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Supplementary material

S1. Simulations

Our Thurstonian scaling analysis method assumes that perception of stimulus area is
perturbed by noise and that the spread (o) of the Gaussian noise distribution is the same for every
stimulus. Here we investigate the effect on estimated parameters (i.e. perceived relative area) when
this assumption is violated, i.e., if shapes differ in noise/uncertainty with respect to their perceived
area. To this end, we simulated data for three different variants of observers performing Experiment
1.

The first variant (V1) corresponds to an idealised observer completing Experiment 1, for
whom all shape-related biases are perfectly scale invariant, and all stimuli are associated with the
same noise (o = 1.05, see Figure S1 A). The mean shape-related simulated biases (JNDs, averaged
across stimulus size) were fixed to match those measured in Experiment 1. Discriminability within

shapes was also matched to the average of those measured in Experiment 1.
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Figure S1

Data From Simulations Showing the Effects of Different Noise Distributions
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Note. Each row corresponds to one of the three observer variants. (A, D, G) Simulated noise
parameters (o) for each shape. (B, E, H) Perceived area in JNDs for each shape as a function of
stimulus size for one observer completing 1000 trials per condition. (C, F, 1) Perceived area in JNDs,
averaged across stimulus size. Bars show data for the same single observer. Error bars give 95% Cls
for the mean biases estimated from 35 simulated observers performing 2 trials per condition, from
bootstrapping. Red stars give the mean simulated biases for each shape.

For the second and third observer variants (V2, V3) the simulated means of perceived area

(i.e., the simulation JNDs) were unchanged, but we adjusted the noise parameters, violating the

S2
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equal-noise assumption of our analysis. In V2, two shapes (rectangle, 8-pointed star) are associated
with more uncertainty than the others (see Figure S1 D). Finally, in V3, the noise parameter for each
shape was randomly assigned by sampling from a Gaussian distribution (Figure S1 G), resulting in
huge variation across shapes.

For each variant, we first simulated a single observer performing the experiment, with 1000
trials for each stimulus pairing featured in the original experiment. This revealed the effects of
different simulation parameters, with minimal sampling noise. The results are shown in Figure S1 B,
E, H (all stimulus sizes) and also by the bars in Figure S1 C, F, | (biases averaged across size). For
comparison, the simulated biases are shown by red stars.

For variant one, as expected, the simulated data reflects the simulation parameters
(alignment of bars and stars in Figure S1 C). Under V2, the mismatched noise parameters result in
small, spurious deviations from scale-dependent biases: the lines representing the rectangle and star
in Figure S1 E have smaller slopes. For these shapes, perceived area is slightly overestimated for
smaller stimuli and underestimated for larger stimuli (compare Figure S1 D with the actual data
from Experiment 1 in Error! Reference source not found. B). However, examination of Figure S1F
reveals that, after averaging across stimulus size, the resultant errors in the estimates of perceived
relative area for each shape are minimal. Similarly, even the extreme range of values of o simulated
in V3 produce very small errors in estimated bias, when averaged across stimulus size Figure S1 1.

Next, we investigated the reliability of estimates of perceptual biases for the three simulated
observer variants, given the true number of observers and trials in Experiment 1. To this end, for
each variant, we simulated 1000 independent observers, each of whom performed the same
number of stimulus comparisons as in the real experiment. Then we simulated experimental data
collection by randomly selecting 35 of the 1000 candidate observers, and recording the mean shape-
related biases, averaged across observers and stimulus size. This was repeated 1000 times, to derive
95% confidence intervals for the mean estimated area biases; these Cls are shown by the error bars

in Figure S1C, F, and I. It is apparent that large deviations from the equal noise assumption are well
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tolerated by our method; such deviations do not introduce meaningful systematic errors in
estimates of perceptual bias, nor do they alter the reliability of those estimates. As noted above,
deviations from equal noise do introduce small systematic (and opposite) errors in estimation of
perceived area for small and large stimuli (the different slopes in Figure S1 E and H). In other words,
our method can produce spurious scale dependencies in area biases. For this reason, our
guantification and modelling of shape-related biases ignores the apparent small deviations from

scale invariance.
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S2 Effect sizes

For each experiment, we calculated effect sizes for biases for each condition (shape /
orientation combination, averaged across sizes 1-3 for each participant) compared against the
reference condition (square, canonical orientation), i.e. perceived areacondition - perceived areareference-
Figure S2 shows Cohen’s d for each comparison.

