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A B S T R A C T 

The detection of periodic signals in irregularly sampled time series is a problem commonly encountered in astronomy. Traditional 
tools used for periodic searches, such as the periodogram, have poorly defined statistical properties under irregular sampling, 
which complicate inferring the underlying aperiodic variability used for hypothesis testing. The problem is exacerbated in the 
presence of stochastic variability, which can be easily mistaken for genuine periodic behaviour, particularly in the case of 
poorly sampled light curves. Here, we present a method based on Gaussian Processes (GPs) modelling for period searches and 

characterization, specifically developed to overcome these problems. We argue that in cases of irregularly sampled time series, 
GPs offer an appealing alternative to traditional periodograms because the known distribution of the data (correlated Gaussian) 
allows a well-defined likelihood to be constructed. We exploit this property and draw from existing statistical methods to perform 

traditional likelihood ratio tests for an additional (quasi-)periodic component, using the aperiodic variability inferred from the 
data as the null hypothesis. Inferring the noise from the data allows the method to be fully generalizable, with the only condition 

that the data can be described as a Gaussian process. We demonstrate the method by applying it to a variety of objects showing 

v arying le vels of noise and data quality. Limitations of the method are discussed, and a package implementing the proposed 

methodology is made publicly available. 

Key words: accretion, accretion discs – methods: data analysis – methods: statistical – stars: black holes – stars: neutron –
galaxies: active. 
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 I N T RO D U C T I O N  

he identification of periodic/quasi-periodic signals in irregularly
ampled time series is a common problem in astronomy due to
he predominance of interrupted or intermittent observing. While
ninterrupted, regularly sampled observations may be achieved for
eriods of up to around a day at most, for time-scales extending to
he tens or hundreds of days, this becomes impractical, particularly
or faint sources, which require the most sensitive of instruments.
uch ‘long’ time-scales are, ho we ver, of great interest in the study
f many phenomena, such as superorbital periods in X-ray binaries
XRBs; e.g. Kotze & Charles 2012 ; Vasilopoulos et al. 2020 ) and
inary supermassive black hole (SMBH) signals (e.g. Graham et al.
015 ). 
Arguably the most widely used technique to search for periodici-

ies in time series is the periodogram, which involves calculating the
odulus-squared of the discrete Fourier transform. Lomb ( 1976 ) and
cargle ( 1982 ) extended the periodogram to the case of irregularly
ampled time series, a technique known today as the Lomb–Scargle
eriodogram (see VanderPlas 2018 , for a re vie w of this technique).
eriodic signals appear as peaks or ‘outliers’ in po wer, allo wing the
requency of the repeating signal to be estimated. If the distribution of
 E-mail: a.gurpide-lasheras@soton.ac.uk 
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he powers in the absence of a signal is known, the chance probability
f generating such an outlier can then be calculated, providing an
stimate of the significance of the candidate period. 

In the absence of source variability other than the repeating signal,
.e. when the sole source of additional variance in the light curve is
ue to Poisson noise, the problem is somewhat straightforward. In
egularly sampled time series, the problem can be tackled analytically
s the powers in the periodogram are independent and follow a χ2 

istribution with 2 degrees of freedom ( χ2 
2 ; e.g. van der Klis 1988 ).

n the case of irregularly sampled data, the powers are no longer
ndependent, but the problem can be tackled easily by randomizing
he time series (Frescura, Engelbrecht & Frank 2008 ; VanderPlas
018 ). 
Searching for periods is made considerably harder when sys-

ems show intrinsic aperiodic or stochastic (i.e. non deterministic)
ariability, as is universally observed in both accreting systems
Vaughan et al. 2003 ) and stars (Bowman & Dorn-Wallenstein 2022 ).
hese types of source have steep power spectral densities (PSDs),
ommonly referred to as ‘red noise’. Failing to account for this
ackground noise tends to o v erestimate the significance of peaks
n the periodogram (Vaughan 2005 ). For this reason, sources show-
ng stochastic variability are more prone to misidentified periods,
xacerbated in the case of uneven sampling (e.g. Vaughan et al.
016 ). While this problem was tackled by Israel & Stella ( 1996 ) and
aughan ( 2005 , 2010 ) in the case of regularly sampled time series,
© 2025 The Author(s). 
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here is as yet no standard procedure for the case of irregularly
ampled time series. 

In this paper, we present a recipe aimed at detecting periodicities in
rregularly sampled time series, with particular focus on cases where 
he systems under study show additional aperiodic variability (as it 
s the case in e.g. active galactic nuclei (AGNs); Gonz ́alez-Mart ́ın &
aughan 2012 ), although the method is completely generalizable. 
e argue that in such cases, Gaussian Process (GP) modelling offers

 clear advantage o v er traditional (Lomb–Scargle) periodograms, 
ecause the likelihood of the data is known. This allows us to
onstrain the underlying, aperiodic variability using GP modelling, 
nd use well-established statistical techniques to determine the 
andidate period significance and a goodness-of-fit. 

This paper is structured as follows: in Section 2 , we review the case
f period-detection in regularly sampled time series and describe 
ur proposed methodology for the irregularly sampled case. In 
ection 3 , we demonstrate the method, applying it to both simulated
nd real data. Finally in Section 4 , we discuss the advantages of
he methodology o v er more traditional Fourier-based techniques and 
utline certain limitations and caveats of the proposed methodology. 

 S E A R C H I N G  F O R  A  P E R I O D  

.1 Regularly sampled time series 

he standard methodology to test for the presence of a narrow peak
ssociated with a periodic/quasi-periodic signal in a periodogram 

enerally involves estimating the broadband noise (or continuum) 
nd using that estimate – and its uncertainties – as the null hypothesis 
e.g. Israel & Stella 1996 ; Vaughan 2005 , 2010 , see also Gierli ́nski
t al. 2008 ; Pasham et al. 2019 ; Ashton & Middleton 2021 for an
xample of the application of such a methodology). In the case 
f regularly sampled time series, the powers in the periodogram 

an be considered independent and their distribution is well known 
scattered as a χ2 

2 around the underlying PSD; e.g. Klis 1988 ). 
nowing the distribution of powers allows the construction of a 
ell defined likelihood function (e.g. Stella et al. 1994 ) (commonly 
nown as the Whittle likelihood; see Vaughan 2010 , and references 
herein). This allows forward-fitting of the periodogram 

1 and models 
o be rejected based on the data alone, as it is customarily done when
tting using χ2 statistics. 
Knowledge of the likelihood not only allows models to be rejected 

ased on the data alone, but also to test for the presence of additional
omponents (e.g. quasi-period oscillations; QPOs) by performing 
 likelihood ratio test (LRT; Protassov et al. 2002 ). In particular,
aughan ( 2010 ) proposed to follow Protassov et al. ( 2002 ) and
erform an LRT using the Whittle likelihood function from fits to 
he periodogram: 

 LRT = −2 ln 
L 0 

L 1 
. (1) 

ere, L 0 and L 1 are the maximum of the likelihood functions for the
ull hypothesis and the alternative model, respectively . Subsequently , 
ne would simulate periodograms drawn from the null hypothesis 
and its uncertainties, see e.g. Ashton & Middleton 2021 ) and derive
he same quantity for each of the simulated periodograms. As stated 
arlier, as the distribution of powers is known in the case of evenly
ampled data (scattered as χ2 

2 around the PSD) one can a v oid the
dditional step of simulating light curves (so long as aliasing and 
 Notably if aliasing and red noise leakage effects are negligible. 

S  

a  

p

ed noise leakage effects are not important). Finally, a comparison 
f the observed T LRT against the reference distribution derived from 

he simulated data sets allows the probability of rejecting the null-
ypothesis model to be assessed (through the derived p-value), 
hereby providing an estimate of the significance of the putative 
ignal. Note that, because the null hypothesis is derived from the
ata, the method makes no assumptions about the underlying noise, 
nd is completely generalizable. We seek to replicate this process in
he case of unevenly sampled data. 

.2 Irregularly sampled time series 

n the case of irregular sampling, there is no straightforward way
o model the broad-band noise as for the regularly sampled case. If
e were to replicate the standard procedure outlined abo v e using

he Lomb–Scargle periodogram, we would encounter a variety of 
roblems. First, the powers in the Lomb–Scargle periodogram are 
nown to not be statistically independent (e.g. Lomb 1976 ) and their
istribution is therefore unknown and dependent on the underlying 
also unknown) PSD. Secondly, the irregular sampling implies that 
here is no well-defined set of frequencies o v er which to e v aluate
he periodogram (e.g. Frescura et al. 2008 ). Finally, as the Nyquist
requency is ill-defined or nonexistent (VanderPlas 2018 ), aliasing 
ffects are exacerbated. The combination of these problems typically 
recludes forward-fitting of the (Lomb–Scargle) periodogram or at 
he very least, forward-fitting will lead to biased estimates. 

To illustrate this, we simulated 1000 light curves using the method
roposed by Timmer & Koenig ( 1995 ), initially with N = 1 , 000
venly sampled datapoints using an input PSD where the power 
 S( f )) follows a power law S( f ) ∝ f −β with β = 1, and 1.8,
espectiv ely. The light curv es were initially simulated to be ten times
onger to introduce red-noise leakage effects and then truncated into 
he aforementioned length. We then randomly remo v ed 50 datapoints
rom each light curve and computed Lomb–Scargle periodograms 
rom the resulting light curves. We then fit the periodograms in log
pace with a linear function (i.e. assuming the powers follow a χ2 

2 ;
aughan 2005 ) and retrieve the best-fitting slope ( β) in each case.
e then progressively removed a further 50 datapoints, until 500 

atapoints had been remo v ed (but al w ays k eeping the last and the
rst datapoint to maintain the same light curve length), recording the
ean best-fitting β for the ensemble of the 1000 light curves. The
ean best-fitting β as a function of number of datapoints remo v ed

s shown in Fig. 1 for both β values. 
Fig. 1 shows that, for β = 1, when � 200 datapoints have been

emo v ed, the best-fitting β is underestimated by ∼20 per cent, illus-
rating the inherent issues in fitting to the Lomb–Scargle periodogram 

see also O’Sulli v an & Aigrain 2024 ). The case of β = 1 . 8 shows
he bias is more dramatic for steeper PSDs. The situation becomes
ven worse in a real-case scenario, where the frequency grid will be
nknown (here we can at least assume the frequency grid given by
he initially evenly sampled light curves) and there will be no way
o know whether the fit is an adequate description of the data. Note
lso that the biases will affect any parameter fitted, including the
ormalization of the power law, which we have not shown here. 
One way to circumvent the abo v e problems is to rely on Monte

arlo simulations of light curves, as pioneered by Done et al. ( 1992 )
nd later refined by Uttley, McHardy & Papadakis ( 2002 ). This
pproach attempts to find the power spectral model that, when 
onvolved with the observing window, best matches the (Lomb–
cargle) periodogram of the real data, so that all distorting effects
re taken into account. Ho we ver, such methods still run into some
roblems, particularly when dealing with irregularly sampled time 
MNRAS 537, 3210–3233 (2025) 
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Figure 1. Mean best-fitting β for an ensemble of 1000 Lomb–Scargle 
periodograms of light curves generated with a PSD following a power law 

S( f ) ∼ f −β with β = 1 (blue solid line) and 1.8 (orange solid line). The 
periodograms were fitted with a linear function in log–log space (i.e. assuming 
the po wers follo w a χ2 

2 as for the regularly sampled case) as we progressively 
remo v ed datapoints. The best-fitting β quickly deviates from the input β
value (dashed horizontal lines), showing how the Lomb–Scargle periodogram 

becomes a biased estimator as the sampling regularity decreases. 
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eries. Once again, the unknown distribution of the powers and their
ack of independence implies that the choice of the fit-statistic will not
e straightforward. One could aim to rebin the periodogram, hoping
hat enough samples will converge to Gaussianity and independence,
ut again the lack of a well-defined frequency-grid complicates this
pproach (whilst the number of averages needed to reach Gaussianity
s unclear and depends on the underlying, unknown PSD; Ingram &
one 2011 ). In addition, if binning cannot be a v oided, any periodic

omponent and its structure due to the observing window will be
meared out, which will affect the estimate of the continuum. For that
eason, tests relying on simulated Lomb–Scargle periodogram peaks
ften have to excise the frequency of the candidate period in order
o determine the putative underlying noise (e.g. Pasham et al. 2024 ),
hereby making a priori assumption about the presence of any QPO.
his is because if the feature is real and not remo v ed, the broadband
ontinuum estimate used for the simulations will be biased, often
owards steeper inde x es if the QPO is at the low-frequency end. This
 v erestimate of the amount of aperiodic variability will therefore
nderestimate the significance of the periodic component. 
The method of Monte Carlo simulations also becomes quickly

omputationally e xpensiv e as it relies heavily on Monte Carlo sim-
lations for estimation of the best-fitting parameters, and additional
imulations are often needed to obtain parameter uncertainties (e.g.
ueller & Madejski 2009 ; Markowitz 2010 ). An appealing aspect

f such a method, ho we ver, is that one can obtain the goodness-
f-fit through the simulated light curves, using them to derive the
mpirical distribution of fit-statistic from which the goodness-of-fit
or ‘rejection confidence’ as per Uttley et al. 2002 ) can be derived.

e note that, as pointed out by Mueller & Madejski ( 2009 ), one
hould re-fit the simulated light curves in the same manner as for the
bserved data set in order to obtain the empirical distribution of the fit
tatistic, which would again dramatically increase the computational
ime. We return to this point in Section 2.6 . 

