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ABSTRACT

The detection of periodic signals in irregularly sampled time series is a problem commonly encountered in astronomy. Traditional
tools used for periodic searches, such as the periodogram, have poorly defined statistical properties under irregular sampling,
which complicate inferring the underlying aperiodic variability used for hypothesis testing. The problem is exacerbated in the
presence of stochastic variability, which can be easily mistaken for genuine periodic behaviour, particularly in the case of
poorly sampled light curves. Here, we present a method based on Gaussian Processes (GPs) modelling for period searches and
characterization, specifically developed to overcome these problems. We argue that in cases of irregularly sampled time series,
GPs offer an appealing alternative to traditional periodograms because the known distribution of the data (correlated Gaussian)
allows a well-defined likelihood to be constructed. We exploit this property and draw from existing statistical methods to perform
traditional likelihood ratio tests for an additional (quasi-)periodic component, using the aperiodic variability inferred from the
data as the null hypothesis. Inferring the noise from the data allows the method to be fully generalizable, with the only condition
that the data can be described as a Gaussian process. We demonstrate the method by applying it to a variety of objects showing
varying levels of noise and data quality. Limitations of the method are discussed, and a package implementing the proposed
methodology is made publicly available.

Key words: accretion, accretion discs—methods: data analysis—methods: statistical —stars: black holes —stars: neutron—
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1 INTRODUCTION

The identification of periodic/quasi-periodic signals in irregularly
sampled time series is a common problem in astronomy due to
the predominance of interrupted or intermittent observing. While
uninterrupted, regularly sampled observations may be achieved for
periods of up to around a day at most, for time-scales extending to
the tens or hundreds of days, this becomes impractical, particularly
for faint sources, which require the most sensitive of instruments.
Such ‘long’ time-scales are, however, of great interest in the study
of many phenomena, such as superorbital periods in X-ray binaries
(XRBs; e.g. Kotze & Charles 2012; Vasilopoulos et al. 2020) and
binary supermassive black hole (SMBH) signals (e.g. Graham et al.
2015).

Arguably the most widely used technique to search for periodici-
ties in time series is the periodogram, which involves calculating the
modulus-squared of the discrete Fourier transform. Lomb (1976) and
Scargle (1982) extended the periodogram to the case of irregularly
sampled time series, a technique known today as the Lomb-Scargle
periodogram (see VanderPlas 2018, for a review of this technique).
Periodic signals appear as peaks or ‘outliers’ in power, allowing the
frequency of the repeating signal to be estimated. If the distribution of
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the powers in the absence of a signal is known, the chance probability
of generating such an outlier can then be calculated, providing an
estimate of the significance of the candidate period.

In the absence of source variability other than the repeating signal,
i.e. when the sole source of additional variance in the light curve is
due to Poisson noise, the problem is somewhat straightforward. In
regularly sampled time series, the problem can be tackled analytically
as the powers in the periodogram are independent and follow a 2
distribution with 2 degrees of freedom ( Xzz; e.g. van der Klis 1988).
In the case of irregularly sampled data, the powers are no longer
independent, but the problem can be tackled easily by randomizing
the time series (Frescura, Engelbrecht & Frank 2008; VanderPlas
2018).

Searching for periods is made considerably harder when sys-
tems show intrinsic aperiodic or stochastic (i.e. non deterministic)
variability, as is universally observed in both accreting systems
(Vaughan et al. 2003) and stars (Bowman & Dorn-Wallenstein 2022).
These types of source have steep power spectral densities (PSDs),
commonly referred to as ‘red noise’. Failing to account for this
background noise tends to overestimate the significance of peaks
in the periodogram (Vaughan 2005). For this reason, sources show-
ing stochastic variability are more prone to misidentified periods,
exacerbated in the case of uneven sampling (e.g. Vaughan et al.
2016). While this problem was tackled by Israel & Stella (1996) and
Vaughan (2005, 2010) in the case of regularly sampled time series,
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there is as yet no standard procedure for the case of irregularly
sampled time series.

In this paper, we present a recipe aimed at detecting periodicities in
irregularly sampled time series, with particular focus on cases where
the systems under study show additional aperiodic variability (as it
is the case in e.g. active galactic nuclei (AGNs); Gonzalez-Martin &
Vaughan 2012), although the method is completely generalizable.
We argue that in such cases, Gaussian Process (GP) modelling offers
a clear advantage over traditional (Lomb-Scargle) periodograms,
because the likelihood of the data is known. This allows us to
constrain the underlying, aperiodic variability using GP modelling,
and use well-established statistical techniques to determine the
candidate period significance and a goodness-of-fit.

This paper is structured as follows: in Section 2, we review the case
of period-detection in regularly sampled time series and describe
our proposed methodology for the irregularly sampled case. In
Section 3, we demonstrate the method, applying it to both simulated
and real data. Finally in Section 4, we discuss the advantages of
the methodology over more traditional Fourier-based techniques and
outline certain limitations and caveats of the proposed methodology.

2 SEARCHING FOR A PERIOD

2.1 Regularly sampled time series

The standard methodology to test for the presence of a narrow peak
associated with a periodic/quasi-periodic signal in a periodogram
generally involves estimating the broadband noise (or continuum)
and using that estimate — and its uncertainties — as the null hypothesis
(e.g. Israel & Stella 1996; Vaughan 2005, 2010, see also Gierlinski
et al. 2008; Pasham et al. 2019; Ashton & Middleton 2021 for an
example of the application of such a methodology). In the case
of regularly sampled time series, the powers in the periodogram
can be considered independent and their distribution is well known
(scattered as a x7 around the underlying PSD; e.g. Klis 1988).
Knowing the distribution of powers allows the construction of a
well defined likelihood function (e.g. Stella et al. 1994) (commonly
known as the Whittle likelihood; see Vaughan 2010, and references
therein). This allows forward-fitting of the periodogram' and models
to be rejected based on the data alone, as it is customarily done when
fitting using x? statistics.

Knowledge of the likelihood not only allows models to be rejected
based on the data alone, but also to test for the presence of additional
components (e.g. quasi-period oscillations; QPOs) by performing
a likelihood ratio test (LRT; Protassov et al. 2002). In particular,
Vaughan (2010) proposed to follow Protassov et al. (2002) and
perform an LRT using the Whittle likelihood function from fits to
the periodogram:

T 21n 20 1
LRT = n L ()
Here, Ly and L, are the maximum of the likelihood functions for the
null hypothesis and the alternative model, respectively. Subsequently,
one would simulate periodograms drawn from the null hypothesis
(and its uncertainties, see e.g. Ashton & Middleton 2021) and derive
the same quantity for each of the simulated periodograms. As stated
earlier, as the distribution of powers is known in the case of evenly
sampled data (scattered as X22 around the PSD) one can avoid the
additional step of simulating light curves (so long as aliasing and

Notably if aliasing and red noise leakage effects are negligible.
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red noise leakage effects are not important). Finally, a comparison
of the observedTirr against the reference distribution derived from
the simulated data sets allows the probability of rejecting the null-
hypothesis model to be assessed (through the derived p-value),
thereby providing an estimate of the significance of the putative
signal. Note that, because the null hypothesis is derived from the
data, the method makes no assumptions about the underlying noise,
and is completely generalizable. We seek to replicate this process in
the case of unevenly sampled data.

2.2 Irregularly sampled time series

In the case of irregular sampling, there is no straightforward way
to model the broad-band noise as for the regularly sampled case. If
we were to replicate the standard procedure outlined above using
the Lomb—Scargle periodogram, we would encounter a variety of
problems. First, the powers in the Lomb—Scargle periodogram are
known to not be statistically independent (e.g. Lomb 1976) and their
distribution is therefore unknown and dependent on the underlying
(also unknown) PSD. Secondly, the irregular sampling implies that
there is no well-defined set of frequencies over which to evaluate
the periodogram (e.g. Frescura et al. 2008). Finally, as the Nyquist
frequency is ill-defined or nonexistent (VanderPlas 2018), aliasing
effects are exacerbated. The combination of these problems typically
precludes forward-fitting of the (Lomb-Scargle) periodogram or at
the very least, forward-fitting will lead to biased estimates.

To illustrate this, we simulated 1000 light curves using the method
proposed by Timmer & Koenig (1995), initially with N = 1, 000
evenly sampled datapoints using an input PSD where the power
(S(f)) follows a power law S(f) o f~# with =1, and 1.8,
respectively. The light curves were initially simulated to be ten times
longer to introduce red-noise leakage effects and then truncated into
the aforementioned length. We then randomly removed 50 datapoints
from each light curve and computed Lomb—Scargle periodograms
from the resulting light curves. We then fit the periodograms in log
space with a linear function (i.e. assuming the powers follow a x2;
Vaughan 2005) and retrieve the best-fitting slope (8) in each case.
We then progressively removed a further 50 datapoints, until 500
datapoints had been removed (but always keeping the last and the
first datapoint to maintain the same light curve length), recording the
mean best-fitting S for the ensemble of the 1000 light curves. The
mean best-fitting B as a function of number of datapoints removed
is shown in Fig. 1 for both g values.

Fig. 1 shows that, for 8 = 1, when 2200 datapoints have been
removed, the best-fitting 8 is underestimated by ~20 per cent, illus-
trating the inherent issues in fitting to the Lomb—Scargle periodogram
(see also O’Sullivan & Aigrain 2024). The case of B = 1.8 shows
the bias is more dramatic for steeper PSDs. The situation becomes
even worse in a real-case scenario, where the frequency grid will be
unknown (here we can at least assume the frequency grid given by
the initially evenly sampled light curves) and there will be no way
to know whether the fit is an adequate description of the data. Note
also that the biases will affect any parameter fitted, including the
normalization of the power law, which we have not shown here.

One way to circumvent the above problems is to rely on Monte
Carlo simulations of light curves, as pioneered by Done et al. (1992)
and later refined by Uttley, McHardy & Papadakis (2002). This
approach attempts to find the power spectral model that, when
convolved with the observing window, best matches the (Lomb-
Scargle) periodogram of the real data, so that all distorting effects
are taken into account. However, such methods still run into some
problems, particularly when dealing with irregularly sampled time
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Figure 1. Mean best-fitting B for an ensemble of 1000 Lomb-Scargle
periodograms of light curves generated with a PSD following a power law
S(f) ~ f’ﬂ with 8 = 1 (blue solid line) and 1.8 (orange solid line). The
periodograms were fitted with a linear function in log—log space (i.e. assuming
the powers follow a X22 as for the regularly sampled case) as we progressively
removed datapoints. The best-fitting B quickly deviates from the input g
value (dashed horizontal lines), showing how the Lomb—Scargle periodogram
becomes a biased estimator as the sampling regularity decreases.

series. Once again, the unknown distribution of the powers and their
lack of independence implies that the choice of the fit-statistic will not
be straightforward. One could aim to rebin the periodogram, hoping
that enough samples will converge to Gaussianity and independence,
but again the lack of a well-defined frequency-grid complicates this
approach (whilst the number of averages needed to reach Gaussianity
is unclear and depends on the underlying, unknown PSD; Ingram &
Done 2011). In addition, if binning cannot be avoided, any periodic
component and its structure due to the observing window will be
smeared out, which will affect the estimate of the continuum. For that
reason, tests relying on simulated Lomb-Scargle periodogram peaks
often have to excise the frequency of the candidate period in order
to determine the putative underlying noise (e.g. Pasham et al. 2024),
thereby making a priori assumption about the presence of any QPO.
This is because if the feature is real and not removed, the broadband
continuum estimate used for the simulations will be biased, often
towards steeper indexes if the QPO is at the low-frequency end. This
overestimate of the amount of aperiodic variability will therefore
underestimate the significance of the periodic component.

The method of Monte Carlo simulations also becomes quickly
computationally expensive as it relies heavily on Monte Carlo sim-
ulations for estimation of the best-fitting parameters, and additional
simulations are often needed to obtain parameter uncertainties (e.g.
Mueller & Madejski 2009; Markowitz 2010). An appealing aspect
of such a method, however, is that one can obtain the goodness-
of-fit through the simulated light curves, using them to derive the
empirical distribution of fit-statistic from which the goodness-of-fit
(or ‘rejection confidence’ as per Uttley et al. 2002) can be derived.
We note that, as pointed out by Mueller & Madejski (2009), one
should re-fit the simulated light curves in the same manner as for the
observed data set in order to obtain the empirical distribution of the fit
statistic, which would again dramatically increase the computational
time. We return to this point in Section 2.6.

An alternative approach to the above is to use time-domain
fitting methods such as GP, where the irregular sampling and
measurement (heteroskedastic) errors are fully accounted for and
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are less susceptible to the distorting effects inherent in a Fourier-
domain approach (e.g. Kelly, Sobolewska & Siemiginowska 2011).
The covariance functions, or ‘kernels’, when the data is stationary
(when they depend only on the Af;; = |t; —¢;| interval between
any two datapoints), describe the autocorrelation function, which
can be Fourier-transformed to obtain the PSD (Rasmussen &
Williams 2006). Therefore GP modelling offers an equally flexible
but frequency-distortion-free access to the PSD, while maximizing
data usage by making full account of the measurement uncertainties
and avoiding binning. Moreover, complications arising from the
unknown distribution of powers in the case of the Lomb-Scargle
periodogram are avoided.

