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Membrane properties are determined in part by lipid composition, and cholesterol plays a large role in
determining these properties. Cellular membranes show a diverse range of cholesterol compositions, the
effects of which include alterations to: cellular biomechanics, lipid raft formation, membrane fusion, signalling
pathways, metabolism, pharmaceutical therapeutic efficacy, and disease onset. Additionally, cholesterol plays
an important role in non-cellular membranes, with its concentration in the skin lipid matrix being implicated
in several skin diseases. In phospholipid membranes, cholesterol increases tail ordering of neighboring lipids,
decreasing membrane lateral area and increasing thickness. This reduction in lateral area, known as the
cholesterol condensing effect, results from cholesterol-lipid mixtures deviating from ideal mixing. Capturing
the cholesterol condensing effect is crucial for molecular dynamics simulations as it directly affects the accuracy
of predicted membrane properties, which are essential for understanding membrane function. We present a
comparative analysis of cholesterol models across several popular force fields: CHARMM36, Slipids, Lipid17,
GROMOS 53A6L, GROMOS-CKP, MARTINI 2, MARTINI 3, and ELBA. Simulations of DMPC and DOPC
membranes with varying cholesterol concentrations were conducted to calculate partial-molecular areas of
cholesterol and other condensing parameters, which are compared to experimental data for validation. While
all tested force fields predict small negative deviations from ideal mixing in cholesterol-DOPC membranes,
only all-atom force fields capture the larger deviations expected in DMPC membranes. United-atom and
coarse-grained models under-predict this effect, condensing fewer neighboring lipids by smaller magnitudes,
resulting in too small deviations from ideal mixing. These results suggest that all-atom force fields, particularly
CHARMM36 or Slipids, should be used for accurate simulations of cholesterol-containing membranes.

I. INTRODUCTION

Lipid membranes are one of the most widespread cel-
lular structures. While lipid membranes have long been
understood to perform as selective barriers that surround
cells, an array of additional roles and functions of these
membranes has been discovered. For example, mem-
branes can act as regulators of protein function, as a
way to segregate intra-cellular components, and as sig-
nalling platforms1,2. Different membranes, both within
and across species, have evolved to perform specific func-
tions determined by the composition and arrangement of
their components. For example, animal plasma mem-
branes have evolved to contain a wide-variety of lipids
that include many different types of phospholipids, sph-
ingolipids, and sterols. Different lipid species are com-
monly distributed unevenly, both between membrane
leaflets and laterally within a leaflet3–5. This differential
distribution enables correct membrane function, for ex-
ample; phosphoinositol lipids, minor components of the
plasma membrane, are predominantly located within the
cytoplasmic leaflet of the membrane to perform their role
in intra-cellular signalling5.
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Within the aforementioned plasma membrane, another
lipid component essential for correct membrane function
is the sterol molecule cholesterol. Indeed, it is hard to
overstate the importance of cholesterol’s role as a lipid,
as highlighted by its ubiquity in all animal plasma mem-
branes as well as its common occurrence in many other
types of membranes. For example, cholesterol has an im-
portant role within the stratum corneum membrane and
the barrier function of the skin6. Cholesterol, makes up
a large component of many of the membranes in which
it is found; for the example of plasma membranes this
is roughly 40 % of the overall lipid content7. Much re-
search into the effects of cholesterol on membrane proper-
ties over the past century has demonstrated that choles-
terol increases ordering of lipid tails and therefore de-
creases the lateral membrane area while increasing mem-
brane thickness. This increased ordering is believed to
arise from the unique structure of cholesterol (Fig 1)
which allows it to enhance the packing together of the
surrounding membrane lipid tails. The extent of the
cholesterol-induced change has been shown to be depen-
dent on the types of lipids comprising the membrane,
with greater effects arising with increased lipid tail length
and saturation8–11. While not the only important phys-
iological function of cholesterol12, cholesterol specific or-
dering of lipid tails decreases membrane permeability and
fluidity, alters the mechanical properties of the mem-
brane, and is believed to be essential for correct mem-
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brane lateral heterogeneity13.

An important property of cholesterol induced lipid or-
dering is that the reduction observed in membrane area
due to cholesterol ordering is not linear with respect to
increasing cholesterol concentration. This phenomenon
was first reported by Leathes14 as a tendency for the
lateral area of cholesterol containing monolayers to neg-
atively deviate from ideal mixing behaviour. This nega-
tive deviation from ideal mixing in cholesterol-lipid mem-
branes has since been termed the cholesterol condens-
ing effect, and is well studied in phosphotidylcholine
(PC) lipid membranes both experimentally9,10,15,16, and
computationally17–27. Such non-ideal mixing behaviour
occurs because at low cholesterol concentrations, each
cholesterol molecule is able to impose an ordering ef-
fect on multiple neighbouring lipids, causing a de-
crease in the lateral area of these lipids and therefore
a greater overall decrease in membrane area than ex-
pected. At higher concentrations, cholesterol molecules
are more likely to be closer together, resulting in an
overlap of the effective condensing area of each choles-
terol molecule, in turn reducing the magnitude of the
condensing effect per cholesterol molecule. More re-
cently, Edholm and Nagle have reported that choles-
terol has a negative partial-molecular area at low con-
centrations in simulations of 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC) bilayers8, and experimen-
tal studies have reported a negative partial-molecular
area of cholesterol in 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC) and DPPC membranes9–11

but a positive value for 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) membranes11. Negative partial-
molecular areas of cholesterol, where the addition of extra
cholesterol molecules results in a smaller overall mem-
brane area, is at the extreme of such non-ideal mixing
behaviour and the condensing ability of cholesterol. The
differences observed between lipids with two fully sat-
urated (DMPC and DPPC) and two monounsaturated
(DOPC) lipid tails, including a lack of observed negative
partial-molecular area of cholesterol with DOPC, seem-
ingly arises from a weaker cholesterol condensing ability
when combined with more disordered, unsaturated, lipid
tails.

Molecular dynamics simulation is a powerful tool
for membrane analysis, having been routinely used
along-side experimental data to provide molecular
level insight into cholesterol containing membrane
systems17,18,23,25–35. The accuracy of simulations hinges
significantly on the ability of force field parameter sets
to replicate molecular behaviours. This accuracy is
paramount in capturing interactions between system
components. Specifically, in cholesterol containing mem-
branes, accurately modelling cholesterol-lipid interac-
tions is essential to correctly model the behaviour of
cholesterol. However, until recently, very little work
has been published examining cholesterol simulation
models36. Currently there are several force fields avail-
able which may be used to model cholesterol containing

membranes but there is a general lack of information re-
garding the suitability and accuracy of such force field
parameters. Recently, the NMRLipids project aimed
to address this problem through primarily a compari-
son of simulations containing varying concentrations of
PC lipids and cholesterol to experimental data regarding
C-H order parameters, lipid diffusion, and X-ray scatter-
ing data36. This work demonstrated that all of the force
field parameters tested had room for improvement with
regards to reproducing these experimental data.
Within this work we sought to further expand the test-

ing of cholesterol force field parameters. In particular, if
a force field is to accurately model cholesterol contain-
ing membranes, we believe that accurately reproducing
the cholesterol condensing effect and predicting partial-
molecular areas of cholesterol similar to experimental val-
ues, is essential. The following work, therefore, presents
a comprehensive comparison of several force fields and
cholesterol models for simulating cholesterol in DMPC
and DOPC membranes with the goal of examining the
ability of force fields to match the experimental conden-
sation data. Additionally, the cholesterol condensing ef-
fect in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) membranes is also investigated. The force fields
studied are divided into three categories: all-atom force
fields (AA), united-atom (UA) force fields, and coarse-
grained (CG) force fields. This work, therefore, covers
many of the commonly used MD cholesterol force field
parameters currently available.

II. MATERIALS AND METHODS

A. Simulation Parameters

Force fields included in this analysis are as follows;
i) all-atom force fields: CHARMM3637, Slipids38, and
Lipid1739–41, ii) united-atom force fields: GROMOS
53A6L

42 (also called GROMOS 54A7), and GROMOS-
CKP43, and iii) coarse-grained force fields: the MAR-
TINI 2 coarse-grained force field alongside three unique
MARTINI cholesterol models, an older model (MAR-
TINI 2.0 cholesterol)44, the standard cholesterol model
used by MARTINI 2 (MARTINI 2.2 cholesterol)45, and
a model by Daily et al. (MARTINI Daily et al.)21, the
MARTINI 3 force field46,47, and ELBA, a dual-resolution
coarse-grained/ all-atom force field48. Cholesterol pa-
rameters for both of the GROMOS force fields were taken
from a manual entry in the Automated Topology Builder
(ATB) database49,50. For GROMOS-CKP, parameters
published by Bachar et al.51 were employed for the dou-
ble bond in oleoyl tails. While our previous work demon-
strated that the parameters employed by Kukol52 re-
sulted in order parameters around the double bond that
were in substantial disagreement with experiment43, sub-
sequent investigation has identified that Kukol did not
correctly employ the parameters published by Bachar
et al. Tests employing the correct Bachar parameters
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for the double bond demonstrate minor improvements
in the experimental agreement of the order parameters
when compared to the original GROMOS-CKP simula-
tions employing standard GROMOS parameters for the
double bond53.

