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GRID APPROACHES TO DATA-DRIVEN SCIENTIFIC AND

ENGINEERING WORKFLOWS

A.Paventhan

Enabling the full life cycle of scientific and engineering workflows requires robust

middleware and services that support near-realtime data movement, high-performance

processing and effective data management. In this context, we consider two related

technology areas: Grid computing which is fast emerging as an accepted way for-

ward for the large-scale, distributed and multi-institutional resource sharing and

Database systems whose capabilities are undergoing continuous change providing

new possibilities for scientific data management in Grid.

In this thesis, we look into the challenging requirements while integrating data-

driven scientific and engineering experiment workflows onto Grid. We consider wind

tunnels that houses multiple experiments with differing characteristics, as an appli-

cation exemplar. This thesis contributes two approaches while attempting to tackle

some of the following questions: How to allow domain-specific workflow activity de-

velopment by hiding the underlying complexity? Can new experiments be added to

the system easily? How can the overall turnaround time be reduced by an end-to-end

experimental workflow support? In the first approach, we show how experiment-

specific workflows can help accelerate application development using Grid services.

This has been realized with the development of MyCoG, the first Commodity Grid

toolkit for .NET supporting multi-language programmability. In the second, we

present an alternative approach based on federated database services to realize an

end-to-end experimental workflow. We show with the help of a real-world example,

how database services can be building blocks for scientific and engineering workflows.
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Chapter 1

Introduction

Large scale computational applications have benefited enormously from the con-

tinuous hardware innovations in terms of faster microprocessors, cheaper and mass

storage devices, and high-speed networks. The operating system components, lan-

guage compilers and other development tools, platform-neutral runtimes, database

systems, among others, provide advanced software infrastructures. Until the mid

1990s the services based on these hardware and software resources were from within

a single organizational unit. But, since late 1990s there has been a significant shift

in the way the resources are managed to support large scale data and computation.

This change in perception has been due to the emergence of “Grid” [1] for enabling

multi-institutional resource sharing and problem solving.

The initial ideas of Grid computing started from the need to link multiple

geographically distributed High Performance Computing (HPC) installations into a

virtual supercomputer known as a metacomputer [2]. For example, the I-WAY [3]

project linked 17 sites (comprising supercomputers, mass storage systems, advanced

visualization devices and databases) into local environments via high-speed Asyn-

chronous Transfer Mode (ATM) networks. The I-WAY project experience is a pre-

cursor to many of the ideas and developments in present day Grids.

The evolution of Grid from an interoperable computing infrastructure linked

by high-speed networks into a service-oriented architecture based on Web Services

standards has gone through different phases. It is difficult to confine Grid into a

rigid definition. But a widely accepted and a popular one was provided by Foster

et al., which defines Grid as “coordinated resource sharing and problem solving in

dynamic, multi-institutional virtual organizations” [4].

The Grid infrastructure is aimed at providing a distributed computing en-

1
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vironment for effective utilization of both hardware and software resources. The

Grid approach is gaining acceptance from the scientific community and it is making

inroads into enterprise and business computing as well. However, the application re-

quirements from different scientific disciplines bring different sets of computational

and data management challenges. It is important that the Grid research community

is presented with different scientific application scenarios and their unique require-

ments, and approaches to integrating them onto Grid to ensure that the appropriate

tools and technologies are developed.

This thesis first contribution is in extending Globus Grid services reach to new

platforms by the development of MyCoG, the first multi-language commodity Grid

toolkit for .NET and providing a scientific workflow approach leveraging MyCoG.

The second contribution is in developing an end-to-end scientific workflow approach

entirely based on database services. In the application scenario we consider experi-

mental aerodynamics, in which multiple users can carry out different aerodynamic

experiments at geographically distributed wind tunnel facilities with differing data

and processing characteristics.

There are many workflow principles used in business process automation that

are relevant to scientific workflows. Business workflows tend to be routine whereas

scientific workflows are often exploratory, sometimes following a trial-and-error ap-

proach. The amount of data that are to be processed at each stage of the workflow

are often greater in scientific workflows than business workflows. The Grid security

policies required in a collaborative and resource sharing scientific environment are

different from business environments. These differences often to lead to either cus-

tomization of commercial workflow engines or development of new workflow engines

tailored to scientific workflows.

Scientific workflow solutions can be grouped into two categories: 1) Workflow

systems motivated by domain-specific requirements. 2) Generic workflow systems.

The extensibility of a domain-specific workflow solution to another application do-

main is limited as it does not address the other sets of requirements. On the other

hand, a generic workflow solution would require further customization to be appli-

cable to a particular application domain. In specialized engineering facilities such
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as wind tunnels, researchers would be conducting several experiments with differing

characteristics in terms of configuration settings, data size, data format, processing

requirements and so on. In this scenario, it is important for a workflow approach to

abstract the general requirements so that new experiments can easily be supported

by means of extensibility and at the same time provide experiment-specific activ-

ities supporting customized experimental workflow development. This customized

approach to workflow can help reduce the time taken for a complete workflow by au-

tomating data flow driven activities, supplementing or replacing manual user-driven

steps.

In our first approach, we present a grid workflow architecture that supports

wind tunnel users (engineers, researchers and industrial users) to compose sequen-

tial workflows and access Globus Grid services seamlessly. We show how customized

workflows from experiment-specific activities, that would hide the underlying com-

plexities in Grid access, can be developed and extended by users using their pre-

ferred programming languages. This has been achieved by the development of

MyCoG.NET, the first Commodity Grid toolkit to leverage .NET platform and

support multi-language programmability.

The capabilities of Relational Database Management Systems (RDBMS) from

native XML support and procedural language stored procedures to publish/subscribe

replication among others are increasing and their architectures are undergoing con-

tinuous change. The development of such new capabilities are driven by the business

market and it has the potential to enable new approaches to scientific data manage-

ment in Grid environment. We present an alternative approach to the previous one

based on federated database services to realize an end-to-end experiment workflow.

Both the experiment data and user algorithms for processing are managed inside

federated databases. The individual database instances are autonomous and their

interactions are by means of transactional replication and asynchronous messaging.

Even though, the above two approaches have been demonstrated with an ex-

perimental application example, their extension to computational simulations are

possible.
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1.1 Integrating Experiments onto Grid

Scientists and engineers conducting experiments often perform a sequence of

tasks in a workflow pattern similar to that of a business process. The individual

steps in business workflow systems are typically control flow driven or state driven,

whereas scientific workflows may also be data and event driven. In a simplistic sce-

nario, the steps in an experimental workflow might include setup, data acquisition,

data movement, pre-processing, processing and visualization. The data acquisition

instruments, storage systems and compute resources are often distributed within

and across organizational boundaries. The user may have to deal manually with the

complexity of the resource discovery, data movement and job scheduling, impacting

the overall turnaround time and reducing time to insight.

The requirements on Grid to realize experimental workflows from different sci-

entific domain are unique as their data, processing and functional characteristics

vary to greater extent. At one end of the spectrum, experiments such as the Large

Hadron Collider [5] produce large volumes of data at one location to be distributed

to several sites for processing. At the other extreme, the wind tunnel process (our

application example) is characterized by multiple experiments, different locations,

changing parameters for each run, varying data formats and customized processing.

Also, the approach taken by individual application areas are largely driven by their

core functional requirement. For example, in the Network for Earthquake Engineer-

ing and Simulations grid (NEESgrid) [6] the important functional requirement is

remote steering of experiments and hybrid testing, the myLEAD system in Linked

Environments for Atmospheric Discovery (LEAD) [7] project is expected to respond

to changing weather conditions in realtime, the engine fault diagnosis and prognosis

requires large-scale data mining in Distributed Aircraft Maintenance Environment

(DAME) [8] system, the emphasis in the UK e-Science project myGrid [9] is resource

discovery and workflow enactment, and the Sloan Digital Sky Server [10] requires

to implement effective search algorithms to locate cluster galaxies. The differing

application characteristics is further discussed in section 2.5.

Some of the major challenges to be tackled while integrating scientific and

engineering experiments onto Grid are:



5

Figure 1.1: Airbus high-lift wing test at University of Southampton 7′×5′

wind tunnel

• Usability by scientists and engineers

• Reliable and timely data movement from an experiment site to storage and

processing clusters

• Application-specific approach to managing experiment parameters, data man-

agement, processing and analysis support

• Providing frameworks supporting entire experimental workflows including data

acquisition systems integration

• Managing disparate experimental data sources and formats (be it image data,

numbers or text)

1.1.1 Application Example: Wind tunnels

In this thesis, the wind tunnel experiments (Figure 1.1) are considered as

an application example to demonstrate our approaches. Wind tunnels are widely

used to design, test and verify aerodynamics of aircraft, cars, yachts, and buildings,
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amongst others. The University of Southampton has three large wind tunnel facili-

ties [11] (with working section measuring 11’ × 8’, 7’ × 5’ and 3’ × 2’) spread over

the campus, housing specialized experiment hardware and software for academic

and industrial research. These facilities are often used by researchers and customers

from other organizations. The pre-test planning and post-test analysis can be done

either on-site, or off-site at user’s base location. This creates the need for virtual or-

ganization support within any Grid system in which the user may wish to aggregate

their own application software with those at the wind tunnel site. Hence any work-

flow system should be able to support creation and execution of Grid applications

in a multi-site/organization scenario.

The wind tunnel data generated during acquisition vary in terms of the number

of data items, file size and format, depending on the experiment and user parame-

ters. For example, the Laser Doppler Anemometry (LDA) experiment generate from

hundreds to thousands of files each few kilo bytes in size whereas every run of the

microphone array experiment generate thousands of files each several mega bytes in

size. A day of testing consists of hundreds of runs. In many experiments, the data

movement operations to the processing computer are manual due to interoperability

issues between hardware, software and the acquisition systems. The nature of the

processing algorithms also differ − LDA is a short-running sequential code while

the microphone array processing is data intensive and can be run in parallel.

Wind tunnel operations are an interesting experimental workflow example (see

detailed discussions in section 2.5), in that there are many wind tunnel experiments

with differing data and processing characteristics. But, the general approach towards

realizing the experiment workflow can be applied in other domains as well. For

example, in our approach, the idea of having common grid workflow activities for

data transfer and processing and annotating with metadata for specific experiments

can be easily applied to other application areas.

1.2 Research hypotheses and methodology

We propose the following research hypotheses that form the basis of this thesis

and develop workflow approaches to substantiate them in the following chapters.
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• Customized and domain-specific workflow approach to scientific workflows may

lead to rapid application development which is often associated with business

workflows.

• The integration of Commercial Off-the-shelf (COTS) development frameworks

into Grid ecosystem may provide a suitable environment for the scientific work-

flows.

• The recent database capabilities may provide the necessary building blocks for

developing end-to-end data-driven scientific workflows.

The methodologies we adopt to the workflow approaches that support the

above hypotheses are based on the wind tunnel experiments application example

described in the previous section. In Chapter 3, we will present the requirements of

three wind tunnel experiments to substantiate the first hypothesis. We will show how

domain-specific customizations on data transfer and processing stages of experiment

workflows are useful. This will be demonstrated further in Chapter 4 by means

of a hierarchical model for workflow activities supporting ready-to-use customized

activities for different experiments. The wind tunnel experiment workflows were

presented in our publication items 3, 5 and 6 of Appendix C.

In support of the second hypothesis, we will describe Globus Grid services

workflow approach in Chapter 4. We will present the design and development of

MyCoG.NET that enables Globus Grid service access from many languages sup-

ported by the .NET Common Language Runtime. We will also show how Windows

Workflow Foundation, a Commodity Off-the-shelf workflow component of .NET can

be used with MyCoG Grid interfaces to support scientific workflows based on Globus

Grid services. The design and development of MyCoG was reported in our publica-

tion items 1 and 4 of Appendix C.

Chapter 5 will provide support for the third hypothesis by presenting a work-

flow approach based on database services. Considering the microphone array ex-

periment as a case study, we will demonstrate how federated database services can

form the basis for workflow activities to support entire workflow steps - data import,

data transfer, processing and visualization. This workflow approach was presented
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in our publication item 2 of Appendix C.

1.3 Scope of Work

There are many challenges to be addressed while integrating data-driven scien-

tific and engineering experiment workflows onto the Grid. It is more profound when

scientific workflows involve multiple experiments with differing characteristics as in

wind tunnel experiments. Even though our workflow example is from the field of

experimental aerodynamics, the approach can be easily adopted to scientific work-

flows from other domains as well. We take an approach that abstracts the general

requirements and at the same time provides experiment-specific extensions. In the

following sections, we will introduce the two workflow approaches that form the key

contributions of this thesis.

1.3.1 Workflow Integration based on Globus Grid Services

Globus middleware is being increasingly utilized by many scientific and engi-

neering applications for Grid integration. The Globus Toolkit [12] provides software

infrastructure supporting Grid security, resource management, data management,

monitoring and discovery. Commodity Grid Toolkits (CoG) provide sets of classes

and APIs to access Globus Grid services from already existing rich development

frameworks (e.g, Java and .NET). In order to fully realize the benefits of Grid com-

puting within the existing user community it is important to provide toolsets that

are usable by scientists, engineers and business [13]. CoG toolkits play a vital role

in achieving this. The language-specific nature of existing CoG toolkits, however,

restricts their use to a small number of languages (e.g. Java, Python, Perl). Many

languages favored by scientists and engineers, such as FORTRAN, are not supported

and the prospect of porting CoG toolkits to other languages require significant effort.

How do we hide the complexity of Grid service access and provide interfaces

in their favorite programming languages? How would we allow experiment-specific

workflow activities development which is essential for rapid application develop-

ment?.

In this approach we tackle the above two questions. We first enable the Globus
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Grid services access from an existing workflow framework and next is to leverage

the workflow framework to address issues in integrating experimental workflow.

We present the user with MyCoG.NET, the first CoG toolkit targeted at the

.NET Common Language Runtime (CLR) to access Globus Grid services. User will

be able to program in many different .NET languages including, FORTRAN, C++,

C# and Java. The user will also have the flexibility of mixed language program-

ming. For example, one can develop a Grid application by writing graphical user

interfaces in C++ and scientific computations in FORTRAN, based on coding prefer-

ences and/or language strengths. Further, the easy Grid integration of many legacy

scientific application code written languages such as FORTRAN becomes possible.

By bringing Globus Grid service access to .NET, we are able to leverage Win-

dows Workflow Foundation part of Microsoft .NET 3.0 [14] for scientific applications.

Windows Workflow Foundation has predefined sets of activities and we extend them

to provide Grid activities and experiment-specific workflow activities for application

development.

The wind tunnel user can compose their experimental workflow based on

Globus Grid services using the following workflow activities.

• Globus Grid activities (e.g, GridFTP, GRAM, MDS)

• Experiment-specific activities (e.g, LDAUpload, LDAProcess)

• Base Windows Workflow Foundation activities (e.g, IfElse, While, Parallel,

InvokeWebService and so on).

• or any combination of the above

The benefits derived from the above customized approach to wind tunnel ap-

plication workflow are:

• Reduction in the overall turnaround time to run an experimental workflow

• Rapid application development leveraging existing business workflow efforts

• Ability to focus on the problem at hand rather than worrying about the un-

derlying complexity in Grid resource access
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1.3.2 Workflow Integration based on Federated Database Services

The majority of scientific applications in the Grid rely on file systems for data

management, with very limited use of Relational Database Management Systems

(RDBMS). The RDBMS is often used as a query engine to retrieve metadata and/or

results.

With computational applications becoming data-centric, providing effective

storage and access to data are important [15]. File systems may provide better raw

read/write performance as compared to database systems, but there are additional

benefits database systems could bring in terms of transactions support to guaran-

tee data integrity, query language, data security and other ever growing features

such as high-level language functions and stored procedures, native XML types and

web services, transactional messaging, publish/subscribe replication, data mining

extensions and so on. Considering the changing database systems landscape, they

may now be viewed as database operating systems [16] into which one can plug sub-

systems and applications. The issues relating to database integration into a Grid

environment has been studied in [17]. In this thesis, by means of our application

example, we highlight how database systems’ features and its integration can benefit

Grid applications and identify improvement areas.

When experiments are conducted at multiple sites, the data are to be moved

from sites for archival and processing purposes. Can the data movement operations

from the site be handled asynchronously providing local autonomy to the site? Can

new experiments be added to the system easily? Can the overall turnaround time be

reduced for the entire experimental workflow? In an experimental setup similar to

wind tunnels, very often, the user runs different versions of processing code against

the data. How do we allow a user to maintain different versions of the processing

code to run against the data?

In our second approach, we address the above questions while supporting an

end-to-end experiment workflow using federated database services. Database fed-

eration can help heterogeneous data produced at different geographical locations

to be managed, and provides the user with a single logical view. The individual

database instances in the federation are autonomous and any of them temporarily
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being unavailable does not affect their interactions. Although database federation as

an approach to data integration [18] can support functions like query optimization,

the issue we address in this approach is geographical separation of data sources,

be it within campus or across organizations. With database systems supporting

both X.509 certificate based authentication/authorization and XML Web Services

security standards, the Grid systems security model between multiple virtual orga-

nizations can be realized.

The master database instance, together with a set of worker database instances

create a federation responsible for the storage, access and processing of the data.

Each experiment site maintains a local site database and publishes the data for

which the master has subscribed. When a user completes an experiment, the raw

data, together with parameters associated with the experiment, are imported at the

site. Since push-style transactional replication is employed, the data is propagated

to the master in near-realtime. The user is able to register their custom processing

code for a particular application and maintain different versions of them. Both the

application code and the data are managed inside the database, making the code

run closer to data. We also show how an experimental workflow can be constructed

with workflow activities leveraging database functionalities. Additional services to

query, analyze and visualize the results are available.

1.4 Outline of this Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we review related works in the context of this thesis in the areas

of Grid, data management, workflows, and application examples from different do-

mains.

In Chapter 3, we discuss the requirements for integrating scientific and engineering

experiments onto Grid environment looking into a few specific wind tunnel experi-

ments.

In Chapter 4, we present the architecture and implementation details of MyCoG,
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Commodity Grid toolkit for the .NET platform and our first approach to scientific

workflow integration based on Grid services.

In Chapter 5, we show how database systems features can be exploited by presenting

an alternate approach to support end-to-end scientific workflows based on federated

databases.

In Chapter 6, discussions and further work are presented.

