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Abstract: Previous studies indicate that human facial profiles are considered as a biometric modality and there is a
bilateral symmetry in facial profile biometrics. This study examines the bilateral symmetry of the human
face profiles and presents the analysis of facial profile images for recognition. A method from few-shot
learning framework is proposed here to extract facial profile features. Based on domain adaptation and reverse
validation, we introduce a technique known as reverse learning (RL) in this paper for the same side profiles to
achieve a recognition rate of 85%. In addition, to investigate bilateral symmetry, our reverse learning model is
trained and validated on the left side face profiles to measure the cross recognition of 71% for right side face
profiles. Also in this paper, we assume that the right face profiles are unlabelled, and we therefore apply our
reverse learning method to include the right face profiles in the validation stage to improve the performance
of our algorithm for opposite side recognition. Our numerical experiments indicate an accuracy of 84.5% for
cross recognition which, to the best of our knowledge, demonstrates higher performance than the state-of-
the-art methods for datasets with similar number of subjects. Our algorithm based on few-shot learning can
achieve high accuracies for a dataset characterized with as low as four samples per group.

1 INTRODUCTION

The increased global use of biometrics technology has
resulted in an increase in security threats. Compa-
nies and government agencies have several difficulties
recognising authorized users. Tokens, such as identi-
fication cards and passwords, are the most common
security system authentication methods. However,
they are becoming increasingly unreliable due to du-
plication and the limited capacity of human memory
(Abdelwhab and Viriri, 2018). Thus, the use of bio-
metrics, such as facial recognition and fingerprints, is
growing in popularity worldwide. Face recognition
is a very important security measure that works by
identifying possible suspects in videos or surveillance
frames. A video may only record a small section of
the face, making correct identification impossible in
some cases (see Figure 1).

It should be highlighted that the majority of bio-
metrics literature focuses on the front face. Despite
its significance, the facial profile has received less at-
tention. It is common knowledge that facial recogni-
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Figure 1: The Surveillance Camera Footage Released in
Link with a Stabbing at Block 1 Club in 2019 (Everett,
2019).

tion systems may rely heavily on the ability to com-
pare and match the features of two face images. How-
ever, a profile view of a face may disclose certain as-
pects of the face’s structure that are not visible in a
frontal view (Alamri and Mahmoodi, 2022). Com-
bining the matching results derived from the frontal
and profile views of a face can assist in reducing in-
stances of incorrect identification. In the past decade,
a variety of algorithms for automatically recognising
individuals based on their facial profiles have been
introduced. Several facial profile identification tech-
niques are commonly used, including Scale-space fil-



tering (Lipoščak and Loncaric, 1999), Dynamic time
warping (Bhanu and Zhou, 2004), Attributed string
(Gao and Leung, 2002) and Hidden Markov model
(HMM) (Wallhoff and Rigoll, 2001; Wallhoff et al.,
2001). A facial profile biometric system enhances the
effectiveness of multiple facial identification systems
and makes recognition more realistic.

There are several deep learning-based methods
that have explicitly investigated facial profile recog-
nition and proposed methods for extracting discrim-
inative features from facial profiles. Sengupta et al.
illustrated how several algorithms performed when
using a restricted protocol and how each one de-
graded from frontal–frontal to frontal–profile (Sen-
gupta et al., 2016). In their study, the frontal-
frontal and frontal-profile experiment achieved clas-
sification accuracy of 96.40% and 84.91%, respec-
tively, using a deep features-based method. More-
over, in recent years, generative models, such as
generative adversarial network (GAN)-based meth-
ods, have been widely used to synthesise the frontal
view from the profile view in order to improve fa-
cial profile recognition systems (Zhao et al., 2018;
Li et al., 2019; Yin et al., 2020). In addition, deep-
learning-based methods have also demonstrated high
levels of performance. Facial recognition has been
greatly improved by deep learning techniques, which
are trained on a large-scale dataset and demonstrate
high-level recognition rates under challenging condi-
tions (Parkhi et al., 2015; Deng et al., 2019; Meng
et al., 2021). However, it is important to note that
all deep learning methods require a large number of
samples per class during training to achieve accept-
able performance levels.