Beyond the computational demand, which generally scales as N3
(although Foreman-Mackey et al. (2017) showed that the compu-
tational time can be reduced to scale as ~ J2N — where J is the
number of model components — for a restricted set of kernels), a
more general drawback of GP modelling compared to traditional
methods is that there is no measure of goodness-of-fit. As a result,
models cannot be rejected solely on the basis of the data, and only
model comparison (e.g. using an information criterion) is possible.
In addition, although QPO-searches have been performed using GP
(e.g. Covino et al. 2020; Covino, Tobar & Treves 2022; Hiibner
et al. 2022; Zhang, Yang & Dai 2023), establishing the significance
of such signals remains challenging. In particular, it is important
to quantify the chance probability of generating a fit improvement
(or any other metric such as the Bayes factor) when including a
QPO/periodic component (hereafter we will refer to this simply as
the ‘signal’) given the specific sampling, priors, fitting technique, and
other factors involved in the analysis. This is particularly important
if such methods are to be extended to include non-stationary kernels,
where the time window becomes a parameter of the model (Hiibner
et al. 2022). In such cases, one needs to account for the additional
sets of free-trials or model-flexibility introduced in allowing signals
to be transient.

2.3 The method

Our procedure can be considered equivalent to the LRT approach
proposed by Vaughan (2010), but adapted to deal with irregularly
sampled data. First, to circumvent the issues related to use of
the Lomb—Scargle periodogram, we obtain the likelihood directly
from the GP modelling in the time domain. We then make a
comparison between a continuum-only model (the null hypothesis)
to a more complex model that includes the signal, obtaining a fit
improvement (quantified through L; — Ly = AL or Tigrr). Next,
from the posteriors of the null hypothesis modelling, we draw kernel
parameter samples and then use the PSD of these kernels to generate
anumber of simulated light curves via inverse-Fourier transform (the
full methodology employed to simulate the light curves is described
in Appendix A). We finally perform the same GP modelling on
the synthetic light curves to derive the reference distribution for
the LRT. While throughout this work we employ uninformative
(uniform) priors, Bayesian priors could easily be incorporated,
provided the same priors are also used when fitting the simulated data
sets.

Intuitively, this method can be understood as follows: if the
improvement in fit statistic provided by the added model component
(the putative signal) is due to random noise fluctuations in the original
data set (i.e. the signal is spurious), the fit improvement obtained
in the simulated data sets (which were simulated using the model
without the additional model component) will be of the same order
as that of the real data set. If the signal is real, then the improvement
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Figure 2. PSDs of the celerite models used in this work. All PSDs are
shown with the same integrated variance. The DRW results in a bending
power law in Fourier space (dashed orange line), whereas the exponentially
decaying sinusoid gives a Lorentzian, which is shown for different values
of coherence, Q, in blue solid lines. For Q < 3/2, the Lorentzian becomes
broad, mimicking a bending power law (see Belloni, Psaltis & Klis 2002). The
PSD of the SHO for the special case of Q = l/ﬁ and Q = 1/2 (which yields
the Matérn-3/2 kernel approximation) are shown as a dashed—dotted green
line and a solid purple line, respectively. The vertical dashed line indicates the
central frequency of the Lorentzian (wp) and wpeng for the DRW, Matérn-3/2
and SHOQ=1 V2 kernels. Note that for the Matérn-3/2 p = /3l pend.

in fit statistic provided by the additional model component will be
generally larger than any of the values obtained in the simulated data
sets. Such a procedure not only inherently accounts for the number of
free trials — as long as the parameter ranges/priors are kept the same
as for the original data set — but also for the fact that some signals may
have a more complex profile than a simple peak in a Lomb—Scargle
periodogram (as is often assumed in significance testing). Another
advantage of relying on fit improvements is that it removes the need
to make any prior assumptions about the presence of the QPO in the
periodogram, which, as stated in Section 2.2, is often the case when
relying on periodogram peaks.
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2.4 Kernel functions

There are naturally a range of possible models one could potentially
use to describe the underlying noise and the signal, and we refer
to Rasmussen & Williams (2006) for some examples. In this paper,
we use the celerite kernels proposed by Foreman-Mackey et al.
(2017) for GP modelling — which we note bear many similarities to
CARMA (Kelly et al. 2014) — to reduce the computational burden,
but note our method is generalizable to any choice of kernels. These
kernels can then be combined through additions or multiplications to
achieve more complex covariance matrices. However, as shown by
Foreman-Mackey et al. (2017), any multiplication of celerite
kernels can always be reformulated as an addition under a new
parameter set. Therefore we only explore additions of the kernels
described below.

The simplest choice of celerite kernel for modelling aperiodic
variability is the Damped Random Walk (DRW), whose kernel is
simply a decaying exponential:

k(At;j) = 0% eXp(—whena Ali;) (@)
the PSD of which is a bending power law (Fig. 2):
2 o2 1
S(w) =4/ — 3
s w

Whend ( > 2
1+
Whend

with an index of —2 for w >> wpeng bending smoothly to a flat
(S(w) ~ @) power law around wpenq. In the above, o2 is the variance
of the process.

A further possible kernel (as proposed by Foreman-Mackey et al.
2017) is the stochastically driven damped harmonic oscillator (SHO),
which can model both aperiodic and periodic variability. For the full
details of this kernel we refer the reader to Foreman-Mackey et al.
(2017); in this work we consider two special cases of this kernel used
to model aperiodic noise. The first one is commonly used to model
(aperiodic) granular noise in stars:

/3 2 @
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Figure 3. Example of a simulated light curve, generated to test the sensitivity of our method to false negatives (N = 250At ~ 4 days). (Left) Light curve
generated using a Lorentzian + DRW, with bending time-scale of 60 d, and period of 100 d. (Right) Corresponding Lomb-Scargle periodogram.
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Figure 4. Distribution of p-values (with colours indicating the density of values) obtained from the application of our PPP method to 100 simulated light curves
using a Lorentzian (QPO) + DRW with varying cadence (left) and baseline (right). The mean p-values for each cadence/baseline strategy are shown as short,
horizontal lines. The horizontal grey dashed line shows the 99 per cent significance detection level (p = 0.01).

here Sy scales the variance of the noise process (02 = %Swaend).
The PSD of this kernel is similar to the DRW but here the power
law has a stepper index of -4 for @ >> wpenq (Fig. 2). Hereafter, we
refer to this model as SHO_, 5 as this kernel is obtained for the
special case of Q = 1/+/2 within the more general SHO (for more
details we refer the reader to Foreman-Mackey et al. 2017).

The second special case of the SHO we consider is an approxima-
tion to the Matérn-3/2 kernel?, which using celerite kernels can
be approximated setting Q = 1/2 in the SHO:

3 V3At;
k(At;j) = o? <1 + “p[Az,-j> e, (6)

where p sets the characteristic time-scale in a similar fashion to the
DRW. The PSD of this function is only slightly dissimilar to the
SHOgq_,,.; kernel as can be seen in Fig. 2. Hereafter, we refer to
this kernel as Matérn-3/2 for simplicity.

Finally, we also considered a ‘Jitter’ or white-noise kernel to model
uncorrelated aperiodic variability, paramterized only by its variance:

k(At;)) = 05y, (7

where §;; is the Kronecker delta, indicating this term simply adds a
diagonal term to the covariance matrix. This kernel can be interpreted
in two ways. The first is that the uncertainties on the data are
underestimated; in this case o> provides the constant, missing
contribution to the noise; the second is as an extra white noise term
to capture some random variations (e.g. instrumental effects) not
captured by the main model. Here, we consider it as an independent
model to describe cases where the data does not support the use of
a different kernel (signalling that white noise as the null hypothesis
might be justified).

’In practice we have found the parameter controlling the approximation
in celerite to have very small effect on the results and was fixed to
the arbitrary small value of 107, While preparing this manuscript we have
learned that an exact state-representation of the Matérn-3/2 has now been
derived in Jordadn, Eyheramendy & Buchner (2021).
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Table 1. Summary of the analysis carried out to test the sensitivity of
our method to false negatives. 100 light curves were simulated per base-
line/cadence combination from a Lorentzian + DRW PSD and we examined
whether we could detect the additional Lorentzian (QPO) component over
the DRW.

N¢ < At >b T* <p>? % 0.01
d d

100 10 1000 0.12 65
250 4 1000 0.12 62
500 2 1000 0.11 68
1000 1 1000 0.10 68
300 1 300 0.24 21
400 1 400 0.21 39
500 1 500 0.17 44
Notes.

¢ Number of datapoints of the generated light curves.

b Mean cadence.

¢ Observing baseline.

4 Mean retrieved PPP value of 100 light curves for the presence of the QPO
(Lorentzian) component.

¢ Number of light curves for which the Lorentzian was significantly detected
(p<0.01).

For the periodic component, we have employed only a single
exponentially decaying sinusoid:

k(At;;) = o exp(—bAt;;) cos(woAt;;)

olexp —&At-- cos(woAt;;) 8)
2Q ij 0 Lij)s
where b = wy/2Q following the nomenclature of Foreman-Mackey
et al. (2017). The resulting PSD takes the form of a Lorentzian
(Fig. 2):

1 o’b B \F o’ Qwp
St = Vit (@—w)? Vax wf +40%(w — wy)?’ ®

which is a phenomenological model commonly used to model QPOs
in X-ray binaries (e.g. Belloni et al. 2002; Vaughan & Uttley 2005),

G20Z UIBIN L} U0 1saNB AQ YEY66./01ZE/7/LEG/PI0IME/SEIUW WO dNO"OlWapED.//:Sd)y WOy PaPEojumMoq



Mind the gaps 3215
55l ! 8 o 1
i 0.200F ]
s0F 8 0.175; f
L | r ]
sl | o | 1 os0F ]
g ol z 1
> |I IIII JIII N " £ 0125 ]
wort | eyt O ]
O LT (I RO R, ]
§35¢ ot % ! Wy W L 2oorsE E
© N b Wt 1] | || i o R £ ]
i I\I IH i Jl it ' i f || ¥ I I |II||| |||I ¥ 3 [ ]
30l 1yt |II |I||I|'I. |I | III 7] 0.050- 3
. Lo F ]
[ | i || by r ]
[ | § "\I| 0.025 E
25( [ 8 — ]
L PR ) P o by I\ L L1 0.000% Pt R E S A S SRS AR R N ‘;
0 50 100 150 200 250 300 0 20 20 60 80 100 120 140
Time (day) Period (day)
s S N 0.175[ B
i i ,” :
>0 III f 1 o.1s0F 4
i | Wt ] f
240, : IIW b '|I 4 1 it goazsp B
= i 2 [
g “f'hu llil i 'ﬂ‘ri P 18 |
o 401 ||’ i ‘I 1 I\'*I { |||\ tt,] ©0.100[ b
SRR
€350 b V'“ ‘Ii“1 by Dot b ALE & 0.075F ]
3 :ll ) f f N IH’ ! \ . f1 & i
Usoi I m "I ! ‘ N |I|i ’ j MII l'—: gooso:— -
: ! (AR Ni TR
25 I' ! \ ' 4 o.025F 1
" i [
B ! r
200 L . \‘ . L ! o 0.000| 4 L ol R R 1
0 200 400 600 800 1000 0 100 200 300 400 500
Time (day) Period (day)

Figure 5. Example of simulated light curves generated to test the sensitivity of our method to false positives. (Top left) Light curve generated using a
DRW with bending time-scale of 65 d (N = 300, cadence roughly every 1 d). (Top right) Corresponding Lomb-Scargle periodogram. (Bottom left) As
before, but initially with N = 1000 and then including two gaps of 45 d, one of 60 d and another of 100 d. (Bottom right) Corresponding Lomb—Scargle

periodogram.

and is flexible enough to capture strict periodicities (where the
coherence is extremely high). The Lorentzian has three parameters:
the period of the oscillation P = 27 /wy, the coherence or quality
factor Q3, which sets how stable the oscillation amplitude is over
time, or how peaked the Lorentzian is, and o2, which is again the
variance of the oscillation. Note that unlike periodogram modelling,
which is agnostic to the underlying mechanism broadening the
QPO, our periodic model here can only capture variations in
amplitude.

The presence of Poisson (or Gaussian) noise can be included in the
usual manner, by adding in quadrature the observation uncertainties
to the covariance matrix (Rasmussen & Williams 2006; Foreman-
Mackey et al. 2017). Here, we take the mean function to simply be
the mean of the light curve. This choice also helps to limit the number
of variable parameters, but again, our method can be generalized to
include any mean function.