Initial all-atom and coarse-grained structures were gen-
erated using PACKMOL54. All-atom structures were
converted for use in united-atom simulations by removing
non-polar hydrogen atoms, and for use with the ELBA
force field using in-house scripts. To make the conver-
sion from all-atom to united-atom systems as simple as
possible for both this work and future studies, all of
the united-atom lipid and cholesterol GROMACS topol-
ogy files were modified to rearrange the atom order to
match that of the corresponding CHARMM force field
topologies. While somewhat laborious, such modifica-
tions to the topology files now enables trivial conversion
of CHARMM all-atom membrane structures to simula-
tion ready united-atom ones (e.g. through a single grep
command) without the need for tools to alter the atom
order of the structures.

Each system consisted of 128 total lipids and 4096 wa-
ter molecules, or the equivalent number of water beads
for CG systems. This is a higher level of hydration than
conditions employed in the experiments that generated
our reference data. However, we note that such a differ-
ence in hydration does not impact upon membrane prop-
erties or the determined x-ray scattering data55–57. Mem-
branes consisted of mixtures of either DMPC, POPC,
or DOPC and cholesterol across a range of 14 concen-
trations. Exact lipid compositions are described in the
supplementary material. MARTINI systems used the
DLPC lipid model, which also represents DMPC lipids
owing to the lower coarse-grained resolution. The ma-
jority of the simulations were performed at lower choles-
terol concentrations, where a negative partial-molecular
area of cholesterol has been reported and the cholesterol
condensing effect is at its strongest8,11. Five repeats
were run per cholesterol concentration, each using inde-
pendent starting structures. All simulations were per-
formed using the 2018 series of the GROMACS simula-
tion package58, except for ELBA, which used LAMMPS
(version 29 Oct 2020)59.

Systems were minimized using the steepest descent al-
gorithm for 5000 steps, before a 3-step equilibration pro-
cess. During equilibration, a Berendsen thermostat60 was
used to maintain a temperature of 303.15 K (above the
phase transition of all phospholipids tested here), using
a coupling constant of 1.0 ps. A semi-isotropic Berend-
sen barostat60 was used to maintain a pressure of 1 bar
along the xy plane and z axis (the membrane plane and
normal), with a coupling constant of 5.0 ps, and a com-
pressibility of 4.5×10−5 bar−1. Lipids and solvent were
coupled to separate thermostats. Initially a NVT equi-
libration step of 0.25 ns was performed, followed by an
NPT equilibration of 0.125 ns with a timestep of 1 fs. The
timestep was increased to 2 fs for the final equilibration
stage of 1 ns.

FIG. 1. The molecular structure of cholesterol, DMPC,
DOPC, and POPC lipids.

The ELBA systems utilised a modified NVT equilibra-
tion protocol to eqilibrate the longer timestep. Initial
NVT equilibration consisted of a timestep of 0.6 fs for
6 ps, followed by increasing the timestep to 1.2 fs and
2.0 fs for 120 ps and 500 ps. Subsequent equilibration in
the NPT ensemble was identical to that used for other
systems.

Production simulations were run for 200 ns, using the
leap-frog integrator with a 2 fs time-step for all-atom
systems, a 2 fs time-step for united-atom systems, 12
fs for MARTINI 2 systems, 20 fs for MARTINI 3, or
a dual time-step of 2 fs and 6 fs for ELBA systems61,
which employed the rRESPA integrator62. The Nosè-
Hoover thermostat63 was used to maintain a temperature
of 303.15 K with a time constant of 1.0 ps for all sys-
tems except MARTINI, which used the velocity rescale
thermostat64, as per published protocols37–43,65. A pres-
sure of 1 bar was maintained using the Parinello-Rahman
barostat66, with a time constant of 5.0 ps for all sys-
tems except MARTINI 2 systems, which employed the
Berendsen barostat, as per published protocols37–43,65.
PME was used to solve long range electrostatic inter-
actions, except for MARTINI and GROMOS systems
which employed the reaction field method, as used in the
original work publishing these force fields. In particu-
lar, GROMOS simulations employed a relative dielectric
constant beyond the cut-off of 62, as applicable for SPC
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water67, while MARTINI simulations employed a relative
dielectric constant of 15 within the cut-off and an infi-
nite relative dielectric constant beyond. The LINCS al-
gorithm was used to constrain all bonds involving hydro-
gen atoms, except for MARTINI systems, where LINCS
was used to constrain all bonds. LINCS order and the
number of iterations were set to 4 and 1 respectively for
all simulations except those using the MARTINI 2 force
field where values of 8 and 2 were used due to issues
with energy conservation68. The remaining parameters
were set to best match those used in the original publica-
tions, or parameters commonly used in the literature, and
are outlined in table I. For GROMOS-CKP and GRO-
MOS 53A6L simulations, the settings employed for the
cut-offs were those identified to most accurately repro-
duce the experimental properties of phospholipid mem-
branes when performing simulations with the Verlet cut-
off scheme, as employed in modern versions of the GRO-
MACS software53.

B. Analysis

1. Area per Lipid

The average area per lipid, a, was calculated from sim-
ulations by dividing the x-y area of the simulation box,
Ax-y, by the number of lipid per leaflet, Nleaflet:

a(x) =

〈
Ax-y

Nleaflet

〉
(1)

Where ⟨...⟩ represents the ensemble average, and a has
been written as a function of the cholesterol mole fraction
x, highlighting the effect of cholesterol on the membrane
area. All analysis was performed using the last 50 ns of
simulations only.

2. Condensation Analysis

The partial-molecular area of cholesterol, alongside
several other cholesterol condensing parameters, are used
for force field validation. These condensing parameters
are calculated by fitting a model to the average area
per lipid data of membranes across a range of choles-
terol concentrations, and then calculating the derivatives
of the curve for a given cholesterol concentration. Two
models are discussed in this work, a model using a sin-
gle non-linear equation, and another using two linear-
equations. While all of these equations were originally
derived by Edholm and Nagle8, in the original publica-
tion only the non-linear equation model was used. The
equations defining the models are introduced below.

We can define the average area per lipid of a binary
mixture of a PC and cholesterol lipid as a mole fraction
weighted average of the area per lipid of the individual
components:

a(x) = (1− x)âpc + x ˆachol (2)

where x is the cholesterol mole fraction, and âpc and
âchol are constant lipid areas of the PC and cholesterol
lipid respectively. Here, we use ‘constant’ to signify these
values do not change with respect to cholesterol mole
fraction. The constant PC lipid area can be calculated
from a pure PC lipid membrane, while the constant area
of cholesterol is more challenging to define, as cholesterol
does not readily form a bilayer. While simple, equation
2 is inaccurate in its assertion that PC and cholesterol
mixtures results in ideal mixing behaviour with respect to
lipid areas. To address this approximation, one strategy
is to replace the constant area terms with partial-molar
area terms which would be functions of the cholesterol
mole fraction. However, as the constant area formula-
tion is enticing from an interpretive perspective, addi-
tional terms are instead added to equation 2, to capture
the cholesterol condensing effect as characterised by a
negative deviation from ideal mixing.
For low cholesterol concentrations, each cholesterol

added to the membrane will condense the maximum pos-
sible number of neighbouring lipids, n, resulting in each
of the neighbouring PC lipids having an area reduced by
∆a:

a(x) = (1− x)âpc + x(âchol − n∆a) (3)

The deviation from ideal mixing is captured by the re-
maining parameters, n and ∆a, which quantify the reduc-
tion of membrane area per cholesterol molecule as caused
by the condensing effect. n is the number of lipids which
are condensed by a single cholesterol molecule, and ∆a
is the reduction in area associated with the condensing

of a single PC lipid. Plotting a(x)
1−x against x

1−x yields
a gradient given by âchol = n∆a, providing a graphi-
cal method for determining the partial molecular area of
cholesterol8,27.
For high cholesterol concentrations, each PC lipid will

likely already neighbour a cholesterol molecule, resulting
in all PC lipids being condensed, and thus each PC lipid
will already have an area reduced by ∆a. Adding an ad-
ditional cholesterol molecule will increase the membrane
area by the constant cholesterol area, âchol. Thus, in
the limit of high cholesterol concentration the membrane
area behaviour is governed by equation 4:

a(x) = (1− x)(âpc −∆a) + xâchol (4)

Least squares regression was used to fit equations 3,
and 4 to the area per lipid data. We note that while
this model is termed the two linear-equation model, as
both equations are fit simultaneously (i.e. as parameters
are shared between equations, residuals are calculated
across both equations and minimised simultaneously),
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TABLE I. Parameters used in simulations.

