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ABSTRACT
Membrane properties are determined in part by lipid composition, and cholesterol plays a large role in determining these properties. Cellular
membranes show a diverse range of cholesterol compositions, the effects of which include alterations to cellular biomechanics, lipid raft for-
mation, membrane fusion, signaling pathways, metabolism, pharmaceutical therapeutic efficacy, and disease onset. In addition, cholesterol
plays an important role in non-cellular membranes, with its concentration in the skin lipid matrix being implicated in several skin diseases. In
phospholipid membranes, cholesterol increases the tail ordering of neighboring lipids, decreasing the membrane lateral area and increasing
the thickness. This reduction in the lateral area, known as the cholesterol condensing effect, results from cholesterol–lipid mixtures devi-
ating from ideal mixing. Capturing the cholesterol condensing effect is crucial for molecular dynamics simulations as it directly affects the
accuracy of predicted membrane properties, which are essential for understanding membrane function. We present a comparative analysis of
cholesterol models across several popular force fields: CHARMM36, Slipids, Lipid17, GROMOS 53A6L, GROMOS-CKP, MARTINI 2, MAR-
TINI 3, and ELBA. The simulations of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) membranes with varying cholesterol concentrations were conducted to calculate the partial-molecular areas of cholesterol and other
condensing parameters, which are compared to the experimental data for validation. While all tested force fields predict small negative
deviations from ideal mixing in cholesterol–DOPC membranes, only all-atom force fields capture the larger deviations expected in DMPC
membranes. United-atom and coarse-grained models under-predict this effect, condensing fewer neighboring lipids by smaller magnitudes,
resulting in too small deviations from ideal mixing. These results suggest that all-atom force fields, particularly CHARMM36 or Slipids, should
be used for accurate simulations of cholesterol-containing membranes.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0238409

I. INTRODUCTION

Lipid membranes are one of the most widespread cellular struc-
tures. While lipid membranes have long been understood to perform
as selective barriers that surround cells, an array of additional roles
and functions of these membranes has been discovered. For exam-
ple, membranes can act as regulators of protein function, as a way to
segregate intra-cellular components, and as signaling platforms.1,2

Different membranes, both within and across species, have evolved
to perform specific functions determined by the composition and
arrangement of their components. For example, animal plasma

membranes have evolved to contain a wide-variety of lipids that
include many different types of phospholipids, sphingolipids, and
sterols. Different lipid species are commonly distributed unevenly,
both between membrane leaflets and laterally within a leaflet.3–5

This differential distribution enables correct membrane function,
for example; phosphoinositol lipids, minor components of the
plasma membrane, are predominantly located within the cytoplas-
mic leaflet of the membrane to perform their role in intra-cellular
signaling.5

Within the aforementioned plasma membrane, another lipid
component essential for correct membrane function is the sterol
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molecule cholesterol. Indeed, it is hard to overstate the importance
of cholesterol’s role as a lipid, as highlighted by its ubiquity in all ani-
mal plasma membranes as well as its common occurrence in many
other types of membranes. For example, cholesterol has an impor-
tant role within the stratum corneum membrane and the barrier
function of the skin.6 Cholesterol makes up a large component of
many of the membranes in which it is found; for the example of
plasma membranes, this is roughly 40% of the overall lipid con-
tent.7 Much research into the effects of cholesterol on membrane
properties over the past century has demonstrated that cholesterol
increases the ordering of lipid tails and therefore decreases the
lateral membrane area while increasing the membrane thickness.
This increased ordering is believed to arise from the unique struc-
ture of cholesterol (Fig. 1), which allows it to enhance the packing
together with the surrounding membrane lipid tails. The extent of
the cholesterol-induced change has been shown to be dependent on
the types of lipids comprising the membrane, with greater effects
arising with increased lipid tail length and saturation.8–11 While
not the only important physiological function of cholesterol,12 the
cholesterol specific ordering of lipid tails decreases membrane per-
meability and fluidity, alters the mechanical properties of the mem-
brane, and is believed to be essential for correct membrane lateral
heterogeneity.13

An important property of cholesterol induced lipid order-
ing is that the reduction observed in the membrane area due
to cholesterol ordering is not linear with respect to increasing
cholesterol concentration. This phenomenon was first reported by

FIG. 1. Molecular structure of cholesterol, DMPC, DOPC, and POPC lipids.

Leathes14 as a tendency for the lateral area of cholesterol containing
monolayers to deviate negatively from ideal mixing behavior. This
negative deviation from ideal mixing in cholesterol–lipid mem-
branes has since been termed the cholesterol condensing effect
and is well studied in phosphatidylcholine (PC) lipid membranes
both experimentally9,10,15,16 and computationally.17–27 Such non-
ideal mixing behavior occurs because at low cholesterol concen-
trations, each cholesterol molecule is able to impose an order-
ing effect on multiple neighboring lipids, causing a decrease in
the lateral area of these lipids and therefore a greater overall
decrease in the membrane area than expected. At higher con-
centrations, cholesterol molecules are more likely to be closer
together, resulting in an overlap of the effective condensing area
of each cholesterol molecule, in turn reducing the magnitude of
the condensing effect per cholesterol molecule. More recently,
Edholm and Nagle have reported that cholesterol has a nega-
tive partial-molecular area at low concentrations in simulations
of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers,8
and experimental studies have reported a negative partial-molecular
area of cholesterol in 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) and DPPC membranes9–11 but a positive value for 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes.11 The
negative partial-molecular areas of cholesterol, where the addition
of extra cholesterol molecules results in a smaller overall membrane
area, are at the extreme of such non-ideal mixing behavior and the
condensing ability of cholesterol. The differences observed between
lipids with two fully saturated (DMPC and DPPC) and two monoun-
saturated (DOPC) lipid tails, including a lack of observed negative
partial-molecular area of cholesterol with DOPC, seemingly arise
from a weaker cholesterol condensing ability when combined with
more disordered, unsaturated, lipid tails.

Molecular dynamics simulation is a powerful tool for mem-
brane analysis, having been routinely used alongside experi-
mental data to provide molecular level insights into cholesterol
containing membrane systems.17,18,23,25–35 The accuracy of simu-
lations hinges significantly on the ability of force field parameter
sets to replicate molecular behaviors. This accuracy is paramount
in capturing interactions between system components. In partic-
ular, in cholesterol containing membranes, accurately modeling
cholesterol–lipid interactions is essential to correctly model the
behavior of cholesterol. However, until recently, very little work
has been published examining cholesterol simulation models.36 Cur-
rently, there are several force fields available, which may be used
to model cholesterol containing membranes, but there is a general
lack of information regarding the suitability and accuracy of such
force field parameters. Recently, the NMRlipids project has aimed to
address this problem through primarily a comparison of simulations
containing varying concentrations of PC lipids and cholesterol with
experimental data regarding C–H order parameters, lipid diffusion,
and x-ray scattering data.36 This work demonstrated that all the force
field parameters tested had room for improvement with regards to
reproducing these experimental data.

Within this work, we sought to further expand the testing of
cholesterol force field parameters. In particular, if a force field is
to accurately model cholesterol containing membranes, we believe
that accurately reproducing the cholesterol condensing effect and
predicting the partial-molecular areas of cholesterol similar to exper-
imental values is essential. The following work, therefore, presents
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a comprehensive comparison of several force fields and cholesterol
models for simulating cholesterol in DMPC and DOPC membranes
with the goal of examining the ability of force fields to match the
experimental condensation data. In addition, the cholesterol con-
densing effect in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) membranes is also investigated. The force fields studied are
divided into three categories: all-atom force fields (AA), united-atom
(UA) force fields, and coarse-grained (CG) force fields. This work,
therefore, covers many of the commonly used MD cholesterol force
field parameters currently available.