3Note that our definition is consistent with Belloni et al. (2002) but differs by
a factor 2 compared to other works (e.g. Vaughan & Uttley 2005).

2.5 Model selection

Since we are performing a test for an additional component, our
models will always be of the form underlying noise + periodic
component(s). Before testing for the presence of a signal, it is
important to select a suitable null-hypothesis that captures the un-
derlying, stochastic noise. Information criteria (IC), which penalize
more complex models if the increase in fit statistic is not deemed
‘worthy’ of the extra parameters, are commonly used for model
selection. If priors are included, model selection can be performed
using the Bayes factor. Given that we have used non-informative
priors throughout this work, we perform model selection using the
Akaike Information Criterion (AIC; Akaike 1998):
AIC =2k —2InL,, (10)
where models with higher AIC values are considered to have
excessive complexity with respect to the quality of the data. Here,
k is the number of model parameters and L, for a particular model
is the maximum of the likelihood function. The AIC is only correct
asymptotically (i.e. for large sample sizes) but it can be corrected for
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Table 2. Summary of the analysis carried out to test the sensitivity of
our method to false positives. We tested for the presence of an additional
Lorentzian (QPO) component in 50 light curves, simulated from a DRW PSD
per baseline/cadence combination.

Table 3. AICc, AAIC and p-values for the standardized residuals following
a Gaussian distribution for the different models tested on the combined EPIC
data of the Seyfert galaxy NGC 1365. AAICc refers to the increment in AICc
with respect to the first model listed in the Table. Models with lower AICc

values are not shown for clarity.

N < At >b Te pfllniform
d d Model AlCc AAICc p-value

100 10 1000 0.35 Lorentzian + DRW + SHOQ=1/ﬁ 924 0.0 0.08
250 4 1000 0.56 Lorentzian + Matérn-3/2 + Matérn-3/2 92.7 0.4 0.01
500 2 1000 0.16 Lorentzian + Matérn-3/2 + SHO,_, I3 92.9 0.5 0.45
1000 1 1000 0.35 Lorentzian + Matérn-3/2 + DRW 93.2 0.8 0.01
300 1 300 0.91 Matérn-3/2 + SHO _, , /5 95.7 34 0.18
400 1 400 0.30 Matérn-3/2 + DRW 95.8 3.4 0.06
500 1 500 0.98 2xMatérn-3/2 96.0 3.6 0.19
Notes. DRW + SHO Q=143 96.8 45 0.06
¢ Number of datapoints of the generated light curves. Lorentzian + Matérn-3/2 98.7 6.3 0.70
b Mean cadence. 2xSHO o,/ /3 99.3 6.9 0.27
¢ Observing baseline. Lorentzian + SHO_, , 5 100.6 8.2 0.02
d p-values for the distribution of the 50 retrieved PPPs following a uniform Lorentzian + DRW 101.3 9.0 0.0
distribution between 0 and 1, as expected when the null hypothesis is true. Matérn-3/2 103.2 10.9 0.83
DRW 103.8 11.5 0.00
finite sample sizes as shown in Hurvich & Tsai (1989): Lorentzian + 2xDRW 105.3 12.9 0.00
AICc = AIC + Vi 1 (11) 3xDRW 111.6 19.2 0.00
- SHOQ=1/ﬁ 114.7 22.3 0.44
In order to find the best-fitting model, we have implemented a small Lorentzian -+ Jitter 121.3 28.9 0.00

iterative routine in which we start by testing each of the single-kernel
models (Jitter, DRW, Matérn-3/2, SHO,_, 12 and Lorentzian) on
the data. From these five fits, we selected the one yielding the lowest
AlCcpin and those within AAICc = 2 from AICc,,. Subsequently,
we tested each of the selected kernels in combination with any of
the other five. From this second stage, we again retained the lowest
overall model and those within the above AAICc, and repeated the
process until adding an extra component no longer resulted in a
decrease in the AICc.

We have compared the results of this routine with brute-forcing
testing all possible model combinations and while we have found
this routine yields the correct model in most instances, this was not
the case in two of the objects tested here. As an example, there might
be instances where a combination of a Lorentzian 4+ DRW might
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be a better overall combination than a Lorentzian + Matérn-3/2,
even if in isolation a Matérn-3/2 may be preferred over a DRW
and Lorentzian. Nevertheless, we have found the routine useful
in performing a preliminary triage and establishing the number of
components required. Therefore after the model minimizing AICc
was found, we have tested alternations keeping the same model
components to refine the final selection. We leave developing a more
refined search process when focusing on large-scale survey searches,
where we will calibrate the method against specific data sets.

Once the model (or combination of model components) has been
selected for the alternative and null hypothesis models, the posteriors
derived from the null hypothesis (the noise-only model) can be used

F T T T E|
[ — Data $ 1
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Figure 6. (Left) Combined EPIC 0.3-10 keV light curve of the Seyfert galaxy NGC1365. (Right) Corresponding Lomb—Scargle periodogram (oversampled by
a factor 5). The pink dashed line shows the mean periodogram of 10 000 light curves simulated from the posteriors of the Matérn-3/2 + DRW kernel (best-fitting
model), with the shaded areas showing the 16 and 84 per cent percentiles of the distribution. The vertical black arrow shows the putative QPO reported by Yan
et al. (2024). The dashed blue line shows the power spectrum of the observing window.
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Figure 7. GP modelling results of the combined XMM-Newton EPIC data of the Seyfert galaxy NGC 1365 (Fig. 6). (Top left) Best-fitting DRW + SHOQ:1 13
(solid orange line) and its 1o uncertainties (shaded areas). The bottom panel shows the standardized residuals of the model. (Top right) PSDs derived from the
celerite modelling (absolute rms normalization), showing the DRW + SHO Q=1,v2 (null) and the Lorentzian + DRW + SHO Q=1/v3 (alternative) models.
The solid and shaded areas show the median and 1o uncertainties derived from the posteriors. The dashed horizontal line shows the approximate Poisson level
At < O’ezrr > where At and < %2“ > are the median sampling and the mean square error, respectively). (Bottom left) ACF of the standardized residuals. The
shaded areas indicate the 95 per cent confidence level expected for white noise. (Bottom right) Posteriors of the best-fitting DRW + SHO Q=1/v2 model. The
contours indicate the 2D, 1o and 2o confidence levels (39 and 86 per cent, respectively) and the dashed lines on the marginalized histograms indicate the 32,
50, and 84 per cent percentiles (median®10). The MCMC run for approximately 64 000 steps until convergence, from which we discarded the first 10000 as

burn-in.

to calibrate the reference LRT distribution as proposed by Protassov
et al. (2002) and derive the posterior predictive p-value (PPP). In
doing so, we are able to map AIC changes to p-values.

Note it may not always be possible to establish a unique pair of
alternative and null hypothesis models when the differences between
two models are small (typically AAICc <2). In such instances
hypothesis testing may be repeated using the various competing
models in order to assess the robustness of the results to the choice of
null hypothesis. This situation is akin to the regularly sampled case
(e.g. Alston et al. 2014) and practical examples will be discussed
in Sections 3.2.1 and 3.2.3. Note that we refer here to differences
in AAICc between two alternative models, as small differences in
AAICc between null and alternative models are precisely the type of
situation our method is designed to address.

2.6 Goodness-of-fit

The goodness-of-fit is one of the main statistical quantities lacking
in GP modelling. As opposed to the commonly used y? statistic
(whose value can be mapped to a p-value, indicating the likelihood
that the data was generated by the model), the maximum of the GP
likelihood L, alone tells us nothing about whether the model is a
good description of the data or whether the data can be described by
a GP. Regarding the latter, there may be concern the light curves of
accreting compact objects cannot be described using GPs, because
the fluxes are observed to follow a lognormal probability density
function (PDF), suggesting a multiplicative process generates the
variability (Uttley, McHardy & Vaughan 2005), which we should
not be able to describe using GPs. In the Appendix (Section B)
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we discuss this aspect, and show through simulations that, despite
the light curves having a lognormal distribution, GPs are able to
recover the underlying process generating the variability (the PSD),
indicating that their applicability might be broader than originally
thought.

Despite the likelihood telling us nothing about whether the model
is an appropriate description of the data, there are still several
diagnostics that can be employed to test whether the model describes
the data (or whether the data can be described by a GP). Following
Kelly et al. (2014), we derive two diagnostics for model testing.
First, we assess whether the standardized residuals follow a standard
normal distribution (© = 0, 0 = 1) by performing a Kolmogorov—
Smirnof (KS) test. In practice, if the data cannot be described by
a GP, the standardized residuals will be narrower than a standard
normal distribution. This indicates the GP is overcompensating by
assuming the entire variability in the time series is just random
noise. In other words, the GP will indicate excess variance with
respect to the data. On the other hand, residuals broader than a
standard normal distribution indicate a deficiency in the chosen
model. The other quantity we derive verifies there are no remaining
trends by computing the autocorrelation function (ACF) of the
standardized residuals. Any deviations from white noise will indicate
the GP has not captured the full variability present in the light
curve.

As described above (Section 2.2), in cases where the underlying
distribution of the fit statistic is unknown, the reference distribution
can be built empirically using numerical simulations. This general
method (e.g. Waller et al. 2003; Kaastra 2017) involves simulating
realistic data sets from the best-fitting model parameters that yielded
L., applying the same fitting procedures and retrieving the reference
distribution of Lg, values to compare to L,. While a similar
approach was also suggested by Kelly et al. (2011), who proposed
to simulate light curves from the best-fit-derived PSD and compare
their periodograms to the periodogram of the data, here we avoid the
Fourier domain entirely by fitting the simulated light curves in time
domain too.

This approach can be understood as follows: if the best-fitting
parameters are truly representative of the data, then the simulated
data sets (light curves in this case) will yield values of L close to
L, when fitted, and so L, will sit roughly at the median of the L,
distribution. If the best-fitting parameters are not representative of
the data, then the value of L, will be an outlier in the distribution
of Lgm, i.e. L, will in general be much lower than each of the
Lgm values from the synthetic data sets; the model can then be
statistically rejected (typically p < 0.05). If the data is overfitted,
then the value of L, will be towards the higher end of the Lgn,
distribution, implying the model has captured the data beyond the
statistical noise, which is injected into the simulations (the model is
deemed ‘too good’, which may also occur where the errors have been
overestimated).

Finally, we note that, as opposed to more traditional x2-fitting,
where more complex models always lead to lower x2, in GP
modelling this is not necessarily the case. As opposed to x 2, where the
likelihood depends exclusively on the fit residuals, in GP modelling,
the likelihood depends on the residuals and a term depending on
the kernel (or model) through the determinant of the covariance
matrix. Therefore the best fit is determined from a trade-off between
the residuals and the part of the likelihood that depends on the
model alone. This makes it possible for less complex models to
actually have more flexibility than models involving more hyperpa-
rameters, yielding better fits even if the complexity of the model is
reduced.

MNRAS 537, 3210-3233 (2025)
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Figure 8. Reference LRT distribution generated from simulated light curves
from the posteriors of the DRW + SHO Q=1/v2 model (null hypothesis). The
solid orange line shows a fit to the distribution using a log-normal. The 7i gt
observed in the data is shown as a dashed black line.

2.7 Recipe

As a summary of the above, we outline the proposed steps of our
method:

(1) Chose a periodic kernel (or set of kernels) and a set of models
for the underlying noise.

(i1) Fit the models (and combinations of) to the data and rank them
using one of the widely used IC (e.g. AICc and BIC).

(iii) Ensure that the model with the lowest IC provides a good
fit (e.g. via standardized residuals and their ACF or deriving the
reference distribution for L.,).

(iv) Compare the maximum of the likelihood function L; of the
best-fitingt signal 4+ underlying noise model (the alternative model)
to the maximum of the likelihood function L, of the model without
the signal (the null-hypothesis) and retrieve the fit improvement,
quantified as Tjgr.

(v) Use the posteriors of the null model (the stochastic noise-only
model) to generate synthetic data sets.

(vi) Fit the synthetic data sets with the alternative and null-
hypothesis models, derive the reference distribution for the LRT,
and obtain the PPP by locating 7; gy in the distribution.

(vii) Based on the significance of the signal, decide whether the
component should be added to the null hypothesis (i.e. whether the
signal is present in the data).

A pyTHON package that implements the proposed methodology has
been made available at https://github.com/andresgur/mind_the_gaps
and was employed throughout this work.

3 APPLICATION

We initially applied the recipe above to simulated data to explore
the sensitivity of our method to variations in cadence and observing
baseline. We present two sets of tests to examine the robustness of
our approach to false negatives (failure to detect a signal) and false
positives (identification of spurious signals).

3.1 Application to simulated data

In order to examine the sensitivity of our method to false negatives,
we start by generating light curves (using the method explained in
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Figure 9. NGC 7793 P13Swift-UVOT light curve, with the segment considered for analysis indicated with a vertical dashed line and an arrow. (Right) Lomb—
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from the fundamental at ~64 d. The dashed blue line shows the power spectrum of the observing window.