Force field LJ type LJ cut-off / nm Electrostatic type Electrostatic cut-off / nm
CHARMM36 Force-switch 1.0 - 1.2 PME 1.2
Slipids PME 1.0 PME 1.0
Lipid17 Cut-offa 1.0 PME 1.0
GROMOS 53A6L Cut-off 1.0 Reaction Field 1.0
GROMOS-CKP Cut-off 1.2 Reaction Field 1.2
MARTINI 2 & 3 Potential-shift 1.1 Reaction Field 1.1
ELBA Force-switch 1.0 PME 1.2

a An additional dispersion correction was also included.

the model is in fact non-linear. Standard errors were
estimated from the parameter covariance matrix using a
linear approximation to the model function around the
optimum69.

The partial-molecular area of cholesterol apmchol may be
calculated as the constant area of cholesterol âchol minus
how much it condenses the membrane:

apmchol = âchol − n∆a (5)

This corresponds to the intersect of the low cholesterol
region linear equation (eq 3) with the ordinate x = 1,
which is commonly how partial areas are calculated8,10.

Finally, we note that previously a single non-linear
equation was used to model the cholesterol condensing ef-
fect across the whole range of cholesterol concentrations,
which is also derived by Edholm and Nagle8:

a(x) = c0 + c1x+ c2(1− x)e−c3x (6)

where:

c0 = âpc −∆a (7a)

c1 = ∆a+ âchol − âpc (7b)

c2 = ∆a (7c)

c3 = n (7d)

Further details on this single equation model can be
found in8.

C. Lipid Tail Order Parameters

Lipid acyl tail order parameters (SCH) were calculated
using the following equation:

SCH = |⟨3 cos2 θ − 1⟩/2| (8)

where θ is the angle between the CH bond vector and
the Z axis of the simulation cell. Order parameters were
then averaged over CH bonds of both lipid tails and all
PC lipids in the system. Lipid tail positions correspond-
ing to carbon atoms involving double bonds were ex-
cluded as their corresponding order parameter values are
very low, and therefore skew the comparison of DMPC
to POPC and DOPC lipids.

III. RESULTS

Average lipid areas were calculated across a range of
cholesterol concentrations for DMPC and DOPC mem-
brane simulations, and used to fit the cholesterol con-
densing effect models. Initially, the single non-linear
equation model equation (6) was fitted to the data. Two
sets of experimental data report average lipid areas for
DMPC and DOPC across a range of cholesterol concen-
trations: the data of Hung et al.70, and the data of Pan et
al11. Both experimental data sets were acquired from the
original publications, using WebPlotDigitizer to extract
numerical data from plots71. For experimental data sets
from Pan et al. and Hung et al., and the simulation data
presented here, this single non-linear equation resulted
in significant fitting issues, as is further discussed in Ap-
pendix A. As such, two linear-equations (eq 3 and 4),
also derived by Edholm and Nagle8, were used to model
the area per lipid at limiting low and high cholesterol
concentrations.

A. Two Linear-equation Model

Owing to the poor fitting behaviour of the single non-
linear equation model (see appendix), equations 3 and 4
were fit to the lipid area data at low and high choles-
terol concentration regions (x < 0.2 and x > 0.3). These
cut-offs were chosen as they define the linear regions of
the linear response of lipid area with respect to increas-
ing membrane cholesterol content. The resulting fits are
presented in figures 2 and 3 for DMPC and DOPC mem-
branes, respectively. Experimental data from Hung et
al.70 and Pan et al.11 are included in the analysis for
comparison. However, the data from Pan et al. has only
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4 observations, too few to fit this model. Parameters
calculated from fitting the two linear-equation model to
simulation and Hung et al. data are presented in the
supplementary material (table S1).

Although the data of Pan et al. have too few data
points to fit the two linear equation model, they have
been included to provide a qualitative measure of exper-
imental error. The experimental datasets appears to be
more similar in DOPC membranes compared to DMPC
membranes. For DMPC membranes, the inter-dataset
difference appears to be largest in the cholesterol mole
fraction region of 0.2 - 0.3, however there are no data from
the Pan et al. dataset for cholesterol mole fractions above
this range. Overall, the comparison between experimen-
tal datasets is limited in its ability to assess experimental
error, highlighting the need for more experimental data
over a wide range of cholesterol concentrations.

It is clear from the plots (figures 2 and 3), and the
high R2 values of the fits (see supplementary material,
table S3 and S4) that the two linear fits are sufficient
to model the lipid area data. As a means of validating
the two linear-equation model in light of the poor fitting
behaviour of the single non-linear equation model, we
first analysed the results of fitting to experimental data
from Hung et al70. In the case of the Hung et al. DMPC
membrane data, the two linear fits predict a DMPC lipid
area of 0.60 ± 0.00 nm2, in excellent agreement with the
data point at x = 0, and other literature values11. This
indicates that the fit of the condensing effect parameters
(âchol, ∆a, and n) does not constrain the model to poorly
predict the first data point.

For DOPC membranes, the two linear fits to the Hung
et al. data predict a DOPC lipid area of 0.74 ± 0.00
nm2, larger than other experimental values reported in
the literature. Previously reported values, also at 30 ◦C,
are 0.67 nm2 72, 0.72 nm2 11, 0.72 nm2 73, with the latter
two values using the same X-ray methodology. It is some-
what concerning that the former, and arguably more reli-
able, DOPC area (0.67 nm2), was calculated using a more
robust joint X-ray and neutron refinement approach, as
compared to relying only on X-ray data in the case of
Hung et al. Despite this, the Hung et al. dataset is the
only dataset available with sufficient observations span-
ning a range of cholesterol concentrations, and therefore
is the only dataset which may be used as a benchmark
for this analysis. Despite this, the lipid area predicted by
the two linear fit method is consistent with the position
of the first data point (which represents the DOPC area),
suggesting that the divergence from other experimental
values arises from the dataset of Hung et al., and not the
two linear-equation model per se.

The two linear fits suggest a partial-molecular area of
cholesterol (apmchol) of -0.06 ± 0.04 nm2 for the Hung et al.
DMPC membrane data. For DOPC membranes, apmchol
is predicted to be 0.03 ± 0.04 nm2, significantly larger
than that for DMPC membranes, in qualitative agree-
ment with the literature11.

The predicted constant area of cholesterol (âchol) for

Hung et al. DMPCmembranes is 0.38± 0.04 nm2, falling
within the experimental range of 0.3–0.4 nm215,74,75.
However, for the DOPC membrane, the model predicts a
slightly lower value of 0.35 ± 0.03 nm2, despite the expec-
tation of this method for âchol to be independent of the
degree of the condensing effect. The discrepancy between
these values for DMPC and DOPC membranes is small,
with each value falling within the standard deviation of
the other.
Currently, there are no experimental literature values

for the maximum number of lipids a single cholesterol
molecule can condense (n), or by how much the area of a
condensed lipids is reduced (∆a). However, the predicted
values of 3.4 ± 0.4 and 0.13 ± 0.03 nm2 for DMPC mem-
branes, and 3.5 ± 0.5 and 0.09 ± 0.02 nm2 for DOPC
membranes, respectively, are all physically reasonable.
The model predicts that a cholesterol molecule condenses
approximately the same number of neighbouring lipids
for both DMPC and DOPC membranes, with the dif-
ferences in cholesterol condensation arising from by how
much these lipids are condensed.
Overall, the two linear-equation model appears to ade-

quately describe the data from Hung et al., and the data
from the simulations performed here, which both show
linear behaviour in the low and high cholesterol concen-
tration regions.

B. Force Field Comparison

Having validated the two linear-equation model with
experimental data, the model was fitted to simulation
data. Here, several force fields are tested in their ability
to accurately reproduce experimental data, in terms of
the cholesterol condensing effect parameters.

1. All-atom Force Fields

CHARMM36. The CHARMM36 force field predicts
an apmchol of -0.14 ± 0.01 nm2 for DMPC membranes, the
most negative of all of the force fields tested here, and
indeed, slightly too negative compared to the fit to the
experimental data of Hung et al., which predicts apmchol =
-0.06 ± 0.04 nm2.
The other condensing parameters predicted from the

two linear-equation model allow further insight into dif-
ferences between the CHARMM36 force field, and the
experimental data of Hung et al. CHARMM36 predicts
a cholesterol area (âchol) of 0.36 ± 0.01 nm2, close to
the experimental fit, which predicts 0.38 ± 0.04 nm2.
The average change in the area of a lipid associated with
condensation (∆a) predicted by CHARMM36 is 0.16 ±
0.01 nm2 which is slightly larger than the experimental
fit, 0.13 ± 0.03 nm2, but falls within one standard de-
viation. The final condensing parameter, the maximum
number of lipids ordered by a cholesterol molecule (n)
is predicted to be 3.1 ± 0.1, which is slightly smaller
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FIG. 2. Top: Average lipid area simulation data of DMPC cholesterol membranes (dots) were used to fit a cholesterol condensing
model involving two linear-equations(dashed lines). Experimental data are shown with black crosses and triangles. Only the
data of Hung et al. are used in the experimental two linear-equation model. Bottom: calculated cholesterol condensing
parameters are also presented. Error bars represent one standard deviation. Fitted parameters from the experimental data of
Hung et al. are also presented for comparison (solid blue line)(dashed blue line represents one standard deviation).

than the experimental value of 3.4 ± 0.4, but remains
within one standard deviation. Overall, the CHARMM36
force field is in reasonable agreement with experiment, al-
though small deviations from experimental values in all
of the condensing parameters result in a larger (albeit
still low) experimental deviation in the partial-molecular
area of cholesterol.