II. MATERIALS AND METHODS
A. Simulation parameters

Force fields included in this analysis are as follows: (i) all-
atom force fields: CHARMM36,37 Slipids,38 and Lipid17;39–41 (ii)
united-atom force fields: GROMOS 53A6L

42 (also called GRO-
MOS 54A7) and GROMOS-CKP;43 and (iii) coarse-grained force
fields: the MARTINI 2 coarse-grained force field alongside three
unique MARTINI cholesterol models, an older model (MAR-
TINI 2.0 cholesterol),44 the standard cholesterol model used by
MARTINI 2 (MARTINI 2.2 cholesterol),45 and a model by Daily
et al. (MARTINI Daily et al.),21 the MARTINI 3 force field,46,47

and ELBA, a dual-resolution coarse-grained/all-atom force field.48

Cholesterol parameters for both of the GROMOS force fields were
taken from a manual entry in the Automated Topology Builder
(ATB) database.49,50 For GROMOS-CKP, the parameters published
by Bachar et al.51 were employed for the double bond in oleoyl
tails. While our previous work demonstrated that the parameters
employed by Kukol52 resulted in order parameters around the dou-
ble bond that were in substantial disagreement with experiment,43

subsequent investigation has identified that Kukol did not correctly
employ the parameters published by Bachar et al. Tests employ-
ing the correct Bachar parameters for the double bond demonstrate
minor improvements in the experimental agreement of the order
parameters when compared to the original GROMOS-CKP simu-
lations employing standard GROMOS parameters for the double
bond.53

Initial all-atom and coarse-grained structures were generated
using PACKMOL.54 All-atom structures were converted for use in
united-atom simulations by removing non-polar hydrogen atoms
and for use with the ELBA force field using in-house scripts. To
make the conversion from all-atom to united-atom systems as sim-
ple as possible for both this work and future studies, all the united-
atom lipid and cholesterol GROMACS topology files were modified
to rearrange the atom order to match that of the corresponding
Chemistry at Harvard Molecular Mechanics (CHARMM) force field
topologies. While somewhat laborious, such modifications to the
topology files now enable trivial conversion of CHARMM all-atom
membrane structures to simulation ready united-atom ones (e.g.,
through a single grep command) without the need for tools to alter
the atom order of the structures.

Each system consisted of 128 total lipids and 4096 water
molecules, or the equivalent number of water beads for CG sys-
tems. This is a higher level of hydration than conditions employed
in the experiments that generated our reference data. However,
we note that such a difference in hydration does not impact upon
membrane properties or the determined x-ray scattering data.55–57

Membranes consisted of mixtures of either DMPC, POPC, or DOPC
and cholesterol across a range of 14 concentrations. Exact lipid
compositions are described in the supplementary material. MAR-
TINI systems used the 1,2-dilauroyl-sn-glycero-3-phosphocholine
(DLPC) lipid model, which also represents DMPC lipids owing to
the lower coarse-grained resolution. The majority of the simulations
were performed at lower cholesterol concentrations, where a nega-
tive partial-molecular area of cholesterol has been reported and the
cholesterol condensing effect is at its strongest.8,11 Five repeats were
run per cholesterol concentration, each using independent starting
structures. All simulations were performed using the 2018 series
of the GROMACS simulation package,58 except for ELBA, which
used the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) (version 29 Oct 2020).59

Systems were minimized using the steepest descent algorithm
for 5000 steps, before a three-step equilibration process. During
equilibration, a Berendsen thermostat60 was used to maintain a tem-
perature of 303.15 K (above the phase transition of all phospholipids
tested here), using a coupling constant of 1.0 ps. A semi-isotropic
Berendsen barostat60 was used to maintain a pressure of 1 bar along
the xy plane and z axis (the membrane plane and normal), with
a coupling constant of 5.0 ps, and a compressibility of 4.5 ×10−5

bars−1. Lipids and solvent were coupled to separate thermostats. Ini-
tially, a NVT equilibration step of 0.25 ns was performed, followed
by an NPT equilibration step of 0.125 ns with a time step of 1 fs.
The time step was increased to 2 fs for the final equilibration stage
of 1 ns.

The ELBA systems utilized a modified NVT equilibration pro-
tocol to equilibrate the longer time step. Initial NVT equilibration
consisted of a time step of 0.6 fs for 6 ps, followed by increasing the
time step to 1.2 and 2.0 fs for 120 and 500 ps. Subsequent equili-
bration in the NPT ensemble was identical to that used for other
systems.

Production simulations were run for 200 ns, using the leapfrog
integrator with a 2 fs time step for all-atom systems, a 2 fs time step
for united-atom systems, 12 fs for MARTINI 2 systems, 20 fs for
MARTINI 3, or a dual time step of 2 and 6 fs for ELBA systems,61

which employed the reversible reference system propagation algo-
rithm (rRESPA) integrator.62 The Nosè–Hoover thermostat63 was
used to maintain a temperature of 303.15 K with a time constant
of 1.0 ps for all systems except MARTINI, which used the velocity
rescale thermostat,64 as per published protocols.37–43,65 A pressure
of 1 bar was maintained using the Parrinello–Rahman barostat,66

with a time constant of 5.0 ps for all systems except MARTINI 2
systems, which employed the Berendsen barostat, as per published
protocols.37–43,65 The particle mesh Ewald (PME) method was used
to solve long range electrostatic interactions, except for MARTINI
and GROMOS systems, which employed the reaction field method,
as used in the original work publishing these force fields. In partic-
ular, GROMOS simulations employed a relative dielectric constant
beyond the cutoff of 62, as applicable for simple point charge (SPC)
water,67 while MARTINI simulations employed a relative dielectric
constant of 15 within the cutoff and an infinite relative dielectric
constant beyond. The linear constraint solver (LINCS) algorithm
was used to constrain all bonds involving hydrogen atoms, except for
MARTINI systems, where LINCS was used to constrain all bonds.
The LINCS order and the number of iterations were set to 4 and 1,
respectively, for all simulations except those using the MARTINI 2
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TABLE I. Parameters used in simulations.

Force field LJ type LJ cutoff (nm) Electrostatic type
Electrostatic
cutoff (nm)

CHARMM36 Force-switch 1.0–1.2 PME 1.2
Slipids PME 1.0 PME 1.0
Lipid17 Cutoff a 1.0 PME 1.0
GROMOS 53A6L Cutoff 1.0 Reaction field 1.0
GROMOS-CKP Cutoff 1.2 Reaction field 1.2
MARTINI 2 and 3 Potential-shift 1.1 Reaction field 1.1
ELBA Force-switch 1.0 PME 1.2
aAn additional dispersion correction was also included.

force field, where the values of 8 and 2 were used due to issues
with energy conservation.68 The remaining parameters were set
to best match those used in the original publications, or para-
meters commonly used in the literature, and are outlined in Table I.
For GROMOS-CKP and GROMOS 53A6L simulations, the settings
employed for the cutoffs were those identified to most accurately
reproduce the experimental properties of phospholipid membranes
when performing simulations with the Verlet cutoff scheme, as
employed in modern versions of the GROMACS software.53

B. Analysis
1. Area per lipid

The average area per lipid, a, was calculated from simulations
by dividing the x–y area of the simulation box, Ax–y, by the number
of lipids per leaflet, N leaflet,

a(x) = ⟨ Ax−y

Nleaflet
⟩, (1)

where ⟨⋅ ⋅ ⋅⟩ represents the ensemble average and a has been writ-
ten as a function of the cholesterol mole fraction x, highlighting
the effect of cholesterol on the membrane area. All analysis was
performed using the last 50 ns of simulations only.
2. Condensation analysis

The partial-molecular area of cholesterol, alongside several
other cholesterol condensing parameters, is used for force field val-
idation. These condensing parameters are calculated by fitting a
model to the average area per lipid data of membranes across a range
of cholesterol concentrations and then calculating the derivatives
of the curve for a given cholesterol concentration. Two models are
discussed in this work, one using a single non-linear equation and
the other using two linear-equations. While all these equations were
originally derived by Edholm and Nagle,8 in the original publica-
tion, only the non-linear equation model was used. The equations
defining the models are introduced below.

We can define the average area per lipid of a binary mixture of
a PC and a cholesterol lipid as a mole fraction weighted average of
the area per lipid of the individual components,

a(x) = (1 − x)âpc + xâchol, (2)

where x is the cholesterol mole fraction and âpc and âchol are the con-
stant lipid areas of the PC and cholesterol lipid, respectively. Here,

we use “constant” to signify that these values do not change with
respect to cholesterol mole fraction. The constant PC lipid area can
be calculated from a pure PC lipid membrane, while the constant
area of cholesterol is more challenging to define, as cholesterol does
not readily form a bilayer. While simple, Eq. (2) is inaccurate in
its assertion that PC and cholesterol mixtures result in ideal mixing
behavior with respect to lipid areas. To address this approximation,
one strategy is to replace the constant area terms with partial-molar
area terms, which would be functions of the cholesterol mole frac-
tion. However, as the constant area formulation is enticing from
an interpretive perspective, additional terms are instead added to
Eq. (2), to capture the cholesterol condensing effect as characterized
by a negative deviation from ideal mixing.