Appendix A) with a (quasi)periodic component (Lorentzian) and
red noise (a DRW) to mimic the case of a QPO identified in a
stochastically varying light curve (e.g. Graham et al. 2015).

We assumed a period of 100 d for the QPO with a coherence
0 = 200, a bending time-scale of 60 d for the DRW and that the
QPO and the DRW contribute equally to a total variance of 6.7 x10™*
(ct s~1)?. We assumed a mean count rate of 0.1 ct s~! for the source,
background contribution of 1 percent and 2 ks exposure for all
observations (these values were motivated by the faintest sources
Swift-XRT is capable of monitoring).

We performed two types of tests using our input PSD model.
First, to test the sensitivity of our method to changes in the sampling
frequency, we generated light curves with a length of approximately
T = 1000 d, with a sampling rate Ar drawn from a Gaussian
distribution of mean = 1, 2, 4, and 10 d, and a standard deviation
of 0.2 d, such that the light curves had 1000, 500, 250, and 100
datapoints, respectively, and a realistic, irregular observing cadence.
Fig. 3 shows a test light curve (N = 250 and Ar ~ 4 d) and its
corresponding (Lomb-Scargle) periodogram. Secondly, to test the
effects of having a shorter baseline, we fixed At (mean and standard
deviation of 1 and 0.2 d, respectively) but progressively reduced the
number of datapoints to generate light curves of shorter duration. In
addition to the 1000 d light curve, we also simulated light curves
spanning approximately 7 = 500, 400, and 300 d, respectively.

For a given cadence/baseline combination, we simulated 100 light
curves and carried out the PPP method described in Section 2.3, i.e.
100 light curves were fitted with the DRW and the DRW + Lorentzian
models and the LRT reference distribution was built using 2000
simulations from the DRW posteriors. We chose to simulate 100
light curves as a trade off between computational time and having
roughly a representative sample for each cadence/baseline. Similarly,
the rather low number of 2000 simulations was set by computational
constraints.

Fig. 4 shows the distribution of the retrieved p-values for the 100
light curves for the case of varying cadence (left panel) and varying
baseline (right panel). Table 1 shows the mean retrieved p-values and
the number of significant (p <0.01) detections per cadence/baseline
combination.

From Fig. 4, we can see that, despite the rather low count rates
of the light curves, we are able to recover the period in more

Table4. As per Table 3 but now showing the AICc, AAICc, and p-values for
the standardized residuals following a Gaussian distribution for the different
models tested against the Swift-UVOT data of P13.

Model AlCc AAICc p-value
3xLorentzian + Jitter -556.0 0.0 0.32
3xLorentzian + SHO _, , 5 -555.9 0.2 0.71
3xLorentzian + Matérn-3/2 -554.1 1.9 0.27
3xLorentzian + DRW -553.6 2.4 0.08
2 xLorentzian + Jitter -552.2 3.8 0.43
2 xLorentzian + DRW -549.5 6.5 0.35
2xLorentzian + SHO _,, /5 -549.0 7.0 0.38
2xLorentzian + Jitter + SHOQ=1/ﬂ -548.4 7.6 0.008
2xLorentzian + Jitter + DRW -548.1 7.9 0.02
2 xLorentzian + Jitter + Matérn-3/2 -547.7 8.3 0.02
2 xLorentzian 4+ Matérn-3/2 -540.1 15.9 0.18
2 x Lorentzian -531.5 24.5 0.52
Lorentzian + Jitter -529.2 26.8 0.44
Lorentzian + DRW -526.5 29.5 0.365
Lorentzian + SHOQ:l/ﬂ —525.9 30.1 0.45
SHOVQ:l/ﬁ + 2xDRW —522.6 33.5 0.44
ZXSHOVQ=1/ﬁ + DRW —-516.5 39.5 0.78
DRW -495.5 60.5 0.178
Jitter -495.1 60.9 0.05
Matérn-3/2 -494.3 61.8 0.28
SHO Q=1/v3 -493.2 62.8 0.10
2x DRW -492.9 63.1 0.11
Lorentzian -492.6 63.4 0.69
SHO Q=1,v2 -492.1 63.9 0.21

than half of the instances (in >62/100) as long as enough cycles
are observed. In particular, there is little improvement in detection
rates in the light curves with fixed baseline (left panel). This is
partially due to the fact that the parameter space (namely P and
Whend) 18 accommodated with the sampling (as the lowest cadence in
the light curve sets the minimum allowed P and bend time-scale)
but it suggests the number of cycles might be the most important
metric when attempting to detect a periodicity. This simple result is
consistent with the requirement identified by Vaughan et al. (2016)
when looking for periodicities in stochastically varying systems.
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Figure 10. GP modelling results of the Swift-UVOT light-curve segment (Fig. 9) of the pulsating ULX NGC 7793 P13. (Top left) Best-fitting 3 x Lorentzian
+ Jitter model. (Top right) PSD of the best-fitting model. The contribution of the Lorentzians to the PSD (blue solid line) are shown as a orange, green, and red
dashed lines. (Bottom left) ACF of the standardized residuals of the best-fitting model. (Bottom right) Posteriors of the periods of the three Lorentzians and the
Jitter amplitude (other parameters omitted for clarity). The MCMC sampling run for approximately 49 000 steps until convergence, from which we discarded

the first 22 000 as burn-in. Symbols as per Fig. 7.

Interestingly, our results show that light curves spread over time
with lower-cadence sampling prove more advantageous for detecting
periodicities compared to shorter light curves with a higher number
of datapoints (at least as long the time-scale of the period is much
longer than the cadence). For instance, in the case of a At ~ 2 d and
N =500 (left panel), we are able to recover the period in 68/100
instances, whereas for At ~ 1 d and the same number of datapoints
(right panel), only in 44/100 instances we are able to recover the
period (Table 1). Our results suggest that, in the presence of stochastic
variability, it will hard to reliably confirm periodicities in a light curve
covering five or less cycles of the putative period, in agreement with
Vaughan et al. (2016).

Next we turn to examine the robustness of our method to false
positives (i.e. misidentifying aperiodic variability as periodic), one
of the aspects that motivated us to devise better methods for period
detection. To this end, we performed a second series of simulations
using a simple DRW with Ar again drawn from the same Gaussian

distributions. Here, we use a mean count rate of 35 ct s~', a

MNRAS 537, 3210-3233 (2025)

background contribution of 300 ct s™! and a variance of 36 (ct

s™1)? and a break at 65 d for the DRW. These parameters are
similar to those observed in the in the Transiting Exoplanet Survey
Satellite (TESS) light curves of Blazars (see Section 3.2.4) and
were chosen to generate light curves which appear periodic. Fig. 5
(top panel) shows an example light curve (N = 300, median At
= 1 d) with the corresponding periodogram; clearly naive inspection
of the periodogram may lead to the conclusion that some genuine
periodicity is present in the light curve.

We ran our PPP method again as above, this time creating
50 light curves per cadence/baseline combination and simulating
2000 light curves from the DRW posteriors, and comparing the fit
improvements when adding a Lorentzian. Under the absence of the
signal, the distribution of retrieved PPP values from the 7jgr tests
is expected to be uniformly distributed from O to 1. We therefore
tested using a KS test whether the 50 retrieved PPP values per
cadence/baseline combination followed the aforementioned uniform
distribution. Table 2 shows all pyniform-Vvalues are consistent with the
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Figure 11. (Left) Swift-XRT light curve of NGC 7793 P13 with the segment considered for analysis lying between the two vertical, dashed black lines. (Right)
Lomb-Scargle periodogram of the segment indicated in the right-hand panel. Symbols as per Fig. 9. The black vertical arrows show the fundamental period

frequency (P ~65.6 d) and an harmonic at n = 2.

expected uniform distribution, regardless of the observing strategy,
indicating false positives are unlikely, at least for the cadences
explored here.

Finally, to test our ability to avoid false-positives when gaps are
introduced, we have repeated the method above, keeping the same
PSD and using N = 1000, samples taken roughly at 1-d intervals
but then adding three gaps: one of 45 d, one of 60 d, and another
of 100 d. Fig. 5 (bottom panels) shows an example light curve
and corresponding periodogram. We then ran the PPP method for
50 sample light curves and tested whether the recovered PPPs
followed a uniform distribution as expected for the absence of a
signal, finding a p-value of 0.37. This indicates that, at least for
the cadence/variability time-scales explored here, our method can
robustly avoid false-positives as long as the noise is well described.
We will present an exhaustive exploration of period detectability
under different combinations of observing strategies in a forthcoming
publication.

3.2 Application to real data

Our method has been developed for instances where irregular
sampling hampers obtaining the PSD in a straightforward manner.
Such a scenario is routinely encountered in many studies of AGNs
(e.g. Jiang et al. 2022) and other accreting systems.

Nevertheless, to show our method is not restricted to irregularly
sampled time series, we first apply our method to a recent claim of
a QPO in XMM-Newton data of a Seyfert galaxy (Section 3.2.1).
We then explore claims of periodicites in Swift data (Gehrels et al.
2004) (both UVOT and XRT) of a ULX (Section 3.2.2), a QPO in
an AGN in RXTE data (Section 3.2.3) and finally revisit a recent
claim of a QPO in the TESS (Ricker et al. 2014) light curve of a
Blazar (Section 3.2.4). The results of the analysis are then discussed
in Section 3.3. The choice of priors and the procedure used to derive
the best-fitting parameters and their posteriors is described in Ap-
pendix C and unless stated otherwise, we perform 10 000 simulations
to derive the LRT reference distribution in the calculation of the PPP
value.

Table 5. As per Table 3 but now showing the AICc, AAICc and p-values for
the standardized residuals following a Gaussian distribution for the different
models tested against the Swift-XRT data of the pulsating ULX NGC7793
P13.

Model AICc  AAICc p-value
3 xLorentzian + Matérn-3/2 + Jitter -1673.4 0.0 0.001
3xLorentzian + DRW + Jitter -1669.2 4.2 0.001
2 xLorentzian + Matérn-3/2 + Jitter -1664.5 8.9 0.003
2xLorentzian 4+ Matérn-3/2 + DRW + Jitter -1662.2 11.5 0.006
2xLorentzian + DRW + Jitter -1661.2 122 0.003
2xLorentzian + DRW + Jitter + SHOQ:l/ﬁ -1659.9 135 0.02
2xLorentzian + 2xDRW + Jitter -1657.1 16.6 0.01
Lorentzian + DRW + Matérn-3/2 + Jitter -1656.1 17.3 0.003
Lorentzian + DRW + Jitter -1649.4 239 0.003
Lorentzian + 2x DRW -1647.4 259 0.004
Lorentzian 4+ Matérn-3/2 + Jitter -1647.1 263 0.00
3xLorentzian + 2x DRW -1644.8  28.5 0.00
Lorentzian + DRW + Matérn-3/2 -1641.8 31.6 0.02
3 xLorentzian + Matérn-3/2 -1641.6  31.8 0.00
2 xLorentzian + 2 x Matérn-3/2 -1641.5 323 0.00
2xLorentzian + 2x DRW -1640.8  32.5 0.001
3 xLorentzian + SHOQzl/ﬁ —1639.0 344 0.00
3xLorentzian + 3 x DRW -1638.7 34.6 0.00
3xLorentzian + 2 xMatérn-3/2 -1637.4  36.0 0.00
3 xLorentzian + DRW -1636.9  36.8 0.00
2xLorentzian + DRW + Matérn-3/2 -1636.7 37.1 0.00
3xLorentzian + 3 x Matérn-3/2 -1632.3 414 0.00
2 xLorentzian + DRW -1631.1  42.7 0.00
Lorentzian + DRW -1627.7 46.0 0.00
Lorentzian + Jitter -1623.3  50.1 0.00
Matérn-3/2 + Jitter -1619.3 545 0.00
Lorentzian + SHOQ:Uﬂ + litter -1619.2 542 0.00
3xLorentzian + SHOQ:Uﬂ + Jitter -1618.7 55.1 0.00
Lorentzian + Matérn-3/2 —1617.1 56.3 0.00
Lorentzian + SHOQ:l/JE -1611.6 61.8  0.002
DRW + Jitter -1607.9 659 0.001
Lorentzian -1602.3 714 0.00
DRW -1594.2  79.5 0.001
Matérn-3/2 -1590.5 832 0.00
SHOQzl/ﬁ -1588.4 854 0.00
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Figure 12. GP modelling results of the Swift-XRT data of the pulsating ULX NGC 7793 P13. (Top Left) Best-fitting 3x Lorentzian + Matérn-3/2 + Jitter
model to the Swift-XRT 0.3—10 keV light-curve segment of NGC 7793 P13 shown in Fig. 12. (Top right) PSD of the best-fitting model. (Bottom left) ACF of
the standardized residuals of the best-fitting model. (Bottom right) Posteriors of the periods of the three Lorentzians and the Matérn-3/2 (the other parameters
are omitted for clarity). The MCMC run for approximately 620 000 steps until convergence and about 124 000 were discarded for the burn-in. Symbols as per

Fig. 7.