For DOPC membranes, the value of apmchol predicted
by CHARMM36 is 0.13 ± 0.00 nm2, which is too large
compared to the experimental value of 0.03 ± 0.04 nm2.
CHARMM36 underestimates all of the remaining param-
eters, predicting values for âchol, ∆a, and n of 0.26 ±
0.00 nm2, 0.05 ± 0.00 nm2, and 2.4 ± 0.1 respectively,
all falling below experimental values of 0.35 ± 0.03 nm2,
0.09 ± 0.02 nm2, and 3.5 ± 0.5. In particular, âchol falls
below to the experimental range of 0.3–0.4 nm2, and is
also different from the value predicted for DMPC mem-
branes. Differing values of âchol predicted in DMPC vs
DOPC membranes is discussed later. Thus it would ap-

pear that too small values of ∆a and n are partially com-
pensated by a low value of âchol, i.e. smaller values of ∆a
and n result in larger values of apmchol, while smaller values
of âchol result in smaller values of apmchol. This results in a
value of apmchol which deviates less from the experimental
value than the parameters used for its calculation. Thus,
the CHARMM36 force field more accurately reproduces
the cholesterol condensing effect in DMPC membranes
as compared to DOPC membranes; this is the case for
many of the force fields discussed below.

Slipids. Similar to the CHARMM36 force field, the
Slipids force field is in good agreement with the DMPC
data from Hung et al., but performs less well for DOPC
data. For DMPC membranes, Slipids predicts a apmchol
of -0.09 ± 0.01, more closely matching experiment com-
pared to CHARMM36, and in the best agreement of all
of the force fields tested here. Slipids predicts an âchol
of 0.35 ± 0.01 nm2, a ∆a of 0.14 ± 0.00 nm2, and an
n of 3.1 ± 0.1, all in good agreement with the Hung
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FIG. 3. Top: Average lipid area simulation data of DOPC cholesterol membranes (dots) were used to fit a cholesterol condensing
model involving two linear-equations(dashed lines). Experimental data are shown with black crosses and triangles. Only the
data of Hung et al. are used in the experimental two linear-equation model. Bottom: calculated cholesterol condensing
parameters are also presented. Error bars represent one standard deviation. Fitted parameters from the experimental data of
Hung et al. are also presented for comparison (solid red line)(dashed red line represents one standard deviation).

et al. data and marginally out-performing CHARMM36
for values of ∆a and n. Overall, for DMPC membranes,
Slipids is a slight improvement on CHARMM36, repre-
senting the best performing force field studied here in its
ability to predict cholesterol condensing parameters of
DMPC membranes.

For DOPC membranes, the Slipids force field performs
less well compared to DMPC membranes, and predicts
condensing parameters similar to CHARMM36. Slipids
predicts apmchol = 0.14 ± 0.01 nm2, too large compared to
experiment. Additionally, Slipids predicts âchol = 0.24 ±
0.01 nm2, ∆a = 0.04 ± 0.00 nm2, and n = 2.5 ± 0.1,
all too small compared to experiment. Again, the small
values of ∆a and n are partially compensated by a small
value of âchol, but not enough to bring apmchol more in-
line with experiment. For DOPC membranes, the Slipids
force field results are similar to, but slightly worse than,
CHARMM36, with the main sources of error coming from
values of âchol and ∆a.

Lipid17. Upon initial inspection, the Lipid17 force
field performs similarly to the CHARMM36 and Slipids
force fields for DMPC membranes, predicting apmchol =
-0.12 ± 0.01 nm2, in between values predicted by
CHARMM36 and Slipids. Additionally, Lipid17 predicts
âchol = 0.35 ± 0.01 nm2 lying inside the experimental
range. However, Lipid17 deviates from experiment for
values of ∆a = 0.18 ± 0.01 nm2 and n = 2.5 ± 0.1, which
are too high and too low respectively. Deviations in these
values are in opposite directions, and thus, they have
opposite impacts on apmchol, which largely cancel. This
results in Lipid17 predicting a value of apmchol similar to
CHARMM36 and Slipids despite under-performing both
in terms of reproducing ∆a and n. This highlights the
utility of calculating cholesterol condensing parameters
in addition to partial-molecular areas.

For DOPC, Lipid17 predicts condensing parameters
very similar to CHARMM36 and Slipids, with the only
difference being that Lipid17 predicts âchol = 0.23 ±



9

0.00 nm2, which is too small compared to experiment
and slightly smaller than values form CHARMM36 and
Slipids.

2. United-Atom Force Fields

GROMOS 53A6L. For DMPC membranes, the GRO-
MOS 53A6L force field predicts apmchol to be 0.06 ± 0.01
nm2, which is positive, and deviates from the experi-
mental value more than any of the all-atom force fields
studied. GROMOS 53A6L predicts a constant choles-
terol area , âchol, of 0.34 ± 0.01 nm2, in good agreement
with the experimental value of 0.38 nm2, and also pre-
dicts ∆a = 0.11 ± 0.00 nm2, which is smaller than the
experimental value of 0.13 ± 0.03 nm2, but within one
standard deviation. For n, the GROMOS 53A6L force
field deviates more from experiment, predicting 2.4 ±
0.1, significantly smaller than the experimental value of
3.4 ± 0.4.

For DOPC membranes, the GROMOS 53A6L force
field predicts a apmchol value of 0.07 ± 0.00 nm2, which
is too large compared to the experimental value of 0.03
± 0.04 nm2, but is an improvement compared to the all-
atom force fields studied here. Furthermore, GROMOS
53A6L predicts âchol = 0.33 ± 0.00 nm2, which is slightly
too small compared to the experimental value of 0.35
± 0.03 nm2. Finally, GROMOS 53A6L predicts ∆a =
0.09 ± 0.02 nm2, identical to the experimental value,
and n = 2.9 ± 0.1 which is too small compared to exper-
iment. While GROMOS 53A6L slightly under-predicts
the cholesterol condensing effect in DOPC membranes,
the remaining condensing parameters are in good experi-
mental agreement. Overall, GROMOS 53A6L underesti-
mates the magnitude of the cholesterol condensing effect
in DMPCmembranes, but is in relatively good agreement
with DOPC membranes, improving on all-atom models
in this regard. For both lipid types, the main source of
error lies in under-predicting the number of lipids con-
densed by a single cholesterol molecule.

GROMOS-CKP. Despite being in the GROMOS
family of force fields, and employing the same cholesterol
model, GROMOS-CKP differs from GROMOS 53A6L
in terms of this cholesterol condensing effect analysis.
For DMPC membranes, GROMOS-CKP predicts apmchol =
0.10 ± 0.01 nm2, and âchol = 0.30 ± 0.01 nm2, ∆a =
0.09 ± 0.01 nm2 and n = 2.2 ± 0.1, all deviating more
from the Hung et al. values compared to the GROMOS
53A6L force field. Thus the GROMOS-CKP force field
slightly under-performs the GROMOS 53A6L for DMPC
membranes, with a low predicted value of âchol partially
compensated by low predicted values of ∆a and n.
For DOPC membranes, the GROMOS-CKP force field

predicts apmchol to be 0.14 ± 0.01 nm2, deviating from the
experimental value more than GROMOS 53A6L. The
value of âchol predicted by GROMOS-CKP is 0.28 ± 0.01
nm2 falling under the experimental range of 0.3 − 0.4
nm2, but similar to the value predicted by GROMOS-

CKP in DMPC membranes, in contrast to many of the
other force fields studied here. GROMOS-CKP predicts
a value of ∆a, of 0.06 ± 0.00 nm2 which is in good agree-
ment with the experimental value, but still deviates more
than GROMOS 53A6L, and also predicts a n = 2.5 ± 0.1,
which is significantly lower than the experimental value.
Similarly to its performance for DMPC membranes, for
DOPC membranes GROMOS-CKP performs worse than
GROMOS 53A6L, with a small value of âchol partially
compensating for small ∆a and n values. If the force field
more accurately predicted the constant area of choles-
terol with no other modification, it would overall perform
worse in regards to capturing the cholesterol condensing
effect.