For low cholesterol concentrations, each cholesterol added to
the membrane will condense the maximum possible number of
neighboring lipids, n, resulting in each of the neighboring PC lipids
having an area reduced by Δa,

a(x) = (1 − x)âpc + x(âchol − nΔa). (3)

The deviation from ideal mixing is captured by the remaining
parameters, n and Δa, which quantify the reduction in the mem-
brane area per cholesterol molecule as caused by the condensing
effect. n is the number of lipids, which are condensed by a single
cholesterol molecule, and Δa is the reduction in area associated with
the condensing of a single PC lipid. Plotting a(x)

1−x against x
1−x yields

a gradient given by âchol − nΔa, providing a graphical method for
determining the partial molecular area of cholesterol.8,27

For high cholesterol concentrations, each PC lipid will likely
already neighbor a cholesterol molecule, resulting in all PC lipids
being condensed, and thus each PC lipid will already have an area
reduced by Δa. Adding an additional cholesterol molecule will
increase the membrane area by the constant cholesterol area, âchol.
Thus, in the limit of high cholesterol concentration, the membrane
area behavior is governed by the following equation:

a(x) = (1 − x)(âpc − Δa) + xâchol (4)

Least squares regression was used to fit Eqs. (3) and (4) to the
area per lipid data. We note that while this model is termed the two
linear-equation model, as both equations are fit simultaneously (i.e.,
as parameters are shared between equations, residuals are calculated
across both equations and minimized simultaneously), the model is
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in fact non-linear. Standard errors were estimated from the para-
meter covariance matrix using a linear approximation to the model
function around the optimum.69

The partial-molecular area of cholesterol apm
chol may be calcu-

lated as the constant area of cholesterol âchol minus how much it
condenses the membrane,

apm
chol = âchol − nΔa. (5)

This corresponds to the intersect of the low cholesterol region
linear equation [Eq. (3)] with the ordinate x = 1, which is commonly
how partial areas are calculated.8,10

Finally, we note that previously a single non-linear equation
was used to model the cholesterol condensing effect across the whole
range of cholesterol concentrations, which is also derived by Edholm
and Nagle,8

a(x) = c0 + c1x + c2(1 − x)e−c3x, (6)

where

c0 = âpc − Δa, (7a)

c1 = Δa + âchol − âpc, (7b)

c2 = Δa, (7c)

c3 = n. (7d)

Further details on this single equation model can be found in
Ref. 8.

C. Lipid tail order parameters
The lipid acyl tail order parameters (SCH)were calculated using

the following equation:

SCH = ∣⟨3 cos2 θ − 1⟩/2∣, (8)

where θ is the angle between the CH bond vector and the Z axis of
the simulation cell. Order parameters were then averaged over the
CH bonds of both lipid tails and all PC lipids in the system. The
lipid tail positions corresponding to carbon atoms involving double
bonds were excluded as their corresponding order parameter val-
ues are very low and therefore skew the comparison of DMPC with
POPC and DOPC lipids.

III. RESULTS
The average lipid areas were calculated across a range of choles-

terol concentrations for DMPC and DOPC membrane simulations
and were used to fit the cholesterol condensing effect models. Ini-
tially, the single non-linear equation model [Eq. (6)] was fitted to
the data. Two sets of experimental data report the average lipid areas
for DMPC and DOPC across a range of cholesterol concentrations:
the data of Hung et al.70 and the data of Pan et al.11 Both experi-
mental datasets were acquired from the original publications, using
WebPlotDigitizer to extract numerical data from plots.71 For exper-
imental datasets from Pan et al. and Hung et al., and the simulation
data presented here, this single non-linear equation resulted in sig-
nificant fitting issues, as is further discussed in Appendix A. As such,

two linear-equations [Eqs. (3) and (4)], also derived by Edholm and
Nagle,8 were used to model the area per lipid at limiting low and
high cholesterol concentrations.

A. Two linear-equation model
Owing to the poor fitting behavior of the single non-linear

equation model (see Appendix A), Eqs. (3) and (4) were fit to the
lipid area data at low and high cholesterol concentration regions
(x < 0.2 and x > 0.3). These cutoffs were chosen as they define
the linear regions of the linear response of lipid area with respect
to increasing membrane cholesterol content. The resulting fits are
presented in Figs. 2 and 3 for DMPC and DOPC membranes, respec-
tively. The experimental data from Hung et al.70 and Pan et al.11 are
included in the analysis for comparison. However, the data from
Pan et al. have only four observations, too few to fit this model.
Parameters calculated from fitting the two linear-equation model to
simulation and Hung et al. data are presented in the supplementary
material (Table S1).

Although the data of Pan et al. have too few data points
to fit the two linear equation model, they have been included to
provide a qualitative measure of experimental error. The experi-
mental datasets appear to be more similar in DOPC membranes
compared to DMPC membranes. For DMPC membranes, the inter-
dataset difference appears to be largest in the cholesterol mole
fraction region of 0.2–0.3; however, there are no data from the
Pan et al. dataset for cholesterol mole fractions above this range.
Overall, the comparison between experimental datasets is limited
in its ability to assess the experimental error, highlighting the
need for more experimental data over a wide range of cholesterol
concentrations.

It is clear from the plots (Figs. 2 and 3) and the high R2 values
of the fits (see Tables S3 and S4 of the supplementary material) that
the two linear fits are sufficient to model the lipid area data. As a
means of validating the two linear-equation model in light of the
poor fitting behavior of the single non-linear equation model, we
first analyzed the results of fitting to experimental data from Hung
et al.70 In the case of the Hung et al. DMPC membrane data, the two
linear fits predict a DMPC lipid area of 0.60 ± 0.00 nm2, in excellent
agreement with the data point at x = 0 and other literature values.11

This indicates that the fit of the condensing effect parameters (âchol,
Δa, and n) does not constrain the model to poorly predict the first
data point.

For DOPC membranes, the two linear fits to the Hung et al.
data predict a DOPC lipid area of 0.74 ± 0.00 nm2, larger than other
experimental values reported in the literature. Previously reported
values, also at 30 ○C, are 0.67,72 0.72,11 and 0.72 nm2,73 with the lat-
ter two values using the same x-ray methodology. It is somewhat
concerning that the former, and arguably more reliable, DOPC area
(0.67 nm2) was calculated using a more robust joint x-ray and neu-
tron refinement approach, as compared to relying only on x-ray data
in the case of Hung et al. Despite this, the Hung et al. dataset is the
only dataset available with sufficient observations spanning a range
of cholesterol concentrations and therefore is the only dataset that
may be used as a benchmark for this analysis. Despite this, the lipid
area predicted by the two linear fit method is consistent with the
position of the first data point (which represents the DOPC area),
suggesting that the divergence from other experimental values arises
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FIG. 2. Top: Average lipid area simulation data of DMPC cholesterol membranes (dots) were used to fit a cholesterol condensing model involving two linear-equations
(dashed lines). Experimental data are shown with black crosses and triangles. Only the data of Hung et al. are used in the experimental two linear-equation model. Bottom:
Calculated cholesterol condensing parameters are also presented. Error bars represent one standard deviation. Fitted parameters from the experimental data of Hung et al.
are also presented for comparison (blue solid line) (blue dashed line represents one standard deviation).

from the dataset of Hung et al., and not the two linear-equation
model per se.

The two linear fits suggest a partial-molecular area of choles-
terol (apm

chol) of −0.06 ± 0.04 nm2 for the Hung et al. DMPC mem-
brane data. For DOPC membranes, apm

chol is predicted to be
0.03 ± 0.04 nm2, significantly larger than that for DMPC mem-
branes, in qualitative agreement with the literature.11

The predicted constant area of cholesterol (âchol) for Hung
et al. DMPC membranes is 0.38 ± 0.04 nm2, falling within the
experimental range of 0.3–0.4 nm2.15,74,75 However, for the DOPC
membrane, the model predicts a slightly lower value of 0.35 ± 0.03
nm2, despite the expectation of this method for âchol to be indepen-
dent of the degree of the condensing effect. The discrepancy between
these values for DMPC and DOPC membranes is small, with each
value falling within the standard deviation of the other.

Currently, there are no experimental literature values for the
maximum number of lipids a single cholesterol molecule can

condense (n), or by how much the area of a condensed lipid
is reduced (Δa). However, the predicted values of 3.4 ± 0.4
and 0.13 ± 0.03 nm2 for DMPC membranes and 3.5 ± 0.5 and
0.09 ± 0.02 nm2 for DOPC membranes are all physically reasonable.
The model predicts that a cholesterol molecule condenses approxi-
mately the same number of neighboring lipids for both DMPC and
DOPC membranes, with the differences in cholesterol condensation
arising from by how much these lipids are condensed.

Overall, the two linear-equation model appears to adequately
describe the data from Hung et al. and the data from the simulations
performed here, of which both show linear behavior in the low and
high cholesterol concentration regions.

