
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

The Balanced Facility Location Problem:
Complexity and Heuristics

Malena Schmidt
Delft University of Technology, 2628 CT, Delft, Netherlands

Bismark Singh
School of Mathematical Sciences, University of Southampton, Southampton, S017 1BJ, UK

b.singh@southampton.ac.uk

A recent work proposes a new quadratic facility location model to address ecological challenges faced by
policymakers in Bavaria, Germany. Building on this, we significantly extend our understanding of this new
problem. We develop connections to traditional combinatorial optimization models and show the problem
is N P-hard. We then develop several classes of easy-to-implement heuristics to solve this problem. These
are rooted in solving special cases of the generalized quadratic assignment problem as a subproblem; this
subproblem is also N P-hard. On moderate sized instances from Bavaria—that were previously intractable—
our proposed heuristics compute feasible solutions that are 0.5% (on average) improved over the generic
solution method in just over a minute (on average), even when the generic solver runs for 20,000 seconds.
Larger instances show an improvement of 5% (on average) compared to the generic solution method in an
average of 410 seconds.

Key words : Facility location problem ; heuristics ; quadratic assignment ; complexity ; waste management

1. Introduction
We revisit a recently proposed model of the undesirable facility location problem (FLP) that seeks to
assign users to so-called obnoxious facilities in a fair manner (Schmitt and Singh 2024b). Here, the
authors develop a framework for systematic closures of facilities—such as, airports, recycling centers,
and landfills—which are necessary for public use yet exert a negative impact when used in an imbal-
anced manner. Their specific motivation is the pervasive shutdown of recycling centers in the German
state of Bavaria over the last two decades due the damaging ecological impact by operation of these
facilities, see, e.g., (Bayerisches Landesamt für Umwelt 2015). The authors formulate this relevant
and timely problem as a quadratic optimization model with binary variables thereby distinguishing
it from most other FLPs that include a linear objective function. The framework assists policymakers

1

Schmidt and Singh: Balanced Facility Location Problem
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

by maintaining a balanced usage of existing recycling centers while still ensuring high accessibility
for the visiting populations. Our work significantly extends this new body of literature in ways we
describe below.

Due to the computational intractability of their model, the authors are unable to solve it for all
the considered users and facilities in Bavaria (Schmitt and Singh 2024b). Thus, they resort to a num-
ber of ad-hoc computational enhancements, e.g., relaxations of equality constraints to inequalities
or ignoring users far away from facilities. Although such enhancements provide practically viable
solutions, a formal understanding of this new problem’s structure is left unattended. As a result,
extending the problem from Bavaria to all of Germany is practically untenable: the model generation
alone takes several hours even on a high performance computer. Our work seeks to fill this gap by
systematically investigating this recent problem from both a theoretical and a computational per-
spective. To this end, we study the complexity of this problem (and, an associated subproblem) as
well as the relationship with a number of other combinatorial optimization models. These relation-
ships lead us to develop several classes of heuristics tractable for problem sizes an order of magnitude
larger than those previously considered. Specifically, we seek to show how relatively simple heuristics,
including those rooted in classic procedures, when implemented smartly obviate the need for more
sophisticated schemes.

Employing the same notation as in the original work, we consider a set of users i∈ I with popula-
tions Ui > 0, a set of facilities j ∈ J with capacities Cj > 0, preferences of users to facilities 0 < Pij < 1,
and a budget B ≤ |J | of the number of open facilities. Then, the following is the central optimization
model proposed in (Schmitt and Singh 2024b):

z∗ = min
x,y

∑
j∈J

Cj

(
1−

∑
i∈I UiPijxij

Cj

)2

(1a)

s.t.
∑
j∈J

yj ≤B (1b)∑
i∈I

UiPijxij ≤Cj ∀j ∈ J (1c)∑
j∈J

xij = 1 ∀i∈ I (1d)

xij ≤ yj ∀i∈ I, j ∈ J (1e)

yj ∈ [0,1] ∀j ∈ J (1f)

xij ∈ {0,1} ∀i∈ I, j ∈ J. (1g)

In model (1), the decision variables yj and xij indicate whether facility j is opened, and whether
user i is assigned to facility j, respectively; the binary restrictions in constraints (1g) with the
model’s structure ensures an optimal solution has binary values for the y variables in constraint (1f)

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

as well. Then, constraint (1e) ensures that users are only assigned to open facilities. The quantity
Wij = UiPij is interpreted as the discounted population of user i actually visiting facility j if i is
assigned to j. Constraint (1c) restricts the number of assigned users to a facility by its capacity, while
constraint (1b) bounds the number of open facilities by the parameter B. Constraint (1d) and (1g)
jointly ensure that every user is assigned to exactly one facility. The key novelty in model (1) lies in
the objective function (1a) that seeks to ensure a low variance in the utilization of the facilities (given
by uj =

∑
i∈I

UiPijxij

Cj
,∀j ∈ J) while simultaneously maximizing overall access of users to the recycling

facilities (given by
∑

j∈J,i∈I
UiPijxij∑

i∈I
Ui

). The structure of this optimization model, especially as driven
by the objective function, provides several interesting properties that we investigate in this work. We
study this model as directly presented in this form; for further details on the model including the
choice of this particular objective function, see (Schmitt and Singh 2024b). We name the problem
defined by model (1) as the Balanced Facility Location Problem (BFLP), and state its decision version
in Section 2.

The feasible region of model (1), defined by constraints (1b)-(1g), is closely related to several
classes of traditional FLPs. As an example, consider the capacitated FLP (CFLP) defined as follows:

min
x,y

∑
i∈I

∑
j∈J

eijdixij +
∑
j∈J

fjyj (2a)

s.t.
∑
i∈I

dixij ≤Cjyj ∀j ∈ J (2b)∑
j∈J

xij = 1 ∀i∈ I (2c)

yj ∈ {0,1} ∀j ∈ J (2d)

xij ∈ [0,1] ∀i∈ I, j ∈ J. (2e)

The CFLP and BFLP differ foremost in the form of their objective functions due to the former’s
consideration of costs: the CFLP minimizes the cost of operating facilities, f , and transporting users
to facilities, e. Another difference is in the parameter di that denotes demands (or equivalently,
fulfillment levels) of user i. This is analogous to the parameter UiPij of the BFLP but does not consider
preferences of users to facilities; i.e., the BFLP enriches the CFLP by allowing different levels of demand
satisfaction based on preferred facilities. Model (7) of (Schmitt and Singh 2024b) presents a special
case of the BFLP that removes these preferences by setting Pij ← Pi,∀i ∈ I, j ∈ J ; then, the authors
prove that an optimal solution for this model has exactly the same level of utilization for all the open
facilities. This result is related to the classical notion of proportional fairness, see, e.g., (Kelly et al.
1998). The third difference is that the BFLP includes a budget on the number of open facilities, B.
This imposes an additional combinatorial layer over the constraints of the CFLP as the BFLP selects
at most B of the |J | facilities to provide an assignment of users. Including this constraint makes the

Schmidt and Singh: Balanced Facility Location Problem
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

feasible region of model (1) comparable to the traditional p-median problem whose feasible region is
modeled by constraints (1b) (with an equality), (1d)-(1g). Finally, the x variables are fractional in
the CFLP unlike those in the BFLP. Although the BFLP allows a continuous relaxation of the binary
restrictions on the y variables without loss of optimality, it does not allow the same for the binary
restrictions on the x variables; this is again due to the structure of the objective function (1a). This
fact is unlike the p-median problem that does allow a continuous relaxation of the x variables without
loss of optimality.

Most variants of FLPs are NP-hard, see, e.g., (Krarup and Pruzan 1983); thus, a variety of
heuristics are available for their solution. In this work, we choose the well-studied ADD and DROP

heuristics, and adapt these for the BFLP. These heuristics were originally presented in (Kuehn and
Hamburger 1963) and (Feldman et al. 1966), respectively, and have been extensively studied over
the last few decades, see, e.g., (Jacobsen 1983, Sridharan 1995). The key idea of these heuristics
is to sequentially add or drop particular facilities, from a given set, that are determined as good to
open or close by another procedure. Typically, this second procedure involves computing an assign-
ment of users to a new but known set, S ⊆ J , of facilities; i.e., the procedure involves solving a
generalized assignment problem (GAP). The GAP has a feasible region given by constraints (2b)-(2e)
with the y variables fixed; i.e., yj = 1,∀j ∈ S and yj = 0,∀j ∈ J \ S. Thus, the feasible region is{

x :
∑

i∈I dixij ≤Cj ,∀j ∈ S;
∑

j∈S xij = 1,∀i∈ I;xij ∈ {0,1},∀i∈ I, j ∈ S
}

. Finding a feasible solution
to this region is known to be NP-complete (Martello 1990).

The above-mentioned schemes decompose a NP-hard problem into subproblems that are also,
unfortunately, NP-hard; however, solving the latter problem is typically easier than the former. If
the subproblem is also computationally intractable, as we find in our experiments, tailored solution
methods are used for its solution. For example, to solve the hard GAP subproblem several polynomial
time approximation algorithms are available (Öncan 2007). Further, local search approaches based on
so-called λ-moves that reassign at most λ users between facilities are also frequently employed to solve
the GAP, see, e.g., (Mateus et al. 2010, McKendall and Li 2016). The heuristics we develop to solve the
BFLP are in a similar spirit. In Section 2, we show that model (1) is NP-hard. This observation is not
surprising, given that the computational results of the original work in (Schmitt and Singh 2024b)
demonstrate intractability to solve the model generically1. Next, we develop schemes to smartly fix
a set of facilities as open. The arising subproblem is then a special case of the Generalized Quadratic
Assignment Problem (GQAP) instead of the GAP due to the structure of the objective function. Despite
the special case, this subproblem is still NP-hard as we show in Section 2. However, unlike the GAP,
this subproblem is computationally intractable even for moderate sized instances; thus, in Section 3,

1 All throughout this work, by a generic solution method we mean a state-of-the-art mixed integer programming
solver, such as CPLEX or Gurobi, employed with its default settings.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

we derive an additional set of heuristics for its solution. This subproblem of the BFLP for a fixed set
of open facilities, S ⊆ J (where, |S| ≤B) is as follows.

z∗
S =

∑
j∈J\S

Cj + min
x

∑
j∈S

Cj

(
1−

∑
i∈I UiPijxij

Cj

)2 (3a)

s.t. (1c), (1d), (1g). (3b)

The continuous relaxation of model (3) (we revisit this later in model (9)) is a convex optimization
model, see, Proposition S1 in Online Supplement A; thus, a standard mixed-integer-programming
(MIP) solver, such as Gurobi, is sufficient to solve model (9) to optimality (Wolfe 1959). We name
the problem defined by model (3) as the Balanced User Assignment Problem (BUAP), and again state
its decision version in Section 2. A feasible solution for model (3) extends to model (1) by setting
yj = 1,∀j ∈ S;yj = 0,∀j ∈ J \S; further, it follows from Proposition S3 in Online Supplement A that
z∗

S ≥ z∗,∀S ⊆ J , where |S| ≤B).
With this background, the following are the key contributions of this work:
(i) we formally define the BFLP and the BUAP and show both are NP-hard;
(ii) we extend and compare several heuristics for FLPs to both these problems;
(iii) we provide extensive computational experiments on two real-world case studies from Bavaria as

well as two artificially generated instances from Germany to guide public policymakers facing
similar problems;

(iv) we publicly release all our code and instances to allow further developments to this new problem,
as well as related FLPs.

The rest of this article is structured as follows. In Section 2, we define the decision versions of our two
problems and study their theoretical hardness. Motivated by this finding, we then derive heuristics for
both these problems. Section 3 presents two algorithms, plus local search enhancements for each, to
solve model (3). In Section 4, we employ these heuristics as procedures and develop three algorithms
to solve model (1). In Section 5, we present the original data we use as well as new data we synthesize
for our computational experiments that we report in Section 6. These computations compare the
heuristics to each other and also to a generic solution of the underlying models. We conclude in
Section 7 and provide further proofs, pseudocodes, examples, and analysis in the online supplements.
We provide all associated datasets and our code at the IJOC GitHub software repository (Schmidt
and Singh 2025).

2. Complexity
In this section, we study the theoretical complexity of the two central problems of this work men-
tioned: the BFLP and the BUAP defined by model (1) and model (3), respectively. Without loss of

Schmidt and Singh: Balanced Facility Location Problem
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

generality, we drop the constant term in the objective function of model (3) in this section. We begin
by defining their decision versions.