Figure S2

Effect Sizes for All Experiments
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Note. Marker shapes show the condition being compared to the reference stimulus (square,
canonical orientation; vertical dashed line). Error bars show 95% Cls for paired samples
(meanEffectSize, MATLAB).
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S3: Regression analyses for each experiment

For Experiment 1, we ran a regression to predict biases in perceived area as a function of
stimulus shape. Each shape was dummy coded relative to the square (common to all experiments).
Regression coefficients are shown in Table S1.

Table S1

Regression Coefficients for Experiment 1

Effect Estimate SE p

(Shape: square) -0.70 0.14 .60
Shape: disk -0.44 0.20 .03
Shape: triangle 0.78 0.20 <.001
Shape: h 0.20 0.20 31
Shape: 8:1 rectangle 0.29 0.20 .14
Shape: 8-point star -0.39 0.20 .05

For Experiment 2, perceived area bias was regressed on convex hull shape (square,
octagonal, triangular), compactness, and their interaction (Table S2). Compactness (3 levels) was
modelled quantitatively as the average compactness (area / area of circumscribing disk) for stimuli
of high (regular polygons), moderate and low compactness (stars). (Note that the full regression
analyses across all shapes (see section S3 below) uses compactness as a continuous variable
calculated for each shape). The disk was not included in the current analysis as it was the only shape
with a circular convex hull.

Table S2

Regression Coefficients for Experiment 3

Effect Estimate SE p

(Convex hull: square) 0.40 0.15 .008
Convex hull: octagon -0.04 0.26 .88
Convex hull: triangle 0.81 0.23 .001
Compactness -2.83 0.53 <.001
Convex hull: octagon x Compactness 0.70 0.78 .37

Convex hull: triangle x Compactness 1.41 0.76 .06
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For Experiment 3, the bias in perceived area was modelled as a function of the stimulus
shape (square, octagon, triangle), orientation (canonical vs. longest length vertical) and their
interaction (Table S3). The disk was excluded as it is orientation-invariant.

Table S3

Regression Coefficients for Experiment 3

Effect Estimate  SE p
(Shape: square; Orientation: canonical) -0.80 0.11 <.001
Shape: octagon 0.26 0.16 A1
Shape: triangle 1.84 0.16 <.001
Orientation: longest vertical 1.11 0.16 <.001
Shape: octagon x Orientation: longest length vertical -0.98 0.16 <.001
Shape: triangle x Orientation: longest length vertical -0.64 0.16 .004

For experiment 4, biases in perceived area were regressed on stimulus orientation (longest
length vertical vs. longest edge horizontal), elongation (aspect ratio) and their interaction (Table S4).
We excluded the ‘longest edge vertical’ orientation as it is equivalent to the first for square shape.

Table S4

Regression Coefficients for Experiment 4

Effect Estimate SE p

(Orientation: longest length vertical) -0.58 0.17 .001
Orientation: longest edge horizontal -0.10 0.24 .69
Elongation 0.18 0.04 <.001

Orientation: longest edge horizontal x Elongation -0.08 0.05 A3
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S3 Model selection

We compared regression models using leave-one-out cross validation over shapes. The full

list of candidate predictors is reported in Table S5. For each N (the number of predictors), the model

with the lowest cross-validation error is considered as the best model. For each model, cross-

validation was performed by fitting it to 21 shapes (leaving out 1) and then using the fitted

parameters to predict the left out shape, and noting the error. This process was repeated 22 times,

leaving out a different shape each time, summing the squared errors. Thus, a model’s cross-

validation error reflects its ability to generalise from the fitted stimulus set to novel shapes, with a

smaller error indicating better performance.

Table S5

List of Geometric Features Evaluated as Predictors in the Linear Regression Models Presented in the
Main Paper

Measure

Description

Surface measures (in cm?)