3.2.1 A high-frequency QPO in the Seyfert NGC 1365

Using XMM-Newton data and employing techniques such as the
Lomb-Scargle periodogram, Yan et al. (2024) recently reported the
detection (significance of 3.60) of a high-frequency (~4566s) QPO
in the Seyfert galaxy NGC1365. We used obsid 0205 590 301 where
Yan et al. (2024) reported the detection of the QPO and reanalysed
the EPIC-pn and MOS data using tasks epproc and emproc in
SAS version 20.0.0. We filtered the light curves for particle flaring
by first extracting background 10-12 keV light curves and then
inspected these visually to set a threshold count-rate to reject times
of high-background flaring. We applied the standard quality filters
and selected PATTERN<4 events for pn and PATTERN <12 events for
the MOS cameras. We used eregionanalyse, with the input
source coordinates, to select a suitable source region. The circular
region as determined by the task contained a fainter source near to
the target in some instances, so to avoid contamination we reduced
the radius to ~55 arcsec, but keeping the same centroid position.
A slightly larger circular region on the same chip, away from the

MNRAS 537, 3210-3233 (2025)

readout region and as close as possible to the source region, was
selected for background light curve extraction. The final light curve
was corrected for effects including losses due to vignetting, chip gaps,
and bad pixels using epicclcorr. Following Yan et al. (2024), the
three light curves were binned into 200s and their net count rates were
combined into a final light curve. Because the asynchronicity of the
three instruments can introduce spurious variability (Barnard et al.
2007), we ensured the start and end times were the same for the three
detectors and inspected the individual and combined light curves
visually.

Fig. 6 shows the 0.3-10 keV combined EPIC light curve of NGC
1365, which comprises 289 datapoints and a duration of 57 800 s.
The right-hand panel of Fig. 6 shows the corresponding periodogram,
with an arrow at ~0.05 d indicating the claimed QPO by Yan et al.
(2024).

Table 3 lists the models tested to the data, ranked by AICc
value. We can see that the best-fitting model comprises a Lorentzian
(describing the putative QPO) and DRW + SHO,_, 2 kernels to
describe the underlying noise. Compared to a DRW + SHO o_, , 5-
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Figure 13. (Left) RXTE light curve of the AGN NGC 4945. The segment where Smith et al. (2020) reported the significance of the QPO to be strongest is
highlighted with a dashed line and an arrow. (Right) Lomb—Scargle periodogram of the segment indicated in the right-hand panel. The vertical black arrow
shows the QPO reported by Smith et al. (2020). The dashed blue line shows the power spectrum of the observing window. The dashed purple line shows the
model derived from periodograms of 10 000 light curves generated from the posteriors of the SHOQ: V2 model parameters (best-fitting model), with the shaded
areas indicating the 16 and 84 per cent percentiles of the distribution. See text for details.

Table 6. As per Table 3 but now showing the AICc, AAICc, and p-values for the standardized residuals following a Gaussian distribution for the different
models tested against the RXTE data of the AGN NGC4945. The left and right values are for the analysis of the full light curve and the segment shown in Fig.

13, respectively.

Full light curve

Smith et al. (2020)

Model AlCc AAICc p-value Model AlCc AAICc p-value
DRW 246.1 0.00 0.00 Lorentzian + SHO_, , 5 97.9 0.0 0.22
DRW + Jitter 247.2 1.1 0.00 Lorentzian + Matérn-3/2 98.3 0.4 0.07
DRW + SHO,_,,./5 248.5 2.4 0.00 Lorentzian + DRW 99.2 1.3 0.03
DRW + Matérn-3/2 248.8 2.7 0.00 Lorentzian + SHO_, , /5 + Jitter 99.5 1.6 0.22
Lorentzian + DRW 248.8 2.7 0.00 2xLorentzian 101.0 3.1 0.42
2xDRW 249.5 34 0.00 Lorentzian + DRW + Jitter 101.6 3.7 0.03
Lorentzian 4+ 2xDRW 250.2 4.1 0.00 Lorentzian + SHOQ=1/ﬂ + DRW 102.0 4.1 0.12
Lorentzian + Jitter 251.6 5.5 0.03 Lorentzian + 2xSHOq_, 12 102.4 4.4 0.08
Lorentzian + SHOQ:l/ﬁ 253.7 7.6 0.00 Lorentzian + SHOQ:l/ﬁ + Matérn-3/2 102.9 5.0 0.16
Lorentzian + Matérn-3/2 261.6 114 0.00 Lorentzian + Matérn-3/2 + DRW 102.9 5.0 0.12
Matérn-3/2 255.2 9.1 0.002 Matérn-3/2 103.8 59 0.14
SHOq_,,.5 264.9 18.8 0.02 DRW 104.5 6.6 0.03
Lorentzian 267.9 21.8 0.03 Lorentzian 104.6 6.7 0.22
Jitter 310.4 64.3 0.09 SHOq_,,.5 104.9 7.0 0.33

only model, the addition of the Lorentzian represents a AAICc
= 4.5 fit improvement. Fig. 7 shows the best-fitting DRW + SHO
Q=1,v2 model, its PSD, the ACF of the standardized residuals and
the posteriors. Both models provide an adequate description of the
data whilst the ACF (bottom left panel) shows that the variability
is approximately well captured by the DRW + SHO ,_,, ; model.
Therefore, using the posteriors of the DRW + SHOg_, 5 model,
we tested whether the addition of the Lorentzian was supported by
the data.

Fig. 8 shows the reference LRT distribution derived from
light-curve simulations generated from the posteriors of the
DRW+ SHO,,_,,,; model. As can be seen from the figure, the
addition of the Lorentzian (the QPO component) is significant only
at the ~91 per cent level (~ 1.70).

As stated in Section 2.5, owing to the relatively small difference
in fit improvement (AAICc = 0.4) with respect to the Lorentzian
+ 2xMatérn-3/2, we have repeated the significance calculation

with the posteriors of the this other model too. We have found the
significance of ~86 per cent, in line with the lower AAICc = 3.6
provided by this model with respect to the null hypothesis. Therefore
we do not support the presence of a QPO in this light curve of NGC
1365.

3.2.2 The pulsating ULX NGC 7793 P13

Since the discovery of its ~63d period (Motch et al. 2014), the
pulsating neutron star ULX NGC 7793 P13 (Fiirst et al. 2016;
Israel et al. 2017, P13 hereafter) has been intensively monitored
by Swift. Being among the brightest ULXSs in the optical bands with
a V magnitude of around ~20.2 (Motch et al. 2014), it is one of
only a small number of ULXs where the long-term variability can
be studied by both the Swift-UVOT and Swift-XRT. The irregular
sampling of the monitoring of this source has revealed two closely
but significantly different periods: an ~64-d period in the U band

MNRAS 537, 3210-3233 (2025)
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Figure 14. GP modelling results of the RXTE light-curve segment shown in Fig. 13 of the AGN NGC 4945. (Top left) Best-fitting Lorentzian + SHO_, /2
model. (Top right) PSDs of the null hypothesis and alternative models. (Bottom left) ACF of the standardized residuals of the Lorentzian + SHOQ:l 13 model.
(Bottom right) Posterior parameters for the Lorentzian + SHOQ=1 /2 model. The MCMC sampler run for approximately 135 000 steps until convergence and

about 35 000 steps were discarded for the burn-in. Symbols as per Fig. 7.

and an ~65-d period in the X-rays (Hu et al. 2017; Fiirst et al.
2018). An advantage of using GP for period searching is that
uncertainties are well-defined as we can marginalize over the noise
parameters. Therefore we can asses both the significance of the
claimed periodicities and also the difference between them.

The UVOT data were kindly provided by Khan & Middleton
(2023), to which we refer the reader for the data reduction details.
The U band contained the largest amount of observations (Fig. 9;
260 observations compared to <20 in other bands); we therefore
analysed only this band. While an advantage of GP modelling
is that more data, regardless of the gaps, should lead to tighter
constraints, here the few additional and largely spaced datapoints
at the beginning of the monitoring increase the computational
cost dramatically for a small gain in accuracy, particularly in
our false-alarm probability calculation. Therefore we only consid-
ered the data after MJD 57500 where the monitoring is denser
(Fig. 9).

Table 4 lists the models tested in our fit to the data, ranked by
AICc value. Part of the modelling was guided by a visual inspection
of the Lomb-Scargle periodogram of the light curve segment, which

MNRAS 537, 3210-3233 (2025)

we show in Fig. 9. We can see the main peak at P ~64 d and some
harmonics at 32 d (P/2) and ~9 d (P/7), indicating the periodicity —
if real — is not a pure sinusoid.

The harmonics are also reflected in the GP modelling: we
can see from Table 4 that the preferred model consists of three
Lorentzians + a Jitter component for the underlying noise. From
Table 4 we can also see that this model is preferred over one
where the underlying noise is instead described by a DRW (AAICc
= 2.4), suggesting that white noise is the statistically preferred null
hypothesis.

The standardized residuals of the best-fitting model are fully
consistent with a Gaussian distribution, indicating the variability
is well-described by a GP, whereas the overall variability is also
well-captured, as indicated by the ACF of the standardized residuals
(Fig. 10 bottom left panel).

Having established white noise to be a good representation for
the underlying noise, we proceed to test for the presence of the
Lorentizan(s) components in a hierarchical manner. First, we test for
the first Lorentzian over the Jitter-only model, using the posteriors
of the Jitter model. If significant, we subsequently use the posteriors
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of the Lorentzian + Jitter to test for an additional Lorentzian until
the new added Lorentzian is no longer significant.

For the first Lorentzian, we found that none of the simulations
showed a Ty gt as high as that observed in the data. Fitting the LRT
distribution with a lognormal, we estimate the period to be highly
significant (99.999 percent or ~ 60). For the second harmonic at
~32 d, we find the significance to be ~99.1 per cent, while for the
third component the significance is 95.8 per cent.

From our best fit (Fig. 10), we obtained P = 63.9 + 0.4 d, with
a coherence Q = 220%737 indicating the period amplitude is stable
over this time period.

We now examine the Swift-XRT data and the claimed ~65-d
period. The full Swift-XRT light curve is shown in Fig. 11 and was
extracted using the online tools (Evans et al. 2007, 2009) keeping
all snapshots with a detection significance of >20. Modelling the
full light curve would add additional complexity due to potential
deviations from stationarity and more complex fine-tuning of the
mean function. Additionally, the few largely spaced datapoints
would again add little gain in constraining power at the expense of
significant computational time. Hence, we analysed the indicated
segment in Fig. 11 where the variability appears stationary and
the monitoring is densest. This segment lasts 984.3 d with a mean
observing cadence of 3.1d.

Table 5 shows the AAICc with the various models tested along
with their p-values for the standardized residuals following a
standard normal distribution. The best-fitting model is a combination
of three Lorentzians + a Matérn-3/2, where a Jitter term is needed
as there is additional white-noise variability (jittering) that cannot
be captured by any of the kernels. Indeed, we find that none of the
models adequately describes the data based on the p-values of the
residuals following a standard normal distribution. This may not be
surprising as the distribution of count-rates is itself non Gaussian
(p = 0.008 for rejecting a Gaussian distribution based on a KS test).
Nevertheless, from Fig. 12, we can see that the failure to describe the
data is mostly due to a few datapoints strongly deviating from the
model. This is clearly seen in the ACF (Fig. 12 bottom left panel),
which confirms the lack of trends in the standardized residuals. Thus,
while the model may not capture the full complexity of the data, we
can at least ascertain that the variability is well represented by the
combination of the three Lorentzians 4+ Matérn-32 4 Jitter. The
PSD of this models is shown in Fig. 12 (top right panel).

As with the UV data, we tested for the addition of the Lorentzians
to the noise model in a hierarchical manner. The first Lorentzian with
P ~ 65 dis found to be significant at the 99.99 per cent level (> 30),
the addition of a second is significant at the ~99.2 per cent level and
the third Lorentzian is marginally significant, at the ~91.5 per cent
level.

From Fig. 12 our final estimate for the period is P = 65.6 + 0.6
d. As for the UV data, the high coherence (Q 2 100) suggests the
periodicity is stable throughout the segment.

3.2.3 NGC 4945

Smith, Robles & Perlman (2020) claimed an ~42-d QPO in the
irregularly sampled RXTE data of the Type 2 Seyfert, NGC 4945
with a significance of 10.20.*

“Note that the authors also quote a false-alarm probability of 2.87 per cent,
which corresponds to ~ 2.2¢ only.

Mind the gaps 3225
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Figure 15. LRT distribution generated from simulated light curves from the
posteriors of the SHOQ: 12 model (null hypothesis) for NGC 4945. The
solid orange line shows a fit to the distribution using a log-normal. The LRT
observed in the data is shown as a dashed black line.