In Chapter 7, we present the thesis summary and conclusions.



Chapter 2

Data Grids and Workflows

During the last decade there has been a growing interest in Grid computing in-

fluencing the way large-scale scientific and engineering research is conducted from

a tightly coupled computing environment to a geographically distributed resource

sharing approach. Scientists continue to use High Performance Computing (HPC)

systems such as cluster of shared-memory multiprocessors, parallel vector machines

and cluster of workstations connected by high-speed communication stack (low-

latency and high-bandwidth networks, OS-bypass protocols and message passing

software libraries). With scientific projects becoming increasingly collaborative, and

people and the resources drawn from multiple organizations, Grid computing has

become the next step in the evolution of HPC. The collaborative effort at the na-

tional and international level resulted in building Grid infrastructures such as NSF’s

Tera Grid in the USA, e-Science Grid in the UK, European Union DataGrid, Large

Hadron Collider (LHC) Computing Grid at CERN in Geneva and Asia Pacific Grids.

Grid infrastructures are being utilized by many application areas, ranging from high-

energy physics, life sciences and geosciences to astronomy, earthquake engineering

experiments and aerospace engineering. The characteristics of these applications

are also wide ranging with some being data-intensive, some are compute-intensive

and some requiring remote steering of experiments. This makes the development of

Grid middleware services supporting data movement, data access, processing and

workflow support for a given application domain challenging.

In this thesis, we address the challenges in integrating experimental workflows

onto Grid by providing two approaches considering wind tunnel experiments as an

application exemplar. In the remainder of this chapter we will discuss the related

works in the context of this thesis with Grid technologies in section 2.1, XML Web

13
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Figure 2.1: Grid Architecture

Services in section 2.2, data management in section 2.3, workflow systems in sec-

tion 2.4 and application examples in section 2.5.

2.1 Grid – Concepts and Technologies

The term “Grid” has been widely used since the late 1990s to refer to dis-

tributed resource access and sharing, analogous to an electric power grid, for ad-

vanced scientific collaborations. The essential characteristic of a typical Grid infras-

tructure is to support flexible, secure, coordinated resource sharing among virtual

organizations [4].

Figure 2.1 shows the set of layers of services in a typical Grid architecture that

we utilize for our discussion. The Grid resources are geographically distributed and

they could be compute clusters, storage systems, networking hardware, scientific

instruments, data acquisition systems amongst others. The Grid Middleware layer

provides services ranging from authentication, instrument integration, data acqui-

sition, data transfer and data archival to job scheduling and resource monitoring.

This layer hides the underlying complexities in resource access for the upper layers
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while participating in a virtual organization. The application layer services are cus-

tomized for a particular domain, such as experimental aerodynamics, which is the

case-study considered in this thesis. The development environment may consist of

APIs, specialized Grid portals and workflow frameworks supporting programmable

interfaces for application development.

2.1.1 Globus

Globus has emerged as a de facto middleware standard for setting up com-

putational and data Grids [19]. The Globus Toolkit version 2 (GT2) is based on

Internet standard protocols while its current release GT4 leverages service-oriented

architecture and XML Web services. Its components provide software infrastructure

supporting Grid security, resource management, data management, monitoring and

discovery.

2.1.1.1 Security

GT4 supports WS-Security and WS-SecureConversation to provide Message-

Level security. But, GT4 services use Transport-Level security (TLS1) as a default

security mechanism. This is due to the poor performance associated with Message-

Level security [20]. Authorization framework allows authorization schemes (grid-

mapfile or access control list service) and is based on Security Assertion Markup

Language (SAML). The pre-WS components security part of GT2 is based on Grid

Security Infrastructure (GSI). GSI supports X.509 certificate based mutual authen-

tication between Grid service instances, dynamic creation of proxy-credentials and

single sign-on. GSI conforms to Generic Security Services API (GSSAPI) [21] and

uses Secure Socket Layer (SSL) protocol for authentication and message protection.

2.1.1.2 Data Management

GridFTP: Scientific applications in a Grid environment require secured and effi-

cient movement of large amounts of data. GridFTP [22] extends the standard FTP

protocol to support features such as GSI security, multiple data paths for parallel

transfer, striping, third-party transfer, partial file transfer, data channel protection,

1TLS protocol is an IETF standard of GSSAPI
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Figure 2.2: GridFTP - third-party file transfer

Figure 2.3: Globus GRAM Job Submission

TCP buffer size tuning and restartable transfer. The control channel is GSI authen-

ticated and the GridFTP commands are exchanged through this securely. Since the

control channel and data channel are separate network connections, the data trans-

fer between two servers can be controlled from an intermediate machine as shown

in Figure 2.2. This feature is known as third-party transfer in GridFTP.

RFT: Reliable File Transfer (RFT) [23] service provides an XML Web service inter-

face, supporting multi-file transfers using the GridFTP third-party transfer mech-

anism. The request to RFT service consists of an array of source and destination

URLs of the file locations. RFT service makes the control channel connection to the

source and destination GridFTP servers on user’s behalf, and performs the transfer.

It stores the requests in the database so that the transfers can be restarted in the

event of failure.
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2.1.1.3 Resource Management

The Globus Resource Allocation Manager (GRAM) provides a standard inter-

face for executing jobs on remote systems. The gatekeeper component of the GRAM

service is responsible for GSI authentication of the user, parsing the job request writ-

ten in Resource Specification Language and starting the appropriate job manager

instance as shown in Figure 2.3. The job manager plug-in interface allows different

local schedulers such as LSF, Condor or based on the fork system call. The job

manager executes the user’s job, handles job management requests from the user,

provides a callback mechanism to communicate job state, and supports transfer of

stdout and stderr. GRAM services are supported using both Web services based

framework and pre-Web services approach in Globus Toolkit [24].

2.1.1.4 Monitoring and Discovery:

The Monitoring and Discovery Service (MDS) provides mechanisms for pub-

lishing and discovering resource status and configuration information. MDS in GT2

is a pre-Web services component based on LDAP (Lightweight Directory Access

Protocol) and MDS4 is based on Web Services [25].

2.1.2 Other Grid Middlewares

The gLite middleware [26] development activity under Enabling Grids for E-

sciencE (EGEE) programme involves many European countries. It provides five

different sets of services to applications. They are security services supporting au-

thentication, authorization and auditing, information & monitoring services, data

services for metadata catalog, storage management and replica catalog, job manage-

ment services supporting package management, job provenance, workload manage-

ment and computing elements, and Grid access services and APIs. The Grid services

in gLite follows a service oriented approach in order to achieve interoperability.

The UNICORE (UNiform Interface to COmputer REsources) [27] project was

initiated in Germany in 1997 and was aimed at supporting the operations at super-

computing centers. It has now evolved into an open source Grid middleware and

is being utilized in many European projects. The UNICORE architecture consists
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of user, server and target system tiers. The user tier provides interfaces to commu-

nicate to the server tier via the UNICORE Protocol Layer (UPL) based on SSL.

The server tier gateway authenticates UPL requests and provides access to the site

resources. The target tier interfaces with the local resource manager (Condor, LSF,

PBS, etc.) at the site for actual scheduling.

The Open Middleware Infrastructure Institute (OMII) [28] part of the current

UK e-Science Core programme will manage the release of open source Grid middle-

ware tools supporting workflows, job submission & monitoring, reliable messaging,

data access and integration services.

2.1.3 Grid Application Programming Interfaces

In order to fully realize the benefits of Grid computing within the existing user

community, it is important to provide toolsets that are usable by scientists, engi-

neers and business [13]. Commodity Grid (CoG) toolkits play an important role in

achieving this objective. CoG toolkits provide a set of classes and APIs that enable

access to Grid services from a commodity development environment/framework.

The advantages Grid applications could derive from commodity environments such

as .NET and Java, include platform neutral runtime, web-based deployment models,

access to rich class libraries, web services tooling among others.

The Java CoG toolkit [29] part of the Globus project provides interfaces to

access Globus Grid services. It comes with an exhaustive set of packages and classes

supporting Grid security, GRAM, GridFTP, and MDS services. The language-

specific nature of existing CoG toolkits, however, restricts their use to a small num-

ber of languages (e.g. Java [29], Python [30], Perl [31]). Many languages favoured by

scientists, engineers and business end-users are not supported, such as FORTRAN,

and the prospect of porting CoG toolkits to specialist user communities (e.g. Ada,

Eiffel) is unlikely. A multi-language approach to CoG toolkits would enable a sig-

nificantly larger community of end-users, across many sectors, to exploit the Grid.

The architecture and implementation details of such an approach to access GT2

Grid services from .NET is presented and discussed in Chapter 4.

The Simple API for Grid Applications (SAGA) [32] research group within
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the Global Grid Forum released an API specification supporting several Grid func-

tional requirements. Grid applications that are written using the SAGA API will be

portable to run in a middleware-independent manner. The SAGA specification cov-

ers requirements derived from many application use-cases and builds on experiences

from other projects such as CoG. Different language implementations (Java, C++,

C, etc.) of the SAGA API complying with the specification are being developed.

2.1.4 Emerging Grid standards

The Global Grid Forum (after the merger with European Grid Alliance, now

known as Open Grid Forum [33]) is a non-profit organization that consists of users,

leading vendors, developers and researchers working in the standardization effort for

Grid computing.

The basis for the standards emerging from GGF is a Grid service leveraging

XML Web Services. A Grid service is a stateful Web Service that provides a set of

well-defined interfaces and follows specific conventions [34]. All physical and logical

resources that are part of the Grid can be modeled as a Grid service.

2.1.4.1 Web Services Resources Framework (WSRF)

The Open Grid Services Infrastructure (OGSI) [35] specification defines a

mechanism for creating, managing and exchanging information among Grid Ser-

vice entities by extending Web Services Description Language (WSDL) and XML

Schema.

The OGSI document evolved into six independent WSRF specifications: WS-

Resource Properties, WS-Resource Lifetime, WS-Notification, WS-Renewable Ref-

erences, WS-Service Group and WS-Base Fault. This set of specifications support

modeling and managing state in a Web Services context. Although WSRF is now

an OASIS (Organization for the Advancement of Structured Information Standards)

standard [36], its adoption by industry, interoperability between different implemen-

tations etc. are still to be achieved, at the time of this writing. As can be seen

from the discussion in section 2.2, there are competing and similar specifications to

WSRF, and the industry is working towards a common Web Services Distributed

Management (WSDM) family of specifications.
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Figure 2.4: Levels of Management in OGSA [37]

2.1.4.2 Open Grid Service Architecture

The vision of Open Grid Services Architecture (OGSA) [37] is to provide a Web

Services based platform to support seamless use and management of distributed, het-

erogeneous resources. The resources in Figure 2.4 represent the physical resources

like CPUs, memory, disk etc. The OGSA services and the interactions among them-

selves, the interfaces they expose to the applications are all addressed at the core of

the OGSA stack. The basis for OGSA Grid services is infrastructure services (also

known as the Grid fabric) and their interfaces conform to specifications such as

WSRF and WSDM. The higher level OGSA services include execution management

services, data services, security services, resource management services and they are

implemented using functional interfaces provided by the infrastructure services. The

domain-specific implementations use underlying OGSA services to achieve applica-

tions functionality.

2.2 XML Web Services

XML Web services provide building blocks (Figure 2.5) [38] for developing

distributed applications written in different languages on different platforms hosted

by different organizations to communicate with each other in standards-based way.
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Figure 2.5: Web services building blocks

Protocols: The client application intending to access a Web service can dis-

cover it using Universal Description, Discovery and Integration (UDDI). The Web

service endpoint and its behavior (operations) is described using Web Services De-

scription Language (WSDL). In WSDL an abstract set of operations supported by

one or more endpoints is designated as a portType. XML Schema provide a core set

of built-in datatypes that can be used to describe the contents of the messages. Sim-

ple Object Access Protocol (SOAP) defines a standard format for serializing data

into XML Messages that can be exchanged between peers. The messages encoded

using Extensible Markup Language (XML) is transported over Hypertext Transport

Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP). XML, XML Schema,

SOAP and WSDL are specifications under the standards body World Wide Web

Consortium (W3C) [39]. UDDI is ratified by OASIS.

Interoperability: There are many XML Web Service specifications (WS-*)

defined on top of core XML and SOAP standards to ensure application level in-

teroperability between different vendor platforms. For example, WS-Security [40]

ratified by OASIS, describes enhancements to SOAP messaging to provide quality



22

of protection through message integrity, message confidentiality, and single message

authentication. Additionally, WS-Security describes how to encode X.509 certifi-

cates and Kerberos tickets as well as how to include opaque encrypted keys. The

different WS-Security implementations of Microsoft .NET Web Services Enhance-

ments (WSE2.0), IBM WebSphere development environment and Sun J2EE will all

be able to interoperate.

Tools: The .NET Framework xsd utility can produce high-level language

classes (C++/C#) from an XML Schema definition so that at runtime XML in-

stances can be mapped to .NET objects. Another utility wsdl can generate proxy

classes (client-side) or stub classes (server-side) from a WSDL definition. Similar

tools are available on other development environments.

The Grid research community has leveraged XML Web Services for hosting

Grid services. Despite the advantages of XML Web Services in being platform

neutral, interoperable and in their ability to penetrate firewalls, there are many

issues such as performance overheads still to be addressed. The majority of the Web

Service implementations use HTTP (theoretically other transport protocols can be

used) for their transport and due to the processing overhead associated with the Web

Service pipeline, performance is significantly affected. In the Web Services model,

the GridFTP data movement operations are only realized as third-party server-to-

server transfers [23]. Although in reality, there are requirements for client-server

style transfers. Also, due to competing specifications proposed by different vendors,

many interoperability issues still remain in the Web Services world. For instance,

WS-Transfer, WS-Eventing and WS-Management standards driven by Microsoft

and backed by IBM, Sun and Intel are functionally similar to WSRF (see section

2.1.4.1). In the context of our work, Web Services are more suitable for remote

access and monitoring, and its usage at the local wind tunnel site is limited due to

near-realtime data movement and processing requirements.

2.3 Data Management in Grid

The sources of large quantities of scientific data range from sensors and ad-

vanced scientific experiments to long running computational simulations. The Grid
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research community is making a concerted effort in providing efficient storage and

access frameworks to scientific data and associated metadata repositories. Further,

the extraction of knowledge from geographically distributed data sources are also

gaining importance.

2.3.1 Data Access and Integration

OGSA-DAI (OGSA Data Access and Integration) [41] provides a service ori-

ented architecture to access data sources such as relational or XML databases. Some

of the key features and motivations behind the OGSA-DAI project include:

• Providing uniform service-based interfaces to access multiple database man-

agement systems (MySQL, Oracle, DB2 etc). This approach contrasts with

language-based solutions such as Java database connectivity (JDBC) by pro-

viding standard Web Services-based interfaces.

• Supporting document oriented interface in which a single document (known as

perform document) may contain group of activities, for example, to update the

database, query and deliver the result. This reduces the number of messages

being exchanged between the consumer and the OGSA-DAI Grid Data Service

(GDS). Each activity in the perform document is executed by an associated

Java class.

• Supporting asynchronous requests where the query results are sent directly to

a third-party (DeliverTo activity) for consumption as opposed to JDBC style

synchronous connectivity used in client-server models. The delivery location

for the result could be a GridFTP service, another OGSA-DAI service or a

file location specified by an URL. Similarly, input for a query can come from

these delivery locations using DeliverFrom activity.

We utilize Figure 2.6 to show how our database centric approach discussed in

Chapter 5 is complementary to the OGSA-DAI work. In this model, OGSA-DAI

services are responsible for data access, management and delivery while the other

grid middleware services are the consumers of its data and responsible for long-

running computations. In our approach end-to-end workflow activities are supported
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Figure 2.6: OGSA-DAI data delivery

based on federated database services responsible for data import, data transfer,

computations and visualization. Both structured metadata (configurations, results

etc) and raw experimental data are stored together in the database. The message

exchanges between database instances are transactional as their interactions are

based on SQL constructs. As XML Web Services are supported natively by many

popular database systems, it is possible to wrap the database activities as Grid

fabric services (based on WSRF, WSDM etc.) for Grid integration. Already OGSA-

DAI interfaces are being redefined to a Web Services-Data Access and Integration

(WS-DAI) [42] family of specifications and hence it would become possible in our

approach to expose domain-specific WS-DAI services from database instances to

provide access to structured data.

2.3.2 Other Data Grid Approaches

Storage Resource Broker (SRB) [43] is a middleware that combines different

physical storage resources to provide seamless access to data sets. The three ma-

jor components of SRB include metadata catalog (MCAT), SRB servers and SRB

clients. The MCAT records are stored in an RDBMS. The SRB server does a logical

to physical mapping by consulting MCAT to support multiple physical data store,

replication and striping.

Grid-DB [44] is a data centric grid workflow system. Grid-DB submits the pro-

grams to grid middleware to execute in a compute cluster and provides the result
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to the user. It is discussed further in section 2.4.2.

In the case of both SRB and GridDB the computations are treated separately.

Whereas the approach we discuss in Chapter 5 is different in that the code is run

within the database system (supporting data parallel execution), the data move-

ment is an integral part of the database and support for local autonomy for the

experimental site data are explicitly addressed due to the nature of the application.

2.3.3 Knowledge Grid

The Knowledge Discovery in Databases (KDD) and data mining process can

be logically grouped into four separate steps [45]: data selection, data cleaning, data

mining and evaluation. The data mining step is used to extract interesting patterns

from data using algorithms such as association rules, decision trees, clustering and

similarity searches. The SQL/MM data mining extension of the SQL:1999 standard

defines standard interfaces to data mining algorithms. IBM DB2’s Intelligent Miner

and Microsoft SQL Server’s Analysis Services support these data mining extensions.

The Knowledge Grid uses basic Grid services to implement high-level dis-

tributed discovery services in order to mine data stored at multiple administrative

domains. Some of the data mining efforts in Grid research include developing a

knowledge Grid layer over Globus Grid services [46], knowledge flow networks in

e-science [47] and data mining grid activities [48]. As the experimental raw data,

metadata and results are all stored in database systems in our approach discussed

in Chapter 5, it is possible to leverage the SQL/MM data mining extensions.

2.4 Workflow Systems

In this section, we will discuss workflow systems with specific emphasis on how

business workflows compare with scientific workflow systems. We will also introduce

Windows Workflow Foundation as one example of how a commercial workflow engine

can offer an attractive execution environment for scientific workflows.