An alternative approach to the abo v e is to use time-domain
tting methods such as GP, where the irregular sampling and
easurement (heteroskedastic) errors are fully accounted for and
NRAS 537, 3210–3233 (2025) 
re less susceptible to the distorting effects inherent in a Fourier-
omain approach (e.g. K elly, Sobole wska & Siemigino wska 2011 ).
he covariance functions, or ‘kernels’, when the data is stationary

when they depend only on the �t ij = | t i − t j | interval between
ny two datapoints), describe the autocorrelation function, which
an be Fourier-transformed to obtain the PSD (Rasmussen &
illiams 2006 ). Therefore GP modelling offers an equally flexible

ut frequency-distortion-free access to the PSD, while maximizing
ata usage by making full account of the measurement uncertainties
nd a v oiding binning. Moreo v er, complications arising from the
nknown distribution of powers in the case of the Lomb–Scargle
eriodogram are a v oided. 
Beyond the computational demand, which generally scales as N 

3 

although F oreman-Macke y et al. ( 2017 ) showed that the compu-
ational time can be reduced to scale as ∼ J 2 N – where J is the
umber of model components – for a restricted set of kernels), a
ore general drawback of GP modelling compared to traditional
ethods is that there is no measure of goodness-of-fit. As a result,
odels cannot be rejected solely on the basis of the data, and only
odel comparison (e.g. using an information criterion) is possible.

n addition, although QPO-searches have been performed using GP
e.g. Covino et al. 2020 ; Covino, Tobar & Treves 2022 ; H ̈ubner
t al. 2022 ; Zhang, Yang & Dai 2023 ), establishing the significance
f such signals remains challenging. In particular, it is important
o quantify the chance probability of generating a fit impro v ement
or any other metric such as the Bayes factor) when including a
PO/periodic component (hereafter we will refer to this simply as

he ‘signal’) given the specific sampling, priors, fitting technique, and
ther factors involved in the analysis. This is particularly important
f such methods are to be extended to include non-stationary kernels,
here the time window becomes a parameter of the model (H ̈ubner

t al. 2022 ). In such cases, one needs to account for the additional
ets of free-trials or model-flexibility introduced in allowing signals
o be transient. 

.3 The method 

ur procedure can be considered equi v alent to the LRT approach
roposed by Vaughan ( 2010 ), but adapted to deal with irregularly
ampled data. First, to circumvent the issues related to use of
he Lomb–Scargle periodogram, we obtain the likelihood directly
rom the GP modelling in the time domain. We then make a
omparison between a continuum-only model (the null hypothesis)
o a more complex model that includes the signal, obtaining a fit
mpro v ement (quantified through L 1 − L 0 = �L or T LRT ). Next,
rom the posteriors of the null hypothesis modelling, we draw kernel
arameter samples and then use the PSD of these kernels to generate
 number of simulated light curves via inverse-Fourier transform (the
ull methodology employed to simulate the light curves is described
n Appendix A ). We finally perform the same GP modelling on
he synthetic light curves to derive the reference distribution for
he LRT. While throughout this work we employ uninformative
uniform) priors, Bayesian priors could easily be incorporated,
rovided the same priors are also used when fitting the simulated data
ets. 

Intuitively, this method can be understood as follows: if the
mpro v ement in fit statistic provided by the added model component
the putative signal) is due to random noise fluctuations in the original
ata set (i.e. the signal is spurious), the fit impro v ement obtained
n the simulated data sets (which were simulated using the model
ithout the additional model component) will be of the same order
s that of the real data set. If the signal is real, then the impro v ement
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Figure 2. PSDs of the celerite models used in this work. All PSDs are 
shown with the same integrated variance. The DRW results in a bending 
power law in Fourier space (dashed orange line), whereas the exponentially 
decaying sinusoid gives a Lorentzian, which is shown for different values 
of coherence, Q , in blue solid lines. For Q � 3 / 2, the Lorentzian becomes 
broad, mimicking a bending power law (see Belloni, Psaltis & Klis 2002 ). The 
PSD of the SHO for the special case of Q = 1 / 

√ 

2 and Q = 1 / 2 (which yields 
the Mat ́ern-3/2 kernel approximation) are shown as a dashed–dotted green 
line and a solid purple line, respectively. The vertical dashed line indicates the 
central frequency of the Lorentzian ( ω 0 ) and ω bend for the DRW, Mat ́ern-3/2 
and SHO Q = 1 / √ 

2 kernels. Note that for the Mat ́ern-3/2 ρ = 

√ 

3 / ω bend . 
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n fit statistic provided by the additional model component will be 
enerally larger than any of the values obtained in the simulated data
ets. Such a procedure not only inherently accounts for the number of
ree trials – as long as the parameter ranges/priors are kept the same
s for the original data set – but also for the fact that some signals may
ave a more complex profile than a simple peak in a Lomb–Scargle
eriodogram (as is often assumed in significance testing). Another 
dvantage of relying on fit impro v ements is that it remo v es the need
o make any prior assumptions about the presence of the QPO in the
eriodogram, which, as stated in Section 2.2 , is often the case when
elying on periodogram peaks. 
igure 3. Example of a simulated light curve, generated to test the sensitivity o
enerated using a Lorentzian + DRW, with bending time-scale of 60 d, and period

s

.4 Kernel functions 

here are naturally a range of possible models one could potentially
se to describe the underlying noise and the signal, and we refer
o Rasmussen & Williams ( 2006 ) for some examples. In this paper,
e use the celerite kernels proposed by F oreman-Macke y et al.

 2017 ) for GP modelling – which we note bear many similarities to
ARMA (Kelly et al. 2014 ) – to reduce the computational burden,
ut note our method is generalizable to any choice of kernels. These
ernels can then be combined through additions or multiplications to 
chieve more complex cov ariance matrices. Ho we ver, as sho wn by
 oreman-Macke y et al. ( 2017 ), an y multiplication of celerite
 ernels can al w ays be reformulated as an addition under a new
arameter set. Therefore we only explore additions of the kernels 
escribed below. 
The simplest choice of celerite kernel for modelling aperiodic 

ariability is the Damped Random Walk (DRW), whose kernel is 
imply a decaying exponential: 

( �t ij ) = σ 2 exp ( −ω bend �t ij ) (2) 

he PSD of which is a bending power law (Fig. 2 ): 

( ω) = 

√ 

2 

π

σ 2 

ω bend 

1 

1 + 

(
ω 

ω bend 

)2 (3) 

ith an index of –2 for ω >> ω bend bending smoothly to a flat
 S( ω) ∼ ω 

0 ) power law around ω bend . In the abo v e, σ 2 is the variance
f the process. 
A further possible kernel (as proposed by F oreman-Macke y et al.

017 ) is the stochastically driven damped harmonic oscillator (SHO), 
hich can model both aperiodic and periodic variability. For the full
etails of this kernel we refer the reader to F oreman-Macke y et al.
 2017 ); in this work we consider two special cases of this kernel used
o model aperiodic noise. The first one is commonly used to model
aperiodic) granular noise in stars: 

( �t ij ) = S N ω bend e 
− 1 √ 

2 
ω bend �t ij cos 

(
ω bend �t ij √ 

2 
− π

4 

)
(4) 

ith a PSD of the form: 

( ω) = 

√ 

2 

π

S N 

( 1 + ω/ω bend ) 
4 (5) 
MNRAS 537, 3210–3233 (2025) 

f our method to false ne gativ es ( N = 250 �t ≈ 4 days). (Left) Light curve 
 of 100 d. (Right) Corresponding Lomb–Scargle periodogram. 

t on 11 M
arch 2025
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Figure 4. Distribution of p-values (with colours indicating the density of values) obtained from the application of our PPP method to 100 simulated light curves 
using a Lorentzian (QPO) + DRW with varying cadence (left) and baseline (right). The mean p-values for each cadence/baseline strategy are shown as short, 
horizontal lines. The horizontal grey dashed line shows the 99 per cent significance detection level ( p = 0.01). 
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Table 1. Summary of the analysis carried out to test the sensitivity of 
our method to false ne gativ es. 100 light curves were simulated per base- 
line/cadence combination from a Lorentzian + DRW PSD and we examined 
whether we could detect the additional Lorentzian (QPO) component o v er 
the DRW. 

N 

a < �t > 

b T c < p > 

d n e p< 0 . 01 
d d 

100 10 1000 0.12 65 
250 4 1000 0.12 62 
500 2 1000 0.11 68 
1000 1 1000 0.10 68 
300 1 300 0.24 21 
400 1 400 0.21 39 
500 1 500 0.17 44 

Notes. 
a Number of datapoints of the generated light curves. 
b Mean cadence. 
c Observing baseline. 
d Mean retrieved PPP value of 100 light curves for the presence of the QPO 

(Lorentzian) component. 
e Number of light curves for which the Lorentzian was significantly detected 
( p< 0 . 01). 
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ere S N scales the variance of the noise process ( σ 2 = 

1 √ 

2 
S N ω bend ).

he PSD of this kernel is similar to the DRW but here the power
aw has a stepper index of –4 for ω >> ω bend (Fig. 2 ). Hereafter, we
efer to this model as SHO Q = 1 / 

√ 

2 as this kernel is obtained for the

pecial case of Q = 1 / 
√ 

2 within the more general SHO (for more
etails we refer the reader to F oreman-Macke y et al. 2017 ). 
The second special case of the SHO we consider is an approxima-

ion to the Mat ́ern-3/2 kernel 2 , which using celerite kernels can
e approximated setting Q = 1 / 2 in the SHO: 

( �t ij ) = σ 2 

( 

1 + 

√ 

3 

ρ
�t ij 

) 

e 
−

√ 
3 �t ij 
ρ , (6) 

here ρ sets the characteristic time-scale in a similar fashion to the
RW. The PSD of this function is only slightly dissimilar to the
HO Q = 1 / 

√ 

2 kernel as can be seen in Fig. 2 . Hereafter, we refer to
his kernel as Mat ́ern-3/2 for simplicity. 

Finally, we also considered a ‘Jitter’ or white-noise kernel to model
ncorrelated aperiodic variability, paramterized only by its variance: 

( �t ij ) = σ 2 δij , (7) 

here δij is the Kronecker delta, indicating this term simply adds a
iagonal term to the covariance matrix. This kernel can be interpreted
n tw o w ays. The first is that the uncertainties on the data are
nderestimated; in this case σ 2 provides the constant, missing
ontribution to the noise; the second is as an extra white noise term
o capture some random variations (e.g. instrumental effects) not
aptured by the main model. Here, we consider it as an independent
odel to describe cases where the data does not support the use of
 different kernel (signalling that white noise as the null hypothesis
ight be justified). 
NRAS 537, 3210–3233 (2025) 

 In practice we have found the parameter controlling the approximation 
n celerite to have very small effect on the results and was fixed to 

he arbitrary small value of 10 
−7 

. While preparing this manuscript we have 
earned that an exact state-representation of the Mat ́ern-3/2 has now been 
erived in Jord ́an, Eyheramendy & Buchner ( 2021 ). 

e  

(

S

w  

i  
For the periodic component, we have employed only a single
xponentially decaying sinusoid: 

( �t ij ) = σ 2 exp ( −b�t ij ) cos ( ω 0 �t ij ) 

= σ 2 exp 

(
− ω 0 

2 Q 

�t ij 

)
cos ( ω 0 �t ij ) , (8) 

here b = ω 0 / 2 Q following the nomenclature of F oreman-Macke y
t al. ( 2017 ). The resulting PSD takes the form of a Lorentzian
Fig. 2 ): 