Definition 1. The Balanced User Assignment Problem (BUAP)
Instance: Given a set of users i∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ S = {j1, j2, . . . , j|S|}

with corresponding capacities Cj ∈ Z+, weights Wij ∈ R+ of assigning user i to facility j and a
number M ∈R+.

Question: Do there exist subsets of users Ij ⊆ I,∀j ∈ S such that the Ij form a partition of I

(i.e.,
⋃

j∈S Ij = I and Ij ∩ Ij′ = ∅,∀j ̸= j′ ∈ S) with
∑

i∈Ij
Wij ≤ Cj ,∀j ∈ S such that

∑
j∈S Cj

(
1−∑

i∈Ij
Wij

Cj

)2

≤M?
Definition 2. The Balanced Facility Location Problem (BFLP)

Instance: Given a set of users i∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ J = {j1, j2, . . . , j|J|}

with corresponding capacities Cj ∈ Z+, weights Wij ∈R+ of assigning user i to facility j, a budget
B ≤ |J | ∈ Z+ and a number M ∈R+.

Question: Does there exist a subset of facilities S ⊆ J with |S| ≤ B and subsets of users Ij ⊆

I,∀j ∈ S such that the Ij form a partition of I (i.e.,
⋃

j∈S Ij = I and Ij ∩ Ij′ = ∅,∀j ̸= j′ ∈ S) with∑
i∈Ij

Wij ≤Cj ,∀j ∈ S and
∑

j∈J Cj

(
1−

∑
i∈Ij

Wij

Cj

)2

≤M?
We next show that the BUAP is NP-complete even for two facilities and even in the absence of an

objective function; i.e., determining a feasible solution of model (3) itself is NP-complete. To this
end, we define the following problem—given by constraints (1c), (1d), and (1g)—that determines
feasibility of model (3); we also use this problem in our algorithms in Section 3.

Definition 3. The User Assignment Problem (UAP)
Instance: Given a set of users i∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ S = {j1, j2, . . . , j|S|}

with corresponding capacities Cj ∈Z+, and weights Wij ∈R+ of assigning user i to facility j.
Question: Do there exist subsets of users Ij ⊆ I,∀j ∈ S such that the Ij form a partition of I (i.e.,⋃

j∈S Ij = I and Ij ∩ Ij′ = ∅∀j ̸= j′ ∈ S) with
∑

i∈Ij
Wij ≤Cj ,∀j ∈ S?

Lemma 1 (Martello (1990)). The UAP is NP-complete.

We also provide a slightly different and detailed proof of Lemma 1 in Online Supplement A in
Theorem 1. Although—as Lemma 1 shows—determining a feasible solution for model (3) is NP-
hard in general, solutions to special cases of instances of the UAP are easy. For example, relaxing
constraint (1d) from an equality to an inequality renders the model always feasible (xij = 0,∀i ∈

I, j ∈ S is feasible). A more interesting special case occurs when the capacities are large enough to
accommodate any user: Cj ≥

∑
i∈I Wij ,∀j ∈ S; a trivial feasible solution is then obtained by assigning

any user to any facility. Next, we show that although feasibility of the problem in this special case is

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

easy, determining an optimal set of facilities is stillNP-hard. In Online Supplement A, we provide two

examples, Example S1 and Example S2 for how other similarly intuitive solutions to this particular

problem are suboptimal. We define the decision version of this special case of the BUAP as follows.

Definition 4. The Sufficient Capacity User Assignment Problem (SCUAP)

Instance: Given a set of users i∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ S = {j1, j2, . . . , j|S|}

with corresponding capacities Cj ∈ Z+, weights Wij ∈R+ of assigning user i to facility j s.t. Cj ≥∑
i∈I Wij ,∀j ∈ S and a number M ∈R+.

Question: Do there exist subsets of users Ij ⊆ I,∀j ∈ S such that the Ij form a partition of I (i.e.,⋃
j∈S Ij = I and Ij ∩ Ij′ = ∅,∀j ̸= j′ ∈ S) with

∑
j∈S Cj

(
1−

∑
i∈Ij

Wij

Cj

)2

≤M?

Our proof rests on reduction from the partition problem, whose definition and complexity we state

below, and a proposition whose proof being straightforward we reserve for Online Supplement A.

Definition 5. The Partition Problem (PP)

Instance: Given a set of positive integers T = {t1, . . . , t|T |}, |T | ≥ 2; i.e., tk ∈Z+,∀k = 1,2, . . . , |T |.

Question: Does there exist a subset L ⊆ {1, . . . , |T |} such that
∑

k∈L tk = 1
2

∑
t∈T t =∑

k∈{1,...,|T |}\L tk?

Lemma 2 (Karp (1972)). The partition problem is NP-complete.

Proposition 1. Given y ∈R+ the function f(x1, x2) = (1− x1
y

)2 +(1− x2
y

)2 subject to x1 +x2 = y,

where x1, x2 ∈R+, is uniquely minimized at x1 = 1
2y = x2; hence, f(1

2y, 1
2y) = 1

2 .

See Online Supplement A □.

Theorem 1. The SCUAP is NP-complete.

Given an instance of PP, we construct an instance of SCUAP as follows:

• I←{1, . . . , |T |};

• S←{1,2};

• C1 = C2←
∑

t∈T t;

• Wi1 = Wi2← ti∀i∈ I;

• M← 1
2

∑
t∈T t.

Note that our hypothesis of sufficient capacity is satisfied since
∑

i∈I Wij =
∑

k∈I tk =
∑

t∈T t =

Cj ,∀j ∈ S. Also, observe that the SCUAP is in NP and that the construction of the instance of the

SCUAP is polynomial in the input size |T |. Next, we show that an instance of the PP is a YES instance,

if and only if the transformed instance is a YES instance for the SCUAP.
=⇒ First, consider a YES instance of the PP given by a subset L⊆ {1, . . . , |T |}. We then construct

subsets of the users leading to a YES instance of the SCUAP as follows: I1←L and I2←{1, . . . , |T |}\L.

Schmidt and Singh: Balanced Facility Location Problem
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Then, I1 ∪ I2 = L∪ ({1, . . . , |T |} \L) = {1, . . . , |T |}= I and I1 ∩ I2 = L∩ ({1, . . . , |T |} \L) = ∅; thus,

this assignment is a partition of I. This solution has an objective value
∑

j∈S Cj

(
1−

∑
i∈Ij

Wij

Cj

)2

=

C1
(
1−

∑
i∈I1

Wi1

C1

)2 + C2
(
1−

∑
i∈I2

Wi2

C2

)2 (4a)

=
∑
t∈T

t
(
1−

∑
k∈L tk∑
t∈T t

)2 +
∑
t∈T

t
(
1−

∑
k∈{1,...,|T |}\L tk∑

t∈T t

)2 (4b)

=
∑
t∈T

t
(
1−

1
2

∑
t∈T t∑

t∈T t

)2 +
∑
t∈T

t
(
1−

1
2

∑
t∈T t∑

t∈T t

)2 (4c)

= 2
∑
t∈T

t
(
1− 1

2
)2 = 1

2
∑
t∈T

t (4d)

= M. (4e)

Equation (4a) follows from the definition of the SCUAP instance, equation (4b) holds by construction,
equation (4c) holds since the PP instance is a YES instance, equation (4d) is a simplification, while
equation (4e) holds by construction from the definition of M . As equality holds throughout, the
constructed instance is a YES instance of the SCUAP.
⇐= Next, consider a YES instance of the SCUAP given by two subsets I1 and I2. We now construct

a partition leading to a YES instance of the PP. Consider L← I1. It follows that {1, . . . , |T |} \L = I2

since I1, I2 partition I = {1, .., |T |}. It remains to be shown that
∑

k∈L tk =
∑

k∈{1,...,|T |}\L tk.
Consider the optimal objective function value of this SCUAP instance.

1
2

∑
t∈T

t = M ≥
∑
j∈S

Cj

(
1−

∑
i∈Ij

Wij

Cj

)2

(5a)

= C1
(
1−

∑
i∈I1

Wi1

C1

)2 + C2
(
1−

∑
i∈I2

Wi2

C2

)2 (5b)

=
∑
t∈T

t
(
1−

∑
k∈L tk∑
t∈T t

)2 +
∑
t∈T

t
(
1−

∑
k∈{1,...,|T |}\L tk∑

t∈T t

)2
. (5c)

Equation (5a) follows since the optimal objective function value is at most M by definition, where
M = 1

2
∑

t∈T T by construction. Equations (5b) and (5c) follow from the definition of the SCUAP

instance and our definition of L. Dividing throughout by
∑

t∈T t > 0 simplifies equation (5) to

1
2 ≥

(
1−

∑
k∈L tk∑
t∈T t

)2 +
(
1−

∑
k∈{1,...,|T |}\L tk∑

t∈T t

)2
. (6)

We now use Proposition 1 with y←
∑

t∈T t > 0. Then, the function
(
1− x1∑

t∈T t

)2 +
(
1− x2∑

t∈T t

)2
, (7)

subject to x1 + x2 =
∑

t∈T t, with x1, x2 ∈R+ is uniquely minimized at x∗
1 = x∗

2 = 1
2

∑
t∈T t giving a

value of 1
2 . For the feasible solution x1←

∑
k∈L tk and x2←

∑
k∈{1,...,|T |}\L tk we then have,

1
2 ≤

(
1−

∑
k∈L tk∑
t∈T t

)2 +
(
1−

∑
k∈{1,...,|T |}\L tk∑

t∈T t

)2
. (8)

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

Since the minimum is attained uniquely, equations (6) and (8) together yield x∗
1 = x∗

2 =
∑

k∈L tk =∑
k∈{1,...,|T |}\L tk; i.e., the considered set L indeed defines a YES instance of the PP.

In Online Supplement A, we provide an example of this mapping. The above discussion directly leads

us to our main results of this section that both model (3) and model (1) are NP-hard.

Theorem 2. The BUAP is NP-complete.

This follows directly from Lemma 1, or from Theorem 1 since the SCUAP is a special case of the

BUAP.

Theorem 3. The BFLP is NP-complete.

This follows directly from Theorem 2 since the BUAP is a special case of the BFLP. In particular,

an instance of the BUAP with given inputs I ′, S′ and M ′ reduces to the BFLP by setting I← I ′, J ←

S′,B← |J | and M←M ′.

In the proceeding sections, we develop heuristics to solve both these problems. We find that despite

the theoretical hardness of the UAP and the BUAP we still obtain feasible and high-quality solutions

via our heuristics; our computational experiments in Section 6.2 further corroborate this. This obser-

vation is similar to finding solutions for the PP that we use for our reduction proofs above, which

despite its hardness allows for high-quality heuristic solutions, e.g., the so-called Longest Processing

Time scheduling algorithm (Pinedo 2016).

3. Heuristics for model (3)
Next, we present three heuristics for solving the BUAP formulated in model (3): a greedy algorithm

proposed in (Schmitt and Singh 2024a), an algorithm based on rounding a fractional solution, and an

algorithm based on a local search. In what follows, we let arg max{·} denote the value of one index at

which the input set takes its maximum value; if there is more than one such index, we arbitrarily pick

one while if there is none the output is empty. We define a function sort(L,Al,ascending/descending)

that sorts elements l ∈ L depending on their value Al in ascending or descending order. We define

the auxiliary variable uj =
∑

i∈Ij
Wijxij

Cj

,∀j ∈ J ; Further, we let [x], [y], and [u] denote the entire

set of decision variables corresponding to xij , yj , and uj of appropriate dimension. An “assignment”

is a solution, [x], to the BUAP, while an “incomplete assignment” is a solution, [x], to the always

feasible model (3), where constraint (1d) is relaxed to
∑

j∈S xij ≤ 1. This means that not all users are

assigned a facility. To distinguish between heuristics for the BUAP and the BFLP, we call the former as

procedures and latter as algorithms. Finally, we let z̄S ≥ z∗
S and z̄ ≥ z∗ denote the objective function

values of model (3) and (1) obtained from any heuristic. For simplicity, we use Wij to denote UiPij .