The Workflow Management Coalition (WfMC), with members from industries,

formally defined workflow as “the automation of procedures where documents, in-

formation or tasks are passed between participants according to a defined set of
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Figure 2.7: Workflow Reference Model c© WfMC [49]

rules to achieve, or contribute to, an overall business goal” [49]. Towards realizing

interoperable workflow systems, WfMC works on reference standards and specifi-

cations suggestive to vendors of workflow products. The workflow reference model

shown in Figure 2.7 identifies the major components and their interactions. Central

to this model is the workflow enactment service that may consist of one or more

workflow engines in order to create, manage and execute workflow instances. The

process definition tools help in creating workflow type definitions, business process

activities, navigation rules, transition conditions, application invocations etc. The

process definitions submitted to the enactment service are then interpreted at run-

time by workflow engines, causing workflow instances to change state in response to

external events or specific control decisions. The administration and monitoring in-

terfaces support management functions such as process status monitoring, resource

control operations, user/role management functions etc. Also the key objective of

this reference model is to allow workflow activities from different vendor systems to

interoperate. There is a clear separation between the workflow system responsible

for the management (e.g., task ordering) of the business process and the applica-

tion dealing with the actual execution of the business tasks. The theory behind
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Figure 2.8: BPEL process interactions

the architecture of workflow systems, modeling and management of workflows are

discussed in detail in [50].

2.4.1 Business Workflows

The business community has long been using some form of procedural au-

tomation for tasks that are routine in nature, such as purchase order management,

internal audits, document lifecycle management, IT support services and ticket

reservation systems. Enterprises increasingly conduct their business in partner-

ship and often, in order to meet a business request, services from partners are to

be integrated. Microsoft defined XLANG [51], a specification for business process

automation supporting language constructs for message exchanges among partners.

IBM also defined Web Services Flow Language (WSFL) [52], a similar specifica-

tion supporting a graph-oriented view of business workflows. The convergence of

both these specifications resulted in Business Process Execution Language for Web

Services (BPEL4WS), supporting composition of services from different partners to

achieve a business goal. BPEL is currently an OASIS draft specification under the

name WS-BPEL [53] for public review.

The business process in BPEL is composed using a set of well-defined basic

activities such as receive, reply, invoke, assign, throw, compensate and structured

activities such as sequence, while, if-else, repeat-until. Figure 2.8 shows how typical
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BPEL process activities interact with its partners. The invoke activity allows the

business process to perform a one directional request or a bi-directional request-

response operation on a WSDL portType (partnerLinks) offered by a partner. The

receive activity allows the business process to wait for matching messages to ar-

rive. WS-BPEL enables “programming in the large” that represents long-running

stateful interactions involving multiple parties as opposed to “programming in the

small” that are associated with simple fine grained execution of tasks within a single

system [54, 55].

Some of the challenges and the requirements in adapting BPEL to scientific

workflows as identified in [56] include integration with legacy code, experimental flex-

ibility, reuse and hierarchical composition, support for very long-running processes,

access to Grid resources and most importantly Grid security integration. Scientific

workflows require access to large data sets; With many BPEL engines exchanging

messages via SOAP over HTTP (Web Service Invocation Framework (WSIF) [57]

partly addresses this issue with pluggable architecture), support for an alternative

high-performance data transfer protocol is also a major requirement.

These specific requirements as listed above often lead to the development of

new workflow engines tailored to scientific workflows or customization of commercial

workflow engines. The suitability of three commercial workflow engines - Microsoft

BizTalk R© server [58], Oracle’s BPEL Process Manager [59] and Windows Workflow

Foundation [60] - for e-Science is studied in [61]. The Human Workflow Services

components of the BizTalk R© server has been utilized to support scientific workflows

in the field of bioinformatics [62]. The Sedna [63] framework provides extensions to

BPEL in terms of visual language and a modeling environment suitable for scientific

workflows. The extensions in Sedna include a general purpose scientific Process

Execution Language to increase expressiveness for scientific workflows and allows

for domain-specific abstractions.

2.4.2 Scientific Workflows

Many fundamental workflow principles that are developed for business work-

flows are directly relevant to scientific workflows. But, the technical issues to be
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tackled can be different due to the nature of scientific workflows and the require-

ments from domain scientists as users. Business workflows are usually well-defined

in advance and executed in a routine fashion whereas scientific workflows are ex-

ploratory and often follow a trial-and-error approach. A visually expressive workflow

development environment is often a major requirement as scientific workflows are

constructed by domain scientists; any requirement of BPEL expertise or major pro-

gramming effort may not be an attractive option. The voluminous data that are

to be acquired, moved, read and parsed at each stage of the scientific workflow

can be far greater than in business workflows. Again the workflow system has to

support appropriate data handling under the hood without expecting scientists to

deal with it. Similarly, the security policies for user authentication and authoriza-

tion for scientific collaborations are different from the business process interactions.

The comparison between scientific versus business workflows has been discussed in

excellent detail in [64].

We will discuss below some important workflow engines and their approach to

scientific workflows.

The GriPhyN [65] project addresses the workflow requirements of physics ex-

periments. When the user requests a data object, an abstract workflow DAG (Di-

rected Acyclic Graph) that would generate the desired data object is constructed.

The abstract workflow is then converted to a concrete workflow represented as Con-

dor DAGman files [66] and submitted to the Condor-G scheduler.

In the KEPLER system [67], the workflow components are known as actors

and their communications happen through interfaces called ports. The component

interactions and their order of execution are controlled by an object known as a di-

rector. There are workflow component extensions supporting Web service invocation

and Grid service access.

Grid-DB [44] is a data-centric grid workflow system. It provides a declarative

language for the user to register code and data with the system. Further, a set of

programs can be modeled into an abstract workflow. Grid-DB submits the programs

to a Condor pool for execution.

The Triana system [68] exposes Grid Application Prototype (GAP) inter-
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faces supporting different protocol bindings for peer-to-peer interactions between

distributed services. The Triana user interface consists of toolboxes with sets of

components and a work surface for users to compose workflows.

DiscoveryNet [69] addresses the need for knowledge discovery process in life-

sciences. The components and workflows in DiscoveryNet are composed as Web and

Grid services by sharing across teams.

The functional requirement of the application domain often influences what

features are supported by a particular scientific workflow engine. For example,

the workflow composition in GriPhyN and Grid-DB are language-based to support

task dependencies. Scientific workflow environment often requires support for vi-

sual composition. The Triana and DiscoveryNet projects support a service-based

composition model for sharing services across teams. The Web Services model does

not explicitly address the requirements for high-performance and near-realtime data

transfers. KEPLER system supports visual composition and the workflow activity

extensions. But, its workflow composition model is more generic and requires more

development effort for application-specific customization. In this context, we dis-

cuss the features of a commercial workflow engine in the next section that offer an

attractive execution environment for scientific workflows.

2.4.3 Windows Workflow Foundation

The application example, such as the wind tunnel experiments we consider in

this thesis run on various proprietary systems and their integration into a scientific

workflow requires customized solution. Also, the data transfer and processing re-

quirements are experiment-specific. The workflow framework is required to provide

the user with ready-to-use experiment specific workflow activities hiding the under-

lying complexities and at the same time with the ability for user customization, if

required. Over time the processes and systems available in these scenarios change

significantly, so the ability to rapidly develop and customize workflows is crucial.

In the rest of this section, we discuss Windows Workflow Foundation, a commercial

workflow system which has been leveraged for our scientific workflow approaches

presented in Chapter 4 and Chapter 5.
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Figure 2.9: Windows Workflow Foundation components & services

Windows Workflow Foundation is an extensible framework that is part of

the upcoming Microsoft’s next version of .NET development Framework 3.0 [14].

Figure 2.9 shows Windows Workflow Foundation components and services. The

workflow in Windows Workflow Foundation is composed from a set of activities,

compiled to a .NET assembly. It can be executed under the Common Language

Runtime (CLR) in a variety of container processes [60].

2.4.3.1 Workflow Model and Composition

Windows Workflow Foundation supports two models [60]: (1) Sequential work-

flow model - comprising activities that execute in a predictable sequential path; (2)

State machine model - a flow driven by events triggering state transitions. In both

these models the basic element of the workflow is called an activity. Some of the

Windows Workflow Foundation’s activity types include: control-flow (While, IfElse,

Delay), exception (throw, exception-handler and Business Process Execution Lan-

guage (BPEL) compensations), data handling (Update, Select), transactions (and

compensations for long-lived “transactions” that cannot be directly unwound) and

Communication (InvokeWebService, InvokeMethod). All activities are derived from

the System.Workflow.ComponentModel.Acitivity base class. The Windows Work-

flow Foundation extensible development model enables creation of domain-specific
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activities which can then be used to compose workflows that are useful and under-

standable by domain scientists.

A workflow consists of metadata for the workflow definition, and the accom-

panying .NET classes that form the code file. The workflow can be composed using

a visual workflow designer; this has a drag-and-drop interface and can be hosted

in Visual Studio or a user-application. Alternatively, users can write declaratively

in eXtensible Applications Markup Language (XAML), an XML dialect for writing

workflows. The workflow can also be completely coded in any of the .NET languages.

Workflows are compiled with the wfc workflow compiler into .NET assemblies before

they can be run.

2.4.3.2 Workflow Runtime, Scheduling and Hosting

The workflow runtime layer is at the core of Windows Workflow Foundation

and is responsible for execution, tracking, state management, scheduling and poli-

cies. The workflow engine runs inside a hosting process of the workflow application.

This hosting layer is responsible for communication, persistence, tracking, trans-

action, timing and threading. It is possible to dynamically update the running

workflows. The hosting process can reside on the client or server-side, depending on

the user requirements and application. A long running workflow instance can be

persisted, when it is faced with resource constraints, with all its state written into

a database so that it can be restarted again.

2.4.4 Workflow Systems: Comparison

We have seen in section 2.4.1 some of the efforts evaluating commercial work-

flow engines and BPEL to meet scientific workflow requirements. The Windows

Workflow Foundation is a generic workflow development framework supporting ba-

sic activities similar to BPEL, so a custom activity library for BPEL can be easily

developed over it. This will also enable importing and exporting of BPEL workflow

definitions into its environment. The lack of visual expressiveness in BPEL has been

identified [63] as an issue to be addressed. Table 2.1 compares BPEL features with

Windows Workflow Foundation in the context of WfMC reference model. With an

extensible framework for workflow activities and a flexible approach to workflow
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Table 2.1: BPEL and WF in relation to WfMC model

Functionality as in BPEL Windows Workflow Foundation (WF)
WfMC Reference model

Process definition • BPEL process written in XML • Workflow design using XAML/
.NET languages/visual designer

• No formal visual representation - left • Flexible workflow designer in IDE
to the vendors of workflow engine (e.g, or can be part of user application
BizTalk Orchestration designer [58])

• Activities - Basic, structured, • Built-in library with similar activities
partnerLinks, fault-handling to BPEL and more, custom activities

can be developed (e.g, Grid, Database
activities discussed in Chapter 4 & 5).
Export/import BPEL definitions.

Workflow engine Many vendors support - Workflow engine can be hosted
IBM WebSphere, Microsoft BizTalk, as part of any process and it
Oracle BPEL Process Manager etc. can be customized (e.g, persisting

workflow into a database)

External interactions BPEL processes interact InvokeWebService, WebServiceReceive,
via partnerLinks WebServiceResponse activities provide the

same functionality

Administration & • Explicitly not addressed in • Workflow hosting process
monitoring the specification - left to can customize the tracking & monitoring

the BPEL engines. services or use the default ones.
(e.g, Oracle BPEL Console [59])

• Dynamic update of workflow possible
(e.g, saving a running instance, modifying
or inserting new activity etc.)

Advantages/Limitations: Loosely coupled, platform independent Generic and extensible framework.
services. Additional capabilities Workflows run on .NET platforms.
are needed to adapt for scientific But, with XML Web Services support,
workflows. it can interact with other platforms.

hosting, most of the functionality of state-of-the-art scientific workflow systems [70]

can be hosted on top of Windows Workflow Foundation.

2.5 Application Examples

The set of requirements on scientific workflow systems from different scientific

disciplines, in terms of data size, formats, real-time requirements and computational

complexities, bring different sets of challenges. In the following sections we will dis-

cuss some Grid applications from different scientific disciplines highlighting their

data characteristics (acquisition methods, data format, data volume amongst oth-

ers), the processing involved, the nature of the workflows, the networking demand

and so on.
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2.5.1 LHC - Particle Physics Experiments

The major high energy physics experiment Large Hadron Collider (LHC) con-

sists of an accelerator and four associated detectors (ATLAS, CMS, LHCb and

ALICE), is expected to begin its operations in 2007 at the European Center for

Nuclear Research (CERN). The high energy proton-proton collisions will be studied

in order to answer some of the fundamental scientific questions including the origin

of mass in the universe. With approximately 800 million collisions per second, the

experimental data will be generated at the rate 225 Mbytes/sec resulting in many

petabytes per year [5]. Considering the number of physicists engaged at laboratories

world-wide and the amount of computing power required, a hierarchical grid com-

puting model (made of different tiers) to support the collection, storage and analysis

is adopted. The data is stored and processed initially at a Tier-0 facility at CERN

before distributing (requires network bandwidth of 5 Gbits/sec) to 7 Tier-1 national

centers at USA, leading EU countries and elsewhere. Similarly, they are processed

and further analyzed at Tier-1 and distributed (requires network bandwidth of 10

Gbits/sec) to approximately 25 Tier-2 regional centers, further analyzed and dis-

tributed (requires network bandwidth of 1 Gbits/sec or more) to smaller physics

groups made of hundreds of Tier-3 data centers, and further to thousands of Tier-4

desktops.

Since the CMS (Compact Muon Solenoid) detector will not begin to acquire

data until 2007, physicists from the collaborating institutions are currently taking

part in compute intensive Monte Carlo simulation studies. The software infras-

tructure for this collaboration is built based on Grid technologies – the Globus

Toolkit and Condor-G high throughput computing system job submission interface

to Globus [71]. The physics simulation functionality has been adapted from the

existing legacy CMS code without any rewriting for the Grid. The output of this

study can be compared against the actual data, when the CMS begins its operation

in 2007, to improve the detector calibrations and help in new scientific discoveries.

The following are the major components and services identified for the CMS

computing system during the production run phase in 2007 [71]:

• Grid workload management system to access distributed computing resources
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• Data management services supporting storage, data transfer, placement and

• Workflow management services (for data reconstruction, calibration activities,

user analysis) tying other software components and shielding the physicists

from the complexity of the system and services.

Other general requirements are minimizing the dependency of jobs on worker

nodes (for reliability, fault-tolerance and to avoid single point of failures), keeping

the local-site configuration autonomous without having to synchronize with other

sites and interoperability between different Grid middlewares (LCG-2, EGEE, OSG,

NorduGrid) utilized at multiple Grid implementations.

2.5.2 NEESgrid - Earthquake Engineering Experiments

Network for Earthquake Engineering and Simulations (NEES) program is

funded by NSF in major earth quake engineering test facilities to study the ef-

fects of earthquake on buildings and other structures. The NEESgrid [6] software

infrastructure is designed to support the following features.

• store and share data in a centralized repository (data management)

• enable collaboration between distributed researchers

• facilitate remote participation in experiments (telepresence)

• support simulation including hybrid testing

• securely enable authorized access to data and resources

The resources in the NEESgrid system include experimental facilities, data

repositories and computers used for simulations. Each of these resources could be

owned and controlled by different institutions. The different experimental platforms

at NEESgrid sites are shake table for testing structures, reaction wall to measure

static load, centrifuge to study soil mechanics, and wave tanks to study the be-

havior of tsunami waves. The data generated from these experiments are managed

with file hierarchies based on four directory levels - project, experiment, trial and

data. The experimental design metadata include geometry of the specimen and
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physical properties (material, simulation model) linked to the geometry. The time

series data generated from the experiments could be data from sensors, still images,

videos, simulation states amongst others. The telepresence component enables re-

searchers to visualize the remote experiment by using a client application to observe

the live or archived numerical data generated from acquisition devices, monitoring

live video stream of the experiments or by writing their own custom clients using

APIs. The remote interaction with the experiment is provided by NEESgrid Teleop-

erations Control Protocol (NTCP). Apart from experiments, NTCP can be used for

Multi-site Online Simulations Test (MOST), enabling hybrid testing that combines

physical experiments and simulations.

2.5.3 SDSS - Astronomical Data Collections

The Sloan Digital Sky Survey (SDSS) [10] is an astronomical survey aimed

to provide detailed optical images covering more than a quarter of the sky, and

a 3-dimensional map of about a million galaxies and quasars. The astronomical

raw data is gathered from a 2.5 meter SDSS telescope at Apache Point observatory

in New Mexico and stored into a tape. The tape is then physically transported

to Fermilab via express courier [72]. The large amount of data from the tape is

then passed through a set of data processing pipelines that include spectrographic

pipeline, monitor pipeline, astrometric pipeline and photometric pipeline. There are

around 400 attributes for each celestial object such as stars, galaxies and quasars are

generated from the processing steps along with a 5-color image. The total amount of

data at the time of project completion would be approximately 40 Terabytes made

of 25 Terabytes of source data and 13 Terabytes of processed data.

The SkyServer is designed to provide internet access to the public Sloan Digital

Sky Survey data for astronomers and for science educations. A cluster of Microsoft

SQL Server has been utilized to manage the large astronomical database. The astro-

nomical objects generated from the processing pipeline are assigned (partitioned) to

different SQL Server based on their spatial dimensions (right ascension and declina-

tion). This enables the MaxBCG algorithm to be run in parallel to locate brightest

cluster of galaxies in a catalog of astronomical objects. With efficient indexing, join
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and parallel query operations, a twenty times speedup was achieved [72] as compared

to a file-based implementation.

2.5.4 GeWiTTS - Grid Enabled Wind Tunnel Test Service

The objective of GeWiTTS [73] system is to support remote users with differ-

ent requirements to interact in a collaborative environment while performing wind

tunnel tests. The virtual organization between BAE systems and its collaborating

partners during the wind tunnel data acquisition and the prototyping stage of the

design process has been demonstrated. While one member of the virtual organi-

zation is in control of the experiment, others will be able to connect to the wind

tunnel to get the view of the experiment as it progresses and provide feedback to

the controlling member. GeWiTTS focus is on experiment steering and realtime

data sharing.