( ω ) = 

1 √ 

2 π

σ 2 b 

b 2 + ( ω − ω 0 ) 2 
= 

√ 

2 

π

σ 2 Qω 0 

ω 

2 
0 + 4 Q 

2 ( ω − ω 0 ) 2 
, (9) 

hich is a phenomenological model commonly used to model QPOs
n X-ray binaries (e.g. Belloni et al. 2002 ; Vaughan & Uttley 2005 ),
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Figure 5. Example of simulated light curves generated to test the sensitivity of our method to false positives. (Top left) Light curve generated using a 
DRW with bending time-scale of 65 d ( N = 300, cadence roughly every 1 d). (Top right) Corresponding Lomb–Scargle periodogram. (Bottom left) As 
before, but initially with N = 1000 and then including two gaps of 45 d, one of 60 d and another of 100 d. (Bottom right) Corresponding Lomb–Scargle 
periodogram. 
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nd is flexible enough to capture strict periodicities (where the 
oherence is extremely high). The Lorentzian has three parameters: 
he period of the oscillation P = 2 π/ω 0 , the coherence or quality
actor Q 

3 , which sets how stable the oscillation amplitude is o v er
ime, or how peaked the Lorentzian is, and σ 2 , which is again the
ariance of the oscillation. Note that unlike periodogram modelling, 
hich is agnostic to the underlying mechanism broadening the 
PO, our periodic model here can only capture variations in 

mplitude. 
The presence of Poisson (or Gaussian) noise can be included in the

sual manner, by adding in quadrature the observation uncertainties 
o the covariance matrix (Rasmussen & Williams 2006 ; Foreman- 

ackey et al. 2017 ). Here, we take the mean function to simply be
he mean of the light curve. This choice also helps to limit the number
f variable parameters, but again, our method can be generalized to 
nclude any mean function. 
 Note that our definition is consistent with Belloni et al. ( 2002 ) but differs by 
 factor 2 compared to other works (e.g. Vaughan & Uttley 2005 ). 

w
e  

k  

i  

a  
.5 Model selection 

ince we are performing a test for an additional component, our
odels will al w ays be of the form underlying noise + periodic

omponent(s) . Before testing for the presence of a signal, it is
mportant to select a suitable null-hypothesis that captures the un- 
erlying, stochastic noise. Information criteria (IC), which penalize 
ore complex models if the increase in fit statistic is not deemed

worthy’ of the extra parameters, are commonly used for model 
election. If priors are included, model selection can be performed 
sing the Bayes factor. Given that we have used non-informative 
riors throughout this work, we perform model selection using the 
kaike Information Criterion (AIC; Akaike 1998 ): 

IC = 2 k − 2 ln L ∗, (10) 

here models with higher AIC values are considered to have 
 xcessiv e comple xity with respect to the quality of the data. Here,
 is the number of model parameters and L ∗ for a particular model
s the maximum of the likelihood function. The AIC is only correct
symptotically (i.e. for large sample sizes) but it can be corrected for
MNRAS 537, 3210–3233 (2025) 
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Table 2. Summary of the analysis carried out to test the sensitivity of 
our method to false positives. We tested for the presence of an additional 
Lorentzian (QPO) component in 50 light curves, simulated from a DRW PSD 

per baseline/cadence combination. 

N 

a < �t > 

b T c p 

d 
uniform 

d d 

100 10 1000 0.35 
250 4 1000 0.56 
500 2 1000 0.16 
1000 1 1000 0.35 
300 1 300 0.91 
400 1 400 0.30 
500 1 500 0.98 

Notes. 
a Number of datapoints of the generated light curves. 
b Mean cadence. 
c Observing baseline. 
d p-values for the distribution of the 50 retrieved PPPs following a uniform 

distribution between 0 and 1, as expected when the null hypothesis is true. 
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Table 3. AICc, � AIC and p-values for the standardized residuals following 
a Gaussian distribution for the different models tested on the combined EPIC 

data of the Seyfert galaxy NGC 1365. � AICc refers to the increment in AICc 
with respect to the first model listed in the Table. Models with lower AICc 
values are not shown for clarity. 

Model AICc � AICc p-value 

Lorentzian + DRW + SHO Q = 1 / √ 

2 92.4 0.0 0.08 
Lorentzian + Mat ́ern-3/2 + Mat ́ern-3/2 92.7 0.4 0.01 
Lorentzian + Mat ́ern-3/2 + SHO Q = 1 / √ 

2 92.9 0.5 0.45 
Lorentzian + Mat ́ern-3/2 + DRW 93.2 0.8 0.01 
Mat ́ern-3/2 + SHO Q = 1 / √ 

2 95.7 3.4 0.18 
Mat ́ern-3/2 + DRW 95.8 3.4 0.06 
2 ×Mat ́ern-3/2 96.0 3.6 0.19 
DRW + SHO Q = 1 / √ 

2 96.8 4.5 0.06 
Lorentzian + Mat ́ern-3/2 98.7 6.3 0.70 
2 ×SHO Q = 1 / √ 

2 99.3 6.9 0.27 
Lorentzian + SHO Q = 1 / √ 

2 100.6 8.2 0.02 
Lorentzian + DRW 101.3 9.0 0.0 
Mat ́ern-3/2 103.2 10.9 0.83 
DRW 103.8 11.5 0.00 
Lorentzian + 2 ×DRW 105.3 12.9 0.00 
2 ×DRW 107.4 15.0 0.00 
3 ×DRW 111.6 19.2 0.00 
SHO Q = 1 / √ 

2 114.7 22.3 0.44 
Lorentzian + Jitter 121.3 28.9 0.00 
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nite sample sizes as shown in Hurvich & Tsai ( 1989 ): 

ICc = AIC + 

2 k( k + 1) 

N − k − 1 
. (11) 

In order to find the best-fitting model, we have implemented a small
terative routine in which we start by testing each of the single-kernel

odels (Jitter, DRW, Mat ́ern-3/2, SHO Q = 1 / 
√ 

2 , and Lorentzian) on
he data. From these five fits, we selected the one yielding the lowest
ICc min and those within � AICc = 2 from AICc min . Subsequently,
e tested each of the selected kernels in combination with any of

he other five. From this second stage, we again retained the lowest
 v erall model and those within the abo v e � AICc, and repeated the
rocess until adding an extra component no longer resulted in a
ecrease in the AICc. 
We have compared the results of this routine with brute-forcing

esting all possible model combinations and while we have found
his routine yields the correct model in most instances, this was not
he case in two of the objects tested here. As an example, there might
e instances where a combination of a Lorentzian + DRW might
NRAS 537, 3210–3233 (2025) 

igure 6. (Left) Combined EPIC 0.3–10 keV light curve of the Seyfert galaxy NG
 factor 5). The pink dashed line shows the mean periodogram of 10 000 light curve
odel), with the shaded areas showing the 16 and 84 per cent percentiles of the dis

t al. ( 2024 ). The dashed blue line shows the power spectrum of the observing win
e a better o v erall combination than a Lorentzian + Mat ́ern-3/2,
ven if in isolation a Mat ́ern-3/2 may be preferred o v er a DRW
nd Lorentzian. Nevertheless, we have found the routine useful
n performing a preliminary triage and establishing the number of
omponents required. Therefore after the model minimizing AICc
as found, we have tested alternations keeping the same model

omponents to refine the final selection. We leave developing a more
efined search process when focusing on large-scale surv e y searches,
here we will calibrate the method against specific data sets. 
Once the model (or combination of model components) has been

elected for the alternative and null hypothesis models, the posteriors
erived from the null hypothesis (the noise-only model) can be used
C1365. (Right) Corresponding Lomb–Scargle periodogram (o v ersampled by 
s simulated from the posteriors of the Mat ́ern-3/2 + DRW kernel (best-fitting 
tribution. The vertical black arro w sho ws the putative QPO reported by Yan 
dow. 

 by guest on 11 M
arch 2025
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Figure 7. GP modelling results of the combined XMM–Newton EPIC data of the Seyfert galaxy NGC 1365 (Fig. 6 ). (Top left) Best-fitting DRW + SHO Q = 1 / √ 

2 
(solid orange line) and its 1 σ uncertainties (shaded areas). The bottom panel shows the standardized residuals of the model. (Top right) PSDs derived from the 
celerite modelling (absolute rms normalization), showing the DRW + SHO Q = 1 / √ 

2 (null) and the Lorentzian + DRW + SHO Q = 1 / √ 

2 (alternative) models. 
The solid and shaded areas show the median and 1 σ uncertainties derived from the posteriors. The dashed horizontal line shows the approximate Poisson level 
(2 ˜ �t < σ 2 

err > where ˜ �t and < σ 2 
err > are the median sampling and the mean square error, respectively). (Bottom left) ACF of the standardized residuals. The 

shaded areas indicate the 95 per cent confidence level expected for white noise. (Bottom right) Posteriors of the best-fitting DRW + SHO Q = 1 / √ 

2 model. The 
contours indicate the 2D, 1 σ and 2 σ confidence levels (39 and 86 per cent, respectively) and the dashed lines on the marginalized histograms indicate the 32, 
50, and 84 per cent percentiles (median ±1 σ ). The MCMC run for approximately 64 000 steps until convergence, from which we discarded the first 10 000 as 
burn-in. 
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o calibrate the reference LRT distribution as proposed by Protassov 

t al. ( 2002 ) and derive the posterior predictive p-value (PPP). In
oing so, we are able to map � IC changes to p-values. 
Note it may not al w ays be possible to establish a unique pair of

lternative and null hypothesis models when the differences between 
wo models are small (typically � AICc � 2). In such instances
ypothesis testing may be repeated using the various competing 
odels in order to assess the robustness of the results to the choice of

ull hypothesis. This situation is akin to the regularly sampled case 
e.g. Alston et al. 2014 ) and practical examples will be discussed
n Sections 3.2.1 and 3.2.3 . Note that we refer here to differences
n � AICc between two alternative models, as small differences in 
 AICc between null and alternative models are precisely the type of

ituation our method is designed to address. 
.6 Goodness-of-fit 

he goodness-of-fit is one of the main statistical quantities lacking 
n GP modelling. As opposed to the commonly used χ2 statistic 
whose value can be mapped to a p-value, indicating the likelihood
hat the data was generated by the model), the maximum of the GP
ikelihood L ∗ alone tells us nothing about whether the model is a
ood description of the data or whether the data can be described by
 GP. Regarding the latter, there may be concern the light curves of
ccreting compact objects cannot be described using GPs, because 
he fluxes are observed to follow a lognormal probability density 
unction (PDF), suggesting a multiplicative process generates the 
ariability (Uttley, McHardy & Vaughan 2005 ), which we should 
ot be able to describe using GPs. In the Appendix (Section B )
MNRAS 537, 3210–3233 (2025) 
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Figure 8. Reference LRT distribution generated from simulated light curves 
from the posteriors of the DRW + SHO Q = 1 / √ 

2 model (null hypothesis). The 
solid orange line shows a fit to the distribution using a log-normal. The T LRT 

observed in the data is shown as a dashed black line. 
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e discuss this aspect, and show through simulations that, despite
he light curves having a lognormal distribution, GPs are able to
eco v er the underlying process generating the variability (the PSD),
ndicating that their applicability might be broader than originally
hought. 

Despite the likelihood telling us nothing about whether the model
s an appropriate description of the data, there are still several
iagnostics that can be employed to test whether the model describes
he data (or whether the data can be described by a GP). Following
elly et al. ( 2014 ), we derive two diagnostics for model testing.
irst, we assess whether the standardized residuals follow a standard
ormal distribution ( μ = 0, σ = 1) by performing a Kolmogorov–
mirnof (KS) test. In practice, if the data cannot be described by
 GP, the standardized residuals will be narrower than a standard
ormal distribution. This indicates the GP is o v ercompensating by
ssuming the entire variability in the time series is just random
oise. In other words, the GP will indicate excess variance with
espect to the data. On the other hand, residuals broader than a
tandard normal distribution indicate a deficiency in the chosen
odel. The other quantity we deriv e v erifies there are no remaining

rends by computing the autocorrelation function (ACF) of the
tandardized residuals. Any deviations from white noise will indicate
he GP has not captured the full variability present in the light
urve. 