Schmidt and Singh: Balanced Facility Location Problem
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

3.1. The greedy algorithm of (Schmitt and Singh 2024a)

The algorithm of (Schmitt and Singh 2024a) seeks to provide a feasible solution to the BFLP; however,
in this section, we are only interested in a solution for the BUAP. Thus, we extract the relevant
parts of this scheme, and summarize it in Procedure 1; we later compare our results with those
obtained by this scheme. For each user, we first determine their most preferred facility from those
that have sufficient capacity to accommodate it (line 5). If no such facility is available, we terminate
reporting infeasibility. Else, we consider each facility sequentially, and assign users to it in order of
their preferences until the facility’s capacity is exhausted (lines 8 - 12). We repeat this assignment
until all users are allocated. For details, see (Schmitt and Singh 2024a).

Procedure 1 greedy assign (adapted from Schmitt and Singh (2024a))
Input: an instance of model (3).

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u],

and objective function value zS ; if infeasible: [x]← 0, [u]← 0, zS←+∞.

1: Initialize: I ′← I; [x]← 0; Rj←Cj ,∀j ∈ S.

2: while I ′ ̸= ∅ do

3: Mj←∅,∀j ∈ S.

4: for i∈ I ′ do

5: j′← arg max{j∈S:Wij≤Rj}{Pij} .

6: Mj′ ←Mj′ ∪{i}.

7: if Mj = ∅,∀j ∈ S, thenreturn f ←infeasible; [x]← 0; [u]← 0;zS←+∞; “heuristic failed”.

8: for j ∈ S do

9: I ′′← sort(Mj , Pij ,descending).

10: for i∈ I ′′ do

11: if Wij ≤Rj then

12: Rj←Rj −Wij ; I ′← I ′ \ {i}; xij← 1.

13: return f ← feasible; [x]; uj←
∑

i∈I
Wijxij

Cj
,∀j ∈ J ; zS←

∑
j∈J Cj(1−uj)2.

3.2. A basic rounding algorithm
In this section, we provide a basic scheme based on rounding the fractional solution x obtained from
the continuous relaxation of model (3). Consider the following convex optimization model:

zS = min
x

∑
j∈S

Cj

(
1−

∑
i∈I UiPi,jxi,j

Cj

)2
, s.t. (1c), (1d), xi,j ∈ (0,1),∀i∈ I, j ∈ S. (9)

Procedure 2 seeks to determine binary assignments of the xij variables from the solution of model (9).
We begin by assigning user i to the facility with the largest xij value (line 2). We denote the subset

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

of users assigned to a j by Ij ⊆ I. We adapt this solution if the capacities of some facilities are
exceeded. We denote by S′ (line 5) the subset of facilities whose capacities are exceeded. We then
seek to reassign users of these facilities to others that have available capacity. Consider a given j ∈ S′.
We begin the reassignment by computing the subset of users assigned to this j that have Wij > Cj ,
since these users cannot be assigned to j in a binary solution; we denote this subset as I ′

j (line 7).
Then, all users in the set I ′

j need to be reassigned. We reassign them to the facility other than j

that they most prefer and that still has capacity for them in lines 8-11. If we are within the capacity
for this facility j, we continue to the next facility (line 12). If we are still over capacity, we further
reassign users but now do so seeking to keep assignments in order of preferences; i.e., we first remove
users that have low preferences to j (lines 13-18). We stop this reassignment for j when the capacity
constraint is satisfied, and go to the next facility (line 18).

Similar to Procedure 1, Procedure 2 can fail to determine a feasible solution even if such a solution
exists. This failure is determined in lines 10 or 19; i.e., if a facility with a violated capacity cannot
be reassigned, we exit immediately and report a failure. However, the key difference is that unlike
Procedure 1, Procedure 2 begins with a complete although infeasible assignment. This assignment
comes from a fractional solution that we now seek to make feasible. The similarity is in the steps
taken to make this solution feasible; specifically, we (re)assign users to facilities with the highest
preference that have sufficient capacity for them.

3.3. Local search approach

Finally, we investigate a few local search heuristics to improve a given feasible solution for model (3).
We seek to ensure feasibility of the solution in each refinement, and consider two schemes motivated
by (Osman 1995): (i) reassigning one user to a different facility, and (ii) swapping the assignments of
two users. For each reassignment or swap, we compute the change in the objective function value; here,
we only consider facilities that have sufficient capacity available to accommodate the new user. If this
change indicates an improvement, we perform the reassignment or swap. As we show in Section 6.2,
this decision is computationally cheap. We continue these random reassignments or swaps until a
certain time limit or sufficient improvement in the objective function is reached. Such schemes are
simple to implement, and are well-known in the literature on local search, see, e.g., (Montes de Oca
et al. 2012). We adapt these for our models, and provide specific procedures and details for both
these schemes in Online Supplement B.1.

Schmidt and Singh: Balanced Facility Location Problem
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Procedure 2 relaxation rounding
Input: an instance of model (3); a scalar nr ≤ |S|.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u],

and objective function value zS ; if infeasible: [x]← 0, [u]← 0, zS←+∞.

1: solve model (9) with nr “most preferred” facilities for each user, get continuous x.

2: ai←{arg maxj∈S{xij}},∀i∈ I.

3: Ij←{i∈ I : ai = j} ⊆ I,∀j ∈ S.

4: Rj←Cj −
∑

i∈Ij
Wi,j ,∀j ∈ S.

5: S′←{j ∈ S : Rj < 0} ⊆ S.

6: for j in S′ do

7: I ′
j←{i∈ Ij : Wij > Cj} ⊆ Ij .

8: for i∈ I ′
j do

9: k← arg maxk′{Pik′ : Rk′ −Wik′ ≥ 0, k′ ̸= j}.

10: if k = ∅, thenreturn f ← infeasible; [x]← 0; [u]← 0;zS←+∞; “heuristic failed”.

11: Ik← Ik ∪{i}; Ij← Ij \ {i}; Rk←Rk−Wik; Rj←Rj + Wij .

12: if Rj ≥ 0, then break. Continue with next iteration of outer for loop (line 6).

13: I ′′
j = sort(Ij \ I ′

j , Pij ,ascending)

14: for i∈ I ′′
j do

15: k← arg maxk′{Pik′ : Rk′ −Wik′ ≥ 0, k′ ̸= j}.

16: if k = ∅, thenbreak. Continue with next iteration of for loop (line 14).

17: Ik← Ik ∪{i}; Ij← Ij \ {i}; Rk←Rk−Wik; Rj←Rj + Wij .

18: if Rj ≥ 0, then break. Continue with next iteration of outer for loop (line 6).

19: if Rj < 0, thenreturn f ← infeasible; [x]← 0; [u]← 0;zS←+∞; “heuristic failed”.

20: return f ← feasible; xij← 1,∀i∈ Ij , else xij← 0; uj←
∑

i∈I
Wijxij

Cj
,∀j ∈ J ; zS←

∑
j∈J Cj(1−uj)2.

4. Heuristics for the BFLP
4.1. Background

In this section, we return to our central problem—the BFLP as defined by model (1)—and study
heuristics for its solution. These heuristics utilize those we investigate in Section 3 for the BUAP. A
key difference between these two problems is the additional combinatorial restriction imposed by the
BFLP of opening at most B out of |J | facilities. If model (1) is feasible, there exists an optimal solution
that opens exactly B facilities; see Proposition S2 in Online Supplement A. However, a feasible
solution, or even an optimal solution, of the BUAP with B arbitrarily chosen facilities might still be
suboptimal for the BFLP. The aim of this section is to determine not only a good user assignment,
but also a good set of B facilities corresponding to this assignment. To this end, we develop three
schemes adapted from classical solution methods of the FLP.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

Section 4.2 and Section 4.3 build upon the so-called DROP and ADD algorithms that we adapt these
algorithms for the specifics of our problem. These classic schemes rely on a given set of existing
facilities from which we sequentially close and open facilities, respectively. The termination criteria
in our adaptations is when exactly B facilities are open. Additionally, we employ a local search
heuristic to improve solutions provided by the above two schemes. For each of our schemes, we use
the BUAP heuristics discussed in Section 3 as internal procedures or subroutines. In Section 6, we
provide computational results that compare each of these schemes with each other, the results of the
generic solution and with a local search heuristic from (Schmitt and Singh 2024a). We begin with a
summary of these heuristics based on model (2) and then provide specific details later in this section.

Input: an instance of model (2).
Output: a set of open facilities S.
1: S← J ; δ∗← 1.
2: while δ∗ > 0 do
3: δj← fj + T (I,S)

−T (I,S \ {j}),∀j ∈ S.
4: j∗← arg maxj∈S δj ;

δ∗←maxj∈S δj .
5: if δ∗ > 0 then, S← S \ {j∗}.
6: return S.

(a) DROP

Input: an instance of model (2); an additional facility j′

with a large cost and a large capacity.
Output: a set of open facilities S.
1: S←{j′}; δ∗← 1.
2: while δ∗ > 0 do
3: δj← T (I,S)−T (I,S ∪{j})

−fj ,∀j ∈ S.
4: j∗← arg maxj∈S δj ; δ∗←maxj∈S δj .
5: if δ∗ > 0 then, S← S ∪{j∗}.
6: return S \ {j′}.

(b) ADD
Figure 1 The DROP and ADD algorithms of Jacobsen (1983).

Let T (I,S) denote the objective function value of model (2) for S facilities. Algorithm 1a summa-
rizes the generic DROP scheme (Feldman et al. 1966, Jacobsen 1983) for model (2). Beginning with
all the facilities as open (yj = 1,∀j ∈ J) we compute the facility closing (or “dropping”) which leads
to the largest decrease in the objective function value. Due to the structure of the BFLP, its objective
function value increases as we close facilities (Proposition S3 in Online Supplement A); however,
for model (2) dropping facilities is not guaranteed to decrease its objective function value. Another
difference from the classical FLP is that we additionally have a budget on the number of facilities to
keep open. We thus adapt the classical procedure to continue until at most B facilities remain open,
as opposed to the classical DROP algorithm that continues until no more facilities can be dropped
without increasing the objective function. We present details of how we adapt the DROP algorithm to
the BFLP in Section 4.2.

The ADD algorithm (Kuehn and Hamburger 1963, Jacobsen 1983) is similar and is summarized in
Figure 1b. The difference here is that we begin with a given set of facilities (e.g., the empty set),
which could be infeasible for model (2). Jacobsen circumvents this issue by including a fake facility,
j′, to begin with that has a large enough cost and capacity (Jacobsen 1983); for appropriately large
costs, this facility is no longer needed to satisfy user demands as the algorithm progresses. The rest of

Schmidt and Singh: Balanced Facility Location Problem
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

the algorithm proceeds in a similar way to the DROP algorithm, but by adding facilities sequentially.
We present details of our adaptation to the BFLP in Section 4.3.

Our local search ideas are extensions of perturbation procedures to improve given feasible solutions
of the CFLP, see, e.g., (Sridharan 1995). In general, these procedures begin with a solution of the
CFLP and select a facility to close. Then they run one iteration of the ADD algorithm to determine
a facility to open that provides the largest decrease in the objective function value. This process is
repeated until no improvement is achieved. Analogously, these procedures open a single facility and
then run one iteration of the DROP algorithm. Our local search scheme combines both these ideas
into our third algorithm, distinguishing it from the traditionally separate improvement procedures
of (Sridharan 1995), to solve the BFLP. We present details in Section 4.4.

Procedure 3 user assignment
Input: an instance of model (3); a method m to construct a feasible solution of the instance.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u],

and objective function value zS ; if infeasible: [x]← 0, [u]← 0, zS←+∞.

1: Run assignment method m on the input instance and return the result.

As we repeatedly use several methods to solve the BUAP defined by model (3), for brevity we define
these in Procedure 3. Here, the procedure takes as input a set of |I| users and |S| ≤ |J | facilities,
and constructs an assignment using method m; choices of m include those we study in Section 3,
e.g., greedy assign, greedy assign with localsearch reassignment, relaxation rounding, or
relaxation rounding with localsearch swap.

4.2. The close greedy algorithm

Our first scheme begins with a simple idea based on the DROP procedure, that we build up in three
versions; in Section 6.3.1 we provide computational experiments that compare the progression in the
objective function’s value and runtime at each version. We denote the class of heuristics within this
section as close greedy, and the algorithms corresponding to the first and third versions as close

greedy basic and close greedy improved, respectively. The second version changes only a single
line of close greedy basic, so for brevity we do not provide an additional pseudo-code for this.