Following Smith et al. (2020), we obtained the RXTE/PCA data
from the University of California archive’ (for details regarding data
filtering criteria, we refer the reader to their website). Fig. 13 shows
a segment of the light curve where the monitoring was densest (cf.
fig. 2 in Smith et al. 2020). The full light-curve spans 442 d, with a
median cadence of 2.25 d. The authors found the significance of the
QPO to be the strongest in the segment towards the end of the light
curve after the vertical dashed line in Fig. 13. This segment spans
192 d with a mean cadence of 2.04 d.

We first focus on the analysis of the full light curve. Table 6 shows
the AAICc for the set of models explored, with the DRW yielding the
lowest AICc (with AAICc = 2.7 over the Lorentzian + DRW). This
already suggests the data can be explained under a simpler, stochastic
model. Performing light-curve simulations from the DRW posteriors,
we find a significance of 239 per cent for the Lorentzian component,
indicating the addition of the Lorentzian is not supported by the
data. However, we note the residuals in all models are narrower than
a standard normal distribution (¢ = 0.67), indicating the variability
is not well described by a GP. The downward trend in flux around
MIJD 53900 may indicate the process is non-stationary over the
time-scales analysed here.

We proceed to focus on the segment indicated to the right-hand side
of the vertical dashed line in Fig. 13, where the authors claimed the
QPO significance to be highest. Table 6 lists the models tested against
the data in this segment. In this case we find potential evidence for a
periodic component, as a model including a Lorentzian (the broad-
band noise modelled with an SHO_, /) provides the lowest AICc.
The standardized residuals and their ACF are shown in Fig. 14.
The standardized residuals are compatible with Gaussianity and,
therefore, the assumption of a GP is reasonable. We note, however,
the ACF indicates there is still slight variability not captured by
the model potentially indicating that models outside celerite
might be more appropriate. Nevertheless, most of the variability is
reasonably captured. The central frequency of the Lorentzian is found
tobe P = 42:% d, which matches the periodicity reported by Smith
et al. (2020).

Shttps://cass.ucsd.edu/ rxteagn/
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Using the posteriors from the best-fitting SHO,_, .5 as the null
hypothesis, we obtained the significance of the (quasi)-periodic
component. To estimate the background contribution for our light-
curve simulations, we assumed the mean source rate was 5 per cent
of the background rate. Although in the average spectra the source
contributed 10 per cent to the total rate, 5 per cent is both consistent
with previous work (Done et al. 2003) and we found the simulated
lightcurve errorbars matched more closely the data errorbars. As we
are assuming a higher background than in the average spectrum,
our simulations will be less likely to generate a spurious signal
(they will have increased levels of white noise) and the estimated
QPO significance will tend to overestimate the true significance, if
anything.

Fig. 15 shows the reference LRT distribution derived from the
posteriors of the SHO_,, 5 model. The putative periodicity has a
significance of ~98.7 percent (i.e. & 2.50), which is indeed quite
high, but it may not be considered sufficient to claim a detection.

Fig. 13 shows the mean Lomb-Scargle periodogram of 10000
light curves simulated using the posteriors of the SHO_, ,, 5 model.
Using the process outlined in Section 2.6 to map the L% to a
goodness-of-fit, we find a p-value of 0.9 using the SHOq_,, 5
model, a deviation of ~ 1.7¢ from the mean, indicating the fit is
an acceptable description of the data.

Given that the Matérn-3/2 provides the lowest AICc when used
in isolation (Table 6), one could argue it represents the best null-
hypothesis. Moreover, as discussed in Section 2.5, based on the
low AAICc = 0.4 between the Lorentzian + SHO_,,; and the
Lorentzian + Matérn-3/2 models, it may argued these two models
offer similar levels of goodness of fit (i.e. we cannot distinguish
between the two with the data at hand). We therefore repeated the
significance calculation with the posteriors from the Matérn-3/2-only
model, and found a similar value for the significance (~96 per cent).
This is consistent with the lower AAICc provided by this model
when the Lorentzian is added compared to the SHO_, 5 model
(Table 6) and indicates our results are not strongly dependent on
the continuum choice (so as long as it is representative of the
data).
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3.2.4 The Blazar B0537-441

Tripathi et al. (2024) recently reported the detection of a QPO of
~6.5 d in the Blazar B0537-441, using TESS data. We obtained
the TESS light curves from sectors 32 and 33 (as analysed by
these authors), reduced by the Science Processing Operations Center
(SPOC; Jenkins et al. 2016) using the python 1ightkurve pack-
age. The light curve is extracted using aperture photometry and then
corrected with the presearch data conditioning module to remove
long-term trends and systematics caused by the spacecraft. The data
from sectors 32 and 33 had been processed with pipeline versions
spoc-5.0.21-20210107 and spoc-5.0.22-20210121, respectively. For
computational reasons we rebinned the light curves to 1 h which still
allowed us to analyse the variability present and probe the relevant
time-scales, see Fig. 16. The light curve had a duration of ~53 and
a total of 1164 datapoints, with two ~1-d gaps at MJD ~2186 and
MIJD ~2214 due to the satellite’s orbit and another gap at MJD ~
2202 due to the observing strategy of TESS.

Table 7 lists the models tested against this data set. While some of
the single-component models provide seemingly better fits according
to the AICc, we can see from their p-values that none of these models
provide a satisfactory description of the data (p < 0.05). In such
models, the standardized residuals are broader (o ~2) than expected
for a standard normal distribution, indicating a deficiency in the
fit.

The first model that provides an adequate description of the data
(p = 0.4) is a combination of a Lorentzian and a DRW. The model
that maximizes the likelihood, its standardized residuals, ACF, and
posterior parameters is shown in Fig. 17. The best-fitting suggests
a quasi-periodicity (Q = 473) with P =4.8%03 d. On the other
hand, the bend of the DRW is not well constrained, most likely
owing to the relatively short baseline (=54 d) of the data; in our
modelling, the DRW mostly acts as a power law with g = —2. The
DRW + Lorentzian model provides an AAICc = 66 with respect to
the DRW-only model; we proceeded to test whether the AAICc was
significant using the posteriors of the DRW-only model. We found
the Lorenzian component to be significant at the ~99.98 per cent
(~30) level (Fig. 18). This is in agreement with the high AAICc

0.1F

0.01f

1073

1074

10751 —— Data .
-------- DRW (Null Hypothesis) E
--- Lorentzian + DRW (Alternative Model)

-6 Observing window i
107°F | L SR
1 10

Period (d)

Figure 16. (Left) TESS light curve of the Blazar, B0537-441 from sectors 32 and 33 (cf. fig. 3b in Tripathi et al. 2024). (Right) Corresponding Lomb—Scargle
periodogram (black solid line). The power spectrum of the observing window is shown as per Fig. 9. The purple dashed and dotted green lines show the
best-fitting Lorentzian + DRW, and DRW-only models (with the shaded areas showing the 16 and 84 per cent percentiles of 10000 simulations; see text for

details).
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Table 7. As per Table 3, showing the AICc, AAICc, and p-values for the
different models tested against the TESS data of the Blazar, B0537-441.

Model AlCc AAICc p-value
Matérn-3/2 + SHOQzl/ﬂ 3526.2 0.0 0.0
2 xMatérn-3/2 3526.3 0.1 0.0
Matérn-3/2 + DRW 3526.5 0.3 0.0
Lorentzian + SHOQ:l/ﬁ 3527.6 14 0.0
Lorentzian + Matérn-3/2 3527.7 1.5 0.0
2xLorentzian + SHOQ:l/ﬁ 3527.8 1.3 0.0
2 xLorentzian 4+ Matérn-3/2 3528.4 2.2 0.0
Matérn-3/2 3528.6 3.5 0.0
SHOQ:Uﬁ 3536.9 10.7 0.0
2 xLorentzian + DRW 3560.3 32.4 0.01
Lorentzian + DRW 3573.9 47.7 0.40
Lorentzian + 2x DRW 3578.1 50.5 0.35
2 x Lorentzian 3578.3 52.2 0.22
2 xLorentzian + Jitter 3581.1 53.7 0.28
Lorentzian 3608.0 81.8 0.94
Lorentzian + Jitter 3610.0 83.9 0.97
DRW 3639.9 113.8 0.27
2xDRW 3644.0 117.8 0.27

observed between the Lorentzian + DRW and the DRW-only model.
Therefore, we deem the addition of the Lorentzian to be supported
by the data.

Fig. 16 shows a comparison of the periodogram of the best-
fitting model (Lorentzian + DRW), the periodogram of the DRW-
only model and the Lomb-Scargle of the data. The Lomb—Scargle
periodograms of the best-fitting models were derived by taking the
Lomb-Scargle periodogram of 10000 light curves generated from
the posteriors of each of the two models. We can see that the strongest
period in periodogram is consistent with our best-fitting period of
4.8 d and that the noise is reasonably captured by the DRW.

3.3 Analysis of the results

As we have shown, the methodology outlined here is particularly
suited for the analysis of irregularly sampled time series commonly
associated with monitoring of systems such as ULXs or AGNs (e.g.
Uttley et al. 2002), but its applicability is not restricted to irregularly-
sampled time series (Section 3.2.1). We have shown its application
to the short (~50 ks) nearly regularly sampled time series that may
be obtained with observatories such as XMM-Newton or NICER,
by analysing the QPO recently claimed by Yan et al. (2024) in
the Seyfert galaxy NGC 1365. These authors found a significance
of about 3.60 by comparing periodogram peaks of light curves
simulated from the continuum-fitted PSD. Using our method we
have found instead a much lower significance, of about 1.70 (or
91 per cent). From their analysis, it is unclear where this discrepancy
in the estimate of the significance originates. Yan et al. (2024) report
fitting the PSD with a bending power law, and then use this model
to produce light-curve simulations to test the significance of the
highest peak in the periodogram. However, there is no information
regarding the fitting procedure, namely the statistic used to fit the
periodogram and whether the appropriateness of the model was
taken into account. It is also unclear whether the uncertainties on the
model were taken into account in the estimation of the false-alarm
probability and how the number of trials were considered. It is likely
that a combination of these factors can explain the difference in our
results.
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We have then applied our method to the ULX in NGC 7793 P13,
where slightly dissimilar superorbital periods had been claimed in
the sparsey sampled Swift-UVOT and XRT light curves (Hu et al.
2017; First et al. 2018). As can be seen from Fig. 12, we have found
the X-ray period to be 65.6+0.6 d, which is indeed significantly
longer than the period in the UV (P = 63.9 + 0.4 d; Fig. 10). As
stated above, using time domain methods allows to marginalize
over the noise components and obtain accurate uncertainties on
the parameters of the periodic component. Thus, we can support
earlier assertions that the X-ray period is significantly longer (Hu
et al. 2017; Fiirst et al. 2018) than the optical/UV period. The high
coherence Q 2 300 from the Lorentzian components suggest the
period amplitude is stable throughout the segment, consistent with
the long-term behaviour of the source (Fiirst et al. 2021). Regarding
the significance of the periodicities, while the third harmonics were
marginally significant (at ~95 per cent and 91 per cent for the UV
and X-ray light curves) given that these constitute the harmonics
of the same periodicity, these significances likely underestimate
the true significance as one could repeat the analysis tying the
periods or considering the combined fit improvement provided by
the three Lorentzians altogether, but this is beyond the scope of this
work.

We have also examined the putative QPO claimed by Smith et al.
(2020) in the AGN NGC 4945. When analysing the whole light
curve, we have seen that we could not explain the data under a
GP, which could indicate deviations from stationarity. Indeed, when
analysing the last portion of the whole light curve (Fig. 13) we have
seen the preferred rednoise kernel (SHOq_, /v3) differed from that
obtained for the full light curve (DRW), which could support the
non-stationarity of the process. Nevertheless, our analysis suggests
there is little evidence for periodic variability when analysing the
light curve as a whole. In the segment where Smith et al. (2020)
reported the significance of the QPO to be the highest (Fig. 13 left
panel), we have found the putative periodicity to have a significance
of ~98.7 percent (i.e. & 2.5¢0"), much lower than reported by Smith
et al. (2020). The fact that we are able to produce simulations with
comparable fit improvements as that observed in the data implies our
test is well-calibrated and suggests our significance estimate is more
plausible. The most obvious discrepancy is that we have correctly
accounted for the presence of rednoise. Instead, Smith et al. (2020)
relied on the analytical recipe provided by Horne & Baliunas (1986),
which may be appropriate in cases where employing white noise as
the null hypothesis—but see Frescura et al. (2008) for caveats on this
method.

We note the significances quoted for NGC 4945 may be considered
optimistic, as the selection of this segment seems driven by’a
posteriori’ analysis of the data (a form of the stopping rule discussed
in Vaughan 2010), rather than a data-driven decision (such as to
avoid a gap in the light curve, e.g. Section 3.2.2). While this is
beyond the scope of this work, one could in principle account for
this by simulating light curves using the full length of the monitoring
(either Fig. 14 or the entire RXTE history) and then selecting the
segment that maximizes the likelihood ratio for each simulation.