Our contributions in this paper are as follows: 1)
higher recognition rate than the literature is achieved
on large datasets containing more than 200 subjects,
2) a technique in the framework of few-shot learn-
ing is proposed here to extract features from facial
profile images even with as low as four samples per
class, 3) our method is based on domain adaptation
(Wang et al., 2020), and reverse validation (Morvant
et al., 2011; Zhong et al., 2010) to guarantee a high
accuracy to improve recognition performance for bi-
lateral symmetry by minimizing the conditional dis-
tributions between the training and validation data
(Zhong et al., 2010), 4) the ability to identify mir-
ror symmetric images is used generally since mirrored
images were captured in different conditions than the
first set of images, 5) facial profile appears largely
to be bilaterally symmetric. We are the first to use
few-shot learning (FSL) to examine the bilateral sym-
metry of a facial profile. Additionally, we consider
challenging facial profile images with various planar

poses, while measuring the performance by training
pre-processing facial profile dataset and applying face
alignment to register all facial profiles for fair com-
parisons. The work given here represents the most
recent state-of-the-art methods in the recognition of
facial profiles and their bilateral symmetry.

The second section of this paper discusses the im-
age preprocessing phases, including face detection,
face alignment. In addition, the third section explains
the feature extraction stage using two few-shot learn-
ing techniques. Section four describes the experimen-
tal design, recognition performance, and subsequent
discussions. Moreover, Section five summarises the
conclusions drawn from the previous sections and
highlights the implications of the study.

2 FACIAL PROFILE AND
LANDMARKS DETECTION

To begin with, our focus was on detecting the bound-
ing box of a facial profile in all of the images in the
dataset and then identifying the important landmarks
within the bounding box as described in (Alamri,
2024). To achieve this, we used a pre-trained his-
togram of oriented gradients (HOG) with a linear sup-
port vector machine (SVM) object detector, as intro-
duced in (Dalal and Triggs, 2005).

For landmarks detection, the ensemble of regres-
sion trees (ERT) (Kazemi and Sullivan, 2014) method
is used to directly estimate the positions of facial land-
marks by utilizing a sparse subset of pixel intensities.
The majority of face alignment algorithms rely on a
face detection bounding box to initialise the shape.
Thus, to detect facial landmarks, the face must first
be extracted from the image. This extracted region of
interest (ROI) is then used to obtain the landmarks.
Shape predictors, also known as landmark predictors,
are used to predict key (x,y)-coordinates of a given
’shape’. Following the algorithm proposed by Kazemi
and Sullivan (Tzimiropoulos and Pantic, 2013), shape
predictors are used to locate individual facial struc-
tures such as the eyes, eyebrows, nose, lips/mouth,
and jawline. They require two inputs: the greyscale
version of the image and a rectangle object contain-
ing the coordinates of the face area.

The alignment and transformation framework was
based on the relevant literature (Zeng and Yi, 2011;
Walker et al., 1991). These transformations involved
estimating a combination of rotation, translation, and
scale that mapped the key points from one set to an-
other on a template.



Figure 2: Convolutional neural network architecture.

3 EXTRACTING VISUAL
FEATURES FROM FACIAL
PROFILE IMAGES

Deep neural networks are widely used in computer
vision for extracting features. In this section, we pro-
pose a structure inspired by previous research (Wang
et al., 2020; Parnami and Lee, 2022; Garcia and
Bruna, 2017) to leverage few-shot learning based on
the ResNet50 neural network (He et al., 2016) and
ArcFace (Deng et al., 2019). A typical CNN consists
of feature extraction and classification components.
During training, the model learns the unique facial
features and generates feature embeddings through
the feature extraction process. In the FSL strategy,
after training is completed, it becomes possible to
skip the classification step and generate feature em-
beddings for each face image. Figure 2 illustrates the
CNN architecture and the key stages used for feature
extraction.

• ResNet50 (He et al., 2016), short for residual net-
work, is a specific type of CNN known for its abil-
ity to maintain a lower error rate, even in deeper
networks. Our network accepts input images of
size 244 × 244 pixels and computes 7 × 7 grid
feature maps in the last layer before the fully con-
nected network. The pre-trained model was opti-
mised on the ImageNet dataset, which consisted
of multiple classes. Due to the difference between
the datasets used to train the networks and our tar-
get data, we chose to exclude the output of the
last fully connected layer. Our numerical experi-
ments demonstrated that the learned feature space
efficiently represented human faces using these 7
× 7 × 2048 feature maps, resulting in 49 2048-
dimensional vectors.
We then applied Sequential Floating Forward Se-

lection (SFFS) (Shirbani and Soltanian Zadeh,
2013) and principal component analysis (PCA)
(Jolliffe, 2002) algorithms as the next step to
reduce the dimensionality of the feature space
which resulted in achieving the best performance.
After reducing the dimensionality, we used the
feature vectors to train a KNearest Neighbour
(KNN) recognition method with k = 4 identified
as the optimal value to achieve the best perfor-
mance.