As described abo v e (Section 2.2 ), in cases where the underlying
istribution of the fit statistic is unknown, the reference distribution
an be built empirically using numerical simulations. This general
ethod (e.g. Waller et al. 2003 ; Kaastra 2017 ) involves simulating

ealistic data sets from the best-fitting model parameters that yielded
 ∗, applying the same fitting procedures and retrieving the reference
istribution of L sim 

values to compare to L ∗. While a similar
pproach was also suggested by Kelly et al. ( 2011 ), who proposed
o simulate light curves from the best-fit-derived PSD and compare
heir periodograms to the periodogram of the data, here we a v oid the
ourier domain entirely by fitting the simulated light curves in time
omain too. 
This approach can be understood as follows: if the best-fitting

arameters are truly representative of the data, then the simulated
ata sets (light curves in this case) will yield values of L close to
 ∗ when fitted, and so L ∗ will sit roughly at the median of the L sim 

istribution. If the best-fitting parameters are not representative of
he data, then the value of L ∗ will be an outlier in the distribution
f L sim 

, i.e. L ∗ will in general be much lower than each of the
 sim 

values from the synthetic data sets; the model can then be
tatistically rejected (typically p � 0 . 05). If the data is o v erfitted,
hen the value of L ∗ will be towards the higher end of the L sim 

istribution, implying the model has captured the data beyond the
tatistical noise, which is injected into the simulations (the model is
eemed ‘too good’, which may also occur where the errors have been
 v erestimated). 
Finally, we note that, as opposed to more traditional χ2 -fitting,

here more complex models al w ays lead to lower χ2 , in GP
odelling this is not necessarily the case. As opposed to χ2 , where the

ikelihood depends e xclusiv ely on the fit residuals, in GP modelling,
he likelihood depends on the residuals and a term depending on
he kernel (or model) through the determinant of the covariance

atrix. Therefore the best fit is determined from a trade-off between
he residuals and the part of the likelihood that depends on the
odel alone. This makes it possible for less complex models to

ctually have more flexibility than models involving more hyperpa-
ameters, yielding better fits even if the complexity of the model is
educed. 
NRAS 537, 3210–3233 (2025) 
.7 Recipe 

s a summary of the abo v e, we outline the proposed steps of our
ethod: 

(i) Chose a periodic kernel (or set of kernels) and a set of models
or the underlying noise. 

(ii) Fit the models (and combinations of) to the data and rank them
sing one of the widely used IC (e.g. AICc and BIC). 
(iii) Ensure that the model with the lowest IC provides a good

t (e.g. via standardized residuals and their ACF or deriving the
eference distribution for L ∗). 

(iv) Compare the maximum of the likelihood function L 1 of the
est-fitingt signal + underlying noise model (the alternative model)
o the maximum of the likelihood function L 0 of the model without
he signal (the null-hypothesis) and retrieve the fit improvement,
uantified as T LRT . 
(v) Use the posteriors of the null model (the stochastic noise-only
odel) to generate synthetic data sets. 
(vi) Fit the synthetic data sets with the alternative and null-

ypothesis models, derive the reference distribution for the LRT,
nd obtain the PPP by locating T LRT in the distribution. 

(vii) Based on the significance of the signal, decide whether the
omponent should be added to the null hypothesis (i.e. whether the
ignal is present in the data). 

A PYTHON package that implements the proposed methodology has
een made available at https:// github.com/ andresgur/ mind the gaps
nd was employed throughout this work. 

 APPLI CATI ON  

e initially applied the recipe abo v e to simulated data to explore
he sensitivity of our method to variations in cadence and observing
aseline. We present two sets of tests to examine the robustness of
ur approach to false ne gativ es (failure to detect a signal) and false
ositives (identification of spurious signals). 

.1 Application to simulated data 

n order to examine the sensitivity of our method to false ne gativ es,
e start by generating light curves (using the method explained in

https://github.com/andresgur/mind_the_gaps
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Figure 9. NGC 7793 P13 Swift -UV O T light curve, with the segment considered for analysis indicated with a vertical dashed line and an arrow. (Right) Lomb–
Scargle periodogram of the U band light-curve segment indicated in the left-hand panel. The black vertical arrows indicate harmonics ( P /n ) at n = 2 and n = 7 
from the fundamental at ∼64 d. The dashed blue line shows the power spectrum of the observing window. 
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Table 4. As per Table 3 but now showing the AICc, � AICc, and p-values for 
the standardized residuals following a Gaussian distribution for the different 
models tested against the Swift -UV O T data of P13 . 

Model AICc � AICc p-value 

3 ×Lorentzian + Jitter –556.0 0.0 0.32 
3 ×Lorentzian + SHO Q = 1 / √ 

2 –555.9 0.2 0.71 
3 ×Lorentzian + Mat ́ern-3/2 –554.1 1.9 0.27 
3 ×Lorentzian + DRW –553.6 2.4 0.08 
2 ×Lorentzian + Jitter –552.2 3.8 0.43 
2 ×Lorentzian + DRW –549.5 6.5 0.35 
2 ×Lorentzian + SHO Q = 1 / √ 

2 –549.0 7.0 0.38 
2 ×Lorentzian + Jitter + SHO Q = 1 / √ 

2 –548.4 7.6 0.008 
2 ×Lorentzian + Jitter + DRW –548.1 7.9 0.02 
2 ×Lorentzian + Jitter + Mat ́ern-3/2 –547.7 8.3 0.02 
2 ×Lorentzian + Mat ́ern-3/2 –540.1 15.9 0.18 
2 ×Lorentzian –531.5 24.5 0.52 
Lorentzian + Jitter –529.2 26.8 0.44 
Lorentzian + DRW –526.5 29.5 0.365 
Lorentzian + SHO Q = 1 / √ 

2 −525.9 30.1 0.45 
SHOv Q = 1 / √ 

2 + 2 ×DRW −522.6 33.5 0.44 
2 ×SHOv Q = 1 / √ 

2 + DRW −516.5 39.5 0.78 
DRW –495.5 60.5 0.178 
Jitter –495.1 60.9 0.05 
Mat ́ern-3/2 –494.3 61.8 0.28 
SHO Q = 1 / √ 

2 –493.2 62.8 0.10 
2 × DRW –492.9 63.1 0.11 
Lorentzian –492.6 63.4 0.69 
SHO Q = 1 / √ 

2 –492.1 63.9 0.21 
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ppendix A ) with a (quasi)periodic component (Lorentzian) and 
ed noise (a DRW) to mimic the case of a QPO identified in a
tochastically varying light curve (e.g. Graham et al. 2015 ). 

We assumed a period of 100 d for the QPO with a coherence
 = 200, a bending time-scale of 60 d for the DRW and that the
PO and the DRW contribute equally to a total variance of 6.7 ×10 −4 

ct s −1 ) 2 . We assumed a mean count rate of 0.1 ct s −1 for the source,
ackground contribution of 1 per cent and 2 ks exposure for all
bservations (these values were motivated by the faintest sources 
wift -XRT is capable of monitoring). 
We performed two types of tests using our input PSD model. 

irst, to test the sensitivity of our method to changes in the sampling
requency, we generated light curves with a length of approximately 
 = 1000 d, with a sampling rate �t drawn from a Gaussian
istribution of mean = 1, 2, 4, and 10 d, and a standard deviation
f 0.2 d, such that the light curves had 1000, 500, 250, and 100
atapoints, respectively, and a realistic, irregular observing cadence. 
ig. 3 shows a test light curve ( N = 250 and �t ≈ 4 d) and its
orresponding (Lomb–Scargle) periodogram. Secondly, to test the 
ffects of having a shorter baseline, we fixed �t (mean and standard
eviation of 1 and 0.2 d, respectively) but progressively reduced the 
umber of datapoints to generate light curves of shorter duration. In
ddition to the 1000 d light curve, we also simulated light curves
panning approximately T = 500, 400, and 300 d, respectively. 

For a given cadence/baseline combination, we simulated 100 light 
urves and carried out the PPP method described in Section 2.3 , i.e.
00 light curves were fitted with the DRW and the DRW + Lorentzian
odels and the LRT reference distribution was built using 2000 

imulations from the DRW posteriors. We chose to simulate 100 
ight curves as a trade off between computational time and having 
oughly a representative sample for each cadence/baseline. Similarly, 
he rather low number of 2000 simulations was set by computational 
onstraints. 

Fig. 4 shows the distribution of the retrieved p-values for the 100
ight curves for the case of varying cadence (left panel) and varying
aseline (right panel). Table 1 shows the mean retrie ved p-v alues and
he number of significant ( p � 0.01) detections per cadence/baseline 
ombination. 

From Fig. 4 , we can see that, despite the rather low count rates
f the light curves, we are able to recover the period in more
han half of the instances (in ≥62/100) as long as enough cycles
re observed. In particular, there is little improvement in detection 
ates in the light curves with fixed baseline (left panel). This is
artially due to the fact that the parameter space (namely P and
 bend ) is accommodated with the sampling (as the lowest cadence in

he light curve sets the minimum allowed P and bend time-scale)
ut it suggests the number of cycles might be the most important
etric when attempting to detect a periodicity. This simple result is

onsistent with the requirement identified by Vaughan et al. ( 2016 )
hen looking for periodicities in stochastically varying systems. 
MNRAS 537, 3210–3233 (2025) 
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Figure 10. GP modelling results of the Swift -UV O T light-curv e se gment (Fig. 9 ) of the pulsating ULX NGC 7793 P13 . (Top left) Best-fitting 3 ×Lorentzian 
+ Jitter model. (Top right) PSD of the best-fitting model. The contribution of the Lorentzians to the PSD (blue solid line) are shown as a orange, green, and red 
dashed lines. (Bottom left) ACF of the standardized residuals of the best-fitting model. (Bottom right) Posteriors of the periods of the three Lorentzians and the 
Jitter amplitude (other parameters omitted for clarity). The MCMC sampling run for approximately 49 000 steps until convergence, from which we discarded 
the first 22 000 as burn-in. Symbols as per Fig. 7 . 
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Interestingly, our results show that light curves spread over time
ith lower-cadence sampling pro v e more advantageous for detecting
eriodicities compared to shorter light curves with a higher number
f datapoints (at least as long the time-scale of the period is much
onger than the cadence). For instance, in the case of a �t ≈ 2 d and
 = 500 (left panel), we are able to reco v er the period in 68/100

nstances, whereas for �t ≈ 1 d and the same number of datapoints
right panel), only in 44/100 instances we are able to reco v er the
eriod (Table 1 ). Our results suggest that, in the presence of stochastic
ariability, it will hard to reliably confirm periodicities in a light curve
o v ering fiv e or less c ycles of the putativ e period, in agreement with
aughan et al. ( 2016 ). 
Next we turn to examine the robustness of our method to false

ositives (i.e. misidentifying aperiodic variability as periodic), one
f the aspects that moti v ated us to de vise better methods for period
etection. To this end, we performed a second series of simulations
sing a simple DRW with �t again drawn from the same Gaussian
istributions. Here, we use a mean count rate of 35 ct s −1 , a
NRAS 537, 3210–3233 (2025) 

d  
ackground contribution of 300 ct s −1 and a variance of 36 (ct
 

−1 ) 2 and a break at 65 d for the DRW. These parameters are
imilar to those observed in the in the Transiting Exoplanet Survey
atellite ( TESS ) light curves of Blazars (see Section 3.2.4 ) and
ere chosen to generate light curves which appear periodic. Fig. 5

top panel) shows an example light curve ( N = 300, median �t 

 1 d) with the corresponding periodogram; clearly naive inspection
f the periodogram may lead to the conclusion that some genuine
eriodicity is present in the light curve. 
We ran our PPP method again as abo v e, this time creating

0 light curves per cadence/baseline combination and simulating
000 light curves from the DRW posteriors, and comparing the fit
mpro v ements when adding a Lorentzian. Under the absence of the
ignal, the distribution of retrieved PPP values from the T LRT tests
s expected to be uniformly distributed from 0 to 1. We therefore
ested using a KS test whether the 50 retrieved PPP values per
adence/baseline combination followed the aforementioned uniform
istribution. Table 2 shows all p uniform 

-values are consistent with the
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Figure 11. (Left) Swift -XRT light curve of NGC 7793 P13 with the segment considered for analysis lying between the two vertical, dashed black lines. (Right) 
Lomb–Scargle periodogram of the segment indicated in the right-hand panel. Symbols as per Fig. 9 . The black vertical arrows show the fundamental period 
frequency ( P ∼65.6 d) and an harmonic at n = 2. 
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Table 5. As per Table 3 but now showing the AICc, � AICc and p-values for 
the standardized residuals following a Gaussian distribution for the different 
models tested against the Swift -XRT data of the pulsating ULX NGC7793 
P13 . 