1
2
3

O 00 N O

Area of base (1)
Area of base (2)
Area of bounding box

Area of circumscribing
disk

Area of circumscribing
ellipse

Area of indisk

Convex area

Convex area of base (1)
Convex area of base (2)

Linear measures (in cm)

10
11

12
13
14
15

16

‘Additive area’
Compactness:
circumradius
Compactness: inradius
Convex perimeter
Height (maximum
vertical distance)
Height of centroid

Width (maximum
horizontal distance)

Area of the bottom 1/8 portion of the shape

Area of the bottom 1/4 portion of the shape

Area of the smallest rectangle, with horizontal and vertical edges,
that encloses the shape

Area of the smallest disk enclosing the shape

Area of the smallest ellipse enclosing the shape; equals to the
area of circumscribing disk for shapes of aspect ratio of 1 and
triangular shapes

Area of the largest disk enclosed by the shape

Area of the shape’s convex hull

Area of the bottom 1/8 portion of the shape’s convex hull
Area of the bottom 1/4 portion of the shape’s convex hull

Sum of the shape’s height and width (Yousif & Keil, 2019)
Radius of the smallest disk enclosing the shape

Radius of the largest disk enclosed by the shape

Perimeter of the shape’s convex hull

Longest distance between two boundary points on the y axis
(Warren & Pinneau, 1955)

Distance between the shape’s base and centroid on the y axis

Longest distance between two boundary points on the x axis
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Description

Measure

17 Width of base (1)

18 Width of base (2)

19 Perimeter

Ratios

20 Compactness (1):
Area-to-area of
circumdisk ratio

21 Compactness (2):
Circularity

22 Compactness (3):
Convex area-to-area of
circumdisk ratio

23 Compactness (4):
Isoperimetric quotient
(1PQ)

24 Compactness (5): P2A

25 Compactness (6):
Roundness

26 Convexity

27 Elongation

28 Elongation x
sin(orientation)

29 Elongation x
cos(orientation)

30 Extent

31 Height of centroid-to-
height ratio

32 Height-to-width ratio

33 Solidity

34 Width of base-to-height
ratio (1)

35 Width of base-to-height

ratio (2)

Average width calculated at the bottom 1/8 portion of the shape

Average width calculated at the bottom 1/8 portion of the shape
convex hull

(Anastasi, 1936)

Ratio of the shape area to that of the smallest circumscribing disk

Ratio of the shape area to that of a circle of the same convex
perimeter (perimeter of convex hull); equals IPQ (below) for
convex shapes

Ratio of the shape convex area (area of convex hull) to that of the
smallest circumscribing disk (circumdisk)

Ratio of the shape area to that of a circle of same perimeter

Squared perimeter-to-area ratio (Smets, 1970)
Indisk-to-circumdisk ratio: Ratio of the area of the maximum
inscribed disk (indisk) to the circumdisk of the shape

Ratio of the shape perimeter to the perimeter of the shape’s
convex hull

Aspect ratio of the ellipse enclosing the shape; orientation-
invariant

Elongation x sin(B); 8 is the angle from the x axis to the major
axis of the ellipse circumscribing the shape

Elongation x cos(8)

Ratio of the shape’s area to the area of the shape’s bounding box
Ratio of the shape’s height of centroid (see above) to the shapes’
height

Ratio of the maximum vertical distance (height) to the maximum
horizontal distance (width); orientation-dependent (Holmberg &
Holmberg, 1969; as cited in Krider et al., 2001)

Ratio of the shape area to the area of the shape’s convex hull
Ratio of the average width calculated at the bottom 1/8 portion
of the shape to the shapes’ height

Ratio of the average width calculated at the bottom 1/8 portion
of the shape’s convex hull to the shapes’ height

Note. The predictors featuring in the best model are listed in italics. Features within each subset
(surface measures, linear measures, ratios) are presented in alphabetical order. The same features
were used to construct principal component and partial least squares components to characterise
the stimulus space in alternative models (see below).
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Figure S3 A shows the goodness-of-fit (R?) and cross-validation error (MSE) for the best one-
to seven-predictor models. The best model (i.e., the model with the lowest cross-validation error
overall), described in the main text, includes six predictors.

Figure S3

Best Perceived Area Bias Regression Models: Model Comparisons
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Note. (A) Cross validation error (MSE, left-hand y axis, blue lines and markers) and goodness of fit
(R2, right-hand y axis, red lines and markers) for the best perceived area bias regression models with
1-7 predictors. Models were compared on their cross-validation error. Values for the best model
overall are indicated by the large asterisks. (B) AIC (left-hand y axis, blue lines and markers) and BIC
(right-hand y axis, red lines and markers) for the best perceived area bias regression models with 1-
7 predictors. Values for the best model overall (according to the cross-validation error) are indicated
by the large asterisks.