B. Force field comparison
Having validated the two linear-equation model with the exper-

imental data, the model was fitted to the simulation data. Here,
several force fields are tested in their ability to accurately reproduce
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FIG. 3. Top: Average lipid area simulation data of DOPC cholesterol membranes (dots) were used to fit a cholesterol condensing model involving two linear-equations
(dashed lines). Experimental data are shown with black crosses and triangles. Only the data of Hung et al. are used in the experimental two linear-equation model. Bottom:
Calculated cholesterol condensing parameters are also presented. Error bars represent one standard deviation. Fitted parameters from the experimental data of Hung et al.
are also presented for comparison (red solid line) (red dashed line represents one standard deviation).

the experimental data, in terms of the cholesterol condensing do
effect parameters.

1. All-atom force fields
a. CHARMM36. The CHARMM36 force field predicts an apm

chol
of −0.14 ± 0.01 nm2 for DMPC membranes, the most negative of
all the force fields tested here and, indeed, slightly too negative
compared to the fit to the experimental data of Hung et al., which
predicts apm

chol = −0.06 ± 0.04 nm2.
The other condensing parameters predicted from the two

linear-equation model allow further insights into differences
between the CHARMM36 force field and the experimental data
of Hung et al. CHARMM36 predicts a cholesterol area (âchol) of
0.36 ± 0.01 nm2, close to the experimental fit, which predicts 0.38
± 0.04 nm2. The average change in the area of a lipid associated with
condensation (Δa) predicted by CHARMM36 is 0.16 ± 0.01 nm2,

which is slightly larger than the experimental fit, 0.13 ± 0.03 nm2,
but falls within one standard deviation. The final condensing para-
meter, the maximum number of lipids ordered by a cholesterol
molecule (n), is predicted to be 3.1 ± 0.1, which is slightly smaller
than the experimental value of 3.4 ± 0.4 but remains within one
standard deviation. Overall, the CHARMM36 force field is in
reasonable agreement with experiment, although small deviations
from the experimental values in all the condensing parameters
result in a larger (albeit still low) experimental deviation in the
partial-molecular area of cholesterol.

For DOPC membranes, the value of apm
chol predicted by

CHARMM36 is 0.13 ± 0.00 nm2, which is too large compared to
the experimental value of 0.03 ± 0.04 nm2. CHARMM36 underesti-
mates all the remaining parameters, predicting values for âchol, Δa,
and n to be 0.26 ± 0.00, 0.05 ± 0.00, and 2.4 ± 0.1 nm2, respec-
tively, all falling below the experimental values of 0.35 ± 0.03,
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0.09 ± 0.02, and 3.5 ± 0.5 nm2. In particular, âchol falls below to
the experimental range of 0.3–0.4 nm2 and is also different from
the value predicted for DMPC membranes. The differing values of
âchol predicted in DMPC vs DOPC membranes are discussed later.
Thus, it would appear that too small values of Δa and n are partially
compensated by a low value of âchol, i.e., smaller values of Δa and
n result in larger values of apm

chol, while smaller values of âchol result
in smaller values of apm

chol. This results in a value of apm
chol, which devi-

ates less from the experimental value than the parameters used for
its calculation. Thus, the CHARMM36 force field more accurately
reproduces the cholesterol condensing effect in DMPC membranes
as compared to DOPC membranes; this is the case for many of the
force fields discussed below.

b. Slipids. Similar to the CHARMM36 force field, the Slipids
force field is in good agreement with the DMPC data from Hung
et al. but performs less well for the DOPC data. For DMPC mem-
branes, Slipids predicts a apm

chol of−0.09 ± 0.01, more closely matching
experiment compared to CHARMM36, and in the best agreement
of all the force fields tested here. Slipids predicts an âchol of 0.35
± 0.01 nm2, a Δa of 0.14 ± 0.00 nm2, and an n of 3.1 ± 0.1, all
in good agreement with the Hung et al. data and marginally out-
performing CHARMM36 for values of Δa and n. Overall, for DMPC
membranes, Slipids is a slight improvement on CHARMM36, rep-
resenting the best performing force field studied here in its abil-
ity to predict the cholesterol condensing parameters of DMPC
membranes.

For DOPC membranes, the Slipids force field performs less
well compared to DMPC membranes and predicts condensing
parameters similar to CHARMM36. Slipids predicts apm

chol = 0.14
± 0.01 nm2, too large compared to experiment. In addition, Slipids
predicts âchol = 0.24 ± 0.01 nm2, Δa = 0.04 ± 0.00 nm2, and n = 2.5
± 0.1, all too small compared to experiment. Again, the small values
of Δa and n are partially compensated by a small value of âchol, but
not enough to bring apm

chol more in line with experiment. For DOPC
membranes, the Slipids force field results are similar to, but slightly
worse than, CHARMM36, with the main sources of error coming
from the values of âchol and Δa.

c. Lipid17. Upon initial inspection, the Lipid17 force field per-
forms similarly to the CHARMM36 and Slipids force fields for
DMPC membranes, predicting apm

chol = −0.12 ± 0.01 nm2, in between
values predicted by CHARMM36 and Slipids. In addition, Lipid17
predicts âchol = 0.35 ± 0.01 nm2 lying inside the experimental
range. However, Lipid17 deviates from experiment for the values of
Δa = 0.18 ± 0.01 nm2 and n = 2.5 ± 0.1, which are too high and too
low, respectively. Deviations in these values are in opposite direc-
tions, and thus, they have opposite impacts on apm

chol, which largely
cancel. This results in Lipid17, predicting a value of apm

chol similar
to CHARMM36 and Slipids despite under-performing in terms of
reproducing both Δa and n. This highlights the utility of calculating
cholesterol condensing parameters in addition to partial-molecular
areas.

For DOPC, Lipid17 predicts condensing parameters very sim-
ilar to CHARMM36 and Slipids, with the only difference being
that Lipid17 predicts âchol = 0.23 ± 0.00 nm2, which is too small
compared to experiment and slightly smaller than the values from
CHARMM36 and Slipids.

2. United-atom force fields
a. GROMOS 53A6L. For DMPC membranes, the GROMOS

53A6L force field predicts apm
chol to be 0.06 ± 0.01 nm2, which is

positive and deviates from the experimental value more than any
of the all-atom force fields studied. GROMOS 53A6L predicts a
constant cholesterol area, âchol, of 0.34 ± 0.01 nm2, in good agree-
ment with the experimental value of 0.38 nm2, and also predicts
Δa = 0.11 ± 0.00 nm2, which is smaller than the experimental value
of 0.13 ± 0.03 nm2, but within one standard deviation. For n, the
GROMOS 53A6L force field deviates more from experiment, pre-
dicting 2.4 ± 0.1, significantly smaller than the experimental value
of 3.4 ± 0.4.

For DOPC membranes, the GROMOS 53A6L force field pre-
dicts an apm

chol value of 0.07 ± 0.00 nm2, which is too large compared
to the experimental value of 0.03 ± 0.04 nm2 but is an improvement
compared to the all-atom force fields studied here. Furthermore,
GROMOS 53A6L predicts âchol = 0.33 ± 0.00 nm2, which is slightly
too small compared to the experimental value of 0.35 ± 0.03 nm2.
Finally, GROMOS 53A6L predicts Δa = 0.09 ± 0.02 nm2, identical
to the experimental value, and n = 2.9 ± 0.1, which is too small
compared to experiment. While GROMOS 53A6L slightly under-
predicts the cholesterol condensing effect in DOPC membranes, the
remaining condensing parameters are in good experimental agree-
ment. Overall, GROMOS 53A6L underestimates the magnitude of
the cholesterol condensing effect in DMPC membranes but is in
relatively good agreement with DOPC membranes, improving on
all-atom models in this regard. For both lipid types, the main source
of error lies in under-predicting the number of lipids condensed by
a single cholesterol molecule.

b. GROMOS-CKP. Despite being in the GROMOS family of
force fields, and employing the same cholesterol model, GROMOS-
CKP differs from GROMOS 53A6L in terms of this cholesterol
condensing effect analysis. For DMPC membranes, GROMOS-CKP
predicts apm

chol = 0.10 ± 0.01 nm2, âchol = 0.30 ± 0.01 nm2, Δa = 0.09
± 0.01 nm2, and n = 2.2 ± 0.1, all deviating more from the Hung
et al. values compared to the GROMOS 53A6L force field. Thus, the
GROMOS-CKP force field slightly under-performs the GROMOS
53A6L for DMPC membranes, with a low predicted value of âchol
partially compensated by the low predicted values of Δa and n.