Algorithm 1 summarizes the first version. We input an instance of model (1), and some schemes,
m,m′, for user assignment methods that the proposed algorithm makes repeated use of via Pro-
cedure 3. We begin with method m with all facilities, J , open (line 1). Iteratively, we reduce the
number of facilities to the allowed B, closing one facility in each iteration (lines 2-9). However, rather
than choose facilities to close from the entire set, we restrict our search to a candidate pool of nc

facilities with the lowest utilization values (line 3); here, we follow the suggestion in (Schmitt and

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

Singh 2024b). Although, this means we do not necessarily make the best choice, even locally, this
step helps reduces computational effort. There is a natural trade-off between computational effort
and nc; e.g., we find that the average run time increases from 1,973 seconds to 6,757 seconds when
nc is increased from 5 to 20.

We determine “good” facilities to close—that increase the objective function value the least—via
method m in the loop in lines 5-7. Once exactly B facilities are open, we run user assignment again
(line 10), but this time with a possibly different method m′, to check if a better assignment than
the one we determined so far is readily available. In Section 6.3.1, we find advantage in using the
computationally cheap method m = greedy assign multiple times when closing facilities throughout
the algorithm coupled with the slower but better method m′ = relaxation rounding with local

search reassign after the set of open facilities is determined.
We return the obtained solution in line 13. If no feasible assignments can be determined for a

closure, we skip and ignore this closure (line 7); while, if none of the closures result in a feasible
assignment we report a failure (line 8). This concludes the first version.

The strength of such a scheme rests on the ability to compute good, although suboptimal, user
assignments multiple times and speedily; it is here that the quick implementation methods we dis-
cuss in Section 3 come useful. For example, in our computational experiments, we find each user

assignment call takes about two-thirds of a second for instances with |I| = 2,060, |J | = 1,394 for
m = greedy assign. Next, we seek to further improve this. Rather than compute the entire assign-
ment from scratch, we now compute these just for the users previously assigned to the one facility, j′,
that is closed and keep all other assignments same. Procedure 4, directly adapted from Procedure 1,
provides a quick scheme to this effect. Although the value of this procedure decreases when several
facilities are closed, this adaptation significantly reduces the computational effort required for the
BUAP by allowing us to increase nc by an order of magnitude while still keeping runtimes reasonable;
see, computational results in Section 6.3.1. To summarize, we simply replace line 6 in Algorithm 1
with a call to greedy reassign with inputs I,S, j′ and [x]. This completes our second version of the
algorithm.

In the third version, we consider a different way to choose the candidate pool of facilities, J ′. So
far, we determine these facilities as the ones with the lowest utilization. However, since the BFLP

balances both access and utilization, this idea might not be the best choice. We now determine the
candidate pool by considering facilities that were good candidates to close in previous iterations but
were not chosen. Algorithm 2 summarizes this scheme that we describe next.

As in close greedy basic, we initialize with all the available facilities, J , and solve the BUAP

(line 1). Now, let δj denote the change in the objective function value that closing facility j brings
to the objective function of model (3) (line 6); we compute the objective function value in line 5 via

Schmidt and Singh: Balanced Facility Location Problem
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 1 close greedy basic
Input: an instance of model (1); methods m,m′ for user assignment defined in Procedure 3; scalar nc ≤ |J |.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: [x], [y], z.

1: Initialize: S← J ; [f,x,u, z]← user assignment(I,S,m).

2: while |S|> B do

3: J ′← {indices of smallest nc values of uj , j ∈ S} ⊆ J .

4: [f∗, x∗, u∗, z∗, j∗]← [infeasible,0,0,+∞,“none”].

5: for j′ ∈ J ′ do

6: [f ′, x′, u′, z′]← user assignment(I,S \ {j′},m).

7: if f ′ = feasible and z′ < z∗, then[f∗, x∗, u∗, z∗, j∗]← [f ′, x′, u′, z′, j′].

8: if f∗ = infeasible, thenreturn f ← infeasible; “heuristic failed”.

9: S← S \ {j∗}; [f,x,u, z]← [f∗, x∗, u∗, z∗].

10: [f ′, x′, u′, z′]← user assignment(I,S,m′).

11: if f ′ = feasible and z′ < z, then[f,x,u, z]← [f ′, x′, u′, z′].

12: yj = 1,∀j ∈ S; else, yj = 0.

13: return f ; [x]; [y]; z.

Procedure 4 close greedy reassign
Input: an instance of model (3); a facility to close j′; an assignment [x] of I to S.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u],

and objective function value zS ; if infeasible: [x]← 0, [u]← 0, zS←+∞.

1: Initialize: I ′←{i∈ I : xij′ = 1}; xij′ ← 0,∀i∈ I ′; S← S \ {j′}; Rj←Cj −
∑

j∈I UiPijxij ,∀j ∈ S.

2: Lines 2 - 13 from Algorithm 1.

step 2 as described in Procedure 4. Here, z̄, z′ denote the objective function value for model (3) before

and after closing facility j, respectively. At each iteration, we then determine the nc facilities among

those that are still open that had the smallest values of δj in the last iteration it was calculated.

The reasoning behind our choice of small values of δj is that we seek to keep the increase in the

objective function of the minimization problem small. If the BUAP is solved to optimality, then δj ≥ 0

since the the objective function value cannot decrease when a facility is closed (this follows from

Proposition S3 in Online Supplement A.1). However, since we do not solve the BUAP to optimality,

it is possible that δj < 0 as well. We note that δ values are updated only for facilities within the set

J ′ at each iteration. Hence, when closing the first facility, we also initialize δ, by considering J ′ to

be the entire set of facilities. In Online Supplement B.2, we provide an additional discussion on the

δ parameter.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

Algorithm 2 close greedy improved
Input: an instance of model (1); methods m,m′ for user assignment defined in Procedure 3; scalar nc ≤ |J |.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: [x], [y], z.

1: Initialize: S← J ; J ′← J ; δj← 0,∀j ∈ J ; [f,x,u, z]← user assignment(I,S,m).

2: while |S|> B do

3: [f∗, x∗, u∗, z∗, j∗]← [infeasible,0,0,+∞,“none”].

4: for j′ ∈ J ′ do

5: [f ′, x′, u′, z′]← greedy reassign(I,S, j′, x).

6: δj′ ← z′− z.

7: if f ′ = feasible and z′ < z∗, then[f∗, x∗, u∗, z∗, j∗]← [f ′, x′, u′, z′, j′].

8: if f∗ = infeasible, thenreturn f ← infeasible; “heuristic failed”.

9: S← S \ {j∗}; [f,x,u, z]← [f∗, x∗, u∗, z∗].

10: J ′←{j ∈ S : indices of smallest nc values of δj} ⊆ J .

11: [f ′, x′, u′, z′]← user assignment(I,S,m′).

12: if f ′ = feasible and z′ < z, then[f,x,u, z]← [f ′, x′, u′, z′].

13: yj = 1,∀j ∈ S; else, yj = 0.

14: return f ; [x]; [y]; z.

We further note that the for loops over the set J ′ can be implemented in parallel, saving potentially
significant computational effort. Swapping between several different methods in the while loop, rather
than staying with a single method m, is another suggestion for improvement. A computationally cheap
local search heuristic, similar to what we describe in Section 4.4, could also be implemented within
the algorithms. Finally, we note that using greedy reassign is expected to decrease the quality
of the assignments when used over a lot of iterations. To counter this effect, one could recompute
the complete assignment after every few iterations; however, in our computational experiments this
enhancement did not lead to any significant improvement.

4.3. The open greedy algorithm

Our second scheme is motivated by ADD-styled algorithms and seeks to sequentially open facilities
rather than closing them as in the DROP-styled algorithms. As mentioned in Section 4.1, a key dif-
ference in these two algorithms is how infeasible iterations are handled; infeasibility arises when
some users are left unassigned to any facility due to capacity restrictions. Since we seek to use the
improvements discussed for close greedy directly now, we need a method for adapting an assign-
ment when a facility is opened, analogous to Procedure 4. This procedure accomplishes two tasks:
for a previously infeasible assignment, we assign the unassigned users to the newly opened facility;
and for a previously feasible assignment, we reassign appropriate users to the newly opened facility.

Schmidt and Singh: Balanced Facility Location Problem
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Procedure 5 greedy reassign open
Input: an instance of model (3); a facility to open j∗ ∈ J \S; a (incomplete/complete) assignment, [x]; the

depth d of the local search reassignment.

Output: status f ∈ {feasible, infeasible} for the given inputs; solution [x], utilization [u], and objective

function value zS .

1: Initialize: S← S ∪{j∗}; I ′←{i∈ I : xij = 0,∀j ∈ J}; Rj←Cj −
∑

j∈I UiPijxij ,∀j ∈ S.

2: Lines 2-12 from Procedure 1 with line 7 replaced by “break to line 3 in this algorithm”.

3: J ′←{j∗}; k← 0.

4: while k < d do

5: if J ′ = ∅, thenbreak to line 18.

6: J ′
k = ∅.

7: for j′ ∈ J ′ do

8: I ′′← sort({i∈ I : UiPij′ ≤Rj , xij′ = 0}, Pij′ ,descending).

9: for i∈ I ′′ do

10: if i∈ I ′ and UiPij′ ≤Rj′ then

11: xij′ ← 1; Rj′ ←Rj′ −UiPij′ ; I ′← I ′ \ {i}.

12: else

13: j′′← arg maxj∈J{xij}

14: if if reassignment better(i, j′, j′′,Rj) = True then

15: xij′′ ← 0; xij′ ← 1; Rj′′ ←Rj′′ + UiPij′′ ; Rj′ ←Rj′ −UiPij′ .

16: J ′
k← J ′

k ∪{j′′}.

17: J ′← J ′
k; k← k + 1.

18: if I ′ = ∅, then f ← feasible; else f ← infeasible.

19: return f ; [x]; uj←
∑

i∈I
Wijxij

Cj
,∀j ∈ J ; zS←

∑
j∈J Cj(1−uj)2.

Procedure 5 executes both these tasks, and we summarize it next. Here, we begin with a possibly
incomplete assignment of users to the available set of facilities, S, plus a facility j∗ that we con-
sider opening. This incomplete assignment could arise from a previous iteration of the open greedy

algorithm, or from a previous call to greedy reassign open. The set I ′ is the set of users that are
currently unassigned; this set is empty if we begin with a complete (or, feasible) assignment. Proce-
dure 5 then determines a (potentially, still incomplete) assignment to the S∪{j′} available facilities.
If I ′ is not empty, we use parts of Procedure 1 to greedily assign these users to the available facilities.
Afterwards, or if I ′ is empty, we seek to compute a better assignment. The set J ′ ⊆ J denotes a
candidate pool of facilities we seek to assign users to. The rest of the algorithm conducts a local
search to compute the users assigned to j∗, plus a potential reassignment of users to the S facilities
due to the corresponding increase in their available capacity. We explain this search below.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

For each facility j′ ∈ J ′, we determine the set of users, I ′′, that are candidates for its assignment.
We do so in line 8 accounting for the facility’s capacity and prioritizing by the preferences of users. We
distinguish two cases for each of these candidate users: those that are currently unassigned (line 10),
and those that are currently assigned (line 12). The former case exists only for incomplete assign-
ments; here, we simply check whether the facility has sufficient capacity for the user (line 10), assign
the user, update the facility’s remaining capacity, and remove the user from set of unassigned users
(line 11). This improves the objective function since previously unassigned users are now assigned.
The latter case is for complete assignments; here, we determine if a reassignment of the user from its
existing facility j′′ to j′ is beneficial (line 14). We do so via the if reassignment better procedure
defined in Procedure S1 in Online Supplement B.1. If so, we conduct the reassignment, update the
remaining capacities of the two facilities involved (line 15), and include the facility j′′ to the candidate
pool of facilities J ′

k considered in the next iteration. After considering all the facilities in J ′, we go
to the next iteration. If no reassignments are made in the previous iteration, we terminate (line 5).
Otherwise, the next iteration of the outer while loop probes deeper within the set of facilities in J ′

in search of an even better assignment. In this sense, the parameter d determines the “depth” of the
local search. Thus, d = 1 indicates that we only seek to reassign users to j∗, while larger values of d

indicate that we additionally reassign users to all the facilities that lost their users in the immediately
previous iteration. Despite this probing, the final assignment could still be incomplete; we check this
in line 18. Even if only an incomplete assignment is computed, we still return it as it is beneficial in
an algorithm that uses this subroutine. Line 19 returns the output.

To summarize, Procedure 5 combines the greedy assign procedure with a local search. This local
search is necessary for ADD-styled algorithms because, unlike DROP-styled algorithms, a natural can-
didate set of users to assign to the new facilities is unavailable. If the input assignment is incomplete,
then such a set of users is readily available; however, even then a local search improves on an input
assignment. Next, we describe an algorithm to solve the BFLP, based on the ADD procedure that uses
Procedure 5 as a subroutine.