3. Coarse-grained Force Fields

MARTINI 2. Three cholesterol models were tested
with the MARTINI 2 force field: the old MARTINI
2.0 cholesterol model44 (denoted MARTINI 2.0) a newer
MARTINI 2.2 cholesterol model incorporating virtual
sites to add asymmetry to the molecule45 (denoted MAR-
TINI 2.2) and a model published by Daily et al.21 further
increasing the asymmetry and resolution of the model by
using smaller beads (denoted MARTINI Daily et al.).
Overall, the MARTINI force field, irrespective of which
cholesterol model is used, performs the least well as com-
pared to the other force fields studied here. For both
DMPC and DOPC membranes, the MARTINI force field
significantly under-predicts the magnitude of the choles-
terol condensing effect.
For DMPC membranes, the MARTINI 2.0 force field

predicts the lowest value of apmchol of 0.08 ± 0.00 nm2,
compared to 0.12 ± 0.00 nm2 and 0.11 ± 0.00 nm2 as
predicted by MARTINI 2.2 and MARTINI Daily et al.,
respectively. Interestingly, all of the MARTINI choles-
terol models predict similar values of âchol, with MAR-
TINI 2.0 and 2.2 predicting a value of 0.26 ± 0.00 nm2,
while MARTINI Daily et al. predicts a value of 0.27 ±
0.00 nm2. All of these values lie below the experimental
range of 0.3–0.4 nm2. Additionally the MARTINI mod-
els also predict similar values of ∆a, with the MARTINI
2.0 model predicting 0.08 ± 0.00 nm2, and MARTINI
2.2 and Daily et al. both predicting 0.06 ± 0.00 nm2, all
significantly lower than the experimental value of 0.13 ±
0.03 nm2. The models predict slightly different values
for n; MARTINI 2.0 predicts 2.3 ± 0.00, MARTINI 2.2
predicts 2.4 ± 0.00, and MARTINI Daily et al. predicts
2.5 ± 0.00. These values of n are similar to values pre-
dicted by the united-atom force fields, and are too small
compared to experiment, 3.4 ± 0.4. For DMPC mem-
branes, the MARTINI cholesterol models tested here are
in overall poor agreement with experiment, all predict-
ing values of apmchol significantly larger than experiment.
This is caused by the cholesterol molecules only slightly
condensing neighbouring lipids as suggested by the low
∆a value. Additionally, the values of apmchol are artificially
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low, caused by the cholesterol models being un-physically
small compared to experiment.

For DOPC membranes, the MARTINI cholesterol
models are again in poor agreement with the Hung data,
suffering from the same issues of predicting values of
âchol, ∆a, and n which are all significantly smaller than
the experimental Hung et al. data, while predicting val-
ues of apmchol which are too large.

Overall, the MARTINI 2 force field and cholesterol
models tested here poorly captures the cholesterol con-
densing effect, predicting values of apmchol too large for both
DMPC and DOPC membranes. This deviation from
experimental data would be even greater if the MAR-
TINI cholesterol models had a larger, more accurate area.
Small values of ∆a, and n suggest the MARTINI choles-
terol models have a relatively small impact on neighbour-
ing lipids, condensing too few by an ammount which is
too small.

MARTINI 3. The MARTINI 3 force field has under-
gone significant re-parameterisation compared to MAR-
TINI 2. Both PC lipids47 and cholesterol46 have updated
topologies and parameter sets to take advantage of the
new bead selection available in MARTINI 3. For DMPC
membranes, MARTINI 3 predicts apmchol = 0.17 ± 0.00 nm,
deviating from experiment more than any of the MAR-
TINI 2 cholesterol systems. MARTINI 3 predicts âchol =
0.27 ± 0.00 nm2, smaller than experiment and similar
to values predicted by MARTINI 2. Interestingly, the
MARTINI 3 system predicts ∆a to be 0.04 ± 0.00 nm2,
significantly lower than both experiment and what is pre-
dicted by MARTINI 2. Finally, MARTINI 3 predicts n to
be 2.3 ± 0.01, which is too small compared to experiment
but similar to values predicted by MARTINI 2.

For DOPC membranes, MARTINI 3 predicts apmchol =
0.25± 0.00 nm 2, again too large compared to experiment
and larger than MARTINI 2 predictions. MARTINI 3
predicts âchol = 0.26 ± 0.00 nm2, which is too small
compared to experiment, but is larger than predicted by
MARTINI 2, and thus an improvement. Interestingly
MARTINI 3 predicts the largest value of n for DOPC
membranes (4.8 ± 1.6), which is too large compared to
experiment. The relatively high error of n likely comes
from the value of ∆a = 0.00 ± 0.00 allowing increased
freedom in n during the fitting. Overall, MARTINI 3
appears to model the cholesterol condensation effect less
accurately compared to MARTINI 2.

ELBA. The ELBA force field is set up in a dual-
resolution configuration, using an all-atom model for
cholesterol, specifically the CHARMM36 model, and
coarse-grained model for the PC lipid. For DMPC mem-
branes, the ELBA force field predicts a apmchol value of 0.03
± 0.02 nm2, which is too large compared to experiment.
Interestingly, ELBA’s prediction of apmchol is an improve-
ment on the united-atom GROMOS force fields, but not
as good as the all-atom force fields. The value of âchol
predicted by ELBA is 0.29 ± 0.02 nm2, marginally out-
side of the experimental range of 0.3 − 0.4 nm2. ELBA
predicts a value of ∆a = 0.11 ± 0.01, in fair agreement

with experiment, and a value of n = 2.3 ± 0.2, which is
too small.
It is noteworthy that ELBA uses the CHARMM36

cholesterol model, but predicts a different value of âchol.
From the plot of the fit in figure 2, it can be observed
that for the ELBA force field, the area per lipid is not
linear with respect to the cholesterol mole fraction for
mole fractions above 0.3. Owing to this, the two linear-
equations were refit using only the data above 0.35, where
the three remaining datapoints exhibit linear behaviour.
The resulting fit has no change in apmchol, but differs in
the remaining parameters, (see supplementary material
table S3, denoted as ELBA (x > 0.35)). The new value
of âchol (0.32 ± 0.03 nm2) has been brought significantly
closer to the CHARMM36 value (0.36 ± 0.01 nm2), with
the remaining difference possibly caused by differences in
packing behaviour of the cholesterol model in the coarse-
grained ELBA lipid environment compared to the all-
atom CHARMM36 environment. The updated fit pre-
dicts ∆a = 0.13 ± 0.02 nm2, matching the experimental
value, but predicts n = 2.1 ± 0.2, significantly lower than
experiment. ELBA also introduces scaling factors into
the mixing rules for interactions between the all-atom
and coarse-grained subsystems, affecting the Lennard-
Jones interactions and thus the bead/atom sizes. Over-
all, for DMPC membranes, the ELBA force field pre-
dicts that cholesterol orders too few neighbouring lipid
molecules.

In the case of DOPC membranes, ELBA predicts
apmchol = 0.05 ± 0.02 nm2, and is in the best agreement
with the experimental value compared to the other force
fields studied here. ELBA predicts âchol = 0.29 ± 0.02
nm2 in DOPC membranes, just under the experimental
range of 0.3–0.4 nm2, and this time larger than the value
predicted by CHARMM36. Finally, ELBA predicts val-
ues of ∆a = 0.11 ± 0.01 nm2 in fair agreement with
experiment, but too large, and n = 2.3 ± 0.2, signifi-
cantly lower than experiment. For DOPC membranes
ELBA is in fair agreement with experimental data, but
predicts the constant cholesterol area, and the number of
lipids ordered by cholesterol to be too small. Overall the
performance of ELBA in capturing the cholesterol con-
densing effect is more similar to the united-atom force
fields tested here, out-performing MARTINI, but under-
performing against the all-atom force fields.

C. POPC Cholesterol Containing Membranes

POPC-cholesterol systems were simulated owing to
POPC having tail saturation character between that of
DMPC and DOPC, with the aim that this may offer addi-
tional insight into the role of saturation on the cholesterol
condensing effect. As there are no experimental data
characterising POPC-cholesterol membrane areas over a
range of cholesterol concentrations for validation, only
all-atom POPC-cholesterol simulations were performed,
owing to these force fields previously performing the most
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consistently accurate. While GROMOS 53A6L performs
more accurately for DOPC membranes, it fails to predict
a negative value of apmchol for DMPC membranes. The two
linear-equation model was fitted to the lipid area data,
and results are presented in figure 4, and table S5 of the
supplementary material. For each force field, the cor-
responding parameters from fits to DMPC and DOPC
membranes are included for comparison.

The condensing parameters for POPC membranes
overall suggest that the cholesterol condensing effect be-
haviour in POPC membranes lies somewhere in between
that of DMPC and DOPC membranes. All three of the
all-atom force fields predict positive values of apmchol close
to 0, which are slightly more similar to values reported
for DOPC membranes. The remaining parameters all
show similar behaviour, falling in between values ob-
tained from the corresponding DMPC and DOPC fits,
with a skew towards the DOPC data. The exception is
that Lipid17 and Slipids predict values of n for POPC
membranes which are lower than the DOPC values.