For DOPC membranes, the GROMOS-CKP force field pre-
dicts apm

chol to be 0.14 ± 0.01 nm2, deviating from the experimental
value more than GROMOS 53A6L. The value of âchol predicted by
GROMOS-CKP is 0.28 ± 0.01 nm2 falling under the experimen-
tal range of 0.3–0.4 nm2, but similar to the value predicted by
GROMOS-CKP in DMPC membranes, in contrast to many of the
other force fields studied here. GROMOS-CKP predicts a value of
Δa of 0.06 ± 0.00 nm2, which is in good agreement with the experi-
mental value, but still deviates more than GROMOS 53A6L, and also
predicts a n = 2.5 ± 0.1, which is significantly lower than the exper-
imental value. Similarly to its performance for DMPC membranes,
for DOPC membranes, GROMOS-CKP performs worse than GRO-
MOS 53A6L, with a small value of âchol partially compensating
for small Δa and n values. If the force field more accurately pre-
dicted the constant area of cholesterol with no other modification, it
would overall perform worse in regard to capturing the cholesterol
condensing effect.
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3. Coarse-grained force fields
a. MARTINI 2. Three cholesterol models were tested with the

MARTINI 2 force field: the old MARTINI 2.0 cholesterol model44

(denoted MARTINI 2.0), a newer MARTINI 2.2 cholesterol model
incorporating virtual sites to add asymmetry to the molecule45

(denoted MARTINI 2.2), and a model published by Daily et al.21 fur-
ther increasing the asymmetry and resolution of the model by using
smaller beads (denoted MARTINI Daily et al.). Overall, the MAR-
TINI force field, irrespective of which cholesterol model is used,
performs the least well as compared to the other force fields studied
here. For both DMPC and DOPC membranes, the MARTINI force
field significantly under-predicts the magnitude of the cholesterol
condensing effect.

For DMPC membranes, the MARTINI 2.0 force field predicts
the lowest value of apm

chol of 0.08 ± 0.00 nm2, compared to 0.12 ± 0.00
and 0.11 ± 0.00 nm2 as predicted by MARTINI 2.2 and MARTINI
Daily et al., respectively. Interestingly, all the MARTINI cholesterol
models predict similar values of âchol, with MARTINI 2.0 and 2.2
predicting a value of 0.26 ± 0.00 nm2, while MARTINI Daily et al.
predicts a value of 0.27 ± 0.00 nm2. All these values lie below the
experimental range of 0.3–0.4 nm2. In addition, the MARTINI mod-
els also predict similar values of Δa, with the MARTINI 2.0 model
predicting 0.08 ± 0.00 nm2, and MARTINI 2.2 and Daily et al. both
predicting 0.06 ± 0.00 nm2, all significantly lower than the exper-
imental value of 0.13 ± 0.03 nm2. The models predict slightly
different values for n; MARTINI 2.0 predicts 2.3 ± 0.00, MARTINI
2.2 predicts 2.4 ± 0.00, and MARTINI Daily et al. predicts 2.5 ± 0.00.
These values of n are similar to values predicted by the united-atom
force fields and are too small compared to experiment, 3.4 ± 0.4. For
DMPC membranes, the MARTINI cholesterol models tested here
are in overall poor agreement with experiment, all predicting values
of apm

chol significantly larger than experiment. This is caused by the
cholesterol molecules only slightly condensing neighboring lipids as
suggested by the low Δa value. In addition, the values of apm

chol are
artificially low, caused by the cholesterol models being un-physically
small compared to experiment.

For DOPC membranes, the MARTINI cholesterol models are
again in poor agreement with the Hung data, suffering from the
same issues of predicting values of âchol, Δa, and n, which are all
significantly smaller than the experimental Hung et al. data, while
predicting values of apm

chol, which are too large.
Overall, the MARTINI 2 force field and cholesterol models

tested here poorly capture the cholesterol condensing effect, predict-
ing values of apm

chol too large for both DMPC and DOPC membranes.
This deviation from the experimental data would be even greater
if the MARTINI cholesterol models had a larger, more accurate
area. Small values of Δa and n suggest that the MARTINI choles-
terol models have a relatively small impact on neighboring lipids,
condensing too few by an amount that is too small.

b. MARTINI 3. The MARTINI 3 force field has undergone
significant re-parameterization compared to MARTINI 2. Both
PC lipids47 and cholesterol46 have updated topologies and para-
meter sets to take advantage of the new bead selection available in
MARTINI 3. For DMPC membranes, MARTINI 3 predicts apm

chol
= 0.17 ± 0.00 nm, deviating from experiment more than any of the
MARTINI 2 cholesterol systems. MARTINI 3 predicts âchol = 0.27
± 0.00 nm2, smaller than experiment and similar to values predicted

by MARTINI 2. Interestingly, the MARTINI 3 system predicts Δa
to be 0.04 ± 0.00 nm2, significantly lower than both experiment and
what is predicted by MARTINI 2. Finally, MARTINI 3 predicts n to
be 2.3 ± 0.01, which is too small compared to experiment but similar
to values predicted by MARTINI 2.

For DOPC membranes, MARTINI 3 predicts apm
chol = 0.25

± 0.00 nm 2, again too large compared to experiment and larger
than MARTINI 2 predictions. MARTINI 3 predicts âchol = 0.26
± 0.00 nm2, which is too small compared to experiment but is
larger than predicted by MARTINI 2, and thus an improvement.
Interestingly, MARTINI 3 predicts the largest value of n for DOPC
membranes (4.8 ± 1.6), which is too large compared to experi-
ment. The relatively high error of n likely comes from the value of
Δa = 0.00 ± 0.00, allowing increased freedom in n during fitting.
Overall, MARTINI 3 appears to model the cholesterol condensation
effect less accurately compared to MARTINI 2.

c. ELBA. The ELBA force field is set up in a dual-resolution
configuration, using an all-atom model for cholesterol, specifically
the CHARMM36 model, and a coarse-grained model for the PC
lipid. For DMPC membranes, the ELBA force field predicts an
apm

chol value of 0.03 ± 0.02 nm2, which is too large compared to
experiment. Interestingly, ELBA’s prediction of apm

chol is an improve-
ment on the united-atom GROMOS force fields but not as good
as the all-atom force fields. The value of âchol predicted by ELBA
is 0.29 ± 0.02 nm2, marginally outside of the experimental range
of 0.3–0.4 nm2. ELBA predicts a value of Δa = 0.11 ± 0.01, in fair
agreement with experiment, and a value of n = 2.3 ± 0.2, which is
too small.

It is noteworthy that ELBA uses the CHARMM36 cholesterol
model but predicts a different value of âchol. From the plot of the fit
in Fig. 2, it can be observed that for the ELBA force field, the area
per lipid is not linear with respect to the cholesterol mole fraction
for mole fractions above 0.3. Owing to this, the two linear-equations
were refit using only the data above 0.35, where the three remain-
ing data points exhibit a linear behavior. The resulting fit has no
change in apm

chol but differs in the remaining parameters [see Table
S3 of the supplementary material, denoted as ELBA (x > 0.35)].
The new value of âchol (0.32 ± 0.03 nm2) has been brought signif-
icantly closer to the CHARMM36 value (0.36 ± 0.01 nm2), with
the remaining difference possibly caused by differences in the pack-
ing behavior of the cholesterol model in the coarse-grained ELBA
lipid environment compared to the all-atom CHARMM36 environ-
ment. The updated fit predicts Δa = 0.13 ± 0.02 nm2, matching the
experimental value, but predicts n = 2.1 ± 0.2, significantly lower
than experiment. ELBA also introduces scaling factors into the mix-
ing rules for interactions between the all-atom and coarse-grained
subsystems, affecting the Lennard-Jones interactions and thus the
bead/atom sizes. Overall, for DMPC membranes, the ELBA force
field predicts that cholesterol orders too few neighboring lipid
molecules.

In the case of DOPC membranes, ELBA predicts apm
chol = 0.05

± 0.02 nm2 and is in the best agreement with the experimental
value compared to the other force fields studied here. ELBA pre-
dicts âchol = 0.29 ± 0.02 nm2 in DOPC membranes, just under the
experimental range of 0.3–0.4 nm2, and this time larger than the
value predicted by CHARMM36. Finally, ELBA predicts values of
Δa = 0.11 ± 0.01 nm2 in fair agreement with experiment, but too
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large, and n = 2.3 ± 0.2, significantly lower than experiment. For
DOPC membranes, ELBA is in fair agreement with the experimen-
tal data but predicts the constant cholesterol area and the number
of lipids ordered by cholesterol to be too small. Overall, the per-
formance of ELBA in capturing the cholesterol condensing effect
is more similar to the united-atom force fields tested here, out-
performing MARTINI, but under-performing against the all-atom
force fields.