• ArcFace (Deng et al., 2019) is an innovative deep
face recognition algorithm proposed by Jiankang
Deng et al. It is considered a discriminative
model. The authors proposed the additive angu-
lar margin loss function, which has proven to be
highly effective in obtaining discriminative fea-
tures for facial recognition. It consistently outper-
forms other state-of-the-art loss functions. Arc-
Face addresses the challenge of effectively learn-
ing discriminative face features by incorporating
an angular margin that pushes the learned features
of different classes apart in the angular space. By
enhancing the separability between classes, Ar-
cFace significantly improves the model’s ability
to distinguish between similar faces. This model
is trained using the LFW dataset (Huang et al.,
2008) to obtain pre-trained weights. The LFW
dataset consists of 13,233 facial photos collected
from the web. The ArcFace model expects inputs
of size 112 × 112 and returns 512-dimensional
vector representations. Importantly, ArcFace sim-
plifies the process by compressing the extracted
features to only 512 components, thereby elimi-
nating the need for PCA.
We selected ResNet50 (Montero et al., 2022) as
the backbone for all of the network architectures
tested in the ArcFace repository, due to its optimal
balance between accuracy and parameter count.
In this context, the base model was ResNet50, and
we utilised ArcFace as the loss function. Gen-
erally, the term backbone refers to the feature-
extracting network responsible for processing in-
put data into a specific feature representation. The
backbone plays a crucial role in extracting and
encoding features from the input data, captur-
ing both low-level and high-level features. Af-
ter feature extraction, we calculated the ArcFace
loss and used it to update the network parame-
ters through backpropagation. We chose ArcFace
(Deng et al., 2019) as the baseline for two rea-
sons: it employs a SoftMax-loss-based methodol-
ogy, eliminating the need for an exhaustive train-
ing data preparation stage, and it has been demon-
strated to yield the best results for the original face



recognition task.

4 FACIAL PROFILE
RECOGNITION USING
DOMAIN ADAPTATION AND
REVERSE VALIDATION
METHODOLOGY

Domain adaptation, a subfield of machine learning,
aims to train a model on a source dataset and achieve
a high level of accuracy on a target dataset that differs
significantly from the source (Farahani et al., 2021).
Conversely, if some samples in the target dataset lack
labels, reverse validation (Morvant et al., 2011; Wang
et al., 2020) is employed to identify the best model
that minimises the difference between the conditional
distributions of the source and target datasets. In
this study, we propose a method grounded in do-
main adaptation and reverse validation, assuming that
some facial profile image samples lack labels and ex-
hibit distinct conditional distributions from the source
(training) dataset. Inspired by (Ganin et al., 2016),
we introduced an algorithm called reverse learning
(RL) based on domain adaptation and reverse valida-
tion. Unlike conventional prediction methods, our ap-
proach employed a two-step prediction process. We
use SFFS to select the most optimal features from the
distributions of the training and validation data. In our
RL algorithm, the two-step prediction helped identify
the best model with optimised hyper-parameters and
features between the training and validation datasets,
addressing issues associated with covariate shift as-
sumptions (David et al., 2010).

Figure 3: Training process of our reverse learning (RL) al-
gorithm: 1 training the model on the training set, 2
training the model on the validation set.

In the first step, the process began with a simple
training procedure using SFFS, As shown in Figure 3.
In the second step of the prediction process, after

Figure 4: Sample facial profile images from the
XM2VTSDB dataset.

making predictions for the validation set, we trained
on the validation set, made predictions for the training
set, and aimed to minimise errors using the SFFS al-
gorithm. In the second prediction step, the validation
set served as the training set. The second prediction
was finally used to quantify the error on the training
set, named the reverse learning metric. Finally, we
evaluated the performance of our system by present-
ing unseen test data from the target dataset.

4.1 Face Profile Dataset

We assessed our method using the XM2VTSDB
database, a research resource established and main-
tained by the University of Surrey (see (Messer et al.,
1999) for details). This database is an extended
version of the M2VTS database, as it comprises
more video recordings of each subject during each
session compared to M2VTS. Participants from the
XM2VTSDB database attended four sessions and the
database was developed over a significant period, en-
abling a wide range of appearance variations of the
individual subjects (see Figure 4).

