, - 3 SDs 
respectively.  
 

Unfortunately, PCR models using perimeter points provide a very poor account of area 

biases. The best model includes four components (n. 1, 9, 11, 13, Figure S7 B), but the fit is 

extremely poor (R2 = 0.0381, XVal MSE = 0.2926, Figure S7 A).   
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Figure S7 

Best PCR on Perimeter Locations Models 

 
Note. (A) Cross validation error and goodness of fit for the model fitted to the full dataset for the 
best 1- to 7-predictor PCR models. Plotting conventions as in Figure S3 A. Predictors are PCA 
components of the shape’s perimeter points. Models were compared on their cross-validation error 
(lower = better). Values for the best model overall (i.e., with the lowest cross-validation error) are 
indicated by the large asterisks. (B) Representation of the four principal components featuring in the 
best model. Plotting conventions as in Figure S6.  
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predictors gives an R2 similar to that for the original regression model, but the cross-validation error 

is larger (R2 0.9524, XVal MSE 0.241; see  

Table S7 for model comparisons). 

Figure S8  

Best PLSR on Geometric Features Models 

 
(A) Cross validation error (MSE, left-hand y axis, blue line and markers) and proportion of variance 
explained in y (perceived area bias; right-hand y axis, red lines and markers) and x (shape geometric 
features; right-hand y axis, green lines and markers) for the model fitted to the full dataset for the 
best 1- to 14-predictor PLSR models. Predictors are PLS components of the shape’s geometric 
features. Models were compared on their cross-validation error. Values for the best model overall 
(i.e., with the lowest cross-validation error) are indicated by the large asterisks. (B) Composition of 
the first five PLS components, shown as the weight assigned (y axis) to each geometric feature (x 
axis) within each component (coloured lines). The features corresponding to each number are listed 
in Table S5).  
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features that are positively correlated with a shape’s vertical elongation (e.g. centroid-to-height 

ratio (feature 31), height-to-width ratio (32)), and a negative weight to features that are positively 

correlated with horizontal elongation (e.g. elongation × orientation (features 28, 29), area of base (1, 

2)). However, this component also includes a (smaller) negative weight for orientation-invariant 

elongation (27). Other components are harder to characterise succinctly.  

PLS / PLSR on perimeter locations 

Figure S9 A gives the cross-validation error and variance explained in biases in perceived 

area, as a function of the number of PLS components in the regression model. The best model has 5 

predictors, shown in Figure S9 B. This model has fewer predictors (5 vs. 6) but has a worse fit and 

larger cross-validation error (R2 0.8679 vs. 0.9556, XVal MSE = 0.286 vs 0.026; see  

Table S7 for model comparisons) than the original regression model. Is this PLSR model 

more parsimonious than the original model? Although it has one fewer predictor, each of the PLS 

predictors is constructed from the complete stimulus (64 perimeter coordinates) and response 

variables. Thus, it does not provide a superior or more interpretable account of area biases.  

Figure S9  

Best PLSR on Perimeter Locations Models 

 
Note. (A) Cross validation error and proportion of variance explained in geometric features and 
perceived area bias and for the model fitted to the full dataset for the best 1- to 7-predictor PLSR 
models. Plotting conventions as in Figure S5. Predictors are PLS components of the shape’s 
perimeter locations. (B) Representation of the five components featuring in the best model. The 
dashed blue line shows the mean shape. Green and red surfaces show + / - 1 PLS component, 
respectively.  
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Nonetheless, the PLS components (Figure S9 B) can provide some insight into the shape 

variations that predict the most variability in perceived area. The first two components (top row, left 

and middle) capture how vertically vs. horizontally elongated a shape is, but also how ‘periphery 

heavy’ (component 1) vs ‘centre heavy’ (component 2) it is. The third component is hard to 

interpret. The fourth (bottom row, left) appears to relate to whether a shape is ‘cross-like’, with 

points in either cardinal or diagonal orientation. The last component may be primarily capturing the 

identity of our 8-pointed star stimulus. How do these relate to the geometric features / predictors in 

the original regression model? This included measures of compactness (circumradius, area of 

bounding box), elongation (aspect ratio, scale invariant) and its relationship with orientation 

(elongation × orientation), and ‘bottom-heaviness’ (width of base, height of centroid). All five 

components capture compactness, as large positive or negative loadings correspond to lower 

compactness (circumradius, area of bounding box). The first and second components capture 

variation in elongation (orientation invariant), and concurrent variations in vertical elongation. The 

first component also captures the shape bottom-heaviness (width of base, height of centroid). All 

five components variously capture the height of centroid (with either positive or negative weights). 

 

Model comparisons 

We compared the original regression model (‘R6’, see Figure S3 A) with PLRS models using t-

tests on the cross-validation residuals (one residual for each left-out shape, for each model).  

Table S7 reports model comparisons with the best PLSR models (PLS on geometric features: 

13 components; PLS on perimeter points: 5 components) and the six-predictor PLSR model with 

components from geometric features. 

Table S7  

Model Comparisons 

Compared models t-test p  

R6 < PLSRPP 5 0.042 * 
R6 < PLSRGF

 
13 0.003 * 
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Compared models t-test p  
R6 

< PLSRGF 6 0.035 * 

 

Note. Models were compared using t-tests on the cross-validation residuals (one residual for each 
left-out shape, for each model). The greater-, less-than, equal signs refer to residual magnitudes 
(i.e., Mx < My  indicates that Mx residuals are smaller (better) for at least half + 1 of the left-out 
shapes); R, PCR, PLSR denote regression, principal component regression, partial least squares 
regression models; GF, PP denote components (predictors) from geometric features, perimeter 
points. Subscript numbers indicate the number of predictors in each model. Stars show statistical 
significance (p < .05) as indicated by the corresponding t-test p values. 
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