Algorithm 3 summarizes this scheme. We initialize the set S of open facilities as empty, and the
candidate pool of facilities to consider at each iteration, J ′, as J (line 1). Since the algorithm begins
with no open facilities, the initial few iterations are infeasible. We thus allow infeasible solutions,
until a feasible solution is available from the previous iterations (line 6). We update the parameter δj

whenever we recompute the change in objective of opening facility j (line 7). We further update the
set of open facilities to include the best facility to open, j∗, (line 8), while we update the candidate
pool of facilities for the next iteration with those that were the best to open in previous iterations
based on values of δj (line 9). As we mention in Section 4.2, we recompute assignments from scratch

Schmidt and Singh: Balanced Facility Location Problem
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Algorithm 3 open greedy
Input: an instance of model (1); methods m,m′ for Oracle user assignment defined in Procedure 3; the

number of facilities to consider at each iteration, nc ≤ |J |; a depth d for Procedure 5; a scalar nf ≤ |J |

for number of iterations after which to recompute assignment.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: [x], [y], z.

1: Initialize: S←∅; J ′← J ; δj← 0,∀j ∈ J ; [f,x,u, z]← [infeasible,0,0,
∑

j∈J Cj].

2: while |S|< B do

3: [f∗, x∗, u∗, z∗, j∗]← [infeasible,0,0,+∞,“none′′].

4: for j′ ∈ J ′ do

5: [f ′, x′, u′, z′]← greedy reassign open(I,S, j′, x, d).

6: if (f ′ = feasible or f ′ = f) and z′ < z∗, then[f∗, x∗, u∗, z∗, j∗]← [f ′, x′, u′, z′, j′].

7: δj′ ← z′− z.

8: S← S ∪{j∗}; [f,x,u, z]← [f∗, x∗, u∗, z∗].

9: J ′←{j ∈ J \S : indices of smallest nc values of δj} ⊆ J .

10: if |S| ≡ 0 (mod nf) then

11: [f ′, x′, u′, z′]← user assignment(I,S,m).

12: if
(
f ′ = feasible and z′ < z

)
, then[f,x,u, z]← [f ′, x′, u′, z′].

13: [f ′, x′, u′, z′]← user assignment(I,S,m′).

14: if f ′ = feasible and z′ < z, then[f,x,u, z]← [f ′, x′, u′, z′].

15: yj = 1,∀j ∈ S; else, yj = 0.

16: return f ; [x]; [y]; z.

every nf iterations in lines 10-12, if needed. Finally, once all the facilities are open, we run a final
assignment method, m′, that potentially improves the constructed assignment (lines 13-14).

As with close greedy, possible improvements include considering a certain number of random
facilities and parallelizing the for loop. We discuss the performance of Algorithm 3 in Section 6.3.2.

4.4. BFLP local search

In this section, we combine two local search algorithms based on ADD and DROP as discussed in
(Sridharan 1995) into a single local search algorithm. The central idea of this algorithm is to open and
close a facility at each iteration, where at least one of these is done in the best possible way. If this
interchange leads to a better solution, it is accepted as the current solution. Algorithm 4 presents this
scheme that we summarize below; we present computational results in Section 6.3.3. The algorithm
relies on two procedures whose details we reserve for Online Supplement B.2: (i) initialize change

(Procedure S5) computes the change in the objective function value, δj , if facility j is closed or
opened, and (ii) choose fac based on change (Procedure S6) chooses randomly the best facility
to either open or close.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

Algorithm 4 BFLP local search
Input: an instance of model (1); a feasible solution to the model (assignment [x], the set of open facili-

ties S with yj = 1, the objective function value z); method m′ for Oracle user assignment defined in

Procedure 3; the number of facilities to consider each iteration, nc ≤ |J |; a depth d for Procedure 5; an

iteration limit l for the main while loop.

Output: status f ∈ {feasible, infeasible}; if feasible, [x], [y], z.

1: Initialize: δ← initialize change(x,S, z, d); J ′← J ; k← 0.

2: while |J ′|> 0 and k < l do

3: j′← choose fac based on change(J,J ′, S, δ); J ′← J ′ \ {j′}; k← k + 1.

4: [f∗, x∗, u∗, z∗, j∗]← [infeasible,0,0,+∞,“none′′].

5: if j′ ∈ S then

6: [f ′, x′, u′, z′]← greedy reassign(I,S, j′, x); δj′ ← z′− z .

7: J ′′←{j ∈ J \S : indices of smallest nc values in δj}.

8: for j′′ ∈ J ′′ do

9: [f ′′, x′′, u′′, z′′]← greedy reassign open(I,S \ {j′}, j′′, x′, d); δj′′ ← z′′− z.

10: if f ′′ = feasible and z′′ < z∗, then[f∗, x∗, u∗, z∗, j∗]← [f ′′, x′′, u′′, z′′, j′′].

11: if f∗ = feasible and z∗ < z then

12: S← (S ∪{j∗}) \ {j′}; [f,x,u, z]← [f∗, x∗, u∗, z∗].

13: J ′← J ; δj′ ←−δj′ ; δj∗ ←−δj∗ .

14: else

15: [f ′, x′, u′, z′]← greedy reassign open(I,S, j′, x, d); δj′ ← z′− z.

16: J ′′←{j ∈ S : indices of smallest nc values in δj}.

17: for j′′ ∈ J ′′ do

18: [f ′′, x′′, u′′, z′′]← greedy reassign(I,S ∪{j′}, j′′, x′); δj′′ ← z′′− z.

19: if f ′′ = feasible and z′′ < z∗ then[f∗, x∗, u∗, z∗, j∗]← [f ′′, x′′, u′′, z′′, j′′].

20: if f∗ = feasible and z∗ < z then

21: S← (S ∪{j′}) \ {j∗}; [f,x,u, z]← [f∗, x∗, u∗, z∗].

22: J ′← J ; δj′ ←−δj′ ; δj∗ ←−δj∗ .

23: [f ′, x′, u′, z′]← user assignment(I,S,m′).

24: if f ′ = feasible and z′ < z, then[f,x,u, z]← [f ′, x′, u′, z′].

25: yj = 1,∀j ∈ S; else, yj = 0.

26: return f ; [x]; [y]; z.

Algorithm 4 considers two cases whether j′ is currently open (lines 5-13) or closed (lines 14-22).
Consider the first case; the second follows analogously. First, we compute the assignment for when
j′ is closed and update δj′ correspondingly (line 6). Then, we choose a candidate pool of nc facilities,
J ′′, to consider opening from the set of closed facilities, based on the smallest δj values (line 7). We

Schmidt and Singh: Balanced Facility Location Problem
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

then consider each facility in J ′′ and find the one to open that leads to the smallest objective function
value, based on j′ being closed and the corresponding assignment [x′] (lines 8). If the objective
function improves, we update the set of open facilities, S, by closing j′ and opening j∗ and update the
assignment (line 12). Additionally, we update J ′ to include all facilities again and negate the values
of δ for the two facilities considered (line 13). We update J ′ as after performing a change facilities
that we considered opening or closing previously might lead to an improvement if we consider them
again. We update δ values since the facilities have swapped from being open to being closed (or vice
versa), and the change in objective function of undoing this is exactly the opposite. We recompute
the assignment from scratch after exiting the while loop (line 23), and update the assignment if
required (line 24). Finally, the resulting set of open facilities S, the assignment x and the objective
function value is returned (line 26).

Our computational results in Section 6.3.3 show that Algorithm 4 significantly improves poor
feasible solutions. However, good feasible solutions achieved by open greedy and close greedy

improve minimally before stalling the algorithm. Possible extensions to prevent this include beginning
with a low value of nc and increasing it every few iterations, or random perturbation to escape a
local optimum, see e.g. (Lourenço et al. 2003, Benlic and Hao 2013, Costa et al. 2022).

5. Data Sources and Estimation
In this section, we summarize the data we use for our computational experiments in Section 6.
An instance of model (1) requires four parameters: Cj ,Ui, Pi,j ,∀i ∈ I, j ∈ J , and B. We solve all
instances by varying the budget parameter B in increments of 10% of |J |; we consider B = |J | ×
{0.1,0.2, . . . ,0.9}. We refer to an average for an instance as that over these nine budgets. We then
develop four classes of instances, two of which employ actual data from Bavaria while two are syn-
thetically generated. Our first instance class is derived from the set of |I| = 2,060 users and |J | =
1,394 facilities in Bavaria; for details, we refer to the original data set described in (Schmitt and Singh
2024b). We refer to this class as Instance I. In previous work, instances of this class are generally
computationally intractable to solve generically. We create a second instance class that is smaller
than the first using only a subset of users and facilities. Here, we choose Bavarian ZIP codes that
begin with 90, 91 or 92. This is the region including Nuremberg, Fürth, Erlangen and the rural area
around them, up to the eastern border of Bavaria. This instance includes |I|= 368 users and |J |=
234, and we refer to it as Instance II.

Heuristics to solve the BUAP, that we describe in Section 3, additionally require the set of open
facilities, S, as an input. For our computational experiments for the BUAP, we thus derive four
additional instance classes as follows. We first solve the BFLP generically—for both Instance I and
Instance II—with a time limit of 20,000 seconds with B = 0.3|J | and B = 0.9|J |. We then let S be the

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

set of facilities opened in the best feasible solution of this MIP for these four instance classes. We refer
to these four instances as Instance I-30, Instance I-90, Instance II-30 and Instance II-90, respectively.
For the BUAP, Instance I-90 and Instance II-90 include a larger number of decision variables than
Instance I-30 and Instance II-30, respectively. However, Instance I-30 and Instance II-30 have a
lower available capacity per user which leads to a computationally more challenging model; e.g., the
ratio

∑
j Cj/

∑
i Ui is 0.71 and 1.01 for Instance I-30 and Instance I-90, respectively. Additionally,

we create two instances of the of SCUAP with sufficient capacity by taking Instance I, but forcing
Cj =

∑
i∈I UiPij ,∀j ∈ J . We then follow the above procedure to create Instance I-S30 and Instance I-

S30.
Next, we describe the construction of our two artificial data classes. We do so to further test the

performance of our heuristics on new data, and consider these in Section 6.3.4 alone. We reserve details
on the construction of this data set for Online Supplement C, and only summarize our estimation
procedure here. We begin by randomly choosing n pairs of longitudes and latitudes to construct
a “rectangle”. By varying the size of this rectangle, we encompass different subareas of Germany
(potentially including all of Germany). We restrict Ui to uniformly random values within a range. We
artificially place facilities near the geodesic coordinates of the users with a small Gaussian probability,
and choose Cj again within a uniform range. Finally, we estimate the parameter Pij using the
exponential decay formula based on the distance between user and facility used in (Schmitt and
Singh 2024b). With this procedure, we create two instances : a large but sparse (n = 5,000) and a
small but dense (n = 1,500) instance. We refer to these two instances as Instance III and Instance IV,
respectively. The former instance includes a rectangle nearly the size of Germany with |I| = 5,000
users and |J |= 2,497 facilities. The latter instance has |I|= 1,500 users and |J |= 425 facilities with
users having larger preferences for facilities than the first instance. The average number of facilities
within a 5 kilometer radius of any user is 0.84 and 1.20, for Instance III and Instance IV, respectively;
i.e., there are more facilities near each user in Instance IV.

6. Computational Results and Analysis
6.1. Setup

Next, we provide computational results for the heuristics discussed in Section 3 and Section 4. We
begin in Section 6.2 with our results for the BUAP. We then present results for the BFLP: (i) in
Section 6.3.1, we show that the two progressions of the close greedy algorithm indeed lead to
improved solutions, (ii) in Section 6.3.2, we present results for the open greedy algorithm, (iii) while
in Section 6.3.3, we examine whether our BFLP local search heuristic improves the previously obtained
results. Finally, in Section 6.3.4, we compare the different heuristics against each other and also
against the algorithm developed in (Schmitt and Singh 2024a).