2.5.5 LEAD - Atmospheric Observations

The Linked Environments for Atmospheric Discovery (LEAD) [7] is aimed at

supporting on-demand weather forecasting that would respond to changing weather

conditions in real-time. The core feature of LEAD is MyLEAD services, based on

a Web Services framework, to support dynamic workflow orchestration and data

management. The user interaction with the services are through the LEAD por-

tal to compose the workflow connecting application components. The MyLEAD

agent works on user’s behalf and is dedicated for a single workflow instance and

manages the state of the workflow. MyLEAD consists of three major services -

the metadata catalog service, notification service and workflow service [74]. The

application-specific metadata catalog resides in a relational database and accessed

through OGSA-DAI interfaces supporting domain-specific queries. The MyLEAD

agent and the workflow engine subscribe to application-specific events published

by the notification service based on WS-Eventing standard. The workflow state

transition occurs when experiment status event arrive from the notification service.

A slightly modified version of the standard Business Process Execution Language

(BPEL) is used for workflow orchestration.
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2.5.6 myGrid - e-Science Workbenches

The myGrid is an UK e-Science project to build middleware tools to support

experiments in the field of molecular biology. The Taverna workbench environment

part of myGrid enables biologists and bioinformaticians to compose and execute

workflows written in Simplified conceptual workflow language (Scufl). These work-

flows represent in silico experiments composed from wide variety local or remote

bioinformatics services (over 1000 bioinformatics Web Services are accessible to my-

Grid user). The data produced from the services can be in various formats, mostly

textual or flat files. Taverna does not impose a common data model.

Taverna uses a three tier data model to describe resources and their inter-

operations [9]. The Application Data Flow layer provides a domain-specific view

hiding the complexity of the underlying implementation styles of the services and

their interoperations. The Execution Flow layer is responsible for the control flow

assumptions made by the user. The Process Invocation layer interacts and invokes

the concrete services. Taverna uses public registries such as UDDI to discover ser-

vices. The discovered services then can be combined by the user into a workflow.

2.5.7 DAME - Aircraft Engine Maintenance

Distributed Aircraft Maintenance Environment (DAME) [8] is a collaborative

project in the UK between industrial and academic partners to build a Grid-based

aircraft engine Diagnostics and Prognostic (DP) and maintenance solution. The

aircraft engine maintenance problem exhibit characteristics that are typical in Grid

environment - data centric, distributed, multiple stakeholders, high dependability

and so on.

The DAME system consists of some core Grid services. The Engine Data

Service manages the data transfer from on-engine monitoring system to a ground

station. The annual fleet data can run into many terabytes as each flight produces

approximately 1 gigabyte of data. The Data Storage and Mining Service applies

pattern matching algorithms to rapidly search both raw and archived engine data.

The other services include Engine Modeling Service, Case-Based Reasoning Support,

and Maintenance Interface Service. The DAME operation starts when an abnormal
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sensor data is detected by the on-engine system and cannot be classified locally,

and passed to the ground-based system for storage and diagnosis. The data mining

activity runs next to recover related events that matches the abnormal condition.

The remedial action is selected from historical data or by executing appropriate

signal processing step. The final step in the diagnostic process involves sharing of

the results with the stakeholders for maintenance, repair and overhaul.

2.5.8 Application Characteristics - Comparison

Table 2.2 shows the comparison of some of the important characteristics of

the application examples discussed in previous sections and wind tunnel experi-

ments discussed in Chapter 3. The approaches taken to integrate experiments from

different application domains are unique as their data, processing and functional

characteristics vary to greater extent. At one end of the spectrum, experiments such

as LHC produce large data sets with high performance computing and high-speed

data transfer requirements. At the other extreme, the wind tunnels (discussed in

next chapter) are characterized by different experiments, multiple locations, multiple

runs, changing parameters, high volume data and customized processing. Also, the

approach taken by individual applications are largely driven by their core functional

requirement. For example, in both NEESgrid and GeWiTTS the important func-

tional requirement is remote steering of experiments and hybrid testing, MyLEAD

system is expected to respond to changing weather conditions in realtime, the engine

fault diagnosis and prognosis requires large-scale data mining in DAME system and

the Sloan Digital Sky Server has to implement effective search algorithms to locate

cluster galaxies.

When compared to the above application examples, the different wind tunnel

experiments we discuss in Chapter 3 run on some proprietary systems, shared by

multiple users, generate data in various formats often with near-realtime data move-

ment and customized integration requirements. Further, an aerodynamicist would

be interested in customizing the processing algorithms. The approaches we present

in Chapter 4 and 5 address the data-driven nature of this application scenario.
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2.6 Summary

In this chapter, we have reviewed different Grid technologies, middleware de-

velopment efforts and emerging Grid standards. We have discussed some of the

characteristics that distinguish scientific workflow systems from business workflows

and the adaptation of commercial workflow engines to scientific environments. We

presented application projects from different domains and highlighted their differ-

ence in approach to Grid integration. The sources of variability are due to various

factors such as the data formats, the role of database management systems, the

ability to compose workflows from loosely coupled services, the realtime response

to changing events, the support for remote access to hardware, the computational

requirements and the high-speed data transfer requirements. The unique set of re-

quirements often lead to a specialized approach to individual application domains.



Chapter 3

Integrating Wind tunnel

experiments on the Grid:

Requirement analysis

Aerodynamicists use wind tunnels to design, test and verify aerodynamics of air-

craft, cars, yachts, and buildings, amongst others. The wind tunnels are normally

designed for a particular application and a speed range to support a variety of test-

ing techniques and flow conditions. During the wind tunnel experiment, often the

scale models are tested and the test conditions are matched against the actual flight

conditions in order to acquire the meaningful data. Various techniques are then

applied to study the airflow around the model and compare it with the theoretical

and simulation results.

Similar to many other scientific workflows, the activities in a typical wind tun-

nel experiment consists of experiment setup, data acquisition, data transfer, pro-

cessing, analysis and visualization. When compared to other application examples

discussed in the last chapter, the wind tunnel experiments differ in the following

manner:

• Facility: There are multiple wind tunnel facilities shared by users, operated

often on a pay-per-use basis, distributed across campus, and users are often

bound by time slots.

• DAQ: There are specialized data acquisition systems for each experiment with

varying setting up procedures.

• Data formats: The data generated from experiments could be numerical time
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series data, audio samples, image data etc.

Despite some of the unique characteristics of wind tunnel experiments, there

are common requirements similar to other application workflows:

• Data access: Location-independent access to the experimental data and results

• Data transfer/store: On completion of the experiment the data is to be trans-

ferred for processing and archival.

• Processing/Analysis: Experiment-specific processing and analysis.

In the following sections we look at the requirements on integrating wind

tunnel experiments onto Grid in general and three of the experiments in detail.

3.1 Wind tunnel experiments and Requirements

The University of Southampton wind tunnel facilities [11] are distributed

across the campus housing a variety of specialized experimental hardware and soft-

ware for academic and industrial research. The R J Mitchell wind tunnel is a large

and low-speed wind tunnel (11′ × 8′ working section) with moving ground and

supports a maximum wind speed of 50 meters/s. It is ideally suited for vehicle aero-

dynamics work. The 7′ × 5′ wind tunnel supports wind speeds up to 55 meters/s. It

is used extensively for undergraduate and postgraduate research projects. It has a

moving ground for vehicle aerodynamics work (Figure 3.1), and a low speed section

for wind engineering studies and work for the marine industry on racing yacht sails.

The 3′ × 2′ wind tunnel has an open circuit facility with a 0.9m × 0.6m × 4.5m

working section. It is installed in a laboratory, and is equipped with a 3D computer

controlled probe traversing system and dynamometer, and is used for a variety of

aerodynamics research and student project work. There is a further laboratory

equipped with a number of tunnels that are primarily used in the undergraduate

courses.

Two of the aerodynamic forces that are of interest to aerodynamicists are lift

and drag. The force that is perpendicular to the flow is called the lift ; the force that

is acting along the flow is called the drag. The resultant net force depends on the
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pressure variations (which in turn depends on the velocity changes) around the ob-

ject. Aerodynamic forces also depend on the viscosity of the fluid with a parameter

known as Reynolds number (Re). The lower Reynolds numbers are characterized by

boundary layers that are laminar (velocity changes uniformly) and for the higher

Reynolds numbers, the boundary layers are turbulent (velocity changes unsteady).

Aerodynamicists employ hot-wire anemometry to study the turbulent flows of the

boundary layers.

For certain class of applications Computational Fluid Dynamics (CFD) can

supplement or replace wind tunnel testing. But, in cases of flight conditions where

external turbulent flow is present, CFD may not be practical and wind tunnel ex-

periments are still the preferred way of testing.

In the wind tunnel environment, there are multiple experiments with vary-

ing degrees of data management and processing requirements. The data generated

during acquisition vary in terms of the number of data items, file size and format,

depending on the wind tunnel experiment and user parameters. Due to limited stor-

age capacity on the acquisition system and multiple user’s using the facility, the raw

data should be transferred from the acquisition system to a network location where

it can be managed and processed. This requires an experiment-specific approach

to integrating the acquisition system. Data access from different network locations

should also be supported as a researcher may be in office or home, a student user

may be in public work station area and an industrial client may access from off-

campus. In the following sections we discuss three of the experiments to highlight

their requirements in integrating them onto Grid.

3.2 Laser Doppler Anemometry (LDA)

The Laser Doppler Anemometry (LDA) [75] technique is ideal for 1D, 2D

and 3D point measurement of velocity and turbulence distribution in both free

flows and internal flows. LDA systems are used to gain a clearer understanding

of fluid mechanics. The measurement results are important steps in fine-tuning

product designs to improve aerodynamic efficiency, quality and safety. The major

advantages include non-intrusive measurement, high spatial and temporal resolution
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Figure 3.1: Setting up during a typical wind tunnel test

and the ability to measure in reversing flows. The accuracy of this technique is

invaluable for measuring turbulence levels to understand flow physics at a detailed

level. Figure 3.2 shows LDA data acquisition and a typical visualization.

3.2.1 Data Acquisition

For each experimental configuration, a calibration step must be performed

and a transformation matrix must be derived. The transformation matrix is used

to translate the raw data in laser coordinate system to the tunnel coordinate sys-

tem during processing. LDA data acquisition software collects selected number of

samples (typically thousands) at user programmed traverse positions of up to three

velocity components (This value is also equal to number of Burst Spectrum An-

alyzers (BSA)). The collected data are stored in separate raw data files for each

traverse position. The raw data filenames have a suffix 0, 1 or 2 to indicate the

velocity component (u, v & w, in the laser coordinate system). The file extension

represents the traverse position. There are essentially n × p raw data files for one

experiment, n (n=3) is the number of velocity component and p is the number of

traverse positions. The user parameters for acquisition are stored in a separate flat
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(a) LDA experiment in progress (b) Result - kinetic energy contours [76]

Figure 3.2: Laser Doppler Anemometry Experiment

file.

3.2.2 Data Transfer

The upload activity of the workflow requires verification of the raw data files

prior to the uploading to processing node. Since the number of velocity components

and traverse positions are known from the parameter file, all the raw data files along

with metadata (transformation matrix, user parameters) can be uploaded without

any user intervention.

3.2.3 Processing

Basic LDA Processing codes/algorithms are available as a result of other

projects [77, 78]. The major requirement here would be to integrate the avail-

able LDA processing logic into Wind Tunnel Grid framework - making them run in

a Grid environment, exposing them as a Grid service to the user, interfacing with

data management and visualization components.

Data Conversion: The raw data file contains BSA setup information (header)

followed by series of burst. The burst holds Velocity, Transit time and Arrival time

as integer numbers. These integer values are converted to physical units (floating
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(a) Landing gear test
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(b) Result - noise contour plot [79]

Figure 3.3: Microphone Phased Array Experiment

point numbers) using standard conversion formulas. This step would produce n × p

converted data files with one file for every raw data file. Here n is number of BSA

channels and p is number of traverse positions.

Coincidence Processing: Sorted data files can be generated as a result of coin-

cidence processing with user-selectable coincidence interval. There is one sorted file

created for every n converted data files, where n is number of BSA channels. The

transformed velocity components are computed from measured velocity components

using transformation matrix.

Moment Processing: In this step Mean value, Variance, RMS value, Skewness,

Flatness factor, Turbulence intensity, Cross moments are computed and stored in

Moments file.

Spectrum Processing: Spectral estimates are computed using FFT and stored

along with the corresponding frequencies in Spectrum file.

Correlation Processing: Correlation coefficients are calculated from the inverse

FFT of spectral estimates computed in Spectrum Processing.

We cover further details on LDA processing in Appendix A.1.

3.3 Microphone Arrays

The microphone array technique is used to measure noise of aircraft compo-

nents (slats, landing-gears, flaps etc) to help aerospace engineers improve the aircraft
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design and to reduce the overall airframe noise. Microphone arrays consist of mul-

tiple, O(100), microphones that must be simultaneously sampled. The phase shift

between channels is then used to derive acoustic source information [79, 80, 81].

The aeroacoustic researchers at University of Southampton use a National

Instrument’s NI4472-based data acquisition system designed for acoustic and vibra-

tion applications. This is able to sample multiple channels at up to 96kHz (48kHz

anti-aliased), while remaining tightly synchronized in time. The system controller is

driven by an NI’s proprietary Labview system running Windows XP. The I/O slots

of the controller can be populated with specialized data acquisition cards each sup-

porting a number of channels. For example, a system with 7 cards and 8 channels

would support an array of 56 microphones for the measurement. Figure 3.3 shows

a landing gear test using 56 microphones and an associated noise contour plot.

3.3.1 Data Acquisition

The data acquisition in microphone technique involves simultaneous sampling

of all the channels. A typical data acquisition event on a high channel count system

would generate a large volume of data, running into hundreds of mega bytes per

second [81]. In order to achieve realtime processing of the time-series data, efficient

data storage and data transfer techniques must be employed. The raw data com-

prises blocks of samples received from individual microphones at a user-specified

sampling rate.

3.3.2 Data Transfer

The metadata (number of microphones, microphone sensitivity data, sampling

rate, block size etc) must be used for customized data upload.

3.3.3 Processing

The microphone array processing happens in two stages: cross spectral ma-

trix computation and beamforming. The cross-spectral matrix (CSM) is an M ×
M matrix, where M is the number of microphones. The CSM computing steps

involve data calibration of the raw samples, Frequency Fourier Transform (FFT)

computation, block averaging of cross spectral components and background noise
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Figure 3.4: Particle Image Velocimetry Experiment

removal [79, 81]. By dividing the microphone samples, the CSM steps can be run

in parallel as can be seen in Chapter 5. In the beamforming step, the beamforming

expression is computed using the CSM. The grid coordinates are then generated for

plotting. Similar to the data transfer, user processing step also requires customiza-

tion so that different algorithms can be developed and used as the state-of-the-art

advances.

Further details on microphone array processing can be found in Appendix A.2.

A complete discussion on this topic can be found in [81].

3.4 Particle Image Velocimetry (PIV)

Figure 3.4 shows a schematic of the Particle Image Velocimetry experiment

setup. PIV [82, 83] is a non-intrusive, field-based technique to measure fluid velocity.

In contrast to the LDA system, which measures velocities at a single point in space

at multiple times, the PIV system simultaneously measures velocities in the field of

view of the sensor (a digital camera) at a single instant in time. 2-D PIV systems

use a single camera, while 3-D PIV systems employ two CCD cameras, one on the
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Figure 3.5: Typical wind tunnel experiment workflow

left and one on the right, to produce two 2-dimensional vector maps showing the

instantaneous flow field as seen from each of the cameras. Using the calibration

function obtained during camera setup, the true 3-D particle displacement can be

calculated.

The requirements for PIV are: 1. An upload component to transfer image

frames from acquisition system to processing cluster. 2. Timely processing response

by means of high-performance implementation. This requires parallel implementa-

tion of cross-correlation computation between image frames.

3.5 Discussion

Figure 3.5 shows a typical wind tunnel experiment workflow steps which is

similar to any other scientific workflow. Each activity in the wind tunnel workflow

depends on the data produced from the previous workflow step, making them data-

centric and often with near-realtime requirements. Since the workflow transitions

are triggered by data, wind tunnel workflows fall under the categories of data-driven

workflow systems, as opposed to control-flow driven [84]. The workflow framework

should hence address the data-driven and near-realtime nature of the workflow.

Unlike many other scientific workflows, in the wind tunnel experiment scenario,

multiple users share experiment facilities to run different experiments of interest.

The wind tunnel experiments run on some proprietary system and their integration

into a workflow environment requires customized solution.

Due to storage constraints on the acquisition system the experimental data

are to be transferred in near-realtime to another system for processing/storage.

The configuration metadata obtained during experiment setup can be utilized to

perform a customized data transfer operation for a particular experiment. In typi-

cal wind tunnel processing, an aerodynamicist would be interested in changing and

customizing the processing algorithms. User customization of the processing algo-
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rithm, together with an ability to use the default processing steps, is an essential

requirement. Also, the user should be able to apply different processing parameters

to any of his existing data set producing new result set.

An approach addressing the requirements discussed in the previous sections

needs to abstract the general requirements and at the same time support experiment-

specific extensions. This would make component reuse and new experiment addi-

tions possible.

3.6 Summary

In this chapter, we looked into wind tunnel experiment requirements in general

and specific requirements of LDA, Microphone and PIV experiments. We can easily

see from the requirements that wind tunnel experiment steps are data-centric. One

step in the workflow is dependent on the data produced in the previous step; this

requires workflow framework that addresses this data-driven workflow requirements.

Also, the workflow steps such as data acquisition, data transfer and processing are

to be specialized for individual experiments. Building abstract workflow activi-

ties to address the general requirements and customized activities to address the

experiment-specific requirements enables new experiments to be easily added. Sim-

ilarly, in pay-per-use facilities such as wind tunnel, ready-to-use workflow activities

with visual workflow composition are important. The approaches to addressing these

experimental workflow requirements are discussed in Chapter 4 and Chapter 5.