C. POPC cholesterol containing membranes
POPC-cholesterol systems were simulated owing to POPC hav-

ing a tail saturation character between that of DMPC and DOPC,
with the aim that this may offer additional insights into the role
of saturation on the cholesterol condensing effect. As there are
no experimental data characterizing POPC-cholesterol membrane
areas over a range of cholesterol concentrations for validation, only
all-atom POPC-cholesterol simulations were performed, owing to
these force fields previously performing the most consistently accu-
rate. While GROMOS 53A6L performs more accurately for DOPC
membranes, it fails to predict a negative value of apm

chol for DMPC
membranes. The two linear-equation model was fitted to the lipid
area data, and the results are presented in Fig. 4 and Table S5 of
the supplementary material. For each force field, the corresponding

parameters from fits to DMPC and DOPC membranes are included
for comparison.

The condensing parameters for POPC membranes overall
suggest that the cholesterol condensing effect behavior in POPC
membranes lies somewhere in between that of DMPC and DOPC
membranes. All three of the all-atom force fields predict positive
values of apm

chol close to 0, which are slightly more similar to values
reported for DOPC membranes. The remaining parameters all show
a similar behavior, falling in between values obtained from the cor-
responding DMPC and DOPC fits, with a skew toward the DOPC
data. The exception is that Lipid17 and Slipids predict the values of
n for POPC membranes, which are lower than the DOPC values.

The comparison of parameters between membrane types, in
Fig. 4, also highlights the differences in âchol. The fitted model aims
for âchol to be constant and independent of the membrane compo-
sition. While the fits to the experimental data of Hung et al. yield
similar values of âchol in DMPC and DOPC membranes, this is
clearly not the case for the simulation data.

D. Constrained âchol model
During the fitting of the two linear-equations to DMPC and

DOPC data, it was observed that the area of cholesterol (âchol) dif-
fered between the different membranes. In theory, this should not be

FIG. 4. Left: Average lipid area simulation data of POPC cholesterol membranes (dots) were used to fit a cholesterol condensing model involving two linear fits (dashed
lines). Right: Calculated cholesterol condensing parameters are also presented. Data points for the corresponding parameters of DMPC (light blue) and DOPC (dark red)
membranes are included for comparison. Error bars show one standard deviation.
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the case, with n and Δa varying to accommodate for differences in
cholesterol condensing behavior between lipid types. The two linear
fits consistently predict smaller values of âchol in DOPC membranes
compared to DMPC membranes, with the DOPC values regularly
falling under the experimental range 0.3–0.4 nm2. In an attempt
to reconcile these differences, the two linear-equation model was
refit to the DOPC data, while constraining âchol to the value pre-
dicted from the DMPC membrane. The constrained âchol fits are
presented in Fig. 5, and the fit parameters are listed in Table S6 of
the supplementary material.

For the all-atom force fields, the fits to the low cholesterol
region remain largely unaltered, aligning well with the data. Con-
versely, for the high cholesterol concentration region, the con-
strained fits are less well aligned with the underlying lipid area data,
with the model predicting a too shallow gradient than suggested by
the data, as can be observed in Fig. 5 (top) and from the increase
in mean absolute error (MAE) associated with the constrained fit

(see Table S6 of the supplementary material). Interestingly, for the
united-atom, and coarse-grained force fields, this issue is less pro-
nounced, with a reasonable agreement with the underlying data
points across the full range.

We note that the constraining values of âchol have little impact
on the resulting values of apm

chol, with the other condensing para-
meters shifting to offset the imposed change in âchol. The changes in
condensing parameters are most pronounced for the all-atom force
fields, which result in increased values of Δa but decreased values
of n. As the decrease in n is of a larger magnitude compared to
Δa, this also compensates for the increase in âchol, rationalizing the
consistency of apm

chol values between constrained and unconstrained
fits.

These results suggest that the predicted values of apm
chol are rela-

tively insensitive to the exact value of âchol, with the other cholesterol
condensing parameters adjusting to compensate. The low sensitiv-
ity to the underlying parameters is favorable behavior and allows

FIG. 5. Constrained âchol results. Top: Average lipid area simulation data of DOPC cholesterol membranes (dots) were used to fit a cholesterol condensing model involving
two linear fits (dashed lines). Bottom: Calculated cholesterol condensing parameters are also presented. The experimental data of Hung et al. are also presented for
comparison (red solid line) (red dashed line represents one standard deviation of the value obtained by fitting to the experimental data). Error bars represent one standard
deviation.
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FIG. 6. Average lipid tail order parameters of all-atom simulations of cholesterol containing membranes. The average was taken over each carbon in each acyl tail.
Experimental data for the POPC-cholesterol systems from Ref. 77 are depicted with cross marks. Tail positions corresponding to double bonded carbon atoms were
excluded from averaging.

for increased confidence in the predicted values of apm
chol as the

differences in the underlying parameters only have a small impact.

E. Average lipid tail order parameters
Increased lipid tail order is believed to be central to the mecha-

nism of cholesterol condensation, in which each cholesterol imposes
order on neighboring PC lipids.76 To further investigate the choles-
terol condensing effect in PC membranes, lipid acyl tail order para-
meters were calculated and averaged over each carbon and each tail
for a given cholesterol concentration and are presented in Fig. 6. The
experimental POPC order parameters from Ref. 77 (extracted from
the paper using WebPlotDigitizer71) are also included in Fig. 6. This
analysis was only performed for all-atom simulations, which best
reproduce the experimental data and contain hydrogen positions
required for order parameter calculation.

For DMPC, POPC, and DOPC membranes, there is a posi-
tive correlation between the average lipid tail order parameter and
cholesterol concentration. This agrees with the theory that choles-
terol molecules impose order on neighboring PC lipid molecules.
Interestingly, there is a clear difference in the lipid tail order
parameter behavior of each lipid.

In the case of DMPC membranes, there is a steep increase in the
averaged order parameter from x = 0 to x = 0.3, at which point, the
values plateau to a value of ∼0.35. For DOPC membranes, a much
shallower increase is observed across the whole range of cholesterol
concentrations tested, with no notable plateau.

POPC membranes have an average lipid tail order parameter
character somewhat in between that of DMPC and DOPC. A steady
increase is observed across the majority of the cholesterol concen-
tration range until x = 0.45, at which point, a plateau begins to be
observed, with the average order parameters reaching a final value of
∼0.275, in between values observed at similar cholesterol concentra-
tions for DMPC and DOPC membranes. The simulation averaged
order parameters are in good experimental agreement across the
cholesterol range tested, with the largest discrepancy occurring at a

cholesterol mole fraction of ∼0.35. Among the force fields included
in this analysis, Slipids shows the best agreement with the experi-
mental results. For a more detailed comparison of simulation and
experimental POPC cholesterol order parameters, see Ref. 36.

IV. DISCUSSION
Several lipid force fields have been assessed in their ability

to capture the cholesterol condensing effect in terms of recreat-
ing experimental cholesterol condensing parameters, including the
partial-molecular area of cholesterol. A two linear-equation model
used here differs from a previously used model involving a sin-
gle non-linear equation, despite all equations being derived in the
same publication.8 The use of the two linear-equation model was
necessitated in this work due to the poor fitting behavior of the sin-
gle non-linear equation model. Although the two linear-equation
model offers significantly improved fitting behavior, it is limited
by its calculation of only two gradients, which only predict two
partial-molecular areas of cholesterol: one at high and the other at
low cholesterol concentrations. Despite this, the two linear-equation
model is sufficient to model these regions, in which the average area
per lipid shows a linear response to increasing cholesterol content.
Furthermore, fitting the two linear-equation model to the experi-
mental data of Hung et al. results in parameters that are physically
plausible. We note that a limitation of the analysis employed here is
the lack of robust experimental data over a range of cholesterol con-
centrations. While the data used are from x-ray experiments, they
diverge from observations using more robust joint x-ray and neu-
tron refinement schemes.72 Furthermore, more observations over
the entire cholesterol range of interest here would allow for better
refinement of low and high limiting cholesterol behavior. A com-
parison of the fitted parameters of cholesterol condensing models
allows the analysis to include all data points from both simula-
tion and experimental datasets, but the reliance on experimental
lipid areas derived from x-ray experiments comes with a set of
assumptions.72,78 To address this concern, we also provide a direct
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comparison between simulation and experimental x-ray form fac-
tors11 in Appendix B. Overall, the form factor analysis we perform
offers more mixed results compared to the area analysis. We believe
that this may be caused, in part, by the small amount of exper-
imental form factor data available, at only two data points each
for DMPC and DOPC lipids. This point is discussed further in
Appendix B, again highlighting the need for more experimental
data.