Schmidt and Singh: Balanced Facility Location Problem
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

We perform all computational experiments on the DelftBlue (Delft High Performance Comput-
ing Centre DHPC) system with 1 core on an Intel XEON E5-6248R 24C 3.0GHz processor with
Pyomo version 6.4.2 and Gurobi version 9.5.2. We run all models with the default setting of the
Gurobi parameters, apart from setting NodeMethod to 2 when solving the BFLP MIP2. In what fol-
lows, we compare the solutions of our heuristics to the best feasible solution achieved by generically
solving the MIP. We do so in two ways: (i) by allowing the MIP to run for 20,000 seconds, and (ii)
by running it for exactly the same time as that taken by the heuristic (which is significantly lesser).
For fairness of comparison, in the latter case, we do include the time taken to build the optimization
model, while the 20,000 seconds are only the time for running the actual optimization, not including
the time to build the model. Then, we report results for the quantity objMIP −objh

objMIP
, and denote it

by ∆MIP and ∆S for the two above-mentioned cases, respectively; here, objMIP and objh denote
the objective function values obtained generically and using a heuristic, respectively. Then, positive
values of ∆ denote that the heuristic outperforms the generic solver. We use a 1% tolerance for |∆|;
i.e., we consider all values of |∆| ≤ 0.01 as zero and denote these with a dash (-).

In the implementation of relaxation rounding, we reduce the number of x variables by con-
sidering only nr < |S| facilities to determine a user’s most preferred facilities; i.e., we reduce the
|I||S| combinations to |I|nr. We do so since a suboptimal fractional solution for the BUAP that is
obtained fast serves our purpose. The choice of nr is arbitrary — fewer facilities are required if they
are sufficiently spread out. In our computational experiments, we find nr = 20 performs well; if we
use relaxation rounding as the final assignment method, m′, we use nr = 50. If the correspond-
ing models are infeasible, we rebuild with a new set of 20 preferred facilities. This idea is different
from that proposed in (Schmitt and Singh 2024b), where a cut-off for the preference is used. Specif-
ically, in (Schmitt and Singh 2024b) only (i, j) pairs where Pij ≥ 0.2 are considered and, further,
constraint (1d) is relaxed to an inequality. This requires a post-processing model, as some users are
left unassigned (Schmitt and Singh 2024b). Our approach obviates this need, and requires neither
the post-processing model nor the relaxation to an inequality. However, we include these cutoffs in
the implementation of the local search heuristics, since it ensures a greater likelihood of obtaining
improved solutions and significantly reduces computational effort, see, e.g., (Risanger et al. 2021).

6.2. Analysis: Heuristics for the BUAP

We now discuss our computational results for the greedy assign and relaxation rounding proce-
dures, that we mention in Section 3, to solve the BUAP; further, we compare both the heuristics with
and without the two local search additions of Section 3.3 (reassign and swap). Table 1 presents

2 Among a number of Gurobi parameter settings that we tried to speed-up the BFLP MIP, we found the NodeMethod
parameter to be the most beneficial. Later, we learned of Gurobi’s grbtune utility that allows such an exploration
directly.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

results for both the SCUAP (first two columns) and BUAP (last four columns). The first observation
we make is that all our heuristic methods succeed in finding feasible solutions no more than 1.3%
worse than those obtained generically; further, the heuristics achieve the same or better solution in
18 of the 36 cases we present in Table 1. Importantly, the heuristics take no more than 12 seconds —
while the generic solution method can still fail to achieve the corresponding objective function value
even in 20,000 seconds.

Table 1 Results of the different BUAP heuristics on different instances. A “-” indicates a gap of zero within our
considered tolerance. Times are rounded up to the nearest integer. ∆MIP is defined in Section 6.1. Within 20,000

seconds, Instance I-30, Instance I-90, and Instance I-S90 are solved to a MIP gap of 0.02%, 0.35%, and 90.9%,
respectively, while all other instances are solved optimally. relaxation rounding is run with nr = 20. For details,

see section 6.2.

Instance
I-S30

Instance
I-S90

Instance
I-30

Instance
I-90

Instance
II-30

Instance
II-90

Heuristic Local
search

Run
time
[s]

∆MIP

[%]

Run
time
[s]

∆MIP

[%]

Run
time
[s]

∆MIP

[%]

Run
time
[s]

∆MIP

[%]

Run
time
[s]

∆MIP

[%]

Run
time
[s]

∆MIP

[%]

relaxation
rounding

none 9 - 12 6.55 12 -0.28 11 -0.09 7 - 3 -

reassign 9 - 12 6.55 12 -0.09 11 -0.05 7 - 3 -

swap 9 - 12 6.55 12 -0.26 11 -0.05 7 - 3 -

greedy
assign

none 1 - 1 6.55 1 -1.31 1 -1.13 1 -1.05 1 -0.71

reassign 1 - 2 6.55 1 -0.25 2 -0.17 1 -0.21 1 -0.03

swap 1 - 2 6.55 1 -1.12 2 -0.99 1 -1.04 1 -0.68

Within the considered time limit, we generically obtain an optimal solution in 6,567, 15, and 31
seconds for Instance I-S30, Instance II-30, and Instance II-90, respectively, including the time to build
the models. For Instance I-S90, Instance I-30, and Instance I-90 we terminate with an optimality
gap of 90.9%, 0.02%, and 0.35%, respectively. We first discuss the two SCUAP instances. The small
Instance I-S30 is solved to optimality both generically and by each of the six heuristics; however, the
larger Instance I-S90 is challenging to solve generically. Here, the generic solver spends its entire quota
of 20,000 seconds on the root node itself, terminating with an optimality gap of 91%. In contrast, the
heuristics take only a few seconds and still achieve solutions over 6.6% better than those obtained
generically. For the other four columns, relaxation rounding achieves nearly the same objective
function value as that obtained generically on 6 of the 12 cases. In contrast, greedy assign fails
to do so for even a single case. However, invoking these procedures multiple calls could still slow
algorithms for the BFLP, e.g., a single run of relaxation rounding takes about 10 seconds for
the larger four instances. Interestingly, run times for relaxation rounding are marginally larger

Schmidt and Singh: Balanced Facility Location Problem
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

for smaller budgets than the larger ones, suggesting more reassignments are required to make the
solution feasible after rounding. Further, run times of relaxation rounding are five to ten times
larger than greedy assign, although the former achieves better solutions. These observations suggest
invoking greedy assign multiple times for user assignment within algorithms that solve the BFLP,
while using relaxation rounding only as the final user assignment method in our algorithms. This
empirical observation our proposal for different choices of m and m′ in Section 4, and we follow this
in the forthcoming sections. Finally, comparing the local search heuristics, local search reassign

demonstrates the most value. ∆ values for it are at least as good (i.e., large) as both no local search
or swap for all of the eight cases with comparable run times. In contrast, local search swap does
not lead to any significant improvements.

We now summarize our recommendations for which heuristics to use for the BUAP. Since we call
these procedures several times, our aim here is to achieve solutions with very little computational
effort. Our results suggest significant value in using the local search additional to the heuristics, as it
is fast and significantly improves the previously obtained solution. Comparing our two local search
schemes, we find reassigning users to be superior than swapping them both in terms of improving the
objective function value and the run times. Overall, we find the greedy assign with local search

reassign to be the best performer. In contrast, if run times are a lesser concern we suggest using
relaxation rounding with local search reassign since it leads to results identical or better
than the MIP for 4 out of the 6 instances while greedy assign with local search reassign only
achieves this on 2 out of the 6 instances.

6.3. Results heuristics BFLP

In this section, we discuss the results of the heuristics we mention in Section 4 to solve the BFLP. We
begin by studying the effect of the improvements made to close greedy basic, and determining
sensible values of the nc parameter for close greedy. Then, we present results for the open greedy

algorithm by varying the nc, nf and d parameters. For the BFLP local search algorithm, we discuss
how many iterations are needed and whether employing the δj parameter to choose facilities has
value. We conclude with a summary and recommendations of the choice of the heuristics. Following
our results from Section 6.2, we use m′ =relaxation rounding with local search reassign as
the final user assignment method all throughout.

6.3.1. Analysis: close greedy We now present results for the close greedy algorithm as it
progresses through its three versions; see, Figure 2. We use nr = 20 for Step 1 and nr = 50 for Step 2
and 3, and vary the parameters m and nc. We start by discussing the results of close greedy basic.
On the smaller instance (Instance II), average values for ∆MIP and ∆S using m = greedy assign

and nc = |J | are -0.13% and 0.23%, respectively. With a run time of (on average) only 371 seconds,

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

the close greedy achieves nearly the same solution as that obtained generically — even without
any of the two forthcoming versions. Within nearly this same time, using m = relaxation rounding

and nc = 5 instead performs relatively poorly: ∆MIP and ∆S values are on, average, at -19.72% and
-19.24%, respectively. This provides further support from our conclusions drawn from Section 6.2
in favor of using m = greedy assign and m′ = relaxation rounding. On the larger instance
(Instance I), using nc = |J | is computationally prohibitive even with m = greedy assign; instead,
we use nc = 5 which provide average ∆MIP and ∆S values of -24.63% and -22.07%, respectively.
The latter average is only taken over the budgets where the MIP solver finds a solution by the time
the heuristic terminates, which is only the case for three budgets. The run time is 1,973 seconds on
average, which suggests increasing nc further is computationally prohibitive. Using different ∆ values
(results not shown), we find the first version (or, Step 1) of close greedy does not provide a strong
competition to the generic solver.

(a) Instance I (b) Instance II

Figure 2 Performance of the close greedy algorithm for its three steps. The initial and final assignment methods
are m = greedy assign with local search reassign and m′ = relaxation rounding with local

search reassign, respectively. We use nr = 50 for both Step 2 and Step 3; for Step 1, we do not use
local search and use nr = 20. For details, see Section 6.3.1.

Although increasing nc is computationally demanding, it is one way to reduce the ∆. As we mention
in Section 4.2, in the second version we reuse the previous iteration’s assignment thereby speeding up
the algorithm. Since this requires the method m to only be used once, from now onward we include
local search reassign with m. Step 2 speeds up the algorithm; alternatively, this version can be
viewed as being able to increase nc for Instance I while keeping similar run times. For Instance I and
Instance II being run with nc = 200 and nc = |J |, respectively, average ∆MIP values are now -4.58%
and -0.11%, respectively, and average run times are 1,979 and 20 seconds, respectively (results not
shown). Thus, for Instance II, average run time decrease by an order of magnitude from 372 seconds
to 20 seconds while still being able to maintain nc = |J |. This large decrease in run time is depicted
in Figure 2b.

Schmidt and Singh: Balanced Facility Location Problem
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

The third and final version instead allows us to decrease nc while still improving the ∆ values;
in the interest of space, we do not provide all the results. As we mention in Section 4.2, this step
changes the way we choose the nc facilities to consider at each iteration. For Instance II, with nc = 5
the algorithm only takes three seconds on average while having the same average ∆MIP value as
in the previous step. Increasing nc to 50 increases the run time to only seven seconds (on average)
while each of the nine ∆MIP values are now the same as in the previous step. For Instance I, the
results follow a similar trend: at both nc = 5 and nc = 50 an average ∆MIP of 0.41% is achieved
with average run times of 115 and 560 seconds, respectively. We further note that not even a single
feasible solution is obtained generically in the entire time of completion of the heuristic.

To conclude, both the additional steps to the algorithm we discuss in Section 4.2 significantly
improve its performance. Not completely recomputing the assignment but instead adapting it leads
to a large decrease in run time, while choosing which facilities to consider based on their performance
in previous iterations leads to a large improvement in the objective function value achieved. With
this latter improvement, even when only five facilities are considered at each iteration, the results
are significantly improved and further increasing nc only improves the solution quality marginally.
These results suggest that our heuristics manage to select the “correct” facilities—even when our
candidate pool of facilities shrinks to nc as opposed to |J |—since the objective function values are
at least those obtained generically.

6.3.2. Analysis: open greedy We now present results for the open greedy algorithm by vary-
ing its parameters; we again reserve detailed computational results in the interest of space. Similar
to Section 6.3.1, we use m = greedy assign with local search reassign and m′ = relaxation

rounding with local search reassign for the initial and final assignment methods. There are three
important parameters to consider: nf , nc and d. For most budget values, we observe no significant
change (results not shown) by varying nf that determines the frequency of recomputing assignments;
thus, we do not recompute assignments from scratch. We consider nc = 5,50, and |J | that determines
the size of the candidate pool of facilities at each iteration.