Chapter 4

Workflow Integration based on

Grid Services

The ability of Grid technologies to pool resources from multiple organizations to

solve large scale scientific problems is growing in importance. In the last few years,

Globus has emerged as the de facto standard Grid middleware to be exploited in

various application domains, especially in the context of academic research and

development. The key concept it has brought about is in Grid security supporting

single sign-on and delegation; together they play an important role in enabling

virtual organizations [4]. Science and engineering research is becoming increasingly

collaborative, with people from multiple organizations sharing different resources

(hardware, software, data).

In order to fully realize the potential of Grid computing the end-user commu-

nity (domain experts) should have access to appropriate software frameworks that

makes the Grid easy-to-use so that they can do their science more effectively. We

have seen from the last chapter, the different experimental workflow requirements

and their integration challenges onto Grid. This leads us to some of the motivating

questions: How to extend Grid services reach to popular development frameworks

with Grid security support? How do we hide the underlying complexity in Grid

service access? Is it possible to support application workflow development from

end-users favorite environment/languages leveraging their legacy code?.

In this chapter, an approach to workflow integration based on Grid services

is presented. Figure 4.1 shows a typical grid workflow development stack that we

utilize to illustrate our approach. At the bottom of the stack are the Grid resources

that include compute clusters, storage networks, data acquisition systems, licensed

52
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Figure 4.1: Grid workflow development stack

softwares and so forth. The Grid middleware is responsible for services such as

security, data management and job scheduling.

Abstracting Grid service access into a familiar development framework such

as Java and .NET brings more opportunities for higher level applications. Grid

application toolkits play a vital role in achieving this. This is demonstrated by

means of MyCoG.NET, a multi-language Commodity Grid (CoG) toolkit to access

GT2 Globus Grid services from the .NET framework. Existing CoG toolkits are

available for a limited number of languages (Java [29], Python [30], Perl [31]). By

enabling Grid access from the .NET framework, it will be possible to integrate

legacy code and develop applications in languages such as FORTRAN which is still

favored by many scientists. Further, Grid service access from any of the languages

supported by the .NET Common Language Runtime (CLR) is possible.

Grid access from a commodity development environment enables applications

to leverage continuously evolving and well-tested class libraries supporting text pro-
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Figure 4.2: MyCoG.NET architecture

cessing, database access, network programming, regular expressions, web service in-

tegration, portal development and so on. For instance, in our approach the workflow

requirements of the wind tunnel experiments has been realized using the Windows

Workflow Foundation component of .NET Framework 3.0.

In the rest of this chapter, we discuss how Grid access has been enabled in the

.NET framework by presenting the MyCoG.NET architecture and implementation

details, we provide an approach to wind tunnel experiment workflow based on a web

portal interface, and finally we discuss an experiment-specific workflow approach

leveraging a commercial workflow system, Windows Workflow Foundation.

4.1 MyCoG.NET Architecture and Implementation

Figure 4.2 shows the MyCoG.NET architecture based on the .NET frame-

work. MyCoG.NET consists of GridSecurity, GridFTPClient, GramClient and
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Proxy classes. It also includes the MyProxyInit tool to generate an X.509 proxy

certificate from a user’s end-entity certificate or from another proxy. Underlying

the MyCoG library is the .NET Common Language Runtime (CLR) providing a

shared type system, an intermediate language and dynamic execution environment

for the implementation, and inter-operation of multiple source languages. In the

following sections we discuss the advantages MyCoG derives from .NET, imple-

mentation details, its usage from .NET languages, and its performance. The class

diagrams from MyCoG namespaces are included in Appendix B.

4.1.1 Choice of .NET Framework

The .NET Framework consists of the Common Language Runtime (CLR) and

Framework Class Library (FCL). The CLR operates on assemblies which are logical

groupings of one or more managed modules or resource files. The assembly is the

smallest unit of reuse, versioning and security. Assemblies can consist of types

implemented in different programming languages. The .NET Common Language

Infrastructure (CLI)(ISO/IEC 23271) and C# (ISO/IEC23270) have been ratified as

an ECMA standard [85]. More details on the architecture of the .NET platform and

CLR can be found in [86]. Some of the advantages in using .NET as a development

platform in a grid environment are discussed below.

Multi-language support: The CLR’s standard set of types, self-describing type

information (metadata) and common execution environment enables object-level

interoperability between programming languages. Some of the already available

language compilers targeting CLR include C++, C#, Java, Pascal, COBOL, Eiffel,

APL, FORTRAN, Perl, Python and Smalltalk. With mixed language support, for

example, one can develop a grid application by writing graphical user interfaces in

C++ and scientific computations in FORTRAN based on coding preferences and/or

language strengths.

Performance: The .NET development environment compiles the high-level lan-

guage code into Intermediate Language (IL). When a method is called for the first

time the CLR’s JIT (just-in-time) compiler verifies and converts IL code into na-

tive CPU instructions and caches it in memory at runtime. Subsequent calls to the
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Figure 4.3: ClickOnce deployment model

method execute directly using CPU instructions from the cache (avoiding the need

for JIT compilation), thus improving the performance.

Portability: Since the Common Language Infrastructure (CLI) is ratified as an

ECMA standard [85], there is growing interest in implementations on non-Windows

platforms. The intermediate language is not tied to any specific CPU platform.

A managed module containing intermediate language code can run on any CPU

platform as long as the target operating system hosts the version of the CLR. For

example, a .NET managed module compiled under Windows can be run under the

Linux Mono [87] development environment. Apart from Microsoft’s .NET just-

in-time compilation support for the x86 platform, the Mono project sponsored by

Novell supports the x86, SPARC and PowerPC architectures on Windows, Linux,

Solaris, HP-UX, Mac OS and BSD operating systems.

ClickOnce - No Touch Deployment: Grid application deployment and pro-

viding user access to the latest version of the application are quite challenging for

developers. The .NET Framework supports application deployment by means of

ClickOnce [88] and it can be utilized in the context of the Grid as shown in Fig-

ure 4.3. The application developer publishes the application files on a Web Server

using the ClickOnce Deployment procedure and provides the user with a URL. When

the user clicks on the link the .NET runtime recognizes the application, downloads

files onto the client desktop, and executes under a user specified security context.
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Table 4.1: MyCoG GSI authentication, delegation and message security

MyCoG GridSecurity (SSPI) Message Tokens Globus Server (GSSAPI)

1. Authentication 1. Authentication
a. Get outbound credentials a. Get inbound credentials

calling AcquireCredentialHandle() calling gss acquire cred()

b. Generate SSLv3 authentication tokens ⇔ Client-Server Hello b. Parse client security tokens
calling InitializeSecurityContext() ⇐ Server Certificate calling gss accept sec context()
repeatedly and send to server. ⇐ Certificate Request repeatedly and respond to client.

⇒ Client Certificate
⇒ Client Key Exchange
⇒ Certificate Verify
⇔ ChangeCipherSpec
⇔ Finished

2. Delegation 2. Delegation
InitDelegation() ⇒ Delegation Flag gss accept delegation()

⇐ PKCS10 certificate request
⇒ Proxy Certificate Chain

3. Message Security 3. Message Security
EncryptMessage() ⇒ ApplicationData gss unwrap()
DecryptMessage() ⇐ ApplicationData gss wrap()

⇔ Both client and server exchange, ⇒ Client to server message, ⇐ Server to client message

ClickOnce provides a trustworthy deployment model for grid users to download and

execute grid applications from centrally managed servers. This was demonstrated

by our MyGridFTP tool [89], a ClickOnce Globus GridFTP client supporting grid

security. The Jini downloadable proxies [90] that can hide the communication pro-

tocols necessary to talk with a remote service are analogous to applications deployed

in the ClickOnce model.

Web Services support: The System.Xml namespace part of FCL provides W3C

(World Wide Web Consortium) [39] standards-based support for processing XML.

The W3C standards compliance ensures cross-platform inter-operability. The XML

Schema Definition (XSD) tool can be used to convert XSD schemas to .NET lan-

guage classes. The Web Services Description Language (WSDL) tool generates code

for XML Web services and XML Web service clients from WSDL contract files and

XSD schemas.

4.1.2 Grid Security

Grid security is crucial for authentication, authorization and delegation. The

Generic Security Services Application Programming Interface (GSSAPI) [21] de-

fines a portable API for client-server authentication. On the server side, the Globus
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Figure 4.4: X.509 proxy delegation

Toolkit implements Grid Security Infrastructure (GSI) providing single sign-on capa-

bility based on GSSAPI and Grid forum recommended extensions [91]. The MyCoG

GridSecurity module encapsulates GSI client functionality by making calls to Win-

dows native Security Support Provider Interface (SSPI) for Secured Socket Layer

version 3 (SSLv3) handshake and implementing delegation and authorization mes-

sage exchanges. The GSI Message specification [92] defines three types of GSI mes-

sages exchanged between client and server, as shown in Table 4.1. During context-

establishment, the MyCoG client uses the GridSecurity module to exchange SSLv3

handshake messages for mutual authentication with the Globus server. Upon suc-

cessful mutual authentication, the server makes an authorization decision based on

the mapping of certificate subjects to local user names present in the grid-mapfile.



59

Figure 4.5: MyProxyInit user interface

4.1.2.1 Delegation

During the delegation phase (Figure 4.4), the client can delegate its creden-

tials to the server by sending a delegation flag. The server responds by sending

a PKCS10 certificate request containing the valid public key and proxy certificate

extension. The MyCoG GridSecurity module calls the Proxy class to create a new

proxy certificate conforming to RFC 3820 [93]. The Proxy class encodes and signs

the proxy certificate by making calls to CryptoAPI before sending it back to the

Globus GSI server.

4.1.2.2 Proxy Support

User can create X.509 proxy certificates using the MyProxyInit tool shown

in Figure.4.5 before running any MyCoG client. MyProxyInit takes the PKCS12

formatted user certificate file, pass phrase and proxy certificate name as inputs. It

calls the Proxy class for RSA public key generation and proxy certificate creation.

We decided in favour of PKCS12 rather than PEM-formatted user certificates and

the openssl proprietary private key format due to inter-operability issues. Both the

user certificate and key can easily be exported to PKCS12 format using an openssl

command as below. This one time conversion step is required to use MyCoG clients
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if the user’s X.509 certificate issued by the Certification Authority is in PEM format.

openssl pkcs12 -export -in usercert.pem -inkey userkey.pem -certfile cacert.pem -out usercert.p12

4.1.3 File Transfer

The MyCoG GridFTPClient class provides GridFTP file transfer features de-

fined in [22] that include third-party file transfer, parallel streams, partial file trans-

fer, TCP buffer size tuning and striped data transfer. It makes a call to the MyCoG

GridSecurity module for GSI authentication and delegation. The code snippets in

Table 4.2 show how the MyCoG GridFTPClient can be called from FORTRAN,

C++, C# and Java programs. We have tested the FORTRAN code using the La-

hey/Fujitsu Fortran compiler [94] for the .NET Framework, and other languages

using Microsoft Visual Studio .NET compilers.

4.1.4 Job Submission

The MyCoG GramClient class supports job submission to the Globus gate-

keeper service part of Globus Resource Allocation Manager (GRAM) after suc-

cessful GSI authentication and delegation. Job requests with requisite parameters

are constructed in Resource Specification Language (RSL) and submitted using

MyCoG .GramClient .request (Table 4.3). The GramClient class supports Globus

Access to Secondary Storage (GASS) server URL submission to transfer the stdout

and stderr of the remote job. The method MyCoG.Gram.GramClient.ping can be

used to find whether the user has adequate permissions prior to submitting jobs to

the Globus gatekeeper.

4.1.5 Performance

In order to evaluate the performance of MyCoG.NET we have tested it on

Local Area Network (LAN) and Wide Area Network (WAN) infrastructures and

compared it with the Java CoG toolkit. The upload and download performance are

shown for various file sizes in Figures 4.6, 4.7, 4.8 and 4.9.

The performance test was measured within two separate programs written

in C# and Java, respectively, using MyCoG APIs and Java CoG APIs. For the



61

Table 4.2: Usage of MyCoG GridFTP API from different .NET languages

Usage in FORTRAN

use MyCoG%GridFTP
use MyCoG%GridSecurity
use MyCoG%Proxy
.... ! Reading X.509 Certificate from store omitted for brevity
type(GridFTPClient),pointer :: gftp
allocate(gftp, source=GridFTPClient(serverName, port))
gftp%DELEGATION = DelegationType%LimitedDelegation
call gftp%Authenticate(GetDefaultProxyLocation)
call gftp%Mode(GridFTPClient%ExtendedMode)
call gftp%ParallelUpload(localFile, remoteFile, numberOfStreams)
....
Usage in C++

using namespace MyCoG::GridFTP;
using namespace MyCoG::GridSecurity;
using namespace MyCoG::Proxy;
.... // Reading X.509 Certificate from store omitted for brevity
GridFTPClient *gftp;
gftp = new GridFTPClient(serverName, port);
gftp->DELEGATION = DelegationType.LimitedDelegation;
gftp->Authenticate(GetDefaultProxyLocation);
gftp->Mode(GridFTPClient::ExtendedMode);
gftp->ParallelUpload(localFile, remoteFile, numberOfStreams);
....
Usage in Java

import MyCoG.GridFTP.*;
import MyCoG.GridSecurity.*;
import MyCoG.Proxy.*;
.... // Reading X.509 Certificate from store omitted for brevity
GridFTPClient gftp = null;
gftp = new GridFTPClient(serverName, port);
gftp.DELEGATION = DelegationType.LimitedDelegation;
gftp.Authenticate(GetDefaultProxyLocation);
gftp.Mode(GridFTPClient.ExtendedMode);
gftp.ParallelUpload(localFile, remoteFile, numberOfStreams);
....
Usage in C#

using MyCoG.GridFTP;
using MyCoG.GridSecurity;
using MyCoG.Proxy;
.... // Reading X.509 Certificate from store omitted for brevity
GridFTPClient gftp = null;
gftp = new GridFTPClient(serverName, port);
gftp.DELEGATION = DelegationType.LimitedDelegation;
gftp.Authenticate(GetDefaultProxyLocation);
gftp.Mode(GridFTPClient.ExtendedMode);
gftp.ParallelUpload(localFile, remoteFile, numberOfStreams);
....
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Table 4.3: Usage of MyCoG GRAM API in C#

using MyCoG.Gram;
using MyCoG.GridSecurity;
using MyCoG.Proxy;
....

gram = new GramClient(serverName, port); //default port 2119
gram.DELEGATION = DelegationType.LimitedDelegation;
gram.authenticate(GetDefaultProxyLocation);
string gassURL = gram.GetGassURL(); //construct rsl string next
string rslString = ‘‘& (executable = /bin/ls) (arguments = -l)(stdout=’’

+ gassURL + ‘‘//C:/temp/list.txt)’’
gram.request(rslString)
....

Table 4.4: GSSAPI authentication

Authentication Time
Minimum (ms) Maximum (ms) Average (ms)

JavaCoG (LAN) 1891 2563 2122
MyCoG (LAN) 734 1156 848
JavaCoG (WAN) 3192 5197 3554
MyCoG (WAN) 761 2704 1179
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Figure 4.6: Upload performance (100 Mbps LAN)
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Figure 4.9: Download performance (WAN)

LAN test, the GridFTP clients were run on an Intel Pentium-IV 2.2 GHz Desk-

top running Windows XP Professional and the GridFTP server was configured on

a Dual Intel Pentium-III 450 MHz, Linux system. The client and server are con-

nected over a switched 100 Mbps Ethernet LAN. The WAN test was carried out

between the University of Southampton and one of the UK National Grid facilities

at the University of Manchester. The local access network bandwidth is limited to

1 Gbps, even though the backbone network runs at 2.5 Gbps. For the WAN test,

the GridFTP clients were run on a Intel Pentium-III 733MHz/Windows 2003 ma-

chine and the GridFTP server at the University of Manchester on a Dual Intel Xeon

3.06GHz/Linux server. Each file was transferred between client and server twenty

times and the minimum, average and maximum bandwidths were recorded. The

TCP buffer size for the GridFTP data channel connection was suitably set during

WAN experiments. It was calculated based on the bandwidth-delay product and

number of streams.

As can be seen from the error bars, large file sizes have significantly lower

bandwidth variability between different runs. Also, parallel streams give signifi-

cantly improved performance in the WAN environment as compared to the LAN

tests. In the LAN experiment, both the Java CoG GridFTP and the MyCoG.NET



65

GridFTP show a maximum download performance of 91 Mbps and upload perfor-

mance of 89 Mbps for 1 GB file size. The aggregate bandwidth due to parallel

streams improves as we increase the file size and number of streams in the WAN

tests. As a comparison, iperf [95] tool bandwidth measurements for LAN and WAN

are shown in Figures 4.7 and 4.9 respectively.

By default, the Windows XP operating system sets the TCP send and receive

buffer size to 8K and can be increased only up to 64K. This value is limiting,

especially for file transfers over a WAN. To overcome this limitation we have used

Windows Server 2003 for our WAN tests, which allows up to 1 GB for the TCP

buffers. The TCP buffer size can be increased in MyCoG programmatically subject

to operating system upper limits. This allowed us to draw the maximum achievable

bandwidth using parallel streams.

The time taken for Grid server authentication and authorization was measured

separately during the runs to compare the Grid security implementations of MyCoG

and Java CoG, as shown in Table 4.4. The X.509 user certificate for the LAN

experiment is of 1024 bit key length and for the WAN experiment it is of 512 bit.

The lesser authentication time of MyCoG could be attributed to its use of the native

Windows runtime and security infrastructure (SSPI).

4.2 Wind Tunnel Experiment Workflow

In the following sections, we discuss the Laser Doppler Anemometry (LDA)

experiment workflow based on web portal interfaces, followed by an LDA sequential

workflow model using Windows Workflow Foundation. Both approaches utilize the

MyCoG Grid toolkit for workflow integration onto the Grid.

4.2.1 Portal Solution

Figure 4.10 shows an LDA experimental workflow hosted by a portal providing

access to Globus GridFTP and GRAM services. Users are able to login to create a

project, create testcases, upload data, initiate processing and generate plots. The

portal service is hosted using Internet Information Services (IIS) running on a Win-

dows Server 2003 server. Below are the project metadata tables stored in SQL
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Figure 4.10: Wind tunnel grid portal hosting GridFTP, GRAM and
PlotWS

Server RDBMS with a brief description of their contents. The application specific

Testcases metadata vary depending on the Wind Tunnel experiment.