The comparison of parameters between membrane
types, in figure 4, also highlights the differences in âchol.
The fitted model aims for âchol to be constant and inde-
pendent of the membrane composition. While the fits to
the experimental data of Hung et al. yield similar values
of âchol in DMPC and DOPC membranes; this is clearly
not the case for the simulation data.

D. Constrained âchol Model

During the fitting of the two linear-equations to DMPC
and DOPC data, it was observed that the area of choles-
terol (âchol) differed between the different membranes. In
theory, this should not be the case, with n and ∆a vary-
ing to accommodate for differences in cholesterol con-
densing behaviour between lipid types. The two linear
fits consistently predict smaller values of âchol in DOPC
membranes compared to DMPC membranes, with the
DOPC values regularly falling under the experimental
range 0.3–0.4 nm2. In an attempt to reconcile these dif-
ferences, the two linear-equation model was refit to the
DOPC data, while constraining âchol to the value pre-
dicted from the DMPC membrane. The constrained âchol
fits are presented in figure 5, and fit parameters are listed
in table S6 of the supplementary material.

For the all-atom force fields, the fits to the low choles-
terol region remain largely unaltered, aligning well with
the data. Conversely, for the high cholesterol concentra-
tion region, the constrained fits are less well aligned with
the underlying lipid area data, with the model predict-
ing a too shallow gradient than suggested by the data,
as can be observed in figure 5(top) and from the increase
in mean absolute error (MAE) associated with the con-
strained fit (see supplementary material table S6). Inter-
estingly, for the united-atom, and coarse-grained force
fields, this issue is less pronounced, with a reasonable
agreement with the underlying data points across the full

range.
We note that constraining values of âchol has little im-

pact on the resulting values of apmchol, with the other con-
densing parameters shifting to offset the imposed change
in âchol. The changes in condensing parameters are most
pronounced for the all-atom force fields, which result in
increased values of ∆a, but decreased values of n. As the
decrease of n is of a larger magnitude compared to ∆a,
this also compensates for the increase in âchol, rational-
ising the consistency of apmchol values between constrained
and unconstrained fits.
These results suggest that the predicted values of apmchol

are relatively insensitive to the exact value of âchol, with
the other cholesterol condensing parameters adjusting to
compensate. The low sensitivity to the underlying pa-
rameters is favourable behaviour and allows for increased
confidence in the predicted values of apmchol as the differ-
ences in the underlying parameters only have a small
impact.

E. Average Lipid Tail Order Parameters

Increased lipid tail order is believed to be central to
the mechanism of cholesterol condensation, in which each
cholesterol imposes order on neighbouring PC lipids76.
To further investigate the cholesterol condensing effect in
PC membranes, lipid acyl tail order parameters were cal-
culated and averaged over each carbon and each tail for a
given cholesterol concentration, and are presented in fig-
ure 6. Experimental POPC order parameters from77 (ex-
tracted from the paper using webplotidigizer71) are also
included in figure 6. This analysis was only performed for
all-atom simulations, which best reproduce experimental
data and contain hydrogen positions required for order
parameter calculation.

For DMPC, POPC, and DOPC membranes, there is
a positive correlation between the average lipid tail or-
der parameter and cholesterol concentration. This agrees
with the theory that cholesterol molecules impose order
on neighbouring PC lipid molecules. Interestingly, there
is a clear difference in the lipid tail order parameter be-
haviour of each lipid.

In the case of DMPC membranes, there is a steep
increase in the averaged order parameter from x = 0
to x = 0.3, at which point the values plateau to a
value of approximately 0.35. For DOPC membranes a
much shallower increase is observed across the whole
range of cholesterol concentrations tested, with no no-
table plateau.

POPC membranes have an average lipid tail order pa-
rameter character somewhat in between that of DMPC
and DOPC. A steady increase is observed across the ma-
jority of the cholesterol concentration range until x =
0.45, at which point, a plateau begins to be observed,
with the average order parameters reaching a final value
of approximately 0.275, in between values observed at
similar cholesterol concentrations for DMPC and DOPC
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FIG. 4. Left: Average lipid area simulation data of POPC cholesterol membranes (dots) were used to fit a cholesterol con-
densing model involving two linear fits (dashed lines). Right: calculated cholesterol condensing parameters are also presented.
Datapoints for the corresponding parameters of DMPC (light blue) and DOPC (dark red) membranes are included for com-
parison. Error bars show one standard deviation.

membranes. The simulation averaged order parameters
are in good experimental agreement across the cholesterol
range tested, with the largest discrepancy occurring at a
cholesterol mole fraction of approximately 0.35. Among
the force fields included in this analysis, Slipids shows the
best agreement with experimental results. For a more de-
tailed comparison of simulation and experimental POPC
cholesterol order parameters, see36.

IV. DISCUSSION

Several lipid force fields have been assessed in their
ability to capture the cholesterol condensing effect in
terms of recreating experimental cholesterol condens-
ing parameters, including the partial-molecular area of
cholesterol. A two linear-equation model used here dif-
fers from a previously used model involving a single non-
linear equation, despite all equations being derived in the
same publication8. The use of the two linear-equation
model was necessitated in this work due to the poor fit-
ting behaviour of the single non-linear equation model.
Although the two linear-equation model offers signifi-
cantly improved fitting behaviour, it is limited by its cal-
culation of only two gradients, which only predict two

partial-molecular areas of cholesterol: one at high and
one at low cholesterol concentrations. Despite this, the
two linear-equation model is sufficient to model these re-
gions, in which the average area per lipid shows a linear
response to increasing cholesterol content. Furthermore,
fitting the two linear-equation model to the experimen-
tal data of Hung et al. results in parameters which are
physically plausible. We note that a limitation of the
analysis employed here is the lack of robust experimental
data over a range of cholesterol concentrations. While
the data used are from X-ray experiments, they diverge
from observations using more robust joint X-ray and neu-
tron refinement schemes72. Furthermore, more observa-
tions over the entire cholesterol range of interest here,
would allow for better refinement of low and high limiting
cholesterol behaviour. Comparison of the fitted param-
eters of cholesterol condensing models allows the analy-
sis to include all data points from both simulation and
experimental datasets, but the reliance on experimental
lipid areas derived from X-ray experiments comes with a
set of assumptions72,78. To address this concern, we also
provide direct comparison between simulation and exper-
imental X-ray form factors11 in the appendix. Overall,
the form factor analysis we perform offers more mixed re-
sults compared to the area analysis. We believe this may
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FIG. 5. Constrained âchol results. Top: Average lipid area simulation data of DOPC cholesterol membranes (dots) were
used to fit a cholesterol condensing model involving two linear fits (dashed lines). Bottom: calculated cholesterol condensing
parameters are also presented. The experimental data of Hung et al. is also presented for comparison (solid red line)(dashed
red line represents one standard deviation of the value obtained by fitting to the experimental data). Error bars represent one
standard deviation.

be caused, in part, by the small amount of experimental
form factor data available, at only two data points each
for DMPC and DOPC lipids. This point is discussed
further in the appendix, again highlighting the need for
more experimental data.

An issue observed with the two linear-equation model
was that it would produce different values of the constant
area per cholesterol (âchol) parameter for different mem-
branes. The model was derived with the aim that âchol
should remain constant, with the other model parame-
ters adjusting to account for differences in the cholesterol
condensing effect for different membranes. Despite this,
constraining the values of âchol has little effect on pre-
dicted values of the partial-molecular area of cholesterol,
allowing for greater confidence in these values. Lipid acyl
tail order parameters may offer additional insight into
this issue. As reported here, the increase in order pa-
rameters with increasing cholesterol concentration is de-
pendent upon the saturation character of the lipid tails,

and thus cholesterol imposes order on DMPC, POPC,
and DOPC lipids to different extents. Specifically, while
order parameters plateau at approximately x = 0.35 for
DMPC membranes, this plateau is observed at x = 0.45
for POPC, and not at all for DOPC membranes. As
such, while the assumption that additional cholesterol
condensation is absent at high cholesterol concentrations
is true for DMPC, order parameters suggest this is not
the case for DOPC membranes. Thus, the cut-off values
for low and high cholesterol regions may need refining
for different lipid types. While this study focused on
simulations within the low cholesterol concentration re-
gion, further data are required in the high and middle
cholesterol concentration regions to better characterise
the cholesterol condensing effect, and further refine the
two linear-equation model. While lipid tail order param-
eters are an alluring target for force field validation, there
is an unfortunate lack of experimental data across a range
of cholesterol concentrations, as required for such work.
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FIG. 6. Average lipid tail order parameters of all-atom simulations of cholesterol containing membranes. The average was
taken over each carbon in each acyl tail. Experimental data for the POPC-cholesterol systems from77 are depicted with Xs.
Tail positions corresponding to double bonded carbon atoms were excluded from averaging.