Model AICc � AICc p-value 

3 ×Lorentzian + Mat ́ern-3/2 + Jitter –1673.4 0.0 0.001 
3 ×Lorentzian + DRW + Jitter –1669.2 4.2 0.001 
2 ×Lorentzian + Mat ́ern-3/2 + Jitter –1664.5 8.9 0.003 
2 ×Lorentzian + Mat ́ern-3/2 + DRW + Jitter –1662.2 11.5 0.006 
2 ×Lorentzian + DRW + Jitter –1661.2 12.2 0.003 
2 ×Lorentzian + DRW + Jitter + SHO Q = 1 / √ 

2 –1659.9 13.5 0.02 
2 ×Lorentzian + 2 ×DRW + Jitter –1657.1 16.6 0.01 
Lorentzian + DRW + Mat ́ern-3/2 + Jitter –1656.1 17.3 0.003 
Lorentzian + DRW + Jitter –1649.4 23.9 0.003 
Lorentzian + 2 ×DRW –1647.4 25.9 0.004 
Lorentzian + Mat ́ern-3/2 + Jitter –1647.1 26.3 0.00 
3 ×Lorentzian + 2 ×DRW –1644.8 28.5 0.00 
Lorentzian + DRW + Mat ́ern-3/2 –1641.8 31.6 0.02 
3 ×Lorentzian + Mat ́ern-3/2 –1641.6 31.8 0.00 
2 ×Lorentzian + 2 ×Mat ́ern-3/2 –1641.5 32.3 0.00 
2 ×Lorentzian + 2 ×DRW –1640.8 32.5 0.001 
3 ×Lorentzian + SHO Q = 1 / √ 

2 −1639.0 34.4 0.00 
3 ×Lorentzian + 3 ×DRW –1638.7 34.6 0.00 
3 ×Lorentzian + 2 ×Mat ́ern-3/2 –1637.4 36.0 0.00 
3 ×Lorentzian + DRW –1636.9 36.8 0.00 
2 ×Lorentzian + DRW + Mat ́ern-3/2 –1636.7 37.1 0.00 
3 ×Lorentzian + 3 ×Mat ́ern-3/2 –1632.3 41.4 0.00 
2 ×Lorentzian + DRW –1631.1 42.7 0.00 
Lorentzian + DRW –1627.7 46.0 0.00 
Lorentzian + Jitter –1623.3 50.1 0.00 
Mat ́ern-3/2 + Jitter –1619.3 54.5 0.00 
Lorentzian + SHO Q = 1 / √ 

2 + Jitter –1619.2 54.2 0.00 
3 ×Lorentzian + SHO Q = 1 / √ 

2 + Jitter –1618.7 55.1 0.00 
Lorentzian + Mat ́ern-3/2 −1617.1 56.3 0.00 
Lorentzian + SHO Q = 1 / √ 

2 –1611.6 61.8 0.002 
DRW + Jitter –1607.9 65.9 0.001 
Lorentzian –1602.3 71.4 0.00 
DRW –1594.2 79.5 0.001 
Mat ́ern-3/2 –1590.5 83.2 0.00 
SHO Q = 1 / √ 

2 –1588.4 85.4 0.00 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/537/4/3210/7994434 by guest on 11 M
arch 2025
 xpected uniform distribution, re gardless of the observing strate gy, 
ndicating false positives are unlikely, at least for the cadences 
xplored here. 

Finally, to test our ability to a v oid false-positives when gaps are
ntroduced, we have repeated the method abo v e, keeping the same
SD and using N = 1000, samples taken roughly at 1-d intervals
ut then adding three gaps: one of 45 d, one of 60 d, and another
f 100 d. Fig. 5 (bottom panels) shows an example light curve
nd corresponding periodogram. We then ran the PPP method for 
0 sample light curves and tested whether the reco v ered PPPs
ollowed a uniform distribution as expected for the absence of a 
ignal, finding a p-value of 0.37. This indicates that, at least for
he cadence/variability time-scales explored here, our method can 
ob ustly a v oid false-positives as long as the noise is well described.

e will present an e xhaustiv e e xploration of period detectability
nder different combinations of observing strategies in a forthcoming 
ublication. 

.2 Application to real data 

ur method has been developed for instances where irregular 
ampling hampers obtaining the PSD in a straightforward manner. 
uch a scenario is routinely encountered in many studies of AGNs 
e.g. Jiang et al. 2022 ) and other accreting systems. 

Ne vertheless, to sho w our method is not restricted to irregularly
ampled time series, we first apply our method to a recent claim of
 QPO in XMM–Newton data of a Seyfert galaxy (Section 3.2.1 ).
e then explore claims of periodicites in Swift data (Gehrels et al.

004 ) (both UV O T and XRT) of a ULX (Section 3.2.2 ), a QPO in
n AGN in RXTE data (Section 3.2.3 ) and finally revisit a recent
laim of a QPO in the TESS (Ricker et al. 2014 ) light curve of a
lazar (Section 3.2.4 ). The results of the analysis are then discussed

n Section 3.3 . The choice of priors and the procedure used to derive
he best-fitting parameters and their posteriors is described in Ap- 
endix C and unless stated otherwise, we perform 10 000 simulations
o derive the LRT reference distribution in the calculation of the PPP
alue. 
MNRAS 537, 3210–3233 (2025) 
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Figure 12. GP modelling results of the Swift -XRT data of the pulsating ULX NGC 7793 P13 . (Top Left) Best-fitting 3 × Lorentzian + Mat ́ern-3/2 + Jitter 
model to the Swift -XRT 0.3 −10 keV light-curve segment of NGC 7793 P13 shown in Fig. 12 . (Top right) PSD of the best-fitting model. (Bottom left) ACF of 
the standardized residuals of the best-fitting model. (Bottom right) Posteriors of the periods of the three Lorentzians and the Mat ́ern-3/2 (the other parameters 
are omitted for clarity). The MCMC run for approximately 620 000 steps until convergence and about 124 000 were discarded for the burn-in. Symbols as per 
Fig. 7 . 
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.2.1 A high-frequency QPO in the Seyfert NGC 1365 

sing XMM–Newton data and employing techniques such as the
omb–Scargle periodogram, Yan et al. ( 2024 ) recently reported the
etection (significance of 3.6 σ ) of a high-frequency ( ∼4566s) QPO
n the Seyfert galaxy NGC1365. We used obsid 0 205 590 301 where
an et al. ( 2024 ) reported the detection of the QPO and reanalysed

he EPIC-pn and MOS data using tasks epproc and emproc in
AS version 20.0.0. We filtered the light curves for particle flaring
y first extracting background 10–12 keV light curves and then
nspected these visually to set a threshold count-rate to reject times
f high-background flaring. We applied the standard quality filters
nd selected PATTERN ≤4 events for pn and PATTERN ≤12 events for
he MOS cameras. We used eregionanalyse , with the input
ource coordinates, to select a suitable source region. The circular
egion as determined by the task contained a fainter source near to
he target in some instances, so to a v oid contamination we reduced
he radius to ∼55 arcsec, but keeping the same centroid position.
 slightly larger circular region on the same chip, away from the
NRAS 537, 3210–3233 (2025) 

d  
eadout region and as close as possible to the source region, was
elected for background light curve extraction. The final light curve
as corrected for effects including losses due to vignetting, chip gaps,

nd bad pixels using epicclcorr . Following Yan et al. ( 2024 ), the
hree light curves were binned into 200s and their net count rates were
ombined into a final light curve. Because the asynchronicity of the
hree instruments can introduce spurious variability (Barnard et al.
007 ), we ensured the start and end times were the same for the three
etectors and inspected the individual and combined light curves
isually. 
Fig. 6 shows the 0.3–10 keV combined EPIC light curve of NGC

365, which comprises 289 datapoints and a duration of 57 800 s.
he right-hand panel of Fig. 6 shows the corresponding periodogram,
ith an arrow at ∼0.05 d indicating the claimed QPO by Yan et al.

 2024 ). 
Table 3 lists the models tested to the data, ranked by AICc

alue. We can see that the best-fitting model comprises a Lorentzian
describing the putative QPO) and DRW + SHO Q = 1 / 

√ 

2 kernels to
escribe the underlying noise. Compared to a DRW + SHO Q = 1 / 

√ 

2 -
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Figure 13. (Left) RXTE light curve of the AGN NGC 4945. The segment where Smith et al. ( 2020 ) reported the significance of the QPO to be strongest is 
highlighted with a dashed line and an arrow. (Right) Lomb–Scargle periodogram of the segment indicated in the right-hand panel. The vertical black arrow 

shows the QPO reported by Smith et al. ( 2020 ). The dashed blue line shows the power spectrum of the observing window. The dashed purple line shows the 
model derived from periodograms of 10 000 light curves generated from the posteriors of the SHO Q = 1 / √ 

2 model parameters (best-fitting model), with the shaded 
areas indicating the 16 and 84 per cent percentiles of the distribution. See text for details. 

Table 6. As per Table 3 but now showing the AICc, � AICc, and p-values for the standardized residuals following a Gaussian distribution for the different 
models tested against the RXTE data of the AGN NGC4945. The left and right values are for the analysis of the full light curve and the segment shown in Fig. 
13 , respectively. 

Full light curve Smith et al. ( 2020 ) 
Model AICc � AICc p-value Model AICc � AICc p-value 

DRW 246.1 0.00 0.00 Lorentzian + SHO Q = 1 / √ 

2 97.9 0.0 0.22 
DRW + Jitter 247.2 1.1 0.00 Lorentzian + Mat ́ern-3/2 98.3 0.4 0.07 
DRW + SHO Q = 1 / √ 

2 248.5 2.4 0.00 Lorentzian + DRW 99.2 1.3 0.03 
DRW + Mat ́ern-3/2 248.8 2.7 0.00 Lorentzian + SHO Q = 1 / √ 

2 + Jitter 99.5 1.6 0.22 
Lorentzian + DRW 248.8 2.7 0.00 2 ×Lorentzian 101.0 3.1 0.42 
2 ×DRW 249.5 3.4 0.00 Lorentzian + DRW + Jitter 101.6 3.7 0.03 
Lorentzian + 2 ×DRW 250.2 4.1 0.00 Lorentzian + SHO Q = 1 / √ 

2 + DRW 102.0 4.1 0.12 
Lorentzian + Jitter 251.6 5.5 0.03 Lorentzian + 2 ×SHO Q = 1 / √ 

2 102.4 4.4 0.08 
Lorentzian + SHO Q = 1 / √ 

2 253.7 7.6 0.00 Lorentzian + SHO Q = 1 / √ 

2 + Mat ́ern-3/2 102.9 5.0 0.16 
Lorentzian + Mat ́ern-3/2 261.6 11.4 0.00 Lorentzian + Mat ́ern-3/2 + DRW 102.9 5.0 0.12 
Mat ́ern-3/2 255.2 9.1 0.002 Mat ́ern-3/2 103.8 5.9 0.14 
SHO Q = 1 / √ 

2 264.9 18.8 0.02 DRW 104.5 6.6 0.03 
Lorentzian 267.9 21.8 0.03 Lorentzian 104.6 6.7 0.22 
Jitter 310.4 64.3 0.09 SHO Q = 1 / √ 

2 104.9 7.0 0.33 
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nly model, the addition of the Lorentzian represents a � AICc
 4.5 fit impro v ement. Fig. 7 shows the best-fitting DRW + SHO

 = 1 / 
√ 

2 model, its PSD, the ACF of the standardized residuals and 
he posteriors. Both models provide an adequate description of the 
ata whilst the ACF (bottom left panel) shows that the variability 
s approximately well captured by the DRW + SHO Q = 1 / 

√ 

2 model. 
herefore, using the posteriors of the DRW + SHO Q = 1 / 

√ 

2 model, 
e tested whether the addition of the Lorentzian was supported by 

he data. 
Fig. 8 shows the reference LRT distribution derived from 

ight-curve simulations generated from the posteriors of the 
RW + SHO Q = 1 / 

√ 

2 model. As can be seen from the figure, the
ddition of the Lorentzian (the QPO component) is significant only 
t the ∼91 per cent level ( ∼ 1 . 7 σ ). 

As stated in Section 2.5 , owing to the relatively small difference
n fit impro v ement ( � AICc = 0.4) with respect to the Lorentzian
 2 ×Mat ́ern-3/2, we have repeated the significance calculation 
ith the posteriors of the this other model too. We have found the
ignificance of ∼86 per cent, in line with the lower � AICc = 3.6
rovided by this model with respect to the null hypothesis. Therefore
e do not support the presence of a QPO in this light curve of NGC
365. 

.2.2 The pulsating ULX NGC 7793 P13 

ince the disco v ery of its ∼63 d period (Motch et al. 2014 ), the
ulsating neutron star ULX NGC 7793 P13 (F ̈urst et al. 2016 ;
srael et al. 2017 , P13 hereafter) has been intensively monitored
y Swift . Being among the brightest ULXs in the optical bands with
 V magnitude of around ∼20.2 (Motch et al. 2014 ), it is one of
nly a small number of ULXs where the long-term variability can
e studied by both the Swift -UV O T and Swift -XRT. The irregular
ampling of the monitoring of this source has revealed two closely
ut significantly different periods: an ∼64-d period in the U band
MNRAS 537, 3210–3233 (2025) 
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Figure 14. GP modelling results of the RXTE light-curv e se gment shown in Fig. 13 of the AGN NGC 4945. (Top left) Best-fitting Lorentzian + SHO Q = 1 / √ 

2 
model. (Top right) PSDs of the null hypothesis and alternative models. (Bottom left) ACF of the standardized residuals of the Lorentzian + SHO Q = 1 / √ 

2 model. 
(Bottom right) Posterior parameters for the Lorentzian + SHO Q = 1 / √ 

2 model. The MCMC sampler run for approximately 135 000 steps until convergence and 
about 35 000 steps were discarded for the burn-in. Symbols as per Fig. 7 . 
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nd an ∼65-d period in the X-rays (Hu et al. 2017 ; F ̈urst et al.
018 ). An advantage of using GP for period searching is that
ncertainties are well-defined as we can marginalize o v er the noise
arameters. Therefore we can asses both the significance of the
laimed periodicities and also the difference between them. 