UserAccounts (username, login, password, roles,

user’s X.509 subject, homedirectory

on the Linux GridFTP server)

Projects (name, parameters used during

data acquisition)

TestCases (Application specific information for

data management and processing)

The wind tunnel Grid portal hosts a MyGridFTP [89] client developed using

the MyCoG toolkit for experimental data upload. Since MyGridFTP is hosted using

the ClickOnce deployment model (discussed in section 4.1.1), it can be invoked from

any laptop or desktop on the network. When the user selects the MyGridFTP http

link, the application is downloaded from the web server and executed on the client

machine seamlessly. The advantages include access to up-to-date versions of the
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Figure 4.11: MyGridFTP graphical user interface

application (if the version to be downloaded is already present on user’s computer,

then .NET runtime executes the local version), no software installations on the

client machine, access to local file systems, a rich interactive client experience and

the ability to make network connections to any server. In this LDA example, an auto

upload feature based on metadata is supported (“MyGridFTP(Auto)” http link in

Figure 4.10). An LDA dataset consists of multiple data files with a specific naming

pattern as discussed in section 3.2. The metadata driven data upload is useful as

the user does not have to select the individual data files as the entire dataset can

be uploaded automatically.

Similarly, the processing can be initiated using the “Process” link in the user’s

project page and the results get imported into database tables. The PlotWS [96]

web service is used for generating X-Y plots (Figure 4.12) for user analysis.

A workflow integration approach leveraging Windows Workflow Foundation

that supports reuse and hierarchical composition of activities is presented next.
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Figure 4.12: 2D LDA Plot using Plot Web Service

4.2.2 Workflow Architecture leveraging Workflow Foundation

We have seen the Grid integration requirements of wind tunnel experiments

from Chapter 3. The workflow architecture addressing those requirements is shown

in Figure 4.13. The workflow architecture is based on Windows Workflow Founda-

tion - a component of .NET Framework 3.0 as described in detail in section 2.4.3.

In order to enable activities and workflow reuse, the architecture supports

workflow composition based on three activity hierarchies: 1. Windows Workflow

Foundation Activities. 2. MyCoG.NET-based Grid activities to access Globus ser-

vices. 3. Experiment-specific activities for upload, processing, results and so on.

The user can compose workflows from these activity sets or derive to override any

of them depending on the application requirements.

The workflow can be hosted on the client or on the server. In client-controlled

hosting, the workflow runtime runs as part of the host process on the user’s PC.

This requires the user to leave the host process running until the workflow finishes,

but does not require access to a workflow server. The running workflow can be

monitored from the client. In the second case, the user deploys their workflow
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Figure 4.13: Wind tunnel experimental workflow architecture

for hosting to the wind tunnel grid workflow server after successful Grid Security

Infrastructure (GSI) [92] authentication and delegation of user credentials. The

wind tunnel Grid workflow server maintains user account information. A separate

host process is instantiated for the user’s workflow and the runtime is started. The

user is able to disconnect from the server without interrupting the running workflow,

and can check its status at a later time.

The generic wind tunnel workflow activities are: WTWInit - initializes a wind

tunnel workflow server hosting process for the user; this is the first activity in any

wind tunnel experimental workflow. UserNotification - Customized user notification

on the state of the workflow (workflow completion or failure).

4.2.3 Experiment-specific Activities Design

The importance of experiment-specific customization has been discussed as

part of the experimental workflow requirements in chapter 3. Figure 4.14 shows

the class hierarchy depicting how experiment-specific activities can be derived and

customized by the user. New experimental workflows can be realized by adding
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Figure 4.14: Activity class hierarchy

customized activities for that experiment.

Globus Grid activities: The MyGridFTP, MyGram and MyMDS activities use

MyCoG to access Globus resources. These grid activities have generic properties

such as server name, port number, user’s X.509 certificate hash, and specific prop-

erties (e.g, MyGridFTP has TransferType, LocalPath, RemotePath, MPUT etc.).

They are further customized for individual experiments.

4.2.3.1 Activities for LDA Experiment

LDAWaitForDAQ: The WaitForDAQ is an event driven activity customized for the

LDA experiment. On completion of the data acquisition, this activity verifies the

raw data files for completeness and transitions the workflow to the next activity.

LDAUpload: This activity is derived from MyGridFTP and has specific input prop-

erties for the experiment (data acquisition hostname, number of data points, num-

ber of burst spectrum analyzers). Some properties are initialized at workflow design

time with default values and others received as input from the host process. The

experiment specific properties enable automatic uploading of raw data files from the



71

Figure 4.15: Wind tunnel experiment workflow

data acquisition host to a Gram server, as can be seen from section 3.2.

LDAProcess: This is a GRAM activity derived from MyGram. It has similar proper-

ties to LDAUpload, and supports scheduling the LDA processing code to the GRAM

gatekeeper service.

FetchResults: This activity, derived from MyGridFTP, transfers results from the

Gram host to the Windows Workflow server and to the user’s desktop.

Similar experiment-specific activities for other experiments, such as the Par-

ticle Image Velocimetry (PIV) and microphone arrays experiment, can also be de-

veloped. This approach enables an aerodynamicist to compose the experimental

workflow using customized activity sets, thereby reducing their application develop-

ment time. The experiment activities themselves can be further customized by the

user to change, for example, part of the processing logic.

Figure 4.15 shows a sequential wind tunnel application workflow designed using

Grid workflow activities that are customized for an LDA experiment.
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While the sample workflow presented here is in the context of a single orga-

nization, the ability to perform Globus authentication, GRAM job submission and

GridFTP from within the workflow enables multi-site, multi-organizational scenar-

ios to be successfully created and executed. Aggregation of experimental testing

from different wind tunnel sites is well catered for within this implementation.

As can be seen from the two approaches described, the portal solution of-

fers users with a significant capability compared to the previously existing bespoke,

multi-platform, manual processing system, but it provides limited flexibility for cus-

tomization. Also, the individual workflow steps are user driven. Whereas the work-

flow approach leveraging Windows Workflow Foundation can be sequential/event-

driven and the activities are easily customizable.

4.3 Discussion

By leveraging .NET, MyCoG supports multi-language programmability as

compared to other Commodity Grid toolkits. This enables many of the existing

legacy scientific applications and libraries written in languages such as FORTRAN,

to be integrated into the Grid. Existing Commodity Grid toolkits and Grid APIs

provide interfaces to a particular Grid middleware such as Globus. The Simple

API for Grid Applications (SAGA) [32] specification is an Open Grid Forum stan-

dardization effort to provide common interfaces to multiple Grid middleware from

different programming languages. SAGA in a Grid environment is often compared

to Message Passing Interface (MPI) in a cluster environment that is portable across

platforms and network hardware. The SAGA effort does not include any workflow

related APIs. It is possible to define abstract workflow APIs based on hierarchical

activity model to be part of the SAGA specification. As shown with LDA workflow

example in section 4.2.3, the hierarchical activity model enables easy domain-specific

extensions.

The Karajan workflow framework [97] that is currently under development

provides a task library using the Java CoG Kit to interface to Globus Grid mid-

dleware. The approach we have discussed in this chapter differs by providing a

hierarchy of workflow activities, enabling reuse of the workflow components. This
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allows new experiments to be easily added to the system or an existing one to be

customized, which is important for domain-scientists so they can concentrate on

their science rather than the underlying plumbing.

While MyCoG.NET and the workflow activities are supported mainly under

the Windows platform, their extension to other .NET platforms can be achieved

using the Mono .NET environment that is available on Windows, Linux, Solaris,

HP-UX, Mac OS and BSD operating systems. Also, the Grid workflow activities

are currently supported for Globus Toolkit Version 2 (GT2) services. The future

development would require Web services based activities to access GT4 services.

4.4 Summary

In this chapter, we have described the motivation, architecture and perfor-

mance of MyCoG.NET, a multi-language CoG Toolkit for the .NET Framework

to access Globus (GT2) Grid services. The seamless integration of multiple source

languages by the .NET runtime makes MyCoG usable from many programming

languages. We have used MyCoG APIs for .NET within FORTRAN, C++, C#

and Java programs to demonstrate the multiple language support. Performance of

MyCoG.NET is comparable to the Java CoG, and shows improved authentication

performance by using the native client-side security infrastructure.

The ability to compose and execute workflows in a Grid context is impor-

tant to end users. We highlight how the use of a generic off-the-shelf workflow

framework, in conjunction with the MyCoG.NET toolkit, can support varied appli-

cation requirements. We have demonstrated MyCoG.NET usage by implementing

real-world scientific workflows in wind tunnel applications, using Windows Work-

flow Foundation. We have also discussed how customized workflow activities can

accelerate Grid application development. The application example we have chosen

to demonstrate the customized workflow approach is an experiment one. But this

approach can be utilized in long running computational simulations as well.

In summary, the following are the key contributions of the workflow integration

approach discussed in this chapter.

• Extending Grid service access to new platforms: One of the main objectives
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of the Grid is to integrate heterogeneous resources. MyCoG.NET is the first

commodity Grid toolkit enabling Windows applications running under the

.NET platform to become an integral part of the global Grid. This also involves

extending Grid security for authentication and authorization.

• Multi-language programmability: By leveraging .NET, MyCoG enables access

to Globus Grid services from many languages. For example, an existing legacy

scientific application written in FORTRAN can be easily integrated into the

Grid.

• Hierarchical activity model for workflow composition: The application work-

flow activities follow an object oriented hierarchical model with basic activities

specialized for the Grid, and customized activities for experiments. There are

two possible development roles in this scenario - A Grid workflow developer

writes new Grid/experiment activities, and domain-scientists compose appli-

cation workflows and customize the experiment-specific activities. This model

is of importance in an environment such as wind tunnels to support multiple

experiments where the addition of new experiments with experiment-specific

customizations is required.

• Demonstration of real-word scientific workflow: The approach has been demon-

strated with a Laser Doppler Anemometry (LDA) experiment utilizing work-

flow activities customized for LDA.



Chapter 5

Workflow Integration based on

Federated Database Services

The majority of scientific applications in the Grid rely on file systems for data

management with very limited use of Relational Database Management Systems

(RDBMS). In cases where RDBMS is used, it is often exploited as a query engine

to retrieve metadata and results. In this chapter, we present an approach based

on federated database services and show how database systems capabilities can be

leveraged to realize an end-to-end wind tunnel experiment workflow. We also high-

light the advantages in database-centric approach to scientific data management.

Storing large volumes of scientific data using flat files may offer performance

advantages over databases at present. But, some of the database systems unique

capabilities listed below may offer more benefits, flexibility, robustness and greater

control in large-scale scientific data management.

• procedural language stored procedures and functions

• transactional messaging

• native XML types and XML Web Services

• publish/subscribe replication

• and other traditional strengths – SQL interface to select/insert/delete/update,

transactions support to guarantee data integrity, backup/recovery, fine-grained

secure access to tabular data (row-level or column level) and so on.

The development of some of these new database capabilities are driven by the busi-

ness market, and the ability to take advantage of this ongoing development effort

75
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is important to enable sustainable approaches to scientific data management in the

Grid environment.

When the raw data and metadata are managed together in an RDBMS, it be-

comes easier to keep them synchronized. Further, multiple versions of the processing

code can be managed inside the database just as the tabular data as cataloguing cus-

tom high-level language libraries/assemblies are supported. Database federation can

help heterogenous data produced at different geographical locations to be managed,

and provide the user with a single logical view. The individual database instances

are autonomous and any of them temporarily being unavailable does not affect their

interactions. Our architecture takes this approach while integrating the geographi-

cally distributed wind tunnel sites. There are three logical databases – sites, master,

and workers. The site databases operate independently in the federation import-

ing the raw data at sites and sharing through publish/subscribe replication with

the master. The master along with a set of workers manages user’s custom data

processing code and are responsible for data management, processing and analy-

sis. They communicate by means of reliable transactional messaging, which enables

fault-tolerance to the communication in the event of site node, worker node or even

the master temporarily being offline due to various reasons. Although database

federation as an approach to data integration [18] can support functions such as

query optimization, the issue we address in our approach is geographical separation

of data sources, be it within campus or across organizations.

Considering the changing database systems landscape, they may be viewed as

database operating systems [16] into which one can plug subsystems and applica-

tions. The importance and the issues in integrating database systems into the Grid

environment has been studied in detail in [17]. Different scientific applications in

fields such as High Energy Physics [98], Earth Sciences [99] and Geosciences [100]

have already been demonstrated using database-centric approach in a Grid envi-

ronment. The work presented in this chapter differs from previous approaches by

providing an end-to-end workflow exclusively using the database capabilities.

With the growing interest in XML Web Services in scientific Grids, and with

databases beginning to support native XML types and XML Web services, we can
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expect the role of databases in Grid environments to grow in importance.

The reference implementation we discuss in this chapter is based on Microsoft

SQL Server 2005 for database activities and Windows Workflow Foundation for

workflow integration. With similar database capabilities supported by popular

database systems, we believe it is possible to implement using other database sys-

tems as well.

The remainder of the chapter is organized as follows. Section 5.1 covers some

of the recent developments in databases that are relevant to our approach. In

Section 5.2, we describe a generic design approach based on database systems to meet

scientific workflow requirements. In Section 5.3, we present the federated database

architecture for wind tunnel experimental workflow. In Section 5.4, we discuss the

implementation details of the database activities that enable workflow integration.

In Section 5.5, we show how user could compose, run and monitor workflows based

on database activities. Section 5.6 presents discussions in the context of related

works and other applications.

5.1 Recent Database Trends

The capabilities of database systems are increasing and their architectures are

undergoing continuous change. Some of the features that provide new possibilities

to scientific application development are discussed below.

• Language runtime: Many popular database systems now host language

runtimes supporting high-level language stored procedures, functions, trig-

gers, and user-defined data types. For example, Microsoft SQL Server 2005

hosts the Microsoft .NET Common Language Runtime (CLR) [101]; the Java

Virtual Machine (JVM) and .NET CLR are supported in Oracle [102] and

IBM DB2 [103]. This enables scientific applications to manage both data and

the processing code in databases. The implementation approach discussed

in section 5.4 leverages SQL Server CLR integration feature enabling user to

register compute-intensive code written in any of the CLR languages (C++,

Java, C#, and so on).
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• Native XML Support: With XML becoming a data type, storing XML

documents, validating them against a schema, and querying based on XQuery

expressions are all part of the core XML functionalities built into popular

database systems [104, 105, 106]. This feature is useful in processing XML

message exchanges between Grid services and to store semi-structured scien-

tific data in XML format.

• XML Web Services: With the increasing interest in XML Web Services,

database systems [107, 108, 109] are beginning to support web services host-

ing inside the databases, eliminating the need for external hosting contain-

ers or web servers. This would enable Web Services Resource Framework

(WSRF) [36] based, or similar, Grid services to be exposed directly from the

databases. The WS-Security [40] is an OASIS standard supporting PKI, Ker-

beros and SSL security models. As WS-Security is already supported [110,

111, 112] by database systems, it will be easy to realize the adaptation and

interoperability of the emerging Grid security models based on WS-Security

inside database systems.

• Transactional messaging: Asynchronous and reliable messaging between

database instances are possible in present day database systems(SQL Ser-

vice Broker [113] or Oracle streams [114]). We have utilized Microsoft SQL

Server 2005 Service Broker for service level interactions which is discussed in

section 5.4. Service Broker objects include queues, dialogs, message types,

contracts and services. These objects can be created using regular CREATE,

ALTER and DROP Data Definition Language (DDL) commands. The mes-

sages from the transmit queue of the local database instance to the receive

queue of the remote database instance can be transferred inside a transaction

making the message transfer reliable. This database feature can be exploited

for developing reliable Grid services.

• Replication: The publish/subscribe model in replication allows tables, stored

procedures or any other database objects to be published. Different replica-

tion styles determine when and how the data reaches the subscriber. For
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Figure 5.1: Federated database workflow approach in the Grid

example, transactional push-style replication moves data to the subscriber in

near-realtime. Database replication can be utilized when scientific applica-

tions have to deal with distributed data and the availability of data is to be

ensured in more than one location.

5.2 Design Approach

Figure 5.1 presents the high level design of the federated database workflow

approach that meets the data-driven scientific workflow requirements by leveraging

the database features discussed in the previous section. Each member sites in a

virtual organization (VO) hosts a master database, one or more site and worker

databases. The site DBs are the origin of the data flows and they publish their data

to all the subscribed master DBs in the VO using database replication for further

processing. The master runs workflow services supporting execution of application

workflow steps. The user’s custom processing code is registered with the master

and workers as a high-level language stored procedures. The master load balances

the workflow activities by submitting requests to workers through transactional mes-



80

Figure 5.2: Federated database architecture for wind tunnel workflow

saging. The results from workers are combined at the master as a tabular data for

further analysis and user queries. Grid security is crucial for virtual organizations

support. With native XML Web Services, WS-Security support is already part of

database systems as discussed in the previous section. Hence, it will be possible to

host the emerging WS-Security based OGSA Authentication and Authorization [115]

security framework inside database systems.

5.3 Architecture

In this section, We discuss the detailed architecture of our wind tunnel exper-

iments application example based on the design approach presented in the previous

section. Figure 5.2 shows a federated database architecture for a typical multi-

site wind tunnels which is deemed as mission critical system. The University of

Southampton has three main wind tunnel facilities (11′ × 8′, 7′ × 5′ and 3′ × 2′)

spread over the campus, housing heterogenous, specialized experimental hardware

and software for academic and industrial research as discussed in Chapter 3. The

high volume of data generated from multiple experiments are to be transferred from

the data acquisition system to a suitable network location where users can carry out
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further processing and analysis.

There are three logical database instances participating in the federation:

• Site databases (SiteDB): Considering the importance of timely data movement

and near-realtime requirements, the SiteDB publishes the experiment data

tables to the MasterDB using transactional and push-style replication. This

ensures immediate transfer of experimental data to the master as soon as the

data imported into SiteDB from the data acquisition system.

• Master database (MasterDB): This maintains user and application tables, and

publishes them to sites and worker databases. It subscribes to experimental

data from all the sites. The master node also runs workflow services for users

to register, run and monitor their application workflow.

• Worker databases (WorkerDB): This set of database instances is managed as

a cluster of nodes. It carries out the processing work assigned by the master.

It also manages different versions of custom user code for processing.