An issue observed with the two linear-equation model was
that it would produce different values of the constant area per
cholesterol (âchol) parameter for different membranes. The model
was derived with the aim that âchol should remain constant, with
the other model parameters adjusting to account for differences in
the cholesterol condensing effect for different membranes. Despite
this, constraining the values of âchol has little effect on the pre-
dicted values of the partial-molecular area of cholesterol, allowing
for greater confidence in these values. Lipid acyl tail order para-
meters may offer additional insights into this issue. As reported here,
the increase in order parameters with increasing cholesterol concen-
tration is dependent upon the saturation character of the lipid tails,
and thus, cholesterol imposes order on DMPC, POPC, and DOPC
lipids to different extents. In particular, while order parameters
plateau at approximately x = 0.35 for DMPC membranes, this
plateau is observed at x = 0.45 for POPC and not at all for DOPC
membranes. As such, while the assumption that additional choles-
terol condensation is absent at high cholesterol concentrations is
true for DMPC, order parameters suggest that this is not the case for
DOPC membranes. Thus, the cutoff values for low and high choles-
terol regions may need refining for different lipid types. While this
study focused on simulations within the low cholesterol concentra-
tion region, further data are required in the high and middle choles-
terol concentration regions to better characterize the cholesterol
condensing effect and further refine the two linear-equation model.
While lipid tail order parameters are an alluring target for force
field validation, there is an unfortunate lack of experimental data
across a range of cholesterol concentrations, as required for such
work.

The ELBA force field may offer a unique insight into how
force fields capture the cholesterol condensing effect. Despite being
a coarse-grained force field, ELBA boasts a significant improve-
ment in accuracy compared to the MARTINI force field with respect
to reproducing experimental cholesterol condensing parameters.
Indeed, there are several fundamental differences in the philosophy
of these force fields, which may lead to such differences: (i) ELBA has
a lower degree of coarse-graining compared to MARTINI, especially
in the water mapping, (ii) ELBA systems are dual resolution, with the
PC lipids modeled at the coarse-grained level and cholesterol mod-
eled at the all-atom level, and (iii) ELBA implements a more realistic
electrostatic model compared to MARTINI. It is hard to evaluate
which of these properties contribute the most to the improvements
associated with ELBA. However, the increased resolution of the
all-atom cholesterol molecule will facilitate the asymmetry of the
cholesterol model, which is thought to be crucial to the cholesterol
condensing effect.76

Interestingly, GROMOS 53A6L and GROMOS-CKP yield dif-
ferent cholesterol condensing parameters, despite employing the
same cholesterol model. This highlights that lipid parameters

also play a crucial role in condensation. We propose that the
difference in condensing behavior between the two force fields
is likely due to the larger radius of the carbonyl carbon atom
type (CH0) in GROMOS-CKP compared to that in GROMOS
53A6L (C).

Furthermore, differences between MARTINI 2 and 3 may offer
additional insights into the ability of a force field to capture the
cholesterol condensing effect. The MARTINI 3 cholesterol model
increases asymmetry by the incorporation of the new tiny bead to
model two methyl groups of the rough face of cholesterol, in addi-
tion to more accurately capturing cholesterol–lipid interactions, as
shown by recreating all-atom two-dimensional radial distribution
functions of lipids surrounding cholesterol molecules.46 Interest-
ingly, despite these improvements, the analysis presented here sug-
gests that MARTINI 3 captures the cholesterol condensing effect
less accurately compared to MARTINI 2. Thus, it would appear
that improved recreation of the surrounding PC lipid distribution
and increasing cholesterol asymmetry are not universal targets for
improving cholesterol models. Despite this, we note that molecule
topologies and parameters are complex and there is likely a large
interplay of parameters driving this phenomenon, which may not be
easily assessed independently. Further analysis of MARTINI 2 and
MARTINI 3 systems may allow for the determination of molecular
features, which bring about cholesterol condensation.

Overall, the analysis presented here suggests that the force field
type (all-atom vs united-atom vs coarse-grained) is a reasonable
predictor of the accuracy with which the cholesterol condensing
effect is captured. We report that all-atom force fields most consis-
tently capture the cholesterol condensing effect when considering
both DMPC and DOPC membranes; however, the GROMOS 53A6L
force field is most accurate for DOPC membranes at the expense of
poor accuracy for DMPC membranes. Comparatively, the coarse-
grained force fields capture the condensing effect less well. It has
been previously suggested that the asymmetry between the two faces
of cholesterol, specifically the methyl groups protruding from the
planar sterol region, plays an important role in the cholesterol con-
densing effect.76 As such, the increased resolution of the methyl
groups in the all-atom force fields may play an important role in cap-
turing the cholesterol condensing effect. Despite this, the increase
in asymmetry and resolution associated with the Daily et al. MAR-
TINI cholesterol model compared to the other MARTINI 2 models
tested, offers no significant increase in the force field’s accuracy, and
indeed, although MARTINI 3 has a more asymmetric cholesterol
model, it performed less well in this analysis compared to MARTINI
2. Finally, the data presented here suggest that the CHARMM36 and
Slipids force fields best capture the cholesterol condensing effect in
DMPC membranes, with Slipids capturing the cholesterol condens-
ing effect in DMPC membranes with slightly better accuracy at the
expense of a slightly worse accuracy in DOPC membranes, com-
pared to CHARMM36. For DOPC membranes, our results show
that the GROMOS 53A6L force field is in best agreement with
experiment.

V. CONCLUSION
To conclude, we have studied the ability of several com-

monly used lipid force fields to accurately reproduce the cholesterol
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condensing effect. Our results highlight the utility in calculat-
ing cholesterol condensing parameters for a more rigorous analy-
sis compared to only reporting partial-molecular cholesterol areas
and reveal that the all-atom force fields studied here best cap-
ture cholesterol condensation in DMPC membranes. In particu-
lar, the CHARMM36 or Slipids force fields are recommended for
DMPC membranes, while GROMOS 53A6L is recommended for
DOPC membranes, owing to their accuracy in reproducing choles-
terol partial-molecular areas and cholesterol condensing parameters.
While the analysis presented here considers simple model mem-
branes, the cholesterol condensing effect holds crucial implications
for larger, biologically relevant systems. For example, as lipid raft
formation is thought to stem from the cholesterol condensing
effect,79 simulations studying lipid rafts should use force fields that
properly capture this effect. Furthermore, as the cholesterol con-
densing effect alters membrane thickness, we highlight that careful
consideration should be placed on force field choice when model-
ing membrane bound proteins. These proteins frequently feature
hydrophobic transmembrane segments that align with membrane
thickness, which may result in membrane deformation or protein
tilt when this is not the case.

We have also presented averaged lipid tail order parameters,
which suggest a distinct cholesterol condensation profile for DMPC,
POPC, and DOPC lipids, which is driven by cholesterol imposing
different amounts of order on the same number of lipids. Averaged
lipid order parameters also reveal that there is significant choles-
terol condensation still occurring at high cholesterol concentrations
for POPC and especially for DOPC membranes. Although this
brings into question the underlying assumption of the two linear-
equation model, that for high cholesterol concentrations, the mem-
brane is fully condensed and no further cholesterol condensation
is observed, constraining fitting parameters suggest that the exact
values of the cholesterol condensing parameters reported here have
little impact on the reported values of the partial-molecular areas of
cholesterol.

Further work is required to better characterize the cholesterol
condensation effect at higher cholesterol concentrations and in other
lipid membranes. Additional experimental data would be invaluable
in such further analysis. Such work will be useful to further refine
and build upon the cholesterol condensation models and allow for
more accurate determination of cholesterol condensing parameters,
which offer increased insights into the cholesterol condensing effect
compared to solely partial-molecular areas. The analysis performed
here would be particularly useful in the development and optimiza-
tion of cholesterol force fields, ensuring their accuracy in simulating
biologically relevant membrane behavior.

SUPPLEMENTARY MATERIAL

The membrane lipid content as well as fitted parameters are
provided in the supplementary material.
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APPENDIX A: SINGLE NON-LINEAR EQUATION MODEL

Initially, the partial-molecular areas of cholesterol, in addition
to the cholesterol condensing parameters, were calculated by fitting
a single non-linear equation [Eq. (6)]8 to the area per lipid data
across the whole range of cholesterol concentrations. The non-linear
equation model was only fitted to the all-atom data, owing to fitting
issues as discussed below. The resulting fits are presented in Fig. 7,
and the corresponding parameter values are listed in Table S2 of
the supplementary material. In addition to the simulation data pre-
sented here and the experimental data of Hung et al., an additional
experimental dataset from Pan et al.11 is included.