The ELBA force field may offer a unique insight into
how force fields capture the cholesterol condensing effect.
Despite being a coarse-grained force field, ELBA boasts
a significant improvement in accuracy compared to the
MARTINI force field with respect to reproducing experi-
mental cholesterol condensing parameters. Indeed, there
are several fundamental differences in the philosophy of
these force fields which may lead to such differences: i)
ELBA has a lower degree of coarse-graining compared to
MARTINI, especially in the water mapping, ii) ELBA
systems are dual resolution, with the PC lipids modelled
at the coarse-grained level and cholesterol modelled at
the all-atom level, and iii) ELBA implements a more re-
alistic electrostatic model compared to MARTINI. It is
hard to evaluate which of these properties contribute the
most to the improvements associated with ELBA. How-
ever, the increased resolution of the all-atom cholesterol
molecule will facilitate the asymmetry of the cholesterol
model, which is thought to be crucial to the cholesterol
condensing effect76.

Interestingly, GROMOS 53A6L and GROMOS-CKP
yield different cholesterol condensing parameters, despite
employing the same cholesterol model. This highlights
that lipid parameters also play a crucial role in conden-
sation. We propose that the difference in condensing be-
haviour between the two force fields is likely due to the
larger radius of the carbonyl carbon atom type (CH0) in
GROMOS-CKP compared to that in GROMOS 53A6L
(C).

Furthermore, differences between MARTINI 2 and 3
may offer additional insight into the ability of a force
field to capture the cholesterol condensing effect. The
MARTINI 3 cholesterol model increases asymmetry by
incorporation of the new tiny bead to model two methyl
groups of the rough face of cholesterol, in addition to
more accurately capturing cholesterol-lipid interactions,
as shown by recreating all-atom 2-dimensional radial
distribution functions of lipids surrounding cholesterol

molecules46. Interestingly, despite these improvements,
the analysis presented here suggests MARTINI 3 cap-
tures the cholesterol condensing effect less accurately
compared to MARTINI 2. Thus it would appear that
improved recreation of the surrounding PC lipid distri-
bution and increasing cholesterol asymmetry are not uni-
versal targets for improving cholesterol models. Despite
this, we note that molecule topologies and parameters are
complex and there is likely a large interplay of parame-
ters driving this phenomenon which may not be easily
assessed independently. Further analysis of MARTINI 2
and MARTINI 3 systems may allow the determination
of molecular features which bring about cholesterol con-
densation.

Overall, the analysis presented here suggests that
the force field type (all-atom vs united-atom vs coarse-
grained) is a reasonable predictor of the accuracy with
which the cholesterol condensing effect is captured. We
report that all-atom force fields most consistently cap-
ture the cholesterol condensing effect when considering
both DMPC and DOPC membranes, however the GRO-
MOS 53A6L force field is most accurate for DOPC mem-
branes at the expense of poor accuracy for DMPC mem-
branes. Comparatively the coarse-grained force fields
capture the condensing effect less well. It has been pre-
viously suggested that the asymmetry between the two
faces of cholesterol, specifically the methyl groups pro-
truding from the planar sterol region, plays an impor-
tant role in the cholesterol condensing effect76. As such
the increased resolution of the methyl groups in the all-
atom force fields may play an important role in capturing
the cholesterol condensing effect. Despite this, the in-
crease in asymmetry and resolution associated with the
Daily et al.,MARTINI cholesterol model compared to the
other MARTINI 2 models tested, offers no significant in-
crease in the force field’s accuracy, and indeed, although
MARTINI 3 has a more asymmetric cholesterol model, it
performed less well in this analysis compared to MAR-
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TINI 2. Finally, the data presented here suggests that
the CHARMM36 and Slipids force fields best capture
the cholesterol condensing effect in DMPC membranes,
with Slipids capturing the cholesterol condensing effect
in DMPC membranes with slightly better accuracy at
the expense of a slightly worse accuracy in DOPC mem-
branes, compared to CHARMM36. For DOPC mem-
branes, our results show that the GROMOS 53A6L force
field is in best agreement with experiment.

V. CONCLUSION

To conclude, we have studied the ability of several com-
monly used lipid force fields to accurately reproduce the
cholesterol condensing effect. Our results highlight the
utility in calculating cholesterol condensing parameters
for a more rigorous analysis compared to only report-
ing partial-molecular cholesterol areas, and reveal that
the all-atom force fields studied here best capture choles-
terol condensation in DMPC membranes. Specifically
the CHARMM36 or Slipids force fields are recommended
for DMPC membranes, while GROMOS 53A6L is rec-
ommended for DOPC membranes, owing to their accu-
racy in reproducing cholesterol partial-molecular areas,
and cholesterol condensing parameters. While the anal-
ysis presented here considers simple model membranes,
the cholesterol condensing effect holds crucial implica-
tions for larger, biologically relevant systems. For exam-
ple, as lipid raft formation is thought to stem from the
cholesterol condensing effect79, simulations studying lipid
rafts should use force fields which properly capture the
this effect. Furthermore, as the cholesterol condensing
effect alters membrane thickness, we highlight that care-
ful consideration should be placed on force field choice
when modelling membrane bound proteins. These pro-
teins frequently feature hydrophobic transmembrane seg-
ments that align with membrane thickness, which may
result in membrane deformation or protein tilt when this
is not the case.

We have also presented averaged lipid tail order pa-
rameters, which suggest a distinct cholesterol condensa-
tion profile for DMPC, POPC, and DOPC lipids, which
is driven by cholesterol imposing different amounts of or-
der on the same number of lipids. Averaged lipid order
parameters also reveal that there is significant choles-
terol condensation still occurring at high cholesterol con-
centrations for POPC and especially for DOPC mem-
branes. Although this brings into question the under-
lying assumption of the two linear-equation model, that
for high cholesterol concentrations the membrane is fully
condensed and no further cholesterol condensation is ob-
served, constraining fitting parameters suggest the ex-
act values of the cholesterol condensing parameters re-
ported here have little impact on the reported values of
the partial-molecular areas of cholesterol.

Further work is required to better characterise the
cholesterol condensation effect at higher cholesterol con-

centrations and in other lipid membranes. Additional
experimental data would be invaluable in such further
analysis. Such work will be useful to further refine and
build upon the cholesterol condensation models, and al-
low for more accurate determination of cholesterol con-
densing parameters, which offer increased insight into the
cholesterol condensing effect compared to solely partial-
molecular areas. The analysis performed here would be
particularly useful in the development and optimisation
of cholesterol force fields, ensuring their accuracy in sim-
ulating biologically relevant membrane behaviour.

SUPPLEMENTARY MATERIAL

Membrane lipid content, as well as fitted parameters
are provided in the supplementary material.
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Appendix A: Single Non-linear Equation Model

Initially the partial-molecular area of cholesterol, in
addition to the cholesterol condensing parameters, were
calculated by fitting a single non-linear equation (eq 6)8

to the area per lipid data across the whole range of choles-
terol concentrations. The non-linear equation model was
only fitted to the all-atom data, owing to fitting issues as
discussed below. The resulting fits are presented in fig-
ure 7 and the corresponding parameter values are listed
in the supplementary material, table S2. In addition to
the simulation data presented here and the experimental
data of Hung et al., an additional experimental dataset
from Pan et al.11 is included.

FIG. 7. Average lipid areas of all-atom force field simulations
of DMPC cholesterol bilayers across a range of cholesterol
concentrations (dots) were used to fit a non-linear cholesterol
condensation model (dotted lines). Experimental data from
Hung et al. and Pan et al. (Xs) was also used to fit the model
for comparison.