Similar to our results for close greedy, varying nc provides little improvement in the objective
function values; see, Figure 3b for details. For Instance II, the average ∆MIP values are -0.05%, -0.02%,
and -0.02% with average run times of 3.5, 9.8 and 28.8 seconds for nc = 5,50 and |J |, respectively,
when d = 1; i.e., the improvements are marginal. Thus, fixing nc = 5, we vary the parameter d next.
For d = 1,2,3, the average ∆MIP values are −0.05%, −0.03% and −0.01% with corresponding run
times of 3.5, 4.6 and 5.3 seconds, respectively. Similar observations follow on Instance I, except with
larger run times; see Figure 3a. For d = 1,2,3, the corresponding ∆MIP values are 0.44%, 0.50%
and 0.50% with run times of 98, 149 and 195 seconds, respectively (for nc = 5). Varying nc from

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

5 to 50, again has little effect: ∆MIP values improve by only 0.02, 0.01 and 0.02 percentage points
for d = 1,2,3, respectively. We thus conclude that increasing d from 1 to 2 improves the results as
expected — but by only a small magnitude; increasing d to 3 is not worth the extra computational
effort.

(a) Instance I (b) Instance II

Figure 3 Performance of the open greedy algorithm for choices of nc and d. The initial and final assignment
methods are m = greedy assign with local search reassign and m′ = relaxation rounding with
local search reassign, respectively. We use nr = 50. For details, see Section 6.3.2.

Summarizing, our results follow a similar trend as close greedy. Varying the parameter values
naturally affects the obtained solutions, however the heuristics are sufficiently capable of finding
high quality feasible solutions without any major effort in tuning the parameters. In this sense,
the algorithms are robust against parameter choices. Small value of nc and d = 2 both achieve
feasible solutions within half percent of those obtained generically in run times that are two orders
of magnitude lesser.

6.3.3. Analysis: BFLP local search We now present results for the BFLP local search. To
determine the value of such an additional local search, we conduct two experiments. First, we check
its performance when initialized with a poor quality feasible solution. For this, we consider the initial
solution of basic close greedy with m = greedy assign on Instance I, which has an average ∆MIP

of -24.6%. We run local search with nc = 50 and d = 2; higher values of d do not provide any benefit.
In 200 iterations of Algorithm 4, the average ∆MIP increases to -0.67% in an average of 373 seconds;
while, after 1,000 iterations, the average ∆MIP increases to 0.2% in an average of 1,287 seconds.
This demonstrates the significant value of BFLP local search in improving feasible solutions; see
also Figure 4a. Second, we ascertain the value of employing the δ parameter; in Section 6.3.1, we
demonstrated this value for close greedy. We compare our results against a scenario that does not
use the δ parameter and instead randomly chooses facilities; then, in 200 iterations of BFLP local

search, the average ∆MIP increases to only −8.14% (as opposed to -0.67% using δ) demonstrating
the importance of tailored procedures such as ours to achieve high quality solutions.

Schmidt and Singh: Balanced Facility Location Problem
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Next, we consider the performance of BFLP local search when initialized with good output
solutions from close greedy and open greedy. Our best feasible solution (until now) for Instance I
is obtained through open greedy with nc = 50, d = 3; the corresponding average ∆MIP value is
0.52%. The local search is unable to improve upon this average ∆MIP value further in 200 iterations
with nc = 50 and d = 2. With the same parameters for the local search, only a marginal improvement
for close greedy’s best solution is achieved: starting with an average ∆MIP of 0.41%, the local
search increases this to 0.46%, 0.48%, and 0.49% after 20, 100, and 200 iterations respectively. We
observe that even this small improvement is made within the early few iterations and larger values
of the depth parameter, d, and the parameter nc do not create significant differences either (average
∆MIP is also 0.46% after 20 iterations when using nc = 5, d = 1 while taking an average of 87 seconds
instead of the 130 seconds with nc = 50, d = 2).

To summarize, small values of both nc and d are sufficient for improvement via BFLP local

search; further, only a few iterations are necessary. This also demonstrates that the solutions of
close greedy and open greedy are already close to a local optimal. These results are in part due
to the sophisticated choices of the δ parameters in all of our three heuristics.

(a) Initialized with solution from close greedy Step 1 (b) Initialized with solution from close greedy Step 3

Figure 4 Performance of the BFLP local search with nc = 50, d = 2 on Instance I. The final assignment method
is m′ = relaxation rounding with local search reassign. We use nr = 50. These run times are for
the local search alone. For details, see Section 6.3.3

.

6.3.4. Analysis and Recommendations: Comparison of all heuristics As we mention
before, the aim of this work is to find good feasible solutions with reasonable computational effort. We
now summarize our findings of Section 6.3.1-6.3.3 to provide recommendations on which algorithms
are best suited for this purpose. To further support these recommendations, we also present results
of how the heuristics perform with the chosen parameters on two additional instances, which are
described in Section 5. Although our suggestions are based on the BFLP, we believe the general
guidance extends to other, and, possibly, new FLPs as well.

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

We start by comparing all our presented algorithms—namely close greedy and open greedy with
and without BFLP local search and the algorithm of (Schmitt and Singh 2024a)—to each other.
In this sense, we externally validate how robust our algorithms are, while still using the parameters
we identified to be the best in Section 6.3.1-6.3.3. Specifically, we run open greedy with d = 2 and
nf = |J | (since recomputing assignments from scratch did not lead to any major improvements), open

greedy and close greedy with nc = 5, BFLP local search with nc = 5, d = 1 for 100 iterations,
and the algorithm of (Schmitt and Singh 2024a) until there is no change for 100 iterations. Table 2
provides this summary of these five algorithms.

First, all our considered heuristics perform better than the previously proposed method of (Schmitt
and Singh 2024a); across the 36 cases, close greedy with and without BFLP local search and
open greedy with and without BFLP local search improve average ∆MIP values by 3.13, 3.19,
3.16 and 3.21 percentage points. Thus, in what follows, we compare our heuristics against the generic
solution method, as indicated by ∆MIP . Our heuristics perform better than the generic solver for
almost all cases of the more challenging Instance I and Instance III, especially at lower budgets; this
is likely due to the generic solver struggling with the greater number of combinatorics involved see,
panels “Instance I” and “Instance III” of Table 2.

Our results indicate no clear consensus between the performance of open greedy and close

greedy across the four instances; this observation is different to that made in (Addis et al. 2016)
where a greedy algorithm for the critical node problem based on dropping elements clearly outper-
forms a greedy algorithm that adds elements. On Instance I, Instance II, and Instance IV, open

greedy is slightly better than close greedy with an average improvement in ∆MIP of 0.09, 0.08, and
0.08 percentage points, respectively. On Instance III, close greedy performs better by an average
improvement of ∆MIP of 0.15 percentage points. This is likely due to nc = 5 not being sufficiently
high for this very large instance for open greedy. By increasing nc to 10 in open greedy, the ∆MIP

improves by an average of 0.15 compared to the open greedy solution with nc = 5, making the aver-
age the same as for close greedy with nc = 5. Increasing nc further to 50 improves this average
by less than 0.01 percentage points compared to the open greedy nc = 10 solution, suggesting that
nc = 10 is sufficient for this large instance. Based on this observation, we suggest considering at least
0.5% of all the facilities in each iteration, i.e. nc ≈ 0.005|J |. However, we also observe worse perfor-
mance when nc = 0.005|J | ≈ 1 is used on the smallest instance, Instance II. In particular, when using
close greedy the average ∆MIP on this instance is -0.34% when nc = 1 and -0.11% when nc = 5 while
average run times are identical (results not shown). Hence, we additionally recommend an absolute
lower bound of nc ≥ 5.

The budget, B, provides an indicator of the choice between close greedy and open greedy. Run
times are larger at lower budgets for close greedy and larger at larger budgets for open greedy.

Schmidt and Singh: Balanced Facility Location Problem
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Thus, for a budget of more than half the total number of facilities, we recommend using close

greedy; otherwise, we suggest using open greedy. There are no significant differences in the ∆MIP

between these two heuristics.
We find the parameter d is guided by how “dense” an instance is; i.e., the number of facilities a

user prefers in some radius. For denser instances, we recommend increasing d to two, but not more.
This is preferable than increasing nc; as our results in Section 6.3.1 and Section 6.3.2 show increasing
nc beyond our recommended value increases the run time without any significant effect on ∆MIP .
Finally, recomputing assignments from scratch did not lead to any improvements in our experiments,
and thus the parameter nf is of no use.

The BFLP local search results in only marginal improvements as our results in Section 6.3.3
and Table 2 show. For Instance I to Instance IV, across both open greedy and close greedy, the
BFLP local search results in an average improvement in ∆MIP of only 0.03, 0.05, 0.07 and 0.07
percentage points, respectively. Further, running the local search beyond 100 iterations leads to very
small or no improvement, and we do not recommend running it beyond this point.

Summarizing, our results demonstrate value on employing such tailored heuristics on the BFLP.
This value is especially significant for larger and computationally challenging instances, such as those
of the size of Germany or those with insufficient capacities to accommodate all users. We recall
that our results do not include the time taken to build the model generically, which for the largest
instance, Instance III, is itself about an hour. Despite this, the heuristics always achieve solutions
comparable or better than those obtained generically in run times that are two or three orders of
magnitude lesser.

7. Conclusion
We conclude with a summary of our main findings from this work. We perform a theoretical and
computational study of two new problems for the discrete optimization community: the BFLP and the
BUAP. We begin our work by showing that both these problems are NP-complete. Motivated by this
result, and also from computational evidence of the MIP solver struggling to solve large instances
with limited capacity, we developed heuristics for both of these problems. Our heuristics for the BUAP

were further inspired by use as subroutines for the heuristics of the BFLP, however they also have
value within their own right. We show that our relaxation rounding heuristic outperforms the
greedy algorithm developed in Schmitt and Singh (2024a). Additionally, we find that a local search
that reassigns users performs significantly better than a local search that swaps assignments of users.

For the BFLP we developed two tailored algorithms, close greedy and open greedy, and one local
search algorithm, the BFLP local search. Our algorithms are rooted in ideas prevalent in the FLP
literature, especially those for solving the CFLP as described in Jacobsen (1983). However, adapting

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 33

these to our problems requires several amendments leading them into an almost new form. We found

two factors to be particularly relevant in improving the performance of the algorithms. The first

important observation is that it suffices to adapt an assignment instead of completely recomputing

it. In particular, if a single facility is closed (or, opened) it is sufficient to start with the original

assignment and simply reassign users where this is necessary. The second idea that performs very

well in our experiments is to choose a candidate set of facilities to close (or, open) based on a measure

of how good they were to close (or, open) in a previous iteration. As instances become larger, it

becomes intractable to consider all facilities at all steps of an algorithm. This choice of restricting

the algorithm to only a few facilities worked exceedingly well in practice; even considering only 5

facilities on instances that have more than 1,000 facilities shows merit.

Our heuristics outperform both the previously proposed greedy heuristic in Schmitt and Singh

(2024a) as well as the generic solver. Specifically, such computational challenges arise from either

the size of the problem (e.g., facilities throughout Germany) or insufficient capacity. In this setting,

our heuristics achieve comparable or better results in less than 15 minutes than what a generic

solution method achieves in 5.5 hours. Importantly, the heuristics do not require detailed fine tuning

of the parameters — typically, even the primitive version of our algorithms is sufficient to achieve

good performance. For example, the local search algorithm developed for the BFLP only marginally

improves upon the results achieved by both close greedy and open greedy; however, we show that

the local search algorithm is especially good at quickly improving poor starting solutions.

Future work could consider extensions on at least two grounds. First, it could investigate in greater

detail reasons that the same pool of candidate facilities at different iterations of close greedy and

open greedy performs well. Here, a study of the δ parameter could be performed as well. Second,

the performance of the heuristics on the generic generalized quadratic assignment problem and the

corresponding facility location problem could be considered.

All our codes and data are available from the IJOC GitHub software repository (Schmidt and

Singh 2025).

Acknowledgments
We thank Christian Schmitt, Montree Jaidee, and Theresia van Essen for their comments on parts of this

work. The second author was partially supported by the Research Investment and Support Building Sustain-

able and Green Futures program of the University of Southampton. The funding source had no involvement

in study design, collection, analysis and interpretation of data; in the writing of the report; and in the decision

to submit the article for publication.

Schmidt and Singh: Balanced Facility Location Problem
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

References
Addis B, Aringhieri R, Grosso A, Hosteins P (2016) Hybrid constructive heuristics for the critical

node problem. Annals of Operations Research 238(1–2):637–649, URL http://dx.doi.org/10.1007/

s10479-016-2110-y.