We compared our cross-validation approach to two other methods for model selection: AIC
and BIC, to support model comparisons for readers unfamiliar with cross-validation. Figure S3 B
shows the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for the best
one- to seven-predictor models. AIC supports the same conclusions as LOO XVAL (lowest AIC: 6
predictors), whilst BIC supports a more complex model (7+ predictors). Predictors for the best 1- to
6-predictor models are reported in

Table S6.



S11
BIASES IN THE PERCEIVED AREA OF SHAPES: SUPPLEMENTARY MATERIAL

Table S6

Predictors For the Best N-predictor Models Identified Via Cross-Validation

N Predictors
1 Compactness (1): Area-to-area of circumdisk ratio
2 Convex area
Area of circumscribing ellipse
3 Height
Convex area
Area of circumscribing ellipse
4 Height
Perimeter
Compactness (1): Area-to-area of circumdisk ratio
Elongation x cos(orientation)
5 Convex area
Circumradius
Elongation
Elongation x cos(orientation)
Width of base (1)
6 Circumradius
Elongation
Area of bounding box
Width of base (1)
Height of centroid
Elongation x sin(orientation)
Note. Best N-predictor models were identified via cross-validation. See Table S1 for descriptions and
the full list of predictors.

Figure S4 shows the influence of each predictor in in each condition (i.e., shape / orientation

combination) for the best model.



BIASES IN THE PERCEIVED AREA OF SHAPES: SUPPLEMENTARY MATERIAL

Figure S4

Best Model: Influence Of Each Predictor in Each Condition

20

10

2
-4

Predictor value x coefficient

-8

Circumradius

|

@]
| 1 1 |

|

~ T T T I T T T T T T T T T
° o o o 5] °
o] o] o) o © © o Q (e}
o (o]
| | | | | | | | |
Elongation
B T T T T T I T T T T T T T
I e o ° ° o Q o] o Q o] (¢] o
o o
B ) o o
= 1 | 1 | | | | | | 1 | |
Area of Bounding Box
T | T I T T T T T T I T T
© e o ° © o © % o 9 o o © )
- e o]
| | 1 (? | | | | | | |
Width of Base
[ T T T T T T T T T T T
) o © ° o o 9 o © o
— (0}
- © ° °© 0] o)
| @]
= 1 1 | 1 | | | | 1 1 1
Height of Centroid
T T I T I I I I T T T
L o .
o o] o © o © © e ©
L e o ©
o (o] o
L 1 1 1 L | 1 L | Il 1 L | 1 1 1 1
Elongation x sin(Orientation)
L T T T T T I T T T T T T
- © o Qo o] Q o] © o o] o (o] (¢] o
o (¢} [e]

emoes=0omysi¥—eozx| |||

A A XD

A

Note. Each condition is a shape / orientation combination. Conditions are reported in order of

perceived size (smaller to larger).
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S4 Alternative models

The regression model presented in the main paper provides a very good fit to biases in
perceived area, using 6 predictors, and was selected via cross-validation, as summarised in Figure S3.
However, it is a little difficult to interpret, due to partially correlated predictors and suppressor
effects. In addition, candidate predictors were arbitrarily chosen from literature, with further
candidate predictors added to capture the observed pattern of biases.

Here we explore whether it is possible to develop a model that is more parsimonious and
easily interpretable. PCA (Principal Component Analysis) and PLS (Partial Least Squares) are two
methods used to address the issues of correlated predictors and high dimensionality. Both methods
entail the construction of new components (latent variables) that more efficiently capture variation
across the stimulus space (and, with PLS, the response space). These new components serve as
predictor variables in linear regression models.

Using PCA, independent (orthogonal) components can be identified that efficiently capture
shape variations across our 22 stimulus shapes. However, this method is blind to the dependent
variable (area bias). Thus, whilst the first few principal components will efficiently capture shape
variability, these dimensions might be poor correlates of biases in perceived area. In contrast, PLS
regression considers variation in both the stimulus space and response space. Components are
identified in the multidimensional stimulus (shape) space that explain the maximum variance in the
responses (area biases).