The database instances in the federation enable a complete end-to-end wind

tunnel experimental workflow to be created and executed by hosting a set of database

services (activities) with master node providing additional workflow services. The

master schedules the processing activities from multiple user workflows onto worker

nodes for load balancing. Access to other Grid resources, such as compute clusters,

is also supported based on Grid workflow activities described in Chapter 4.

Figure 5.3 shows the sequence of messages and data exchanges between differ-

ent database instances and the user’s wind tunnel grid client. The actions labeled

with letters A, B, C and D are independent of a particular workflow instance and

they can happen at any stage. The users can compose workflows based on database

activities, compile into a workflow assembly and submit to MasterDB using workflow

services for scheduling (step A). They can also monitor the status of their currently

running workflows (step B). They can compile a customized assembly and register

it through the assembly management services running in MasterDB (step C1). The

master in turn makes the assembly available to WorkerDB for registering and sub-

sequent load balancing of users jobs (step C2). Each assembly is registered with
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Figure 5.3: Data and message flow for microphone array application

a unique name derived from username, application type and user specified version

number. This unique name registration enables user to maintain different versions

of algorithms to process the experimental data.

The actual workflow execution starts when the user initiates the data acqui-

sition during an experimental run (step 1). When the data acquisition is over, the

service waiting for acquisition to complete (step 2) would change the state of the

current experimental run from “Waiting for DAQ” to “DAQ over”. As the work-

flow is based on a state machine model, this state change transitions the workflow

to the next stage, triggering an import data activity (step 3). Since the application

data tables are subscribed at MasterDB and published by means of transactional

push publication in sites, the newly imported data is transferred to MasterDB in

near-realtime (step 4). Now, with data available at MasterDB and the user’s ap-

plication code registered with master and workers, the data can be distributed for

processing (step 5). The processing request to workers comprise user name, applica-

tion code and version to uniquely identify the assembly for processing (step 6). On

receiving the processing request, the worker either invokes the default processing

or customized method registered by the user (step 7). The worker node sends the
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computed results and the status of the processing to master (step 8). The master

receives, consolidates and records the results (step 9). The final step involves call to

Matlab interface for generating plot and saving it into the results table (step 10).

5.4 Implementation

The implementation details we discuss in this section are based on Microsoft

SQL Server 2005, leveraging SQL Service Broker [113] and .NET integration [101]

features. We briefly cover these features and discuss the implementation details for

the LDA and Microphone array applications.

5.4.1 SQL Server

SQL Service Broker provides asynchronous, reliable and transactional messag-

ing support. Service Broker objects include queues, dialogs, message types, con-

tracts and services. These objects can be created using regular CREATE, ALTER

and DROP Data Definition Language (DDL) commands. The messages from the

transmit queue of the local database instance to the receive queue of the remote

database instance can be transferred inside a transaction making message transfer

reliable. The messages can also be routed through an intermediary machine.

The .NET Common Language Runtime (CLR) is integrated into the recent

release of Microsoft SQL Server 2005. It enables user to write stored procedures,

triggers, functions in any of the CLR languages (C++, Java, C#, and so on). The

compute intensive code can be easily written in a high-level language rather than

being restricted to Structured Query Language (SQL). The power of SQL can be

realized, however, in set oriented queries (SELECT, UPDATE, INSERT, DELETE

and so on). An application can take advantage by writing high-level language code

for procedural logic and SQL code for queries.

The above features are typical as discussed in section 5.1, and we believe the

implementation approach is applicable to other database systems as well.
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5.4.2 Wind tunnel database

Figure 5.4 shows the database schema used for the wind tunnel experimental

data management.

The list of database objects and their functional descriptions are as follows.

• Users table: This table holds the user name, user’s role, user’s X.509 certificate

subject among other user specific details.

• Applications table: When the new application is created, the applications table

is added with dedicated data, results and run table names.

Both user table and applications table are published by the master and sub-

scribed by sites and worker nodes.

• Data tables: These are application specific tables to store the raw data and

configuration information of the experiment. For example, LDAData and Mi-

cArrayData hold data for LDA experiment and microphone arrays experiment

respectively. The data tables are maintained at wind tunnel sites and pub-

lished to master by transactional replication. At sites, the importing and

update of the raw data are independent and at the same time the data gets

propagated to the master in near-realtime.

• Run tables: Every experimental run has an associated data entry in the data

tables. The relationship between runs and data is many-to-one. This allows

multiple runs with different processing parameters to be associated with a

single dataset.

• Results table: The results table contains one or more rows for each experimen-

tal run. In the case of the LDA experiment, there will be one row for each

data point (the total number of data points is represented by NPoints column

in LDAData table), and in the case of the microphone array experiment there

will be one row for each beamforming frequency (FreqArray column in MicAr-

rayRuns table is an array of different frequencies to be used for beamforming).

The run and results tables are maintained in the master.
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Table 5.1: An illustration of a transactional message exchange

Master database Worker database

BEGIN TRANSACTION BEGIN TRANSACTION

SET @Message = <CSMComputeRequest>... WAIT FOR(

BEGIN DIALOG @conversationHandle RECEIVE TOP(1)

FROM SERVICE [MasterService] @mesg type = message type name,

TO SERVICE [WorkerService] @Message = message body

ON CONTRACT [WorkerContract] FROM [WorkerQueue]

SEND ON CONVERSATION @conversationHandle WHERE conversation handle =

MESSAGE TYPE [CSMComputeRequest] @ConversationHandle

(@Message) );

COMMIT COMMIT

• User assemblies table: This table is maintained at master and worker nodes.

It has one entry for each assembly registered by the user. As will be discussed

in section 5.4.3.1, the user can register different versions of an assembly and

the signature of their custom processing methods are stored in a lookup table

(HandlerTable column) for later invocation.

• Stored procedures: The service code for database activities are written as CLR

stored procedures in three different assemblies, namely, site assembly, master

assembly and worker assembly and they are registered in SiteDB, MasterDB

and WorkerDB respectively. The classes that are part of these assemblies are

shown in Figure 5.5. The main stored procedure in SiteDB is ImportMic-

Data. The stored procedures that run at MasterDB are Register / Remove /

ReinstallAssembly, AddMicArrayRun, MasterCSMScheduler and Beamform-

ing. The MasterCSMScheduler instantiates ParallelCSMScheduler when the

cross spectral matrix computation is performed in parallel. At the worker the

main stored procedures are WorkerCSMScheduler, Register / Remove / Rein-

stallAssembly and Beamforming. The LDAConfig and LDAData together are

serialized and stored as Binary Large Objects (BLOBs) into the LDAData ta-

ble (RawData column in LDAData table). Similarly, MicConfig and MicData

are also serialized and stored into the MicData table.

• Service broker objects: The service broker objects include messages, contracts,

queues and services and they are created using regular SQL DDL commands.
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Figure 5.6: Transactional messaging

The message types can be binary or an XML with a validation schema. The

contract specifies the types of messages that can flow between a sender and

receiver. As shown in Figure 5.6, queues are placeholders for messages and

central to reliable, asynchronous and transactional messaging ; on new mes-

sage arrival the activation stored procedure (for example, WorkerServiceProc

in the following Queue declaration) is invoked. A service is an endpoint that

participates in a conversation. The master and worker communicate with the

help of broker objects. Table 5.1 shows how master would send a CSMCom-

puteRequest message to worker. The following SQL commands show how

different service broker objects are created in worker databases.

Message types:
CREATE MESSAGE TYPE RegisterAssemblyRequest VALIDATION = WELL FORMED XML;

CREATE MESSAGE TYPE ReinstallAssemblyRequest VALIDATION = WELL FORMED XML;

CREATE MESSAGE TYPE RemoveAssemblyRequest VALIDATION = WELL FORMED XML;

CREATE MESSAGE TYPE AssemblyReply VALIDATION = WELL FORMED XML;

CREATE MESSAGE TYPE CSMComputeRequest VALIDATION = NONE;

CREATE MESSAGE TYPE CSMComputeReply VALIDATION = NONE;

CREATE MESSAGE TYPE BeamformingRequest VALIDATION = NONE;

CREATE MESSAGE TYPE BeamformingReply VALIDATION = NONE;

Contract:
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CREATE CONTRACT WorkerContract(

RegisterAssemblyRequest SENT BY INITIATOR,

ReinstallAssemblyRequest SENT BY INITIATOR,

RemoveAssemblyRequest SENT BY INITIATOR,

AssemblyReply SENT BY TARGET,

CSMComputeRequest SENT BY INITIATOR,

CSMComputeReply SENT BY TARGET,

BeamformingRequest SENT BY INITIATOR,

BeamformingReply SENT BY TARGET

);

Queue:
CREATE QUEUE WorkerQueue

WITH STATUS = ON,

RETENTION = OFF,

ACTIVATION(

STATUS = ON,

PROCEDURE NAME = WorkerServiceProc,

MAX QUEUE READERS = 4,

EXECUTE AS SELF

);

Service Procedure:
CREATE ASSEMBLY WorkerAssembly FROM ’path/to/assembly’ WITH PERMISSION SET = SAFE;

CREATE PROC WorkerServiceProc

EXTERNAL NAME WorkerAssembly.[WTG.DBLibrary.WorkerDBService].ServiceProc

Service:

CREATE SERVICE WorkerService ON QUEUE WorkerQueue (WorkerContract);

• Replication Configuration: Considering the near-realtime requirements of wind

tunnel experiments, transactional replication model [116] as shown in Fig-

ure 5.7 is used. The incremental changes to the data at sites are propagated

to the master as they occur. Replication configuration uses standalone pro-

grams called agents to distribute data. The log reader agent that runs at a

distributor moves the transactions marked for replication from the transac-

tions log on the publisher to the distribution database. The distributor in our

test is configured on the same machine as the publisher (but it can be con-

figured to run on a different machine as multiple publication sites can have a

common distributor). The distribution agent makes the periodic changes avail-

able at the publisher flow to the subscriber. The following SQL code example
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Figure 5.7: Transactional replication model

shows how site publications are created and an article (MicArrayData table)

is added to the publication using system stored procedures sp addpublication

and sp addarticle.

SET @PubName = N’SiteData’;

EXEC sp addpublication

@publication = @PubName,

@description = N’Publication of raw data from wind tunnel sites to master’,

@status = N’active’,

@allow push = N’true’;

SET @table = N’MicArrayData’;

EXEC sp addarticle

@publication = @PubName,

@article = @table,

@source object = @table,

@source owner = @schemaowner,

@type = N’logbased’;
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<?           = 1.0          = utf-8 ?>

<                >

<       >                </       >

<            >                </            >

<        >         </        >

<       >                </       >

<       >                </       >

<           >         </           >

<        >                 </        >

</                >

xml

RegisterAssembly

UncPath                   UncPath

AssemblyName                   AssemblyName

UserName            UserName

AppName                   AppName

Version                   Version

UserDefault            UserDefault

Parallel                    Parallel

RegisterAssembly

version       encoding"   "          "     "

path_to_assembly

name_of_assembly

user_name

application_code

assembly_version

yes_or_no

number_of_workers

Figure 5.8: Register assembly request in XML

5.4.3 Database activities

The following are the database activities that form the basis for the develop-

ment of customized wind tunnel experiment workflows.

5.4.3.1 Assembly Activities

Assemblies are libraries containing a user’s application-specific processing code,

which can be registered with the master and worker databases. The user can choose

the default processing functions available or write a custom one, register with the

master, and in turn, with the worker. Once the assembly is registered, the public

interfaces (public class, static functions, data) are available for access from service

stored procedures.

The assembly activities RegisterAssembly, ReinstallAssembly and Remove-

Assembly will internally translate into SQL DDL statements CREATE ASSEM-

BLY, ALTER ASSEMBLY and DROP ASSEMBLY, respectively. The essential

properties associated with these assembly activities are user, application type (LDA

or Microphone) and version.

Figure 5.8 shows the XML instance of the register assembly request message

type. On receiving this message, the service procedure at the worker invokes the

register assembly message handler. The handler function catalogs the assembly

with a unique name derived from user name, application code and version. The

user’s custom processing methods are identified and a lookup table (HandlerTable

column in UserAssemblies table) comprising the metadata for function invocation

is also recorded into UserAssemblies table. When a processing message is sent from
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the master, the lookup table for this message is selected from the UserAssemblies

table based on user name, application code and version. Since the user functions

are declared public, they can be called directly using the metadata available in the

lookup table.

5.4.3.2 Process Activities

The process activities execute application-specific code either from the default

assembly or from a user registered one. When a processing message is sent from

the master, the corresponding lookup table is retrieved to invoke the user’s custom

processing function. For example, the microphone array processing involves a cross

spectral matrix (CSM) computation and beamforming step. The CSM computation

step can be executed in parallel. The blocks of raw microphone array samples can

be split among multiple threads equally (Figure 5.9) to improve the performance.

During data acquisition, the samples are acquired in blocks each having 2n samples.

For example, if the total number of blocks is 100 and the block size is 2048, there

would be 204800 samples to be partitioned. The partitioned data is sent to the

workers depending on the number of processors in individual worker nodes. A dual

CPU worker would receive two partitions of the data as it can schedule two threads.

Considering the example again for a 4 thread case, a dual CPU worker node would

receive 102400 samples with each thread working on 51200 samples or 25 blocks.

The threads running on worker nodes compute the cross spectral matrix in parallel

on part of the data. The computed cross spectral matrices are sent to the master

and it does an averaging operation to form a final cross spectral matrix and stores

in the MicResults table. The cross spectral matrix is used during beamforming.

Once the CSM is computed, the beamforming step is executed once for each

frequency. In the case of multiple frequencies, different frequency values can be

sent to worker nodes to generate the beamforming plot in parallel. The output of

individual beamforming step are three square matrices X, Y and Z of resolution size

with grid point values for plotting.
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Mic #1 Mic #2 Mic #3 Mic #n

Thread #1

Thread #2

Thread #3

Thread #4

Figure 5.9: Partitioning of microphone samples for parallelism

Table 5.2: Microphone array processing (CSM timings)

Dual P-III Load Split Merge CSM step CSM Total Beamforming step
1GHz CPU; 1GB RAM (single frequency)

Sequential (Command line) 30.231 - - 89.400 89.400 99.043 (288.149?)
2 threads (Command line) 28.587 0.996 1.499 51.287 53.782 99.043 (288.149?)

Sequential (SQL CLR) 12.253 - - 89.635 89.635 292.553?

2 threads (SQL CLR) 12.529 1.321 1.604 54.423 57.348 292.553?

4 threads (SQL CLR) 11.850 13.971† 84.496‡ 30.899 129.366‡ 292.553?

on two nodes

?Without using matrix-vector multiplication optimizations All timings in seconds
†Time to split, serialize & send
‡Time due to queuing delay & merge

5.4.3.3 Plot Activity

The X, Y and Z arrays computed during the beamforming step are used for

plotting. In the case of multiple frequencies, a separate plot for each frequency

is created and stored. Matlab has been chosen in order to generate publication-

quality scientific plots. The plot function is written in Matlab which takes various

arguments for plotting. The invoking of Matlab code from .NET was achieved using

the Matlab .NET builder tool [117] which wraps the Matlab function into a .NET

class. The plot activity uses the wrapper class to generate the noise contour plot as a

jpeg or eps image and stores it inside the database for user download/visualization.
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5.4.4 Microphone Processing: Performance

Table 5.2 shows the cross spectral matrix processing timings for a C# command

line application and for the same code hosted inside SQL Server as a Common

Language Runtime (CLR) stored procedure. The two nodes utilized for this test

are Dual Pentium III 1 GHz with 1 GB RAM running Windows Server 2003 and

SQL Server 2005, and connected over a 100 Mbps LAN. The SQL Server hosts the

.NET 2.0 runtime. The raw data samples used for the test were acquired from 56

microphones consisting of 100 blocks each of size 2048 (total samples = 204800) [79].

The load time is the time taken to read the microphone samples into memory for

processing. In the command line case, the samples are read from a delimited text

file and in SQL CLR case, they are read from the RawData BLOB (Binary Large

Object) column in MicArrayData table. As can be seen from the table, the parsing

of samples from text file takes more than double the time of deserializing the raw

data BLOB into memory. The SQL CLR cross spectral matrix processing timing

is comparable and the overhead due to processing inside database is marginal as

can be seen from the Figure 5.10. The split time is the time taken to partition the

samples among the threads and the merge time is the time taken to combine the

cross spectral matrix received from threads by an averaging operation. The split

and merge time for 2 threads of SQL CLR case on a single node is again comparable

with the command line timings.

Computation of the beamforming expression involves multiplying the cross

spectral matrix with a weight vector for each grid point of the plot. This matrix-

vector multiplication can be optimized with specialized Intel Streaming SIMD (Sin-

gle Instruction Multiple Data) Extension [118] instructions. The optimized com-

mand line beamforming timing is obtained using the NMath Core [119] C# library

(which in turn uses Intel’s Math Kernel Library). This could not be registered into

the database due to the SQL CLR strict versioning policies (we expect this to be

resolved in the future). In order to provide a fair comparison, we measured the

CSM timings without optimizations (marked with ? in Table 5.2); the SQL CLR

timings for beamforming step without the matrix-vector multiplication optimization

is comparable to the same command line version.
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Figure 5.10: Microphone cross spectral matrix performance

The four threads case uses SQL service broker messaging to communicate the

part data to the worker node. During the send operation the data is split and

serialized. Since the service broker queue supports asynchronous operations, on

receiving the reply from the worker the master service procedure merges the results

to produce the cross spectral matrix. The overhead due to queueing of the raw

data is noticeable. But, this particular test is more to illustrate the advantage of

reliably partitioning and load balancing a service using database messaging, than

to show any speedup. With multiple users running different experiments producing

high volume data, a reliable service to the wind tunnel experimental environment

is more important. This is discussed further in Section 5.6. Also, for cases, where

the experimental processing is long running due to data volume or the nature of the

processing, the queueing overhead can be amortized. Further, the database messages

can be routed through a low latency and high bandwidth network technologies, such

as, InfiniBand and other high speed interconnects, to improve the performance.

5.5 Workflow Integration

The workflow integration is achieved using Microsoft Windows Workflow Foun-

dation that is part of the upcoming Microsoft .NET development framework 3.0 [14]
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Figure 5.11: Microphone experiment workflow based on database activ-
ities

discussed in section 2.4.3. The database activities discussed in section 5.4.3 are

wrapped into an experiment-specific workflow activity library for users to compose

their experimental workflow and submit to master node for hosting. Figure 5.11

shows the composition of custom microphone workflow based on experiment-specific

activities.