The UV O T data were kindly provided by Khan & Middleton
 2023 ), to which we refer the reader for the data reduction details.
he U band contained the largest amount of observations (Fig. 9 ;
60 observations compared to � 20 in other bands); we therefore
nalysed only this band. While an advantage of GP modelling
s that more data, regardless of the gaps, should lead to tighter
onstraints, here the few additional and largely spaced datapoints
t the beginning of the monitoring increase the computational
ost dramatically for a small gain in accuracy, particularly in
ur false-alarm probability calculation. Therefore we only consid-
red the data after MJD 57 500 where the monitoring is denser
Fig. 9 ). 

Table 4 lists the models tested in our fit to the data, ranked by
ICc value. Part of the modelling was guided by a visual inspection
f the Lomb–Scargle periodogram of the light curv e se gment, which
NRAS 537, 3210–3233 (2025) 
e show in Fig. 9 . We can see the main peak at P ∼64 d and some
armonics at 32 d ( P /2) and ∼9 d ( P /7), indicating the periodicity –
f real – is not a pure sinusoid. 

The harmonics are also reflected in the GP modelling: we
an see from Table 4 that the preferred model consists of three
orentzians + a Jitter component for the underlying noise. From
able 4 we can also see that this model is preferred o v er one
here the underlying noise is instead described by a DRW ( � AICc
 2.4), suggesting that white noise is the statistically preferred null

ypothesis. 
The standardized residuals of the best-fitting model are fully

onsistent with a Gaussian distribution, indicating the variability
s well-described by a GP, whereas the o v erall variability is also
ell-captured, as indicated by the ACF of the standardized residuals

Fig. 10 bottom left panel). 
Having established white noise to be a good representation for

he underlying noise, we proceed to test for the presence of the
orentizan(s) components in a hierarchical manner. First, we test for

he first Lorentzian o v er the Jitter-only model, using the posteriors
f the Jitter model. If significant, we subsequently use the posteriors
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Figure 15. LRT distribution generated from simulated light curves from the 
posteriors of the SHO Q = 1 / √ 

2 model (null hypothesis) for NGC 4945. The 
solid orange line shows a fit to the distribution using a log-normal. The LRT 

observed in the data is shown as a dashed black line. 
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f the Lorentzian + Jitter to test for an additional Lorentzian until
he new added Lorentzian is no longer significant. 

For the first Lorentzian, we found that none of the simulations
howed a T LRT as high as that observed in the data. Fitting the LRT
istribution with a lognormal, we estimate the period to be highly 
ignificant (99.999 per cent or ∼ 6 σ ). For the second harmonic at
32 d, we find the significance to be ≈99.1 per cent, while for the

hird component the significance is 95.8 per cent. 
From our best fit (Fig. 10 ), we obtained P = 63 . 9 ± 0 . 4 d, with

 coherence Q = 220 + 727 
−146 , indicating the period amplitude is stable

 v er this time period. 
We now examine the Swift -XRT data and the claimed ∼65-d 

eriod. The full Swift -XRT light curve is shown in Fig. 11 and was
xtracted using the online tools (Evans et al. 2007 , 2009 ) keeping
ll snapshots with a detection significance of ≥2 σ . Modelling the 
ull light curve would add additional complexity due to potential 
eviations from stationarity and more complex fine-tuning of the 
ean function. Additionally, the few largely spaced datapoints 
ould again add little gain in constraining power at the expense of

ignificant computational time. Hence, we analysed the indicated 
egment in Fig. 11 where the variability appears stationary and 
he monitoring is densest. This segment lasts 984.3 d with a mean
bserving cadence of 3.1 d. 
Table 5 shows the � AICc with the various models tested along

ith their p-values for the standardized residuals following a 
tandard normal distribution. The best-fitting model is a combination 
f three Lorentzians + a Mat ́ern-3/2, where a Jitter term is needed
s there is additional white-noise variability (jittering) that cannot 
e captured by any of the kernels. Indeed, we find that none of the
odels adequately describes the data based on the p-values of the 

esiduals following a standard normal distribution. This may not be 
urprising as the distribution of count-rates is itself non Gaussian 
 p = 0 . 008 for rejecting a Gaussian distribution based on a KS test).
evertheless, from Fig. 12 , we can see that the failure to describe the
ata is mostly due to a few datapoints strongly deviating from the
odel. This is clearly seen in the ACF (Fig. 12 bottom left panel),
hich confirms the lack of trends in the standardized residuals. Thus,
hile the model may not capture the full complexity of the data, we

an at least ascertain that the variability is well represented by the
ombination of the three Lorentzians + Mat ́ern-32 + Jitter. The 
SD of this models is shown in Fig. 12 (top right panel). 
As with the UV data, we tested for the addition of the Lorentzians

o the noise model in a hierarchical manner. The first Lorentzian with
 ∼ 65 d is found to be significant at the 99.99 per cent level ( > 3 σ ),

he addition of a second is significant at the ≈99.2 per cent level and
he third Lorentzian is marginally significant, at the ∼91.5 per cent 
evel. 

From Fig. 12 our final estimate for the period is P = 65 . 6 ± 0 . 6
. As for the UV data, the high coherence ( Q � 100) suggests the
eriodicity is stable throughout the segment. 

.2.3 NGC 4945 

mith, Robles & Perlman ( 2020 ) claimed an ∼42-d QPO in the
rregularly sampled RXTE data of the Type 2 Seyfert, NGC 4945 
ith a significance of 10.2 σ . 4 
 Note that the authors also quote a false-alarm probability of 2.87 per cent, 
hich corresponds to ∼ 2 . 2 σ only. 

t  

e

5

Following Smith et al. ( 2020 ), we obtained the RXTE/PCA data
rom the University of California archive 5 (for details regarding data 
ltering criteria, we refer the reader to their website). Fig. 13 shows
 segment of the light curve where the monitoring was densest (cf.
g. 2 in Smith et al. 2020 ). The full light-curve spans 442 d, with a
edian cadence of 2.25 d. The authors found the significance of the
PO to be the strongest in the segment towards the end of the light

urve after the vertical dashed line in Fig. 13 . This segment spans
92 d with a mean cadence of 2.04 d. 
We first focus on the analysis of the full light curve. Table 6 shows

he � AICc for the set of models explored, with the DRW yielding the
owest AICc (with � AICc = 2.7 o v er the Lorentzian + DRW). This
lready suggests the data can be explained under a simpler, stochastic
odel. Performing light-curve simulations from the DRW posteriors, 
e find a significance of ≈39 per cent for the Lorentzian component,

ndicating the addition of the Lorentzian is not supported by the
ata. Ho we ver, we note the residuals in all models are narrower than
 standard normal distribution ( σ = 0 . 67), indicating the variability
s not well described by a GP. The downward trend in flux around

JD 53 900 may indicate the process is non-stationary o v er the
ime-scales analysed here. 

We proceed to focus on the segment indicated to the right-hand side 
f the vertical dashed line in Fig. 13 , where the authors claimed the
PO significance to be highest. Table 6 lists the models tested against

he data in this segment. In this case we find potential evidence for a
eriodic component, as a model including a Lorentzian (the broad- 
and noise modelled with an SHO Q = 1 / 

√ 

2 ) provides the lowest AICc.
he standardized residuals and their ACF are shown in Fig. 14 .
he standardized residuals are compatible with Gaussianity and, 

herefore, the assumption of a GP is reasonable. We note, ho we ver,
he ACF indicates there is still slight variability not captured by
he model potentially indicating that models outside celerite 

ight be more appropriate. Nevertheless, most of the variability is 
easonably captured. The central frequency of the Lorentzian is found 
o be P = 42 + 2 

−3 d, which matches the periodicity reported by Smith
t al. ( 2020 ). 
MNRAS 537, 3210–3233 (2025) 
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Using the posteriors from the best-fitting SHO Q = 1 / 
√ 

2 as the null
ypothesis, we obtained the significance of the (quasi)-periodic
omponent. To estimate the background contribution for our light-
urve simulations, we assumed the mean source rate was 5 per cent
f the background rate. Although in the average spectra the source
ontributed 10 per cent to the total rate, 5 per cent is both consistent
ith previous work (Done et al. 2003 ) and we found the simulated

ightcurve errorbars matched more closely the data errorbars. As we
re assuming a higher background than in the average spectrum,
ur simulations will be less likely to generate a spurious signal
they will have increased levels of white noise) and the estimated
PO significance will tend to o v erestimate the true significance, if

nything. 
Fig. 15 shows the reference LRT distribution derived from the

osteriors of the SHO Q = 1 / 
√ 

2 model. The putative periodicity has a
ignificance of ∼98.7 per cent (i.e. ≈ 2 . 5 σ ), which is indeed quite
igh, but it may not be considered sufficient to claim a detection. 
Fig. 13 shows the mean Lomb–Scargle periodogram of 10 000

ight curves simulated using the posteriors of the SHO Q = 1 / 
√ 

2 model.
sing the process outlined in Section 2.6 to map the L 

obs 
max to a

oodness-of-fit, we find a p-value of 0.9 using the SHO Q = 1 / 
√ 

2 
odel, a deviation of ∼ 1 . 7 σ from the mean, indicating the fit is

n acceptable description of the data. 
Given that the Mat ́ern-3/2 provides the lowest AICc when used

n isolation (Table 6 ), one could argue it represents the best null-
ypothesis. Moreo v er, as discussed in Section 2.5 , based on the
ow � AICc = 0 . 4 between the Lorentzian + SHO Q = 1 / 

√ 

2 and the
orentzian + Mat ́ern-3/2 models, it may argued these two models
f fer similar le vels of goodness of fit (i.e. we cannot distinguish
etween the two with the data at hand). We therefore repeated the
ignificance calculation with the posteriors from the Mat ́ern-3/2-only
odel, and found a similar value for the significance ( ∼96 per cent).
his is consistent with the lower � AICc provided by this model
hen the Lorentzian is added compared to the SHO Q = 1 / 

√ 

2 model
Table 6 ) and indicates our results are not strongly dependent on
he continuum choice (so as long as it is representative of the
ata). 
NRAS 537, 3210–3233 (2025) 

(  

igure 16. (Left) TESS light curve of the Blazar, B0537-441 from sectors 32 and 
eriodogram (black solid line). The power spectrum of the observing window is
est-fitting Lorentzian + DRW, and DRW-only models (with the shaded areas sho
etails). 

4

.2.4 The Blazar B0537-441 

ripathi et al. ( 2024 ) recently reported the detection of a QPO of
6.5 d in the Blazar B0537-441, using TESS data. We obtained

he TESS light curves from sectors 32 and 33 (as analysed by
hese authors), reduced by the Science Processing Operations Center
SPOC; Jenkins et al. 2016 ) using the python lightkurve pack-
ge. The light curve is extracted using aperture photometry and then
orrected with the presearch data conditioning module to remo v e
ong-term trends and systematics caused by the spacecraft. The data
rom sectors 32 and 33 had been processed with pipeline versions
poc-5.0.21-20210107 and spoc-5.0.22-20210121, respectiv ely. F or
omputational reasons we rebinned the light curves to 1 h which still
llowed us to analyse the variability present and probe the relevant
ime-scales, see Fig. 16 . The light curve had a duration of ∼53 and
 total of 1164 datapoints, with two ∼1-d gaps at MJD ∼2186 and
JD ∼2214 due to the satellite’s orbit and another gap at MJD ∼

202 due to the observing strategy of TESS . 
Table 7 lists the models tested against this data set. While some of

he single-component models provide seemingly better fits according
o the AICc, we can see from their p-values that none of these models
rovide a satisfactory description of the data ( p � 0.05). In such
odels, the standardized residuals are broader ( σ ∼2) than expected

or a standard normal distribution, indicating a deficiency in the
t. 
The first model that provides an adequate description of the data

 p = 0.4) is a combination of a Lorentzian and a DRW. The model
hat maximizes the likelihood, its standardized residuals, ACF, and
osterior parameters is shown in Fig. 17 . The best-fitting suggests
 quasi-periodicity ( Q = 4 + 3 

−1 ) with P = 4 . 8 + 0 . 5 
−0 . 4 d. On the other

and, the bend of the DRW is not well constrained, most likely
wing to the relatively short baseline ( ≈54 d) of the data; in our
odelling, the DRW mostly acts as a power law with β = −2. The
RW + Lorentzian model provides an � AICc = 66 with respect to

he DRW-only model; we proceeded to test whether the � AICc was
ignificant using the posteriors of the DRW-only model. We found
he Lorenzian component to be significant at the ∼99.98 per cent
 ∼3 σ ) level (Fig. 18 ). This is in agreement with the high � AICc
33 (cf. fig. 3b in Tripathi et al. 2024 ). (Right) Corresponding Lomb–Scargle 
 shown as per Fig. 9 . The purple dashed and dotted green lines show the 
wing the 16 and 84 per cent percentiles of 10 000 simulations; see text for 
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Table 7. As per Table 3 , showing the AICc, � AICc, and p-values for the 
different models tested against the TESS data of the Blazar, B0537-441. 