4.2 Performance Analysis

In this section, we introduce a domain adaptation ap-
proach that is employed to assess the effect of this
strategy on the recognition accuracy of facial profiles
from opposite sides of the face. We detected a notice-
able shift in data within the same feature space when
evaluating the model fitted on the training set. This
discrepancy arose from the limited number of sam-
ples per class and the variations in subjects’ appear-
ances across the four images, as well as between the
training and test sets. To address this challenge, we
employed a technique that aimed to identify the gap
between the training, validation, and test sets.

We conducted a series of experiments on side-
view face recognition to assess the effectiveness of
the RL method compared to traditional approaches.
We then employed a similar technique in two distinct
settings:



4.2.1 Experiment for same view facial profile
(left side):

In this setting, we employed the leave-one-out cross-
validation (LOOCV) method to measure the recog-
nition rate. In addition, we opted to use KNN as a
simple classifier. The model was trained and evalu-
ated from the perspective of the left side, with the test
data also originating from the left side. We evalu-
ated the performance of this experiment by analysing
four samples from the left side view of each indi-
vidual in the dataset. For this experiment, 80% of
the data on the same side was allocated for training
and validation, while the remaining 20% served as
the unseen testing set. By utilising ResNet50 fea-
tures, we achieved an average recognition accuracy of
85% when training KNN with 80% of the samples in
the dataset (traditional strategy). Interestingly, we ob-
served an increase in accuracy to 91% when employ-
ing the RL strategy. However, when using ArcFace
features, the average recognition accuracy dropped to
71%. Notably, this accuracy remained consistent even
with the application of the RL approach.
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Figure 5: Recognition via CMC performance for ResNet50
features.

4.2.2 Experiment for mirror bilateral symmetry
view (left and right side):

In this case, the facial profile side images were ini-
tially mirrored from right to left, following the way in
which previous processes had been applied to detect
facial profiles. We evaluated the performance of this
experiment by analysing eight samples from the left
and right side view of each individual in the dataset.
In this experiment, we trained and validated on the
left side and measured the recognition rate on the right
side as unseen test data. Our numerical experiments
revealed that utilising RL can enhance recognition ac-
curacy to 75%, compared to 70% with the traditional
method, based on ResNet50 features.

Additionally, the model was trained on left-side
facial profiles and validated on unlabelled right-side
profiles. Testing was then conducted using unseen
data from the right side. By using right facial profiles
as unlabelled data in the validation process, a recog-
nition rate of 82% was achieved. This marked a sig-
nificant improvement of 12% compared to traditional
methods. Interestingly, when ArcFace features were
utilised, the accuracy remained consistent across all
three techniques, at 56%. However, it is worth noting
that the RL approach did not lead to any enhancement
in accuracy.

One of the most important techniques for evaluat-
ing model performance is cumulative matching char-
acteristics (CMC) curves (DeCann and Ross, 2013).
The CMC curve shows the recognition at different
ranks, indicating the probability of finding an accu-
rate match at a particular rank. Figures 5 and 6 present
the recognition performance of facial profiles. In Fig-
ure 5, which used ResNet50 features, the accuracy for
same-side recognition improved from 85% at rank-1
to 96% at rank-10 when employing RL. Moreover, the
accuracy for BS increased from 71% at rank-1 to 91%
at rank-10 when using only right-side images as test
data. However, when right-side images were also in-
cluded in the validation stage, the accuracy rose from
82% at rank-1 to 96% at rank-10.

In Figure 6, which used ArcFace features, the ac-
curacy for RL on the same side improved from 71%
at rank-1 to 87% at rank-10. Additionally, the ac-
curacy for BS using only right-side images as test
data improved from 56% at rank-1 to 81% at rank-10.
Additionally, the accuracy for BS using only right-
side images as test data improved from 56% at rank-
1 to 81% at rank-10. Similarly, when right-side im-
ages were also used in the validation stage, the accu-
racy increased from 56% at rank-1 to 83% at rank-
10. The inferior performance of ArcFace compared
to ResNet50 can be attributed to the geometric nature
of its loss function, which does not effectively opti-



Table 1: Recognition rates with and without domain adaptation based on RL algorithm; (BS) bilateral symmetry, (L) left side,
(R) right side, (SD) standard deviation.