Bayerisches Landesamt für Umwelt, ed. (2015) Wertstoffhof 2020 - Getrennthaltungsgebot und Nov-
elle des ElektroG, UmweltSpezial, URL https://www.bestellen.bayern.de/application/eshop_

app000009?SID=62794461.

Benlic U, Hao JK (2013) Breakout local search for the quadratic assignment problem. Applied Mathematics
and Computation 219(9):4800–4815, URL http://dx.doi.org/10.1016/j.amc.2012.10.106.

Costa JGC, Mei Y, Zhang M (2022) Guided local search with an adaptive neighbourhood size heuristic
for large scale vehicle routing problems. Proceedings of the Genetic and Evolutionary Computation
Conference, 213–221, GECCO ’22 (New York, NY, USA: Association for Computing Machinery), ISBN
9781450392372, URL http://dx.doi.org/10.1145/3512290.3528865.

Delft High Performance Computing Centre (DHPC) (2022) DelftBlue Supercomputer (Phase 1). https:

//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1.

Feldman E, Lehrer F, Ray T (1966) Warehouse location under continuous economies of scale. Management
Science 12(9):670–684, URL http://dx.doi.org/10.1287/mnsc.12.9.670.

Jacobsen SK (1983) Heuristics for the capacitated plant location model. European Journal of Operational
Research 12(3):253–261, URL http://dx.doi.org/10.1016/0377-2217(83)90195-9.

Karp RM (1972) Reducibility among combinatorial problems. Complexity of Computer Computations 85–
103, URL http://dx.doi.org/10.1007/978-1-4684-2001-2_9.

Kelly FP, Maulloo AK, Tan DKH (1998) Rate control for communication networks: shadow prices, pro-
portional fairness and stability. Journal of the Operational Research Society 49(3):237–252, URL
http://dx.doi.org/10.1038/sj.jors.2600523.

Krarup J, Pruzan PM (1983) The simple plant location problem: Survey and synthesis. European Journal
of Operational Research 12(1):36–81, URL http://dx.doi.org/10.1016/0377-2217(83)90181-9.

Kuehn AA, Hamburger MJ (1963) A heuristic program for locating warehouses. Management Science
9(4):643–666, URL http://dx.doi.org/10.1287/mnsc.9.4.643.

Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. Glover F, Kochenberger GA, eds., Handbook
of Metaheuristics, 320–353 (Boston, MA: Springer US), ISBN 978-0-306-48056-0, URL http://dx.

doi.org/10.1007/0-306-48056-5_11.

Martello S (1990) Knapsack Problems: Algorithms and Computer Implementations (USA: J. Wiley & Sons),
ISBN 0471924202, URL http://dx.doi.org/10.2307/2583458.

Mateus GR, Resende MG, Silva RM (2010) Grasp with path-relinking for the generalized quadratic
assignment problem. Journal of Heuristics 17(5):527–565, URL http://dx.doi.org/10.1007/

s10732-010-9144-0.

http://dx.doi.org/10.1007/s10479-016-2110-y
http://dx.doi.org/10.1007/s10479-016-2110-y
https://www.bestellen.bayern.de/application/eshop_app000009?SID=62794461
https://www.bestellen.bayern.de/application/eshop_app000009?SID=62794461
http://dx.doi.org/10.1016/j.amc.2012.10.106
http://dx.doi.org/10.1145/3512290.3528865
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
http://dx.doi.org/10.1287/mnsc.12.9.670
http://dx.doi.org/10.1016/0377-2217(83)90195-9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1038/sj.jors.2600523
http://dx.doi.org/10.1016/0377-2217(83)90181-9
http://dx.doi.org/10.1287/mnsc.9.4.643
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.2307/2583458
http://dx.doi.org/10.1007/s10732-010-9144-0
http://dx.doi.org/10.1007/s10732-010-9144-0

Schmidt and Singh: Balanced Facility Location Problem
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 35

McKendall A, Li C (2016) A tabu search heuristic for a generalized quadratic assignment problem. Journal of

Industrial and Production Engineering 34(3):221–231, URL http://dx.doi.org/10.1080/21681015.

2016.1253620.

Montes de Oca MA, Ner F, Cotta C (2012) Local Search, chapter 3, 29–42 (Springer-Verlag), URL http:

//dx.doi.org/10.1007/978-3-642-23247-3_3.

Öncan T (2007) A survey of the generalized assignment problem and its applications. INFOR: Information

Systems and Operational Research 45(3):123–141, URL http://dx.doi.org/10.3138/infor.45.3.

123.

Osman IH (1995) Heuristics for the generalised assignment problem: Simulated annealing and tabu

search approaches. Operations-Research-Spektrum 17(4):211–225, URL http://dx.doi.org/10.1007/

bf01720977.

Pinedo ML (2016) Scheduling Theory, Algorithms, and Systems, chapter 5, 113–151 (Springer International),

5 edition, URL http://dx.doi.org/10.1007/978-3-319-26580-3.

Risanger S, Singh B, Morton D, Meyers LA (2021) Selecting pharmacies for covid-19 testing to

ensure access. Health Care Management Science 24(2):330–338, URL http://dx.doi.org/10.1007/

s10729-020-09538-w.

Schmidt M, Singh B (2025) The balanced facility location problem: Complexity and heuristics. URL

http://dx.doi.org/10.1287/ijoc.2024.0693.cd, available for download at https://github.com/

INFORMSJoC/2024.0693.

Schmitt C, Singh B (2024a) An analytical lower bound for a class of minimizing quadratic integer optimization

problems, URL https://optimization-online.org/?p=28401.

Schmitt C, Singh B (2024b) Quadratic optimization models for balancing preferential access and fairness:

Formulations and optimality conditions. INFORMS Journal on Computing ISSN 1526-5528, URL

http://dx.doi.org/10.1287/ijoc.2022.0308.

Sridharan R (1995) The capacitated plant location problem. European Journal of Operational Research

87(2):203–213, URL http://dx.doi.org/10.1016/0377-2217(95)00042-o.

Wolfe P (1959) The simplex method for quadratic programming. Econometrica 27(3):382–398, URL http:

//dx.doi.org/10.2307/1909468.

http://dx.doi.org/10.1080/21681015.2016.1253620
http://dx.doi.org/10.1080/21681015.2016.1253620
http://dx.doi.org/10.1007/978-3-642-23247-3_3
http://dx.doi.org/10.1007/978-3-642-23247-3_3
http://dx.doi.org/10.3138/infor.45.3.123
http://dx.doi.org/10.3138/infor.45.3.123
http://dx.doi.org/10.1007/bf01720977
http://dx.doi.org/10.1007/bf01720977
http://dx.doi.org/10.1007/978-3-319-26580-3
http://dx.doi.org/10.1007/s10729-020-09538-w
http://dx.doi.org/10.1007/s10729-020-09538-w
http://dx.doi.org/10.1287/ijoc.2024.0693.cd
https://github.com/INFORMSJoC/2024.0693
https://github.com/INFORMSJoC/2024.0693
https://optimization-online.org/?p=28401
http://dx.doi.org/10.1287/ijoc.2022.0308
http://dx.doi.org/10.1016/0377-2217(95)00042-o
http://dx.doi.org/10.2307/1909468
http://dx.doi.org/10.2307/1909468

Table
2:

Sum
m

ary
of

results
for

different
BFLP

heuristics.
A

ll
heuristics

are
run

w
ith

m
=

greedy
assign

w
ith

local
search

reassign
and

m
′=

relaxation
rounding

w
ith

local
search

reassign
w

ith
n

r =
50.Positive

∆
M

I
P

valuesindicate
ourheuristic

perform
sbetterthan

the
generic

solver
after

20,000
seconds.For

allentries
in

this
table,the

generic
solver

has
not

even
found

a
single

feasible
solution

by
the

tim
e

these
heuristics

term
inate.See

Section
6.3.4

for
details.

H
euristic

from
Schm

itt
and

Singh
(2024a)

close
greedy

close
greedy

and
BFLP

local
search

open
greedy

open
greedy

and
BFLP

local
search

Instance
B

udget
M

IP
gap

after
20K

s
[%

]
T

im
e

[s]
∆

M
I

P
[%

]
T

im
e

[s]
∆

M
I

P
[%

]
T

im
e

[s]
∆

M
I

P
[%

]
T

im
e

[s]
∆

M
I

P
[%

]
T

im
e

[s]
∆

M
I

P
[%

]

Instance
I

0.9
1.33

128
-1.34

75
-

149
0.02

229
0.01

311
0.02

0.8
2.36

115
-1.64

84
0.04

160
0.07

210
0.09

283
0.10

0.7
3.53

102
-1.81

102
0.13

171
0.15

189
0.19

268
0.19

0.6
5.07

90
-1.59

106
0.51

179
0.56

169
0.63

247
0.64

0.5
7.49

76
-0.42

117
1.94

228
2.00

148
2.07

215
2.07

0.4
6.66

63
-2.28

122
0.11

234
0.20

129
0.26

202
0.26

0.3
7.42

50
-2.11

137
0.35

214
0.43

108
0.52

176
0.53

0.2
7.71

36
-2.07

143
0.24

231
0.28

89
0.24

172
0.28

0.1
7.84

24
-1.40

151
0.39

260
0.42

68
0.46

120
0.46

Instance
II

0.9
0.57

3
-0.86

3
-

10
-

6
-

10
-

0.8
1.41

3
-1.07

3
-0.02

7
-0.02

6
-

9
-

0.7
2.19

3
-1.34

3
-0.06

7
-0.04

5
-0.02

9
-

0.6
3.05

2
-1.70

3
-0.09

6
-0.04

5
-0.02

8
-0.02

0.5
3.53

2
-1.67

3
-0.16

8
-0.04

5
-0.06

9
-

0.4
3.93

2
-1.99

3
-0.08

7
-0.05

5
-0.14

8
-

0.3
4.12

1
-1.64

4
-0.26

7
-0.12

4
-0.05

7
-

0.2
4.64

1
-2.83

3
-0.09

6
-0.08

3
0.02

6
0.02

0.1
4.18

1
-1.47

2
-0.22

6
-0.03

2
-0.03

4
-0.03

Instance
III

0.9
0.28

673
-1.58

343
-0.12

641
-0.06

1316
-0.06

1848
-0.06

0.8
0.63

612
-2.30

397
-0.07

697
-0.04

1197
-0.04

1724
-0.04

0.7
1.12

567
-3.31

462
-0.04

757
0.02

1077
-0.01

1583
0.03

0.6
1.72

489
-4.10

502
-

791
0.03

965
-0.03

1275
0.03

0.5
3.17

434
-3.62

544
0.75

828
0.78

862
0.68

1162
0.75

0.4
4.46

359
-3.44

587
1.26

858
1.28

743
1.12

1027
1.22

0.3
11.92

315
4.32

610
8.34

867
8.36

648
8.09

916
8.22

0.2
25.36

215
19.00

657
21.79

899
21.80

521
21.35

770
21.59

0.1
18.08

141
12.30

654
13.96

910
13.98

410
13.42

667
13.77

Instance
IV

0.9
0.97

28
-7.45

18
-0.17

40
-0.13

62
-0.29

86
-0.25

0.8
2.75

25
-7.75

17
-0.11

40
-0.09

60
-0.17

96
-0.13

0.7
5.25

22
-8.01

18
-0.17

41
-0.05

58
-0.06

85
-

0.6
8.03

19
-7.71

17
-0.17

41
-0.10

59
-0.15

87
-0.11

0.5
11.44

17
-6.58

20
0.33

43
0.39

57
0.50

79
0.50

0.4
15.48

14
-3.86

19
1.92

41
2.00

53
2.00

80
2.06

0.3
16.61

12
-4.70

19
0.31

41
0.31

49
0.45

71
0.52

0.2
18.26

10
-2.54

26
0.44

47
0.55

40
0.56

69
0.71

0.1
13.39

8
0.17

32
1.49

50
1.67

25
1.77

55
1.81

36

	Introduction
	Complexity
	Heuristics for user assignment
	The greedy algorithm of Schmitt2024a
	A basic rounding algorithm
	Local search approach

	Heuristics for the BFLP
	Background
	The close greedy algorithm
	The open greedy algorithm
	BFLP local search

	Data Sources and Estimation
	Computational Results and Analysis
	Setup
	Analysis: Heuristics for the BUAP
	Results heuristics BFLP
	Analysis: close greedy
	Analysis: open greedy
	Analysis: BFLP local search
	Analysis and Recommendations: Comparison of all heuristics

	Conclusion