Model AICc � AICc p-value 

Mat ́ern-3/2 + SHO Q = 1 / √ 

2 3526.2 0.0 0.0 
2 ×Mat ́ern-3/2 3526.3 0.1 0.0 
Mat ́ern-3/2 + DRW 3526.5 0.3 0.0 
Lorentzian + SHO Q = 1 / √ 

2 3527.6 1.4 0.0 
Lorentzian + Mat ́ern-3/2 3527.7 1.5 0.0 
2 ×Lorentzian + SHO Q = 1 / √ 

2 3527.8 1.3 0.0 
2 ×Lorentzian + Mat ́ern-3/2 3528.4 2.2 0.0 
Mat ́ern-3/2 3528.6 3.5 0.0 
SHO Q = 1 / √ 

2 3536.9 10.7 0.0 
2 ×Lorentzian + DRW 3560.3 32.4 0.01 
Lorentzian + DRW 3573.9 47.7 0.40 
Lorentzian + 2 ×DRW 3578.1 50.5 0.35 
2 ×Lorentzian 3578.3 52.2 0.22 
2 ×Lorentzian + Jitter 3581.1 53.7 0.28 
Lorentzian 3608.0 81.8 0.94 
Lorentzian + Jitter 3610.0 83.9 0.97 
DRW 3639.9 113.8 0.27 
2 ×DRW 3644.0 117.8 0.27 
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bserved between the Lorentzian + DRW and the DRW-only model. 
herefore, we deem the addition of the Lorentzian to be supported 
y the data. 
Fig. 16 shows a comparison of the periodogram of the best-

tting model (Lorentzian + DRW), the periodogram of the DRW- 
nly model and the Lomb–Scargle of the data. The Lomb–Scargle 
eriodograms of the best-fitting models were derived by taking the 
omb–Scargle periodogram of 10 000 light curves generated from 

he posteriors of each of the two models. We can see that the strongest
eriod in periodogram is consistent with our best-fitting period of 
.8 d and that the noise is reasonably captured by the DRW. 

.3 Analysis of the results 

s we have shown, the methodology outlined here is particularly 
uited for the analysis of irregularly sampled time series commonly 
ssociated with monitoring of systems such as ULXs or AGNs (e.g. 
ttley et al. 2002 ), but its applicability is not restricted to irregularly-

ampled time series (Section 3.2.1 ). We have shown its application 
o the short ( ∼50 ks) nearly regularly sampled time series that may
e obtained with observatories such as XMM–Newton or NICER , 
y analysing the QPO recently claimed by Yan et al. ( 2024 ) in
he Seyfert galaxy NGC 1365. These authors found a significance 
f about 3.6 σ by comparing periodogram peaks of light curves 
imulated from the continuum-fitted PSD. Using our method we 
ave found instead a much lower significance, of about 1.7 σ (or
1 per cent). From their analysis, it is unclear where this discrepancy
n the estimate of the significance originates. Yan et al. ( 2024 ) report
tting the PSD with a bending power law, and then use this model

o produce light-curve simulations to test the significance of the 
ighest peak in the periodogram. Ho we ver, there is no information
egarding the fitting procedure, namely the statistic used to fit the 
eriodogram and whether the appropriateness of the model was 
aken into account. It is also unclear whether the uncertainties on the

odel were taken into account in the estimation of the false-alarm 

robability and how the number of trials were considered. It is likely
hat a combination of these factors can explain the difference in our
esults. 
We have then applied our method to the ULX in NGC 7793 P13 ,
here slightly dissimilar superorbital periods had been claimed in 

he sparsey sampled Swift -UV O T and XRT light curves (Hu et al.
017 ; F ̈urst et al. 2018 ). As can be seen from Fig. 12 , we have found
he X-ray period to be 65.6 ±0.6 d, which is indeed significantly
onger than the period in the UV ( P = 63 . 9 ± 0 . 4 d; Fig. 10 ). As
tated abo v e, using time domain methods allows to marginalize
 v er the noise components and obtain accurate uncertainties on
he parameters of the periodic component. Thus, we can support 
arlier assertions that the X-ray period is significantly longer (Hu 
t al. 2017 ; F ̈urst et al. 2018 ) than the optical/UV period. The high
oherence Q � 300 from the Lorentzian components suggest the 
eriod amplitude is stable throughout the segment, consistent with 
he long-term behaviour of the source (F ̈urst et al. 2021 ). Regarding
he significance of the periodicities, while the third harmonics were 

arginally significant (at ∼95 per cent and 91 per cent for the UV
nd X-ray light curv es) giv en that these constitute the harmonics
f the same periodicity, these significances likely underestimate 
he true significance as one could repeat the analysis tying the
eriods or considering the combined fit impro v ement pro vided by
he three Lorentzians altogether, but this is beyond the scope of this
ork. 
We have also examined the putative QPO claimed by Smith et al.

 2020 ) in the AGN NGC 4945. When analysing the whole light
urv e, we hav e seen that we could not explain the data under a
P, which could indicate deviations from stationarity. Indeed, when 

nalysing the last portion of the whole light curve (Fig. 13 ) we have
een the preferred rednoise kernel (SHO Q = 1 / 

√ 

2 ) differed from that 
btained for the full light curve (DRW), which could support the
on-stationarity of the process. Nevertheless, our analysis suggests 
here is little evidence for periodic variability when analysing the 
ight curve as a whole. In the segment where Smith et al. ( 2020 )
eported the significance of the QPO to be the highest (Fig. 13 left
anel), we have found the putative periodicity to have a significance
f ∼98.7 per cent (i.e. ≈ 2 . 5 σ ), much lower than reported by Smith
t al. ( 2020 ). The fact that we are able to produce simulations with
omparable fit impro v ements as that observed in the data implies our
est is well-calibrated and suggests our significance estimate is more 
lausible. The most obvious discrepancy is that we have correctly 
ccounted for the presence of rednoise. Instead, Smith et al. ( 2020 )
elied on the analytical recipe provided by Horne & Baliunas ( 1986 ),
hich may be appropriate in cases where employing white noise as

he null hypothesis–but see Frescura et al. ( 2008 ) for caveats on this
ethod. 
We note the significances quoted for NGC 4945 may be considered

ptimistic, as the selection of this segment seems driven by’a 
osteriori’ analysis of the data (a form of the stopping rule discussed
n Vaughan 2010 ), rather than a data-driven decision (such as to
 v oid a gap in the light curve, e.g. Section 3.2.2 ). While this is
eyond the scope of this work, one could in principle account for
his by simulating light curves using the full length of the monitoring
either Fig. 14 or the entire RXTE history) and then selecting the
egment that maximizes the likelihood ratio for each simulation. 

Finally, we have examined the QPO claimed in the Blazar 0537–
41 by Tripathi et al. ( 2024 ) using TESS data. While our analysis
upports the presence of a QPO-like feature (at the ∼ 3 . 7 σ ), the
dentified period is marginally consistent with the 6.5-d QPO reported 
y Tripathi et al. ( 2024 ), although no uncertainties on the claimed
eriodicity are provided by Tripathi et al. ( 2024 ). Differences in our
esults may be attributed to the different processing of the data and
reatment of the underlying noise (see also Covino et al. 2022 , for a
imilar situation). 
MNRAS 537, 3210–3233 (2025) 
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Figure 17. GP modelling results of the RXTE data of the TESS light curve of the Blazar, B0537-441 shown in Fig. 16 . (Top Left) Best-fitting Lorentzian + 

DRW model. (Top Right) PSD of the null hypothesis and alternative models. (Bottom left) ACF of the standardized residuals of the Lorentzian + DRW model. 
(Bottom right) Posterior parameters for the Lorentzian + DRW model. The MCMC run for 17 500 steps until convergence, of which 5390 were discarded for 
burn in. Symbols as per Fig. 7 . 

Figure 18. As per Fig. 15 but testing the QPO in the TESS light curve of the 
Blazar, B0537-441 using the DRW posteriors as the null hypothesis. 
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 DI SCUSSI ON  A N D  C O N C L U S I O N S  

he presence of red noise variability, ubiquitously found in accreting
ystems, makes the detection of periodicities challenging. On the
ne hand, most periodicity tests are derived for cases of Gaussian
hite noise, which makes the problem analytically tractable (e.g.
cargle 1982 ). On the other hand, the presence of red noise increases

he likelihood of producing spurious features in the periodogram,
articularly because the scatter in the power is proportional to the
ower itself (e.g. Vaughan 2005 ). When the data is unevenly sampled,
he problem becomes even more profound as stochastic variability
an easily be mistaken for periodic behaviour (cf. Vaughan et al.
016 ). 
Extrapolation of tests for periodicities against red noise-like

ariability was presented by Israel & Stella ( 1996 ) and Vaughan
 2005 ), who proposed to capture the underlying broad-band noise
sing either a parametric (restricted to PSDs following a power
aw; Vaughan 2005 ) or non-parametric approach (Israel & Stella
996 ) and use these estimates and associated uncertainties to derive
he probability of obtaining a spurious signal in the periodogram
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bo v e a certain level. Vaughan ( 2010 ) expanded on previous work to
odel any arbitrary PSD shape using a Bayesian approach, which 

llowed for the inclusion of priors. All these techniques concerned 
he case where the time series is evenly sampled such that (as
iscussed in Section 2 ) the periodogram has some well-known 
tatistical properties, which allows a well-defined likelihood (and 
ther statistical tests such as goodness-of-fit) to be defined. 
Here, we hav e pro vided a method for periodicity searches in the

ase of unevenly sampled data, where constraining the aperiodic 
ariability is considerably more challenging and where it appears 
referable to perform the fitting in the time domain (where the prob-
bility distribution is known and is generally Gaussian/Poissonian) 
sing GP modelling. Here, we have exploited the known likelihood 
ith well-established statistical techniques (Protassov et al. 2002 ) to 

stimate the significance of a putative (quasi)periodic component. In 
 similar manner to the regularly sampled case, the noise is inferred
rom the data, allowing a test for the presence of an additional
omponent (e.g. a QPO) by building an empirical T LRT distribution 
sing the method proposed by Protassov et al. ( 2002 ). Given that
he method is entirely data-driven, it is completely generalizable to 
ny system/variability and even choice of mean function (which we 
aven not exploited here). 
If the PSD is of interest, this quantity can be accessed by Fourier-

ransforming the best-fitting GP kernel, rather than the data itself, 
hereby including the data (heteroscedastic) uncertainties in the 
nal estimate. In doing so, frequency-distorting effects arising from 

rregular sampling are mitigated, while the data usage is maximized. 
here is additionally no requirement to rebin the data (so as long as

here are enough counts for the data to be Gaussian distributed). A
imilar approach is discussed in Kelly et al. ( 2014 ) using CARMA ,
ho also advocates for time-domain fitting. The recipe outlined in 

his work may equally be used employing CARMA kernels and will 
uffer from the same limitations we discuss below in Section 4.1 .
o we ver, there seem to be certain advantages of using celerite
 v er CARMA . celerite kernels have a more flexible form than
ARMA ones (F oreman-Macke y et al. 2017 ). While the PSD of
ARMA kernels are restricted to Lorentzian functions, steeper PSDs 
ay be achieved using a single celerite kernel (the SHO Q = 1 / 

√ 

2 
ernel being an example used here; Fig. 2 ), which in CARMA may
ot be straightforward to describe. From a computational point of 
iew, in principle the computational is the same for both celerite
nd carma implementations Kelly et al. ( 2014 ) and Foreman- 
ackey et al. ( 2017 ), scaling as O( NJ 2 ). Ho we v er, F oreman-
ackey et al. ( 2017 ) showed that in practice celerite seems

o perform better computationally. 
There are several important advantages of using GP o v er Lomb–

cargle periodograms. As shown in Section 3.2.2 , we cannot only 
ccess more accurately the underlying noise by performing model 
election, but also marginalize o v er the noise parameters, therefore 
arrying o v er the full set of uncertainties into our determination of a
andidate period’s frequency. Instead, both model selection and un- 
ertainties are inaccessible when using Lomb–Scargle periodograms. 