It is clear from the graphical plots that the fit to the
experimental data from Pan et al. is problematic, as ob-
served by the prediction that the lipid area increases for
cholesterol mole fractions above 0.3. For the Pan et al.
data, the poor model behaviour is likely as a result of the
data set having only 4 data points, equal to the number
of parameters. We note that Pan et al. also fitted the
single non-linear equation to their data in the original
publication11, but do not report the cholesterol conden-
sation parameters. Pan et al. do report a graphical fit of
the single non-linear equation, with no increase in lipid
area for high cholesterol mole fractions, as opposed to
the results presented here. A possible source of error
in our work may be in obtaining the numerical data of
Pan et al. from a plot in the original publication11. How-
ever, we believe the uncertainty added by this is less than

1%, as determined by comparison of the cholesterol mole
fraction values obtained from WebPlotDigitizer and the
cholesterol mole fractions used by Pan et al.11. Owing to
this, such inaccuracies in extracting the data are unlikely
to primarily be the cause of such large optimal parame-
ter values. Finally, the lack of regularisation used during
fitting here also likely emphasises the over-fitting, allow-
ing the parameter norm to increase without any penalty.
While regularisation is often employed in model fitting,
the parameters used here have physical implications and
as such, regularisation may be used to arbitrarily im-
prove agreement with experimental data, depending on
the magnitude of the penalty applied and the choice of
initial parameter values.
While the remaining fits appear to be adequate from

the graphical plots, there are clear fitting issues upon
inspection of the fitted cholesterol condensing param-
eter values. Since the parameters in the models used
here hold physical significance, it is not sufficient for the
model to simply achieve a low error in describing the
data. The values of these physical parameters must also
align closely with experimental results or, in cases where
ground truth data is unavailable, at least remain physi-
cally plausible.
For the simulation data, the non-linear model suggests

too large values of ∆a, larger than the area of a single
PC lipid, and very small values of n. As ∆a represents
the decrease in lipid area due to condensing, it is phys-
ically impossible for this value to exceed the area of a
single PC lipid; such a result implies that the area of
a condensed lipid is negative. This is particularly true
when fit to the Lipid17 data. While the cholesterol con-
densing parameters appear to be more realistic for the
experimental data of Hung et al., the model still predicts
that each DMPC lipid is condensed by more than half
of its area, and that only 2.3 neighbouring DMPC lipids
are condensed, which is small considering the number
of lipids which may pack around a cholesterol molecule.
We suggest that the upper limit of ∆a should be no more
than the difference between the lipid areas of gel phase
and liquid phase membranes. For example, DMPC has a
gel phase lipid area of 0.47 nm2 80, but has an area of 0.6
nm2 above the phase transition. Using this constraint,
the upper limit of ∆a for a DMPC-cholesterol bilayer is
0.13 nm2, in good agreement with the value predicted by
the two linear-equation model when fit to the Hung et al.
dataset (table S3). Owing to these fitting issues, it was
decided to adopt the two linear-equation model.

Appendix B: X-ray Form Factors

X-ray form factors were calculated from simulations
and allow for a more direct comparison between simula-
tion and experiment compared to the comparison of lipid
areas, which are calculated from X-ray form factors using
a set of assumptions72,78. We note that X-ray form fac-
tors calculated directly from simulations have system size
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effects, which results in issues when defining evaluation
metrics, as discussed in81. A metric previously defined
by the NMRlipids project81 has been employed here, and
involves comparison of the first form factor minimum of
experimental and simulation systems. As this method
results in excluding the majority of the data by focus-
ing on a single value of the form factor curve, we have
relied more upon the comparison of lipid areas, despite
this method having its own limitations.

In-house code was used to calculate X-ray form fac-
tors from simulations. While existing code exits, such
as SIMtoEXP82 and as a part of the NMRlipids data-
bank project81, such implementations impose limitations.
SIMtoEXP employs a graphical user interface (GUI),
which limits automation, while the NMRlipids databank
approach, must be used in conjunction with an NM-
Rlipids databank, imposing additional steps. The ap-
proach used here is implemented in Python, and can
be used as either a command line tool, or as a Python
package, allowing for flexible usage for either single sim-
ulation trajectory analysis or high throughput analysis.
Our code is available at: https://github.com/sawds/
FF_MAn.
X-ray form factors are calculated using the stan-

dard equation for lipid bilayers without assuming bilayer
symmetry81:

F (q) =

∣∣∣∣ ∫ D/2

−D/2

∆ρe(z) exp izqzdz

∣∣∣∣ (B1)

where ∆ρe(z) is the difference in total and bulk sol-
vent electron density, z is the coordinate along the bilayer
normal (assumed to be the simulation z axis) and the in-
tegral is over the simulation box of size D, centred at
0. In practice, the integral is replaced with a summation
over discrete bins along the simulation z-axis (bilayer nor-
mal), with a bin width of 0.2 Å (matching the bin width
used by SIMtoEXP82). The solvent electron density is
calculated from the solvent layers above and below the
bilayer. Simulation trajectories were centred on PC lipid
tail termini CH3 groups before form factors were calcu-
lated. To calculate electron density for the united-atom
systems, the electron count of non-polar hydrogen atoms,
which are not explicitly modelled, are added to electron
count of the bonded heavy atom. Coarse-grained force
fields are excluded from this analysis owing to ambigu-
ity of electron counts of the coarse-grained beads. For
example, MARTINI uses the same coarse grained topol-
ogy to model DMPC and DLPC lipids, despite DLPC
having two fewer carbons per acyl tail. Thus it is not
obvious if the CG beads, which remain identical for both
lipids, should be assigned different electron counts. Fur-
thermore, some atoms are not assigned to a single bead
in MARTINI, again complicating electron assignment.
While such hurdles can be overcome, they likely require
in-depth study to quantify the sensitivity of different elec-
tron assignments to the resulting X-ray form factors to

be reliable. Such analysis is beyond the scope of this
work.
Limited by the availability of experimental form fac-

tor data across a range of cholesterol concentrations, we
compare simulations at 0 % and 30 % cholesterol mole
fraction to the data of Pan et al.11. Unfortunately, the
experimental data of Hung et al.70 only provides X-ray
intensities, and not form factors. We note that the exper-
imental data from Pan et al. is recorded at a cholesterol
mole fraction of 30 %, while the most similar simula-
tions performed here have a cholesterol mole fraction of
31.25 %. Our analysis, following that employed by the
NMRlipids project81, focuses on the location of the first
minimum of the form factor plot. The precise location
of the first minimum correlates with the thickness of the
membrane81, and therefore will also correlate with mem-
brane and lipid area. The main advantage of this ap-
proach, as opposed to metrics based on residuals between
experimental and simulation data, is that the precise lo-
cations of form factor minima are invariant to simula-
tion box size and does not require scaling of the simula-
tion form factors to match the relative intensity scale of
experiments. While robust simulation corrections have
been proposed to address the impact of system size on
relative lobe heights83, these corrections were not imple-
mented in the NMRLipids study81, and hence were not
adopted here. Thus while this method allows for a sim-
ple and more direct comparison between simulation and
experimental data, it also reduces the (already limited)
amount of experimental data available for comparison.
The Cartesian distances between experimental and

simulation form factor first minimum locations are pre-
sented in figure 8. Experimental values taken from11 were
extracted from graphical plots using WebPlotDigitizer71.
The comparison of experimental form factor data to

simulation offers a more mixed result compared to the
area data. Generally force fields more closely align with
experiment for pure PC membranes compared to PC
cholesterol membranes mixtures. All-atom force fields
consistently under predict the minimum location, while
united-atom forcefields over-predict in DMPC and under-
predict in DOPC. The form factor analysis here does
not show the same correlation of our previous analysis,
which suggests that all-atom force fields better model
cholesterol containing DMPC lipid systems. Indeed, for
the lipid area analysis, CHARMM36 was one of the best
performing force fields, however diverges the most from
experimental form factor minimum locations. This may
be due to the over-reliance on only two cholesterol con-
centrations per lipid, compounded by using only a single
point from the from factor curves. The critical lack of
more experimental data is of particular concern when
performing this analysis, due to it necessitating exclud-
ing most of the form factor curve.
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FIG. 8. Cartesian distances between the location of the first
minima in X-ray form factors of experimental and simulation
systems. Each data point represents an independent replica.
Experimental data was recorded at 0 % and 30 % cholesterol
mole fractions.
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H. Martinez-Seara, N. Reuter, R. B. Best, I. Vattulainen, L. Mon-
ticelli, X. Periole, D. P. Tieleman, A. H. De Vries, and S. J.
Marrink, Nat Methods 18, 382 (2021).

48S. Genheden and J. W. Essex, J Comput Aided Mol Des 30, 969
(2016).

49A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair,
C. Oostenbrink, and A. E. Mark, J. Chem. Theory Comput. 7,
4026 (2011).

50M. Stroet, B. Caron, M. S. Engler, J. van der Woning, A. Kauff-
mann, M. van Dijk, M. El-Kebir, K. M. Visscher, J. Holownia,
C. Macfarlane, B. J. Bennion, S. Gelpi-Dominguez, F. C. Light-
stone, T. van der Storm, D. P. Geerke, A. E. Mark, and G. W.
Klau, J Comput Aided Mol Des 37, 357 (2023).

51M. Bachar, P. Brunelle, D. P. Tieleman, and A. Rauk, J. Phys.
Chem. B 108, 7170 (2004).

52A. Kukol, J. Chem. Theory Comput. 5, 615 (2009).
53T. Piggot, J. Essex, and J. Allison, Manuscipt in preparation

(2024).
54L. Martinez, R. Andrade, E. G. Birgin, and J. M. Mart́ınez,

Journal of Computational Chemistry 30, 2157 (2009).
55J. Nagle, R. Zhang, S. Tristram-Nagle, W. Sun, H. Petrache, and

R. Suter, Biophysical Journal 70, 1419 (1996).
56R. J. Mashl, H. L. Scott, S. Subramaniam, and E. Jakobsson,

Biophysical Journal 81, 3005 (2001).
57K. Hristova and S. H. White, Biophysical Journal 74, 2419

(1998).
58M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith,
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