Using PCA and PLS, we explored two different characterisations of our stimulus space. Our
22 stimuli were either represented by each shape’s geometric feature values (i.e., compactness,
elongation etc., as in the original regression model, see Table S5) or by the x-y coordinates of 32
points on the shapes’ perimeters. These points were equidistant along each shape’s perimeter, with
the first point directly above the shape’s geometric centre (preserving orientation). In both cases,
these input variables were z-scored. Resultant regression models using the PCA (PCR, Principal

Component Regression) or PLS (PLSR, Partial Least Squares Regression) components were compared
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using leave-one-out cross validation over shapes. To preview the key results: PCA produces poor
models of biases in perceived area, either using geometric features or perimeter points. Whilst the
stimulus shapes are efficiently described by a subset of components, these are poor predictors of
area biases. PLS is somewhat better in capturing area biases but is not more parsimonious or
interpretable than the regression model presented in the main text. However, PLS components from
perimeter points (see below) provides a useful visualisation of shape variations that correspond to
variation in perceived area.
PCA, PCR on geometric features

The first seven PCA components of the geometric feature data approximate our shape
stimuli very well (98% variance explained). However, the best PCR model (i.e. regression model using
the principal components as predictors of area bias, Figure S5) is poor: it includes seven predictors
(R?2=0.7567, XVal MSE = 0.1876), providing a much worse fit than the original multiple linear
regression model on geometric features, compare with Figure S3 A.
Figure S5

Best PCR on Geometric Features Models: Cross-validation Error and Goodness of Fit
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Note. Cross validation error and goodness of fit for the model fitted to the full dataset for the best 1-
to 8-predictor PCR models. Plotting conventions as in Figure S3 A. Predictors are PCA components of
the shape’s geometric features. Models were compared on their cross-validation mean squared
error (lower = better).
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PCA, PCR on perimeter locations

Using the 32 equidistant points on each shape’s perimeter, 8 principal components provide
a good approximation to our shapes (98% variance in shape perimeter locations). Figure S6 shows
these components (dashed blue line = mean shape, red and green =+ / - 3 SDs of component). The
first component appears to represent how tall vs. wide a shape is, whereas the second appears to
roughly correspond to triangularity (long side vertical vs. horizontal).
Figure S6

Representation of the First Eight Principal Components of Shape Perimeter Points.
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Note. The dashed blue line shows the mean shape. Red and green lines indicate +, - 3 SDs
respectively.
Unfortunately, PCR models using perimeter points provide a very poor account of area

biases. The best model includes four components (n. 1,9, 11, 13, Figure S7 B), but the fit is

extremely poor (R*=0.0381, XVal MSE = 0.2926, Figure S7 A).
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Figure S7

Best PCR on Perimeter Locations Models
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Note. (A) Cross validation error and goodness of fit for the model fitted to the full dataset for the

best 1- to 7-predictor PCR models. Plotting conventions as in Figure S3 A. Predictors are PCA
components of the shape’s perimeter points. Models were compared on their cross-validation error
(lower = better). Values for the best model overall (i.e., with the lowest cross-validation error) are
indicated by the large asterisks. (B) Representation of the four principal components featuring in the
best model. Plotting conventions as in Figure S6.

Figure S8 A shows cross-validation error and proportion of variance explained in area biases,
as a function of the number of PLS components in a regression model. The best model has 13
predictors. This provides a better fit than the original regression model with geometric features (R?

0.9799 vs. 0.9556; Figure S3 A), but the cross-validation error is larger (XVal MSE 0.175 vs. 0.026),

and the model includes more than double the predictors (13 vs. 6 predictors). A PLSR model with six
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predictors gives an R? similar to that for the original regression model, but the cross-validation error
is larger (R? 0.9524, XVal MSE 0.241; see

Table S7 for model comparisons).
Figure S8

Best PLSR on Geometric Features Models
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(A) Cross validation error (MSE, left-hand y axis, blue line and markers) and proportion of variance
explained in y (perceived area bias; right-hand y axis, red lines and markers) and x (shape geometric
features; right-hand y axis, green lines and markers) for the model fitted to the full dataset for the
best 1- to 14-predictor PLSR models. Predictors are PLS components of the shape’s geometric
features. Models were compared on their cross-validation error. Values for the best model overall
(i.e., with the lowest cross-validation error) are indicated by the large asterisks. (B) Composition of
the first five PLS components, shown as the weight assigned (y axis) to each geometric feature (x
axis) within each component (coloured lines). The features corresponding to each number are listed
in Table S5).