It is clear from the graphical plots that the fit to the experimen-
tal data from Pan et al. is problematic, as observed by the prediction
that the lipid area increases for cholesterol mole fractions above 0.3.
For the Pan et al. data, the poor model behavior is likely as a result
of the dataset having only four data points, equal to the number
of parameters. We note that Pan et al. also fitted the single non-
linear equation to their data in the original publication11 but do not
report the cholesterol condensation parameters. Pan et al. do report
a graphical fit of the single non-linear equation, with no increase
in lipid area for high cholesterol mole fractions, as opposed to the
results presented here. A possible source of error in our work may be
in obtaining the numerical data of Pan et al. from a plot in the origi-
nal publication.11 However, we believe that the uncertainty added by
this is less than 1%, as determined by the comparison of the choles-
terol mole fraction values obtained from WebPlotDigitizer and the
cholesterol mole fractions used by Pan et al.11 Owing to this, such
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FIG. 7. Average lipid areas of all-atom force field simulations of DMPC cholesterol
bilayers across a range of cholesterol concentrations (dots) were used to fit a non-
linear cholesterol condensation model (dotted lines). Experimental data from Hung
et al. and Pan et al. (cross marks) were also used to fit the model for comparison.

inaccuracies in extracting the data are unlikely to primarily be the
cause of such large optimal parameter values. Finally, the lack of
regularization used during fitting here also likely emphasizes the
over-fitting, allowing the parameter norm to increase without any
penalty. While regularization is often employed in model fitting,
the parameters used here have physical implications, and as such,
regularization may be used to arbitrarily improve agreement with
the experimental data, depending on the magnitude of the penalty
applied and the choice of initial parameter values.

While the remaining fits appear to be adequate from the graph-
ical plots, there are clear fitting issues upon inspection of the fitted
cholesterol condensing parameter values. Since the parameters in
the models used here hold physical significance, it is not sufficient
for the model to simply achieve a low error in describing the data.
The values of these physical parameters must also align closely with
the experimental results or, in cases where ground truth data are
unavailable, at least remain physically plausible.

For the simulation data, the non-linear model suggests too large
values of Δa, larger than the area of a single PC lipid, and very small
values of n. As Δa represents the decrease in lipid area due to con-
densing, it is physically impossible for this value to exceed the area
of a single PC lipid; such a result implies that the area of a con-
densed lipid is negative. This is particularly true when fit to the
Lipid17 data. While the cholesterol condensing parameters appear
to be more realistic for the experimental data of Hung et al., the
model still predicts that each DMPC lipid is condensed by more than
half of its area and that only 2.3 neighboring DMPC lipids are con-
densed, which is small considering the number of lipids that may
pack around a cholesterol molecule. We suggest that the upper limit
of Δa should be no more than the difference between the lipid areas
of gel phase and liquid phase membranes. For example, DMPC has
a gel phase lipid area of 0.47 nm280 but has an area of 0.6 nm2 above
the phase transition. Using this constraint, the upper limit of Δa for
a DMPC–cholesterol bilayer is 0.13 nm2, in good agreement with

the value predicted by the two linear-equation model when fit to the
Hung et al. dataset (Table S3). Owing to these fitting issues, it was
decided to adopt the two linear-equation model.

APPENDIX B: X-RAY FORM FACTORS

X-ray form factors were calculated from simulations and allow
for a more direct comparison between simulation and experiment
compared to the comparison of lipid areas, which are calculated
from x-ray form factors using a set of assumptions.72,78 We note that
x-ray form factors calculated directly from simulations have system
size effects, which results in issues when defining evaluation metrics,
as discussed in Ref. 81. A metric previously defined by the NMR-
lipids project81 has been employed here and involves a comparison
of the first form factor minimum of experimental and simulation
systems. As this method results in excluding the majority of the data
by focusing on a single value of the form factor curve, we have relied
more upon the comparison of lipid areas, despite this method having
its own limitations.

In-house code was used to calculate x-ray form factors from
simulations. While existing code exists, such as SIMtoEXP82 and as
a part of the NMRlipids data bank project,81 such implementations
impose limitations. SIMtoEXP employs a graphical user interface
(GUI), which limits automation, while the NMRlipids data bank
approach must be used in conjunction with an NMRlipids data bank,
imposing additional steps. The approach used here is implemented
in Python and can be used either as a command line tool or as a
Python package, allowing for flexible usage for either single simu-
lation trajectory analysis or high throughput analysis. Our code is
available at https://github.com/sawds/FF_MAn.

The x-ray form factors are calculated using the standard
equation for lipid bilayers without assuming bilayer symmetry,81

F(q) = ∣∫
D/2

−D/2
Δρe(z) exp izqzdz∣, (B1)

where Δρe(z) is the difference in total and bulk solvent electron den-
sities, z is the coordinate along the bilayer normal (assumed to be the
simulation z axis), and the integral is over the simulation box of size
D, centered at 0. In practice, the integral is replaced with a summa-
tion over discrete bins along the simulation z-axis (bilayer normal),
with a bin width of 0.2 Å (matching the bin width used by SIMto-
EXP82). The solvent electron density is calculated from the solvent
layers above and below the bilayer. Simulation trajectories were cen-
tered on PC lipid tail termini CH3 groups before the form factors
were calculated. To calculate the electron density for the united-
atom systems, the electron count of non-polar hydrogen atoms,
which are not explicitly modeled, are added to the electron count
of the bonded heavy atom. Coarse-grained force fields are excluded
from this analysis owing to the ambiguity of electron counts of the
coarse-grained beads. For example, MARTINI uses the same coarse
grained topology to model DMPC and DLPC lipids, despite DLPC
having two fewer carbons per acyl tail. Thus, it is not obvious if
the CG beads, which remain identical for both lipids, should be
assigned different electron counts. Furthermore, some atoms are not
assigned to a single bead in MARTINI, again complicating electron
assignment. While such hurdles can be overcome, they likely require
an in-depth study to quantify the sensitivity of different electron
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FIG. 8. Cartesian distances between the location of the first minima in x-ray form
factors of experimental and simulation systems. Each data point represents an
independent replica. Experimental data were recorded at 0% and 30% cholesterol
mole fractions.

assignments to the resulting x-ray form factors to be reliable. Such
an analysis is beyond the scope of this work.

Limited by the availability of experimental form factor data
across a range of cholesterol concentrations, we compare the sim-
ulations at 0% and 30% cholesterol mole fraction to the data of Pan
et al.11 Unfortunately, the experimental data of Hung et al.70 only
provide x-ray intensities and not form factors. We note that the
experimental data from Pan et al. are recorded at a cholesterol mole
fraction of 30%, while the most similar simulations performed here
have a cholesterol mole fraction of 31.2%. Our analysis, following
that employed by the NMRlipids project,81 focuses on the location
of the first minimum of the form factor plot. The precise location of
the first minimum correlates with the thickness of the membrane81

and therefore will also correlate with the membrane and lipid area.
The main advantage of this approach, as opposed to metrics based
on residuals between the experimental and simulation data, is that
the precise locations of form factor minima are invariant to the sim-
ulation box size and do not require scaling of the simulation form
factors to match the relative intensity scale of experiments. While
robust simulation corrections have been proposed to address the
impact of system size on relative lobe heights,83 these corrections
were not implemented in the NMRlipids study81 and hence were
not adopted here. Thus, while this method allows for a simple and
more direct comparison between the simulation and experimental
data, it also reduces the (already limited) amount of experimental
data available for comparison.

The Cartesian distances between the experimental and simu-
lation form factor first minimum locations are presented in Fig. 8.
The experimental values taken from Ref. 11 were extracted from
graphical plots using WebPlotDigitizer.71

The comparison of experimental form factor data with simula-
tion offers a more mixed result compared to the area data. Generally,
force fields more closely align with experiment for pure PC mem-
branes compared to PC cholesterol membrane mixtures. All-atom
force fields consistently under-predict the minimum location, while
united-atom force fields over-predict in DMPC and under-predict
in DOPC. The form factor analysis here does not show the same
correlation of our previous analysis, which suggests that all-atom
force fields better model cholesterol containing DMPC lipid sys-
tems. Indeed, for the lipid area analysis, CHARMM36 was one of
the best performing force fields but diverges the most from exper-
imental form factor minimum locations. This may be due to the
over-reliance on only two cholesterol concentrations per lipid, com-
pounded by using only a single point from the form factor curves.
The critical lack of more experimental data is of particular concern
when performing this analysis, as it necessitates excluding most of
the form factor curve.
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