Finally, we have examined the QPO claimed in the Blazar 0537—
441 by Tripathi et al. (2024) using TESS data. While our analysis
supports the presence of a QPO-like feature (at the ~ 3.70), the
identified period is marginally consistent with the 6.5-d QPO reported
by Tripathi et al. (2024), although no uncertainties on the claimed
periodicity are provided by Tripathi et al. (2024). Differences in our
results may be attributed to the different processing of the data and
treatment of the underlying noise (see also Covino et al. 2022, for a
similar situation).
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4 DISCUSSION AND CONCLUSIONS

The presence of red noise variability, ubiquitously found in accreting
systems, makes the detection of periodicities challenging. On the
one hand, most periodicity tests are derived for cases of Gaussian
white noise, which makes the problem analytically tractable (e.g.
Scargle 1982). On the other hand, the presence of red noise increases
the likelihood of producing spurious features in the periodogram,
particularly because the scatter in the power is proportional to the
power itself (e.g. Vaughan 2005). When the data is unevenly sampled,
the problem becomes even more profound as stochastic variability
can easily be mistaken for periodic behaviour (cf. Vaughan et al.
2016).

Extrapolation of tests for periodicities against red noise-like
variability was presented by Israel & Stella (1996) and Vaughan
(2005), who proposed to capture the underlying broad-band noise
using either a parametric (restricted to PSDs following a power
law; Vaughan 2005) or non-parametric approach (Israel & Stella
1996) and use these estimates and associated uncertainties to derive
the probability of obtaining a spurious signal in the periodogram
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above a certain level. Vaughan (2010) expanded on previous work to
model any arbitrary PSD shape using a Bayesian approach, which
allowed for the inclusion of priors. All these techniques concerned
the case where the time series is evenly sampled such that (as
discussed in Section 2) the periodogram has some well-known
statistical properties, which allows a well-defined likelihood (and
other statistical tests such as goodness-of-fit) to be defined.

Here, we have provided a method for periodicity searches in the
case of unevenly sampled data, where constraining the aperiodic
variability is considerably more challenging and where it appears
preferable to perform the fitting in the time domain (where the prob-
ability distribution is known and is generally Gaussian/Poissonian)
using GP modelling. Here, we have exploited the known likelihood
with well-established statistical techniques (Protassov et al. 2002) to
estimate the significance of a putative (quasi)periodic component. In
a similar manner to the regularly sampled case, the noise is inferred
from the data, allowing a test for the presence of an additional
component (e.g. a QPO) by building an empirical Tj gy distribution
using the method proposed by Protassov et al. (2002). Given that
the method is entirely data-driven, it is completely generalizable to
any system/variability and even choice of mean function (which we
haven not exploited here).

If the PSD is of interest, this quantity can be accessed by Fourier-
transforming the best-fitting GP kernel, rather than the data itself,
thereby including the data (heteroscedastic) uncertainties in the
final estimate. In doing so, frequency-distorting effects arising from
irregular sampling are mitigated, while the data usage is maximized.
There is additionally no requirement to rebin the data (so as long as
there are enough counts for the data to be Gaussian distributed). A
similar approach is discussed in Kelly et al. (2014) using CARMA,
who also advocates for time-domain fitting. The recipe outlined in
this work may equally be used employing CARMA kernels and will
suffer from the same limitations we discuss below in Section 4.1.
However, there seem to be certain advantages of using celerite
over CARMA. celerite kernels have a more flexible form than
CARMA ones (Foreman-Mackey et al. 2017). While the PSD of
CARMA kernels are restricted to Lorentzian functions, steeper PSDs
may be achieved using a single celerite kernel (the SHO o_, 5
kernel being an example used here; Fig. 2), which in CARMA may
not be straightforward to describe. From a computational point of
view, in principle the computational is the same for both celerite
and carma implementations Kelly et al. (2014) and Foreman-
Mackey et al. (2017), scaling as O(NJ?). However, Foreman-
Mackey et al. (2017) showed that in practice celerite seems
to perform better computationally.

There are several important advantages of using GP over Lomb—
Scargle periodograms. As shown in Section 3.2.2, we cannot only
access more accurately the underlying noise by performing model
selection, but also marginalize over the noise parameters, therefore
carrying over the full set of uncertainties into our determination of a
candidate period’s frequency. Instead, both model selection and un-
certainties are inaccessible when using Lomb—Scargle periodograms.

4.1 Limitations and caveats

Regardless of its power and improvement over traditional ap-
proaches, there remain several limitations of our method, arguably
the most pressing being the computational time involved. The
computational time of the GP modelling itself scales as N3, which
can become intractable if several models need to be tested or for
large data sets. Here, we have chosen to minimize the compute
time using celerite (where the computational time-scales as
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NJ?) at the expense of flexibility, which may not be much more
computational expensive than the Lomb—Scargle periodogram.® In
addition to the model evaluation, there is the computational time
required to perform the simulations for hypothesis testing. This
problem is partially mitigated because the likelihood allows us to
perform initial model selection (in our case through the AAICc)
and filter out the most prominent cases. Therefore, only in cases
with limited signal-to-noise ratio or where the AAICc does not
provide sufficient indication (e.g. Graham et al. 2015), light-curve
simulations may need to be performed, although having to rely
on simulations for hypothesis testing equally applies to regularly
sampled time series (e.g. Ashton & Middleton 2021).

Another common drawback of GP modelling is how to choose
what kernels to test against the data. A straightforward approach
to alleviate this problem is to simply stack basis functions until the
minimum of the IC is found (Kelly et al. 2014; Foreman-Mackey et al.
2017; Zhang et al. 2023). Secondly, inspection of the standardized
residuals can reveal trends indicative of the model not capturing the
full variability (as also illustrated by the ACF).

We have also discussed how to identify cases where the GP might
not be a good fit for the data (Section 3.2.3) either due to the process
not being a GP or due to the assumption of stationarity not being
fulfilled. In the former case, it is still unclear whether our method
is still valid. Through our simulations (Section A), we have noted
that when the light curves are produced using a lognormal PDF,
the standardized residuals never show compliance with a standard
Gaussian distribution, even if the input model parameters are well
captured (see Section B). Thus, preliminary tests indicate that the
variability is still well-captured even when the flux distribution is not
Gaussian.

Note also that while the assumption of stationarity is another
limitation of GPs, the same assumption is inherently made in standard
periodograms. In fact, GPs are also more flexible on this regard, as the
mean of the time series does not need to be constant. In any instance,
in a similar vein as for dynamical periodograms (Kotze & Charles
2012), one could envision splitting the time series into approximately
stationary segments and applying an independent GP modelling to
each segment. Then the posteriors of a particular parameter (e.g. the
period frequency P) could be examined to discern whether a given
quantity is varying over the full observation baseline.

Lastly, compared to periodogram fitting, where any functional
form may be employed, the fitting process in GP is restricted by the
functional form of the kernels. This latter problem may be alleviated
at the expense of computational cost, by using kernels outside
celerite (e.g. Rasmussen & Williams 2006), or decomposing
the power spectrum using basis functions as recently demonstrated
in Lefkir et al. (2025).

ACKNOWLEDGEMENTS

This work made use of data supplied by the UK Swift Science
Data Centre at the University of Leicester. This paper includes data
collected by the TESS mission. Funding for the TESS mission is
provided by the NASA’s Science Mission Directorate. This work has
made use of light curves provided by the University of California,
San Diego Center for Astrophysics and Space Sciences, X-ray
Group (R.E. Rothschild, A.G. Markowitz, E.S. Rivers, and B.A.
McKim), obtained at http://cass.ucsd.edu/~rxteagn/. The authors

The fastest implementation in astropy scales as O(Nlog(M)) where M
is the number of frequencies being evaluated.

MNRAS 537, 3210-3233 (2025)

G20Z UIBIN L} U0 1saNB AQ YEY66./01ZE/7/LEG/PI0IME/SEIUW WO dNO"OlWapED.//:Sd)y WOy PaPEojumMoq


http://cass.ucsd.edu/~rxteagn/

3230 A. Gurpide and M. Middleton

acknowledge support by STFC through grant ST/V001000/1 and
the use of the IRIDIS High Performance Computing Facility, and
associated support services at the University of Southampton. We
would like to thank the referee for their interest in our manuscript
and thoughtful comments that helped improve it. A. Gurpide is also
grateful to S. Vaughan, Z. Irving, E. Agol, W. Alston, and M. M. Ward
for stimulating discussion on time domain analysis and Gaussian
Processes modelling. Software: corner (Foreman-Mackey 2016),
N1FTY-1S (Garrison et al. 2024), MIND_THE_GAPS (??).

DATA AVAILABILITY

All the data used in this paper is publicly available in the correspond-
ing archives. The code used for this manuscript has also been made
publicly available.

REFERENCES

Akaike H., 1998, in Parzen E., Tanabe K., Kitagawa G.eds, Selected Papers
of Hirotugu Akaike. Springer, New York, NY, p. 199, http://link.springe
r.com/10.1007/978-1-4612-1694-0_15

Alston W. N., Markeviciute J., Kara E., Fabian A. C., Middleton M., 2014,
MNRAS, 445, L16

Ashton D. 1., Middleton M. J., 2021, MNRAS, 501, 5478

Barnard R., Trudolyubov S., Haswell C. A., Kolb U. C., Osborne J. P,
Priedhorsky W. H., 2007, AIP Conf. Proc. Vol. 924, The Multicolored
Landscape of Compact Objects and Their Explosive Origins. Am. Inst.
Phys., New York, p. 691

Belloni T., Psaltis D., Klis M. V. D., 2002, ApJ, 572, 392

Bowman D. M., Dorn-Wallenstein T. Z., 2022, A&A, 668, A134

Breedt E. et al., 2010, MNRAS, 403, 605

Covino S., Landoni M., Sandrinelli A., Treves A., 2020, ApJ, 895, 122

Covino S., Tobar F,, Treves A., 2022, MNRAS, 513, 2841

Done C., Madejski G. M., Mushotzky R. F., Turner T. J., Koyama K., Kunieda
H., 1992, ApJ, 400, 138

Done C., Madejski G. M., Zycki P. T., Greenhill L. J., 2003, ApJ, 588, 763

Emmanoulopoulos D., McHardy 1. M., Papadakis I. E., 2013, MNRAS, 433,
907

Evans P. A. et al., 2007, A&A, 469, 379

Evans P. A. et al., 2009, MNRAS, 397, 1177

Foreman-Mackey D., 2016, J. Open Source Softw., 1, 24

Foreman-Mackey D., Agol E., Ambikasaran S., Angus R., 2017, AJ, 154,
220

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,
306

Frescura F. A. M., Engelbrecht C. A., Frank B. S., 2008, MNRAS, 388, 1693

Fiirst F. et al., 2016, ApJ, 831, L14

Fiirst F. et al., 2018, A&A, 616, A186

Fiirst F. et al., 2021, A&A, 651, A75

Garrison L. H., Foreman-Mackey D., Shih Y.-H., Barnett A., 2024, RNAAS,
8, 250

Gehrels N. et al., 2004, ApJ, 611, 1005

Gierlinski M., Middleton M., Ward M., Done C., 2008, Nature, 455, 369

Gonzdlez-Martin O., Vaughan S., 2012, A&A, 544, A80

Graham M. J. et al., 2015, Nature, 518, 74

Horne J. H., Baliunas S. L., 1986, ApJ, 302, 757

Hu C.-P, Li K. L., Kong A. K. H., Ng C.-Y,, Lin L. C.-C., 2017, ApJ, 835,
L9

Hiibner M., Huppenkothen D., Lasky P. D., Inglis A. R., Ick C., Hogg D. W.,
2022, Apl, 936, 17

Hurvich C. M., Tsai C.-L., 1989, Biometrika, 76, 297-307

Ingram A., Done C., 2011, MNRAS, 415, 2323

Israel G. L. et al., 2017, MNRAS, 466, 48

Israel G. L., Stella L., 1996, ApJ, 468, 369

MNRAS 537, 3210-3233 (2025)

Jenkins J. M. et al., 2016, in Chiozzi G., Guzman J. C., eds, Proc. SPIE
Conf. Ser. Vol. 9913, Software and Cyberinfrastructure for Astronomy
IV. SPIE, Bellingham, p. 1232

Jiang N. et al., 2022, preprint(arXiv:2201.11633) http://arxiv.org/abs/2201.1
1633

Jordan A., Eyheramendy S., Buchner J., 2021, Res. Notes Am. Astron. Soc.,
5, 107

Kaastra J. S., 2017, A&A, 605, A51

Kelly B. C., Becker A. C., Sobolewska M., Siemiginowska A., Uttley P.,
2014, Apl, 788, 33