.1 Limitations and caveats 

egardless of its power and impro v ement o v er traditional ap-
roaches, there remain several limitations of our method, arguably 
he most pressing being the computational time involved. The 
omputational time of the GP modelling itself scales as N 

3 , which
an become intractable if several models need to be tested or for
arge data sets. Here, we have chosen to minimize the compute 
ime using celerite (where the computational time-scales as 
J 2 ) at the expense of flexibility, which may not be much more
omputational e xpensiv e than the Lomb–Scargle periodogram. 6 In 
ddition to the model e v aluation, there is the computational time
equired to perform the simulations for hypothesis testing. This 
roblem is partially mitigated because the likelihood allows us to 
erform initial model selection (in our case through the � AICc)
nd filter out the most prominent cases. Therefore, only in cases
ith limited signal-to-noise ratio or where the � AICc does not
rovide sufficient indication (e.g. Graham et al. 2015 ), light-curve 
imulations may need to be performed, although having to rely 
n simulations for hypothesis testing equally applies to regularly 
ampled time series (e.g. Ashton & Middleton 2021 ). 

Another common drawback of GP modelling is how to choose 
hat kernels to test against the data. A straightforward approach 

o alleviate this problem is to simply stack basis functions until the
inimum of the IC is found (Kelly et al. 2014 ; F oreman-Macke y et al.

017 ; Zhang et al. 2023 ). Secondly, inspection of the standardized
esiduals can reveal trends indicative of the model not capturing the
ull variability (as also illustrated by the ACF). 

We have also discussed how to identify cases where the GP might
ot be a good fit for the data (Section 3.2.3 ) either due to the process
ot being a GP or due to the assumption of stationarity not being
ulfilled. In the former case, it is still unclear whether our method
s still valid. Through our simulations (Section A ), we have noted
hat when the light curves are produced using a lognormal PDF,
he standardized residuals never show compliance with a standard 
aussian distribution, even if the input model parameters are well 

aptured (see Section B ). Thus, preliminary tests indicate that the
ariability is still well-captured even when the flux distribution is not
aussian. 
Note also that while the assumption of stationarity is another 

imitation of GPs, the same assumption is inherently made in standard
eriodograms. In fact, GPs are also more flexible on this regard, as the
ean of the time series does not need to be constant. In any instance,

n a similar vein as for dynamical periodograms (Kotze & Charles
012 ), one could envision splitting the time series into approximately
tationary segments and applying an independent GP modelling to 
ach segment. Then the posteriors of a particular parameter (e.g. the
eriod frequency P ) could be examined to discern whether a given
uantity is varying o v er the full observation baseline. 
Lastly, compared to periodogram fitting, where any functional 

orm may be employed, the fitting process in GP is restricted by the
unctional form of the kernels. This latter problem may be alleviated
t the expense of computational cost, by using kernels outside 
elerite (e.g. Rasmussen & Williams 2006 ), or decomposing 

he power spectrum using basis functions as recently demonstrated 
n Lefkir et al. ( 2025 ). 
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nloaded from
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ic.oup.com
/m

nras/article/537/4/3210/7994434 by g
aussian distributed data, can generate light curves with any flux 
DF and PSD model. Therefore, along with having more realistic 

ight curves matching more closely the real data and its uncertainties, 
he issue of ne gativ e flux es is also a v oided. 

As stated abo v e, we used the PSD from the GP kernel as input PSD
or the method. For the PDF, we used either a Gaussian distribution
in which case we used the Timmer & Koenig ( 1995 ) algorithm), in
ases where the observed data was consistent with being Gaussian 
istributed (as determined using a KS test) or log-normal distribution 
f this was not the case (this was only the case for the XRT data of P13 ;
ection 3.2.2 ) – in which case we reverted to the Emmanoulopoulos 
t al. ( 2013 ) algorithm. In any instance, in practice we have found
he PDF used to simulate the light curves did not affect the results.
he mean of the distribution was set as for the observed data and the
ariance was determined by integrating the PSD kernel in frequency 
pace from 1 /T , where T was the duration of the light curve, to a
seudo Nyquist frequency defined as 1/2 min ( �t) where min ( �t)
ndicates the smallest exposure time in the light curve. In this manner
e obtained the intrinsic variance that generated the light curve prior

o resampling, as opposed to the observed variance after resampling. 
he light curves were initially generated on a regular grid with a
ampling min( �t) in order to introduce aliasing effects, and a few
imes longer (typically 5–20 depending on the light curve) than the 
eal light-curve length to introduce red noise leakage. We then drew 

 random segment matching the duration of the real monitoring and 
e-sampled it with the same exposure times and cadence as the real
bservations. We finally added Poisson noise and estimated realistic 
ncertainties taking into account the background rates and exposure 
imes for each individual snapshot. For the Swift -XRT, as for the real
ight curves, in cases where the simulated source counts dropped 
elow 15, we used instead the posterior probability function derived 
y Kraft, Burrows & Nousek ( 1991 ), which is more suited for the
ow-count regime and prevents having negative counts. 

PPEN D IX  B:  G P  M O D E L L I N G  O F  

O G N O R M A L  L I G H T  C U RV E S  

t is commonly observed that all accreting systems show a lognormal 
ux distribution, which translates into the univ ersallyobserv ed linear 
elationship between the square root of their variance (the rms) 
igure B1. (Left) Example of the PDF of the lognormal light curves as a funct
aussianity. (Right) RMS–flux relationship of light curves simulated having a logn

urves, by averaging the mean and rms calculated using 5000 s segments. 
nd their mean flux (the so-called linear ’rms–flux’ relation; Uttley 
t al. 2005 ). The implication is that the process generating the
ux variations must be multiplicative. A pertinent question to ask 

s therefore whether the light curves of accreting systems can be
odelled as a GP, or at the very least, how the retrieved parameters

re affected by the lognormality of the fluxes. 
The skewness of a lognormal distribution with mean μ and 

ariance σ 2 and with Gaussian parameters μL and σL is given by 

= ( e σ
2 
L + 2) 

√ 

e σ
2 
L − 1 , (B1) 

here σ 2 
L = ln (1 + 

σ 2 

μ2 ) = ln (1 + F 

2 
var ) and where F var is the frac-

ional rms variability amplitude ( F var = 

√ 

σ 2 /μ2 ; Vaughan et al.
003 ). This implies that γ = ( F 

2 
var + 3) F var and so for low F var ,

he lognormal tends to be symmetric and resembles a Gaussian 
istrib ution, b ut as F var increases, the lognormal distribution becomes 
ore skewed and deviates more strongly from Gaussianity (see also 
ttley et al. 2005 ). This is shown in Fig. B1 . Naively, we then may

xpect that GPs might be able to reco v er the input parameters more
eadily when the F var is low . Similarly , Gaussian-like light curves
ill show no dependence (or a flat) rms–flux relationship, and as
 var increases the rms will show a linear dependence with flux (see
lso Uttley et al. 2005 ). 

In order to inspect any biases introduced by modelling lognormal 
ight curves by a GP, we have generated light curves possessing
 lognormal flux distribution using the method proposed by Em- 
anoulopoulos et al. ( 2013 ; see Appendix A ). The light curves were

enerated 10 
6 

s long, sampled every 10 s and with exposure times
f 1 s, roughly matching the light curve of Cygnus X–1 presented
y Uttley et al. ( 2005 ). The generative PSD was a DRW, where the
ending time-scale was set to ∼930 s to ensure it could be well-
etected by the choice of sampling. The variance was adjusted to
roduce light curves with a varying degree of F var while the mean
ount rate was fixed to 5000 ct s −1 . In particular, we have tested
hether we could reco v er the input PSD parameters ( ω bend and
ariance σ 2 ) using GP modelling of lognormal light curves having 
 var = 0.1, 0.2, 0.4, and 0.6. The light curves were produced free
f Poisson noise (and the uncertainties were set to zero in the fitting
rocess) as we are only interested in examining any biases introduced
y the lognormality of the fluxes. 
MNRAS 537, 3210–3233 (2025) 

ion of F var . As F var increases, the lognormal deviates more strongly from 

ormal distribution. These were averaged over the ensemble of the 1000 light 
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Figure B2. Best-fitting ω bend and variance σ 2 of an ensemble of 5000 light curves generated with varying flux PDFs (as indicated in the legend) and F var . As 
can be seen, the reco v ered parameters are in agreement with the input values, regardless of the PDF used to generated the light curves or the F var . 

Figure B3. Best-fitting ω bend and variance σ 2 of an ensemble of 5000 light curves generated from a lognormal PDF and varying F var , but now including Poisson 
noise and uncertainties in the fitting. The blue colour and orange colour shows the results for varying mean ( μ = 1000 and 5000 ct s −1 , respectively). As can 
be seen, the bias in the reco v ered parameters increases with F var , but even at the highest F var the bias remains small. This suggest GPs have broad applicability. 
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As can be seen from Fig. B1 , the generated light curves naturally
ollow the observed linear rms–flux relationship. In particular, we
an see that for the lowest γ (or equi v alently, F var ), the relationship
s flat, as expected for a Gaussian distribution. As F var increases, we
ee the linear rms–flux relationship is reco v ered. 

Fig. B2 shows histograms of the reco v ered ω bend and σ 2 for an
nsemble of 5000 light curves. As can be seen, we do not observe
ny deviation from the input parameters in the recovered parameters,
egardless of F var , despite the light curves following the universal
inear rms–flux relationship. 

As a further test, we now incorporate Poisson noise and take into
ccount the (Poissonian) uncertainties in the fitting process. We run
his test for the lognormal light curves only, as for high F var ( � 0.3)
NRAS 537, 3210–3233 (2025) 
he Gaussian distributed light curves produce ne gativ e counts due to
he distribution not being strictly positively defined. Fig. B3 shows
he histogram of the reco v ered parameters for an ensemble of 5000
ight curves with a lognormal distribution, varying the F var and for
wo different mean values of μ = 1000 and 5000 ct s −1 , respectively.
s expected, deviations from the input parameters are stronger as
 var increases. For μ = 1000 ct s −1 and the largest F var values,
eviations are at most of the order of ∼7 per cent, affecting more
trongly ω bend . Ho we ver, we can see that for the higher mean count-
ate case ( μ = 5000 ct s −1 ), even at the highest F var of 0.6, biases
emain below the order of ∼2 per cent. This suggests that most of
he biases we see for μ = 1000 ct s −1 are due to Poisson statistics,
nd that lognormality of the flux has little impact on the reco v ered
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arameters. Moreo v er, since F var values higher than � 0.5 are rarely
bserved in AGNs or X-ray binaries (e.g. Breedt et al. 2010 ), this
xperiment suggests that there is broad applicability of GPs for the 
eco v ery of the variability processes in accreting sources. 

PPEN D IX  C :  M C M C  SAMPLING  

ere, we describe the process for the deri v ation of the best-fitting
arameters and their posteriors. These were found by first minimizing 
he ne gativ e log likelihood function using the L-BFGS algorithm. We
hen applied a small nudge to the best-fitting parameters and used 

CMC methods to sample the posterior running 32 independent 
hains (or w alk ers) using the emceeepython library (Foreman- 
ackey et al. 2013 ). More specifically, after the fitting process

he w alk ers were distributed around the best-fitting parameters by 
rawing from a Gaussian with mean equal to the best-fitting values 
nd standard deviation equal to 10 per cent of their values. 

We adopted fairly uninformative (uniform) priors. Limits on the 
requencies of the period and the aperiodic kernel time-scales were 
et based on data constraints. The shortest time-scale was set by a
seudo Nyquist frequency ( f nyq = 1/2 < �t > where < �t > was
2025 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
he mean cadence of the light curve). The maximum allowed time-
cale was T for the aperiodic kernels and T /2 for the periodic kernel,
ith T being the light-curve length. We further imposed Q � 3 / 2;

Fig. 2 ) for the Lorentzian component to force this component to
l w ays represent a periodic signal and a v oid de generac y with the
periodic kernels. The upper bound of Q was ef fecti vely uncon-
trained to allow for cases where the amplitude of the oscillation is
ot seen to decay. 
In order to ensure convergence, the MCMC sampler was run 

ntil (a) the number of steps reached 100 times the integrated
utocorrelation time ( τ ), which was estimated on the fly every 800
amples, and (b) τ changed less than 1 per cent compared to the
revious estimate. We then discarded the first 30 × τ number of 
amples (the burn in) and thinned the chains by τ /2 to build the
osterior probability density function. We additionally inspected 
he chains for stationarity and compared the variances within each 
hain to the variance between chains following Vaughan ( 2010 ) (and
eferences therein). 
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