View Method Dataset Model
ResNet50 ArcFace

Training Validation Test Accuracy SD Accuracy SD

Same side Traditional L L L 85% 0.016 71% 0.012
RL L L L 91% 0.014 71% 0.011

BS
Traditional L L R 70% 0.021 56% 0.009

RL L L R 75% 0.011 56% 0.008
RL L R R 82% 0.042 56% 0.041
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Figure 6: Recognition via CMC performance for ArcFace
features.

mize for the best results. In particular, ArcFace’s loss
function can be limiting, especially in cases such as
facial profile. Our numerical experiment results are
summarised in Table 1 and reveal the following two
findings:

1) Using ResNet50 features, the recognition rate for
the same side exceeded 85% with the traditional
method and improved by 6% with the RL method.
For the opposite side, the recognition rate using
the traditional method is 70%, which increased to
75% with the RL method when the left side was

included in both the validation and training sets.
Notably, the accuracy significantly improved by
12% when right facial profiles were included in
the validation process.

2) When employing ArcFace features, the recog-
nition rates for both the same and opposite
sides remained unchanged, and the model perfor-
mance did not alter even after introducing the RL
method.

Our numerical experiments utilising ResNet50 in-
dicated that the RL method proposed here outper-
formed the state-of-the-art for datasets containing
more than 200 subjects. The dataset utilised in this
study differs from the one used in previous work. To
clarify, our dataset presented greater challenges due to
the following reasons: 1) it comprised 230 subjects,
which is substantially larger than all datasets consid-
ered in (Ding et al., 2013; Bhanu and Zhou, 2004; Xu
and Mu, 2007), 2) some of the facial profiles in our
dataset were occluded, yet our method still achieved
a high recognition rate of 91% using our RL method,
surpassing all methods presented in (Ding et al., 2013;
Bhanu and Zhou, 2004; Xu and Mu, 2007), and 3) in
the method proposed here, we assumed that the val-
idation set was unlabelled. Such an assumption ren-
dered our dataset more challenging than those in the
literature.

In our study of 230 subjects, we achieved a cross-
recognition rate of 82%, which is the highest among
our results. This performance can be compared to the
work presented in (Toygar et al., 2018), where only 46
subjects with left and right profile images were used.
The best cross-recognition rate reported in (Toygar
et al., 2018) was 81.52%, when the model was trained
on the left side and tested on the right side. However,
in our study, facial profiles with a larger number of
subjects achieved an 82% cross-recognition rate. This
indicates that facial profiles contain sufficient infor-
mation to be considered an independent and important
biometric modality. Table 2 presents the recognition
rates of facial profiles from various methods found in
the literature.



Table 2: Recognition rates of facial profiles in the literature
with various methods.

Publication Dataset Method Accuracy
Same side view
(Ding et al.,
2013)

44 DWT +
RF

92.50%

(Bhanu and
Zhou, 2004)

30 DWT 90%

(Xu and Mu,
2007)

38 PCA 77.63%

Other side view
(Toygar et al.,
2018)

46 BSIF +
LPQ +
LBP

81.52%

Table 1 presents the results which demonstrate
that ResNet50 performed better than ArcFace in
both same-side and cross-recognition experiments.
While ArcFace demonstrated strong performance
when dealing with a slightly angled view of faces
and excelled in large-scale face identification tasks,
its performance was lower when applied to facial pro-
files.

5 CONCLUSION

This study introduced a method for facial profile
recognition that combines few-shot learning, domain
adaptation, and reverse validation techniques. We em-
ployed a similarity registration technique to ensure
the precise alignment of all facial profile images. By
utilising two pre-trained CNN models, ResNet50 and
ArcFace, we implemented few-shot learning. Among
these models, ResNet50 demonstrated superior per-
formance compared to ArcFace. Specifically, our RL
algorithm, which utilised ResNet50, outperformed
the traditional training methods discussed in this
study. The results obtained from our RL method re-
veal significant improvements in classification rates.
Specifically, the recognition rate for same side (left
side) reached 91%, surpassing the state-of-the-art per-
formance achieved with datasets of similar sizes.

Additionally, promising outcomes were observed
in cross-recognition, with a rate of 82% achieved
when right-side images were used in the validation
stage. Furthermore, a recognition rate of 75% was
attained when left-side images were employed in val-
idation, with right-side images used for testing. Nu-
merical experiments indicated a notable 7% enhance-
ment in cross-recognition accuracy when right-side
faces were included in the validation process. There-
fore, we can conclude that depending on the applica-

tion, recognition is viable even when facial profiles
are the sole biometric modality available, including
scenarios involving bilateral symmetry. Finally, we
obtained promising results using only four samples
per subject. Alternatively, leveraging a learning trans-
formation or training a neural network from scratch
could have been considered.
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