A limitation of PLS is that the components can be hard to interpret. Figure S8 B shows the
composition of the first 5 components (one line each), i.e. the weight given to each geometric
feature (see Table S5). The first component assigns a positive weight (larger than an arbitrary
threshold of |0.01|) to features that are negatively correlated with compactness (features 3-5, 8—
11, height (14), and perimeter (19)) and a negative weight to features that are positively correlated
to compactness (compactness measures 20-23 and features 30-31), and negligible weights to
features that capture orientation / elongation (e.g. features 26-29, height-to-width ratio (32)). Thus,

the first component seems to roughly capture how spread out (in all directions) the shape is. Vertical

elongation appears to be captured by the fifth component, which includes positive weights for
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features that are positively correlated with a shape’s vertical elongation (e.g. centroid-to-height
ratio (feature 31), height-to-width ratio (32)), and a negative weight to features that are positively
correlated with horizontal elongation (e.g. elongation x orientation (features 28, 29), area of base (1,
2)). However, this component also includes a (smaller) negative weight for orientation-invariant
elongation (27). Other components are harder to characterise succinctly.
PLS / PLSR on perimeter locations

Figure S9 A gives the cross-validation error and variance explained in biases in perceived
area, as a function of the number of PLS components in the regression model. The best model has 5
predictors, shown in Figure S9 B. This model has fewer predictors (5 vs. 6) but has a worse fit and
larger cross-validation error (R? 0.8679 vs. 0.9556, XVal MSE = 0.286 vs 0.026; see

Table S7 for model comparisons) than the original regression model. Is this PLSR model
more parsimonious than the original model? Although it has one fewer predictor, each of the PLS
predictors is constructed from the complete stimulus (64 perimeter coordinates) and response
variables. Thus, it does not provide a superior or more interpretable account of area biases.
Figure S9

Best PLSR on Perimeter Locations Models
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Note. (A) Cross validation error and proportion of variance explained in geometric features and
perceived area bias and for the model fitted to the full dataset for the best 1- to 7-predictor PLSR
models. Plotting conventions as in Figure S5. Predictors are PLS components of the shape’s
perimeter locations. (B) Representation of the five components featuring in the best model. The
dashed blue line shows the mean shape. Green and red surfaces show + / - 1 PLS component,
respectively.
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Nonetheless, the PLS components (Figure S9 B) can provide some insight into the shape
variations that predict the most variability in perceived area. The first two components (top row, left
and middle) capture how vertically vs. horizontally elongated a shape is, but also how ‘periphery
heavy’ (component 1) vs ‘centre heavy’ (component 2) it is. The third component is hard to
interpret. The fourth (bottom row, left) appears to relate to whether a shape is ‘cross-like’, with
points in either cardinal or diagonal orientation. The last component may be primarily capturing the
identity of our 8-pointed star stimulus. How do these relate to the geometric features / predictors in
the original regression model? This included measures of compactness (circumradius, area of
bounding box), elongation (aspect ratio, scale invariant) and its relationship with orientation
(elongation x orientation), and ‘bottom-heaviness’ (width of base, height of centroid). All five
components capture compactness, as large positive or negative loadings correspond to lower
compactness (circumradius, area of bounding box). The first and second components capture
variation in elongation (orientation invariant), and concurrent variations in vertical elongation. The
first component also captures the shape bottom-heaviness (width of base, height of centroid). All

five components variously capture the height of centroid (with either positive or negative weights).

Model comparisons

We compared the original regression model (‘R6’, see Figure S3 A) with PLRS models using t-
tests on the cross-validation residuals (one residual for each left-out shape, for each model).

Table S7 reports model comparisons with the best PLSR models (PLS on geometric features:
13 components; PLS on perimeter points: 5 components) and the six-predictor PLSR model with
components from geometric features.
Table S7

Model Comparisons

Compared models t-testp
Re < PLSRpp s 0.042 *
Re < PLSRgr 13 0.003 *
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Compared models t-testp
Re < PLSRGr 6 0.035 *

Note. Models were compared using t-tests on the cross-validation residuals (one residual for each
left-out shape, for each model). The greater-, less-than, equal signs refer to residual magnitudes
(i.e., My < My indicates that My residuals are smaller (better) for at least half + 1 of the left-out
shapes); R, PCR, PLSR denote regression, principal component regression, partial least squares
regression models; GF, PP denote components (predictors) from geometric features, perimeter
points. Subscript numbers indicate the number of predictors in each model. Stars show statistical
significance (p < .05) as indicated by the corresponding t-test p values.
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