Kelly B. C., Sobolewska M. g., Siemiginowska A., 2011, ApJ, 730, 52

Khan N., Middleton M. J., 2023, MNRAS, 524, 4302

Kotze M. M., Charles P. A., 2012, MNRAS, 420, 1575

Kraft R. P, Burrows D. N., Nousek J. A., 1991, ApJ, 374, 344

Lefkir M., Vaughan S., Huppenkothen D., Uttley P., Anilkumar V.,
2025, preprint(arXiv:2501.05886) https://ui.adsabs.harvard.edu/abs/20
25arXiv250105886L

Lomb N. R., 1976, Astrophys. Space Sci., 39, 447

Markowitz A., 2010, ApJ, 724, 26

Motch C., Pakull M. W., Soria R., Grisé F., Pietrzyniski G., 2014, Nature, 514,
198

Mueller M., Madejski G., 2009, ApJ, 700, 243

O’Sullivan N. K., Aigrain S., 2024. MNRAS, 531, 4181

Pasham D. R. et al., 2019, Science, 363, 531

Pasham D. R. et al., 2024, preprint(arXiv:2402.09689) http://arxiv.org/abs/
2402.09689

Protassov R., van Dyk D. A., Connors A., Kashyap V. L., Siemiginowska A.,
2002, Apl, 571, 545

Rasmussen C. E., Williams C. K. 1., 2006, Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning, MIT Press,
Cambridge

Ricker G. R. et al., 2014, in Oschmann J. M., Jr., Clampin M., Fazio G.
G., MacEwen H. A., eds, Proc. SPIE Conf. Vol. 9143, Space Telescopes
and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. SPIE,
Bellingham, p. 556

Scargle J. D., 1982, ApJ, 263, 835

Smith E., Robles R., Perlman E., 2020, ApJ, 902, 65

Stella L., Arlandi E., Tagliaferri G., Israel G. L., 1994, preprint(arXiv:astro-
ph/9411050) http://arxiv.org/abs/astro-ph/9411050

Timmer J., Koenig M., 1995, A&A, 300, 707

Tripathi A., Smith K. L., Wiita P. J., Wagoner R. V., 2024, MNRAS, 528,
6608

Uttley P., McHardy I. M., Papadakis I. E., 2002, MNRAS, 332, 231

Uttley P., McHardy I. M., Vaughan S., 2005, MNRAS, 359, 345

van der Klis M., 1988, NATO Science Series C, Mathematical and Physical
Sciences. Advanced Science Institute

VanderPlas J. T., 2018, ApJS, 236, 16

Vasilopoulos G., Lander S. K., Koliopanos F., Bailyn C. D., 2020, MNRAS,
491, 4949

Vaughan S., 2005, A&A, 431, 391

Vaughan S., 2010, MNRAS, 402, 307

Vaughan S., Edelson R., Warwick R. S., Uttley P., 2003, MNRAS, 345, 1271

Vaughan S., Uttley P., 2005, MNRAS, 362, 235

Vaughan S., Uttley P., Markowitz A. G., Huppenkothen D., Middleton M. J.,
Alston W. N., Scargle J. D., Farr W. M., 2016, MNRAS, 461, 3145

Waller L. A., Smith D., Childs J. E., Real L. A., 2003, Ecol. Model., 164, 49

Yan Y., Zhang P, Liu Q., Chang Z., Liu G., Yan J., Zeng X., 2024, A&A,
691, A7

Zhang H., Yang S., Dai B., 2023, ApJ, 946, 52

APPENDIX A: LIGHT-CURVE SIMULATIONS

In order to simulate light curves from the kernel PSDs, we have
used the method devised by Timmer & Koenig (1995) and Em-
manoulopoulos, McHardy & Papadakis (2013). The method pro-
posed by Emmanoulopoulos et al. (2013), as opposed to the method
of Timmer & Koenig (1995), which by construction generates
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Gaussian distributed data, can generate light curves with any flux
PDF and PSD model. Therefore, along with having more realistic
light curves matching more closely the real data and its uncertainties,
the issue of negative fluxes is also avoided.

As stated above, we used the PSD from the GP kernel as input PSD
for the method. For the PDF, we used either a Gaussian distribution
(in which case we used the Timmer & Koenig (1995) algorithm), in
cases where the observed data was consistent with being Gaussian
distributed (as determined using a KS test) or log-normal distribution
if this was not the case (this was only the case for the XRT data of P13;
Section 3.2.2) — in which case we reverted to the Emmanoulopoulos
et al. (2013) algorithm. In any instance, in practice we have found
the PDF used to simulate the light curves did not affect the results.
The mean of the distribution was set as for the observed data and the
variance was determined by integrating the PSD kernel in frequency
space from 1/T, where T was the duration of the light curve, to a
pseudo Nyquist frequency defined as 1/2 min (A¢) where min (At)
indicates the smallest exposure time in the light curve. In this manner
we obtained the intrinsic variance that generated the light curve prior
to resampling, as opposed to the observed variance after resampling.
The light curves were initially generated on a regular grid with a
sampling min(At) in order to introduce aliasing effects, and a few
times longer (typically 5-20 depending on the light curve) than the
real light-curve length to introduce red noise leakage. We then drew
a random segment matching the duration of the real monitoring and
re-sampled it with the same exposure times and cadence as the real
observations. We finally added Poisson noise and estimated realistic
uncertainties taking into account the background rates and exposure
times for each individual snapshot. For the Swift-XRT, as for the real
light curves, in cases where the simulated source counts dropped
below 15, we used instead the posterior probability function derived
by Kraft, Burrows & Nousek (1991), which is more suited for the
low-count regime and prevents having negative counts.

APPENDIX B: GP MODELLING OF
LOGNORMAL LIGHT CURVES

It is commonly observed that all accreting systems show a lognormal
flux distribution, which translates into the universallyobserved linear
relationship between the square root of their variance (the rms)
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and their mean flux (the so-called linear 'rms—flux’ relation; Uttley
et al. 2005). The implication is that the process generating the
flux variations must be multiplicative. A pertinent question to ask
is therefore whether the light curves of accreting systems can be
modelled as a GP, or at the very least, how the retrieved parameters
are affected by the lognormality of the fluxes.

The skewness of a lognormal distribution with mean p and
variance o2 and with Gaussian parameters ., and oy is given by

y = (L +2)\/ el — 1, (B1)

where of =1In(1 + %) = In(l + F2,

tional rms variability amplitude (Fy,: = v/02/u?; Vaughan et al.
2003). This implies that y = (F2, + 3)Fy and so for low Fi,
the lognormal tends to be symmetric and resembles a Gaussian
distribution, but as Fy, increases, the lognormal distribution becomes
more skewed and deviates more strongly from Gaussianity (see also
Uttley et al. 2005). This is shown in Fig. B1. Naively, we then may
expect that GPs might be able to recover the input parameters more
readily when the Fy, is low. Similarly, Gaussian-like light curves
will show no dependence (or a flat) rms—flux relationship, and as
F,, increases the rms will show a linear dependence with flux (see
also Uttley et al. 2005).

In order to inspect any biases introduced by modelling lognormal
light curves by a GP, we have generated light curves possessing
a lognormal flux distribution using the method proposed by Em-
manoulopoulos et al. (2013; see Appendix A). The light curves were
generated 10°s long, sampled every 10s and with exposure times
of 1s, roughly matching the light curve of Cygnus X-1 presented
by Uttley et al. (2005). The generative PSD was a DRW, where the
bending time-scale was set to ~930s to ensure it could be well-
detected by the choice of sampling. The variance was adjusted to
produce light curves with a varying degree of F,, while the mean
count rate was fixed to 5000 ct s~!. In particular, we have tested
whether we could recover the input PSD parameters (wpeng and
variance o) using GP modelling of lognormal light curves having
Fyr = 0.1, 0.2, 0.4, and 0.6. The light curves were produced free
of Poisson noise (and the uncertainties were set to zero in the fitting
process) as we are only interested in examining any biases introduced
by the lognormality of the fluxes.

) and where F,, is the frac-
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Figure B1. (Left) Example of the PDF of the lognormal light curves as a function of Fy,. As Fy, increases, the lognormal deviates more strongly from
Gaussianity. (Right) RMS—flux relationship of light curves simulated having a lognormal distribution. These were averaged over the ensemble of the 1000 light

curves, by averaging the mean and rms calculated using 5000 s segments.

MNRAS 537, 3210-3233 (2025)

G20Z UIBIN L} U0 1saNB AQ YEY66./01ZE/7/LEG/PI0IME/SEIUW WO dNO"OlWapED.//:Sd)y WOy PaPEojumMoq



3232  A. Gurpide and M. Middleton

Gaussian
Lognormal

Instances

0.9 1.0 1.1
input

Wpend/ Wpend

1.2

1.0

2 2
/ Uinput

o

Figure B2. Best-fitting wpeng and variance o2 of an ensemble of 5000 light curves generated with varying flux PDFs (as indicated in the legend) and Fyq,. As
can be seen, the recovered parameters are in agreement with the input values, regardless of the PDF used to generated the light curves or the Fy,,.
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Figure B3. Best-fitting wpeng and variance o' of an ensemble of 5000 light curves generated from a lognormal PDF and varying Fy;, but now including Poisson
noise and uncertainties in the fitting. The blue colour and orange colour shows the results for varying mean (u = 1000 and 5000 ct s~!, respectively). As can
be seen, the bias in the recovered parameters increases with Fy,r, but even at the highest Fy,, the bias remains small. This suggest GPs have broad applicability.

As can be seen from Fig. B1, the generated light curves naturally
follow the observed linear rms—flux relationship. In particular, we
can see that for the lowest y (or equivalently, F\,), the relationship
is flat, as expected for a Gaussian distribution. As F\, increases, we
see the linear rms—flux relationship is recovered.

Fig. B2 shows histograms of the recovered wpena and o2 for an
ensemble of 5000 light curves. As can be seen, we do not observe
any deviation from the input parameters in the recovered parameters,
regardless of F,,., despite the light curves following the universal
linear rms—flux relationship.

As a further test, we now incorporate Poisson noise and take into
account the (Poissonian) uncertainties in the fitting process. We run
this test for the lognormal light curves only, as for high F,,, (=0.3)

MNRAS 537, 3210-3233 (2025)

the Gaussian distributed light curves produce negative counts due to
the distribution not being strictly positively defined. Fig. B3 shows
the histogram of the recovered parameters for an ensemble of 5000
light curves with a lognormal distribution, varying the F\, and for
two different mean values of = =1000 and 5000 ct s~', respectively.
As expected, deviations from the input parameters are stronger as
Fy increases. For ;1 = 1000 ct s~' and the largest F,, values,
deviations are at most of the order of ~7 percent, affecting more
strongly wpena- However, we can see that for the higher mean count-
rate case (1 =5000 ct s!), even at the highest F,, of 0.6, biases
remain below the order of ~2 percent. This suggests that most of
the biases we see for u = 1000 ct s~ are due to Poisson statistics,
and that lognormality of the flux has little impact on the recovered
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parameters. Moreover, since F,,, values higher than >0.5 are rarely
observed in AGNs or X-ray binaries (e.g. Breedt et al. 2010), this
experiment suggests that there is broad applicability of GPs for the
recovery of the variability processes in accreting sources.

APPENDIX C: MCMC SAMPLING

Here, we describe the process for the derivation of the best-fitting
parameters and their posteriors. These were found by first minimizing
the negative log likelihood function using the L-BFGS algorithm. We
then applied a small nudge to the best-fitting parameters and used
MCMC methods to sample the posterior running 32 independent
chains (or walkers) using the emceeepython library (Foreman-
Mackey et al. 2013). More specifically, after the fitting process
the walkers were distributed around the best-fitting parameters by
drawing from a Gaussian with mean equal to the best-fitting values
and standard deviation equal to 10 per cent of their values.

We adopted fairly uninformative (uniform) priors. Limits on the
frequencies of the period and the aperiodic kernel time-scales were
set based on data constraints. The shortest time-scale was set by a
pseudo Nyquist frequency (foyq = 1/2< At > where < At > was

© 2025 The Author(s).
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the mean cadence of the light curve). The maximum allowed time-
scale was T for the aperiodic kernels and 7'/2 for the periodic kernel,
with T being the light-curve length. We further imposed Q 2 3/2;
(Fig. 2) for the Lorentzian component to force this component to
always represent a periodic signal and avoid degeneracy with the
aperiodic kernels. The upper bound of Q was effectively uncon-
strained to allow for cases where the amplitude of the oscillation is
not seen to decay.

In order to ensure convergence, the MCMC sampler was run
until (a) the number of steps reached 100 times the integrated
autocorrelation time (), which was estimated on the fly every 800
samples, and (b) T changed less than 1 percent compared to the
previous estimate. We then discarded the first 30 x 7 number of
samples (the burn in) and thinned the chains by t/2 to build the
posterior probability density function. We additionally inspected
the chains for stationarity and compared the variances within each
chain to the variance between chains following Vaughan (2010) (and
references therein).
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