The state machine workflow model of Windows Workflow Foundation has been

adopted for the development of customized microphone experiment workflows. The

initial state of the microphone workflow is WaitForDAQ and the final state on

success is Plot or WorkflowError in case of any error during workflow execution.

The experiment-specific activities are derived from the State activity. The State

activity is composed of one more event driven activities. For example, the Import-

MicData state has the DataImported event transitioning to the MoveData state
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and ImportError event transitioning to WorkflowError state. On completion of

an event, the SetState as part of the event-driven activity sequence transitions the

workflow to the next state. The CSMCompute and Beamforming are workflow state

representing processing.

The user composes the workflow, compiles it into an assembly and submits to

the master node for hosting. The workflow is scheduled and run at the master node.

The workflow activities connect to the master database to execute the corresponding

database activities. The state transitions of the workflow are recorded into the

run tables of the master database. The user can monitor the submitted workflow

instances for their status, to find out whether they have completed successfully, are

still running or terminated with an error.

This is similar to the customized workflow approach to Laser Doppler Anemom-

etry (LDA) experiment based on sequential workflow model presented in Section 4.2.2.

5.6 Discussions

The nature and degree of use of Relational Database Management Systems

(RDBMS) in scientific data management has been variable. Some of the usage

has been to stream data near-realtime, to host scientific services by means of SQL

stored procedures, to partition data to improve query performance, to store results,

to store metadata and so on. In this section, we discuss related scientific projects

highlighting the degree of database systems usage and provide our argument in favor

of keeping databases central to the entire experimental workflow.

The NEESgrid framework [6] part of the Network for Earthquake Engineer-

ing Simulation project supports instrument integration and exposes domain-specific

Grid services for conducting and monitoring distributed earthquake engineering ex-

periments. In terms of the experimental facilities, NEESgrid has some close sim-

ilarity with wind tunnel experiments, but the emphasis is more on remote access

to instruments in a multi-site environment. NEESgrid uses databases for meta-

data management only. The myLEAD [74] tool part of the Linked Environment

for Atmospheric Discovery (LEAD) project provides specialized services for atmo-

spheric scientists to search, store and catalog data objects generated during their
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investigations. The metadata catalog is managed in RDBMS along with a set of

database-stored procedures to expose persistent Grid services. It uses OGSA-DAI

as a middleware for client interactions. OGSA-DAI [41] provides Grid service in-

terfaces to different data sources (relational, XML, flat files). The advantages of

database management systems in real-world scientific application have been demon-

strated in Sloan Digital Sky Survey (SDSS) [120] project. With efficient indexing,

join and parallel query operations, a twenty times speedup was achieved as com-

pared to a file-based implementation. MySQL’s streaming support has been utilized

while hosting archival and real-time Geographical Information Systems (GIS) Grid

services in [121]. The BioSimGrid project [122] manages large-scale biomolecular

simulation data in flat files and associated metadata in RDBMS (Oracle). It sup-

ports simulation data to be deposited into a repository which is then replicated to

different sites for retrieval and analysis.

As can be seen from the above applications, the major factors that influence

how database systems are utilized in a scientific environment include data character-

istics, nature of acquisition, processing requirements and performance. In the case

of multi-user facilities such as wind tunnels where different experiments, multiple

locations, multiple runs, changing parameters, high volume data and customized

processing are the order of the day, it requires an approach that meets this set of

demanding requirements.

The emphasis in the federated database approach [123] is on the ability of

the local database instances to continue to support local operations autonomously,

while they are part of the federation, to provide a set of global operations. Our

architecture takes this approach while integrating the geographically distributed

sites. The site databases operate independently in the federation sharing information

through publish/subscribe replication with the master. Also, the communication

between the master and the worker nodes are by means of reliable transactional

messaging. Any site node or worker node or even the master not being available

temporarily will not affect the global operations. This is of particular importance

in wind tunnel operations, which are deemed mission critical. A typical industrial

scenario would be for a Formula One racing team. Sites would include the factory,
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multiple wind tunnel sites, testing and race tracks in different countries, where

the network bandwidth and quality of service cannot always be guaranteed. Any

of these sites could be offline for a number of reasons, and many are required to

operate around the clock. Hence local autonomy and reliability are important for

such an application.

The Grid security integration in database systems is crucial for enabling virtual

organizations (VOs) support. Some of the key requirements for authentication and

authorization [124] as identified by the OGSA security road map include support

for different authentication mechanism based on Public Key Infrastructure variants

(X.509, PGP 2, AADS 3, SPKI 4 etc.) and Kerberos, support for fine grained (for

example, based on X.509 subject) and coarse-grained (for example, based on groups,

sites etc.) authorizations, allowing actions based roles/membership of an end entity

within a VO and so on. As the building blocks for the emerging Grid services

are based on Web Services, the interoperability of the WS-Security implementation

between different platforms and vendor systems is an important issue to be resolved

to enable VOs from heterogenous sites. The WS-I Basic Security Profile [125],

for example, is aimed at promoting interoperability across platforms. WS-Security

interoperability between different vendor implementations such as Microsoft Web

Services Enhancements (WSE 2.0) and Java Web Services Developer Pack (JWSDP

1.5) has already been demonstrated [126]. Popular database systems already support

WS-Security standards, but, implementing interoperable OGSA authentication and

authorization using native XML Web Services is a challenging and an important

undertaking for the Grid and database research community.

In general, scientific projects keep their non-relational and binary data, for

example matrix or image frames, in flat files. If the binary data is stored in tabular

form using elementary SQL types, recreating by combining from basic elements is a

costly operation. If the data is to be accessed programmatically, say for processing,

it is advantageous to store them as binary objects in database systems. In our

approach, the wind tunnel raw data is imported as Binary Large Objects (BLOBs)

2Pretty Good Privacy
3Account Authority Digital Signatures
4Simple Public Key Infrastructure
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into the database at experiment sites and they get replicated to master node for

processing. As can be seen from this study [127], the load performance of read-only

BLOB objects are comparable to file systems, whereas write/update operations that

result in fragmentation of the BLOB affects the load time. Also, it shows database

performance for objects of few mega bytes size is faster than file systems. In our

microphone experiment example, the raw data is a read-only object, the BLOB

structure is accessed before CSMCompute and never gets updated. Similarly the

CSM matrix BLOB, once stored, is always read before Beamforming step. In this

usage scenario, deserializing the BLOB is more advantageous as can be verified by

the load time in Table 5.2 when compared to loading the raw data from text file

stored in the file system. There is an additional overhead in parsing the floating-

point samples in case of a text file. The other advantage in storing the raw data in

BLOBs is the ability to support database operations such as backup and recovery.

If the raw data is to be searched or only part of it is to be retrieved, for example as

shown in the BioSimGrid scenario [128], BLOBs are not the suitable option as the

whole BLOB is to be deserialized into memory before anything can be achieved. This

limitation can be overcome by either storing the data in multiple BLOB columns

with additional metadata or in pure tabular form. Also, in cases where the raw

data size is more than the maximum BLOB size (typically 2GB) limit in database

systems, it has to be either split into multiple BLOBs or preferably stored in file

systems. Database systems have the limitation of handling extremely large objects

in binary form; with native language runtime hosting, performance improvements

in BLOB storage is an important requirement on database systems from scientific

applications. The decision of whether to store the binary data in a database or in

file systems depends on the data size and access pattern, and it is also application

dependent [128].

In typical wind tunnel processing, an aerodynamicist would be interested in

changing and customizing the processing algorithms. This is particularly true in

a research and development environment. User customization of the processing

algorithm, together with an ability to use the default processing steps, is an essential

requirement. By taking advantage of the language runtime support inside databases,
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managing the user customized algorithm is possible in our approach. The Microsoft

.NET development environment has an extensive support for languages such as Java,

C++ and C#, with other language compilers such as Python and FORTRAN also

being available, users can program in their language of choice. The user code is

registered to run under the user’s security credentials to gain authorized access to

the dataset and results.

While an aerospace engineer works with an experimental model, he may be

interested in comparing and analyzing against results generated from a parallel

Computational Fluid Dynamics (CFD) code. The database architecture discussed

in section 5.3 and the database schema presented in section 5.4.2 supports this.

The parallel CFD code written in MPI (Message Passing Interface) or matlab can

be submitted to a Globus GRAM Gatekeeper service running on a compute cluster

using the MyGram workflow activity described in the last chapter. The CFD results

can be imported to the appropriate Results table (LDAResults, MicResults, PIVRe-

sults etc.). It is also possible to maintain a separate table to hold computational

results for each experiment and link it to the Run tables via foreign key relationship.

This would allow the engineer to make effective comparison of the computational

and experimental results using SQL query language and to have easy access to both

of them. Even though our case study is from the field of aerospace engineering, simi-

lar requirements exists in other application areas. For example, in LHC experiment,

Monte Carlo simulation results will be compared against the experiments (discussed

in Section 2.5.1) and NEESgrid requires support for hybrid testing supporting com-

parison of simulation model and experimental design (discussed in Section 2.5.2).

By exposing an application independent schema design interface, the approach to

storing experiment data and simulation data together can be generalized to support

other application areas.

5.7 Summary

In this chapter, we presented an approach supporting an end-to-end engineer-

ing workflow based on federation of databases. The transactional publish-subscribe

replication model of the database system has been utilized to achieve site auton-
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omy, and near-realtime and asynchronous data movement operations from experi-

ment sites. The user’s customized processing code in addition to the raw data and

metadata are managed inside the database. The database instances host database

services which are invoked from a state machine model workflow. We have demon-

strated this with a reference implementation leveraging the features of Microsoft

SQL Server 2005 and Windows Workflow Foundation. The architecture is generic

and can be implemented using database systems other than SQL Server, such as

ORACLE or IBM DB2 as well.

The resulting benefits are a reduction of the overall turnaround time by pro-

viding an easy-to-use, extensible workflow framework, relieving the user of data

management issues, and providing a robust and reliable system by using the fea-

tures typical of commercial database systems, such as replication and transactional

messaging. Even though the approach and the implementation discussed in this

paper are with reference to wind tunnel experiments, it can be easily extended to

other scientific and engineering application with similar characteristics.

The following summarizes the key contributions of the workflow integration

approach discussed in this chapter.

• Database integration in Grid: How database systems can play an an integral

role in a Grid environment to support scientific workflow requirements has been

analyzed and an end-to-end real-world workflow leveraging database services

has been demonstrated.

• Federated database services: How different logical instances of databases (e.g,

master, sites and worker) can work together in a federation to address geo-

graphical separation of data sources has been shown.

• Parallelism and Load balancing: In cases where the processing code is data

parallel in nature, how the data can be reliably partitioned for load balancing

on available database services has been demonstrated.



Chapter 6

Discussion

In this chapter we will discuss this thesis contributions and how it compares with

similar efforts, and present some of the possible further works.

6.1 Contributions

Scientific and engineering applications from different domains ranging from

high-energy physics, genomics, computational biology to geophysics, astronomy and

aerospace engineering are becoming increasingly data-centric. The earlier efforts,

before data management was considered seriously, have been focused on high per-

formance computing aspects of the applications. Now, scientists and engineers have

considered Grid as an important platform in order to build an end-to-end system ad-

dressing, not just the data management or compute requirements, but the complete

application requirements.

In this thesis, we looked into the previous experiment workflow efforts in Grid

from various application domains and highlighted the differences between them due

to their data, processing and functional characteristics. In multi-user facilities such

as wind tunnels, where different experiments with changing experimental hardware,

software and parameters are the order of the day, experiment-specific integration is

important. The requirements from wind tunnel experiments presented in Chapter 3

support the customized workflow approach which is the basis of the first hypothesis

(see section 1.2) . We provided two approaches addressing the unique application

requirements to wind tunnel experiments. Our first approach realizes an end-to-end

wind tunnel experiment workflow based on Globus Grid services. This approach

may be seen as bottom-up in that an existing Grid middleware has been customized

to meet the application requirements. The second one presents an alternate ap-
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proach to realize end-to-end wind tunnel experiment workflow completely based on

federated database services. In this case, the system is built top-down considering

the application requirements first.

The two workflow approaches have been demonstrated with two different appli-

cations - Grid services approach for LDA experiment and database services approach

for Microphone arrays experiment. LDA experiment produces large number of small

flat files with shorter and sequential processing code while Microphone experiment

produces comparatively more data to be processed by a data parallel algorithm.

Hence, the following discussions comparing the two workflow approaches are based

on the core functional strengths they derive respectively from Grid and database

environment rather than their end-to-end workflow timings.

The contributions from the Grid services approach is in enabling applica-

tion workflow development based on experiment-specific workflow activities. The

experiment-specific workflow activities are derived from the base Grid activities al-

lowing easy customization for new experiments. The extended activities hold enough

experimental metadata to help automate the workflow steps and hide the underlying

complexity in Grid access from the user. Many of the existing legacy scientific ap-

plications and libraries are written in languages such as FORTRAN. The successful

integration and interoperability of these legacy scientific application code requires

multi-language approach to Grid access toolkit. The MyCoG Commodity Grid

Toolkit presented in this thesis enables access to Globus Grid Services from multi-

ple languages (FORTRAN, Java, C++, C# etc.) under the .NET Framework. The

development of MyCoG.NET and the workflow approach based on that supports

the second hypothesis (see section 1.2).

Existing workflow solutions are either developed keeping the target application

domain in mind [69, 65] or their functional extension to suit a particular application

domain requires more work [27, 44, 67]. This contrasts the hierarchical workflow ac-

tivity design approach to wind tunnel experiments we have presented. Even though

our workflow example is specific to the wind tunnel environment, the approach can

be easily adopted in other branches of experimental and computational sciences as

well.



105

The advantages of the Grid services approach is open standards, leading to

interoperability between different middlewares and flexibility on protocols; for ex-

ample, GridFTP for bulk data transfer. In the pre-Web Services model, the security

and other message exchanges are based on custom protocols that are suited for high

performance. XML Web Services has emerged as an accepted practice to build

interoperable OGSA-based Grid services. But, there are still challenges to be over-

come in making XML based protocols work for scientific computing. For example,

the importance of addressing the performance bottlenecks associated with XML

processing pipeline due to SOAP/HTTP have been recognized [129, 130]. The com-

munication performance is crucial to certain class of applications with requirements

for near-realtime data movement similar to wind tunnel experiments discussed in

Chapter 3. Similarly in the Grid approach, the management of metadata generated

from the scientific workflow steps is often ad hoc. An effective metadata capture

and organization would help in automating the workflow steps reducing the manual

intervention as far as possible.

Database systems can offer many advantages to Grid applications: power-

ful yet simple query language, ability to store raw data, metadata and the pro-

cessing code, transactional model to ensure data integrity, data mining extensions,

transactional messaging and so on. The continuing database architectural improve-

ments [16] are taking the database systems a step closer to meeting the require-

ments [17] in integrating them onto Grid.

The contributions from our second approach is in supporting a complete end-

to-end wind tunnel experimental workflow by hosting a set of services running on

database instances in the federation. The transactional publish-subscribe replication

model of the database system has been utilized to achieve the local autonomy, the

near-realtime and asynchronous data movement operations from experiment sites.

The user’s customized processing code in addition to the raw data and metadata are

managed inside the database. By taking advantage of the native language runtime

support, the storing and invoking of different versions of application processing code

from multiple user’s is also supported. The asynchronous and reliable messaging be-

tween database services has been achieved using native SQL constructs supporting



106

Table 6.1: Comparing the two workflow approaches

Globus Grid services approach Database services approach

Data management Flat file store, associations between Relational database store,
raw-data and metadata are handled explicit data associations ensuring
by the application code. data integrity, easy search/selection

Data transfer GridFTP high performance data Transactional publish/subscribe model
transfer driven by workflow activity. data transfer - near-realtime movement.

Processing Long running jobs can be Processing threads run inside DB -
scheduled using GRAM activity. exploits data parallelism.

Security Grid security based on GSSAPI. WS-Security support. Any further work
depends on emerging OGSA security model.

Reliability/ Limited support. Workflow state can Database services are asynchronous
Fault-tolerance be persisted. But, workflow activity can and transactional ensuring reliability

fail due to service failures. in the event of system failures.

Extensibility New workflow activities can be New application schema needs
derived from basic Grid activities to be added to sites and published
and customized for the application. to the master.

transactional messaging. The workflow approach based on federated database ser-

vices and the demonstration of the microphone experiment workflow supports the

third hypothesis (see section 1.2).

Table 6.1 compares the two workflow approaches presented in this thesis based

on important functionalities. Both approaches have their advantages and limita-

tions. Globus GRAM supports scheduling of compute- and communication-intensive

MPI based parallel jobs. Hence, the Grid services approach is preferred for applica-

tions with long running processing characteristics with less data management issues.

Since the task scheduling is internal to the database systems, the performance of

concurrent tasks depends on the database systems scheduling policies and how well

it can exploit the underlying hardware architecture. For example, SQL Server 2005

supports mapping of database thread to an operating system thread and it can also

take advantage of non-uniform memory access (NUMA) architecture to reduce the

memory latency [131]. On the other hand, for applications with high degree of data

management and reliability requirements, the database approach is more appropri-

ate. The Grid services and database services approach target different classes of

applications; hence, we have based the comparisons between both the approaches

on functional issues rather than workflow execution timings.

The GridAnt [132] is an extension of apache ant build system and provides
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<gridAuthenticate>, <gridTransfer> and <gridExecute> Grid tasks, respectively

for GSI authentication, GridFTP file transfer and GRAM job submission using Java

CoG APIs. The ant targets are executed sequentially with no support for concur-

rent execution of workflow activities. The lack of iteration, condition evaluation,

management of workflow state, persistence etc. have led to the Karajan workflow

framework [97] based on the Java CoG Kit. Karajan, which is currently under

development, aims at providing declarative style language in XML syntax for work-

flow definition and more streamlined approach towards workflow support. The Grid

workflow approach we have presented in Chapter 4 supports an extensible model for

workflow activity development with specialized activities for Grid which can be fur-

ther customized for experiments. Also, the workflow can be composed using visual

designer, written in XAML or completely coded in high-level languages.

OGSA-DAI [41] provides a service oriented architecture to access data sources

such as relational or XML databases. In the OGSA-DAI model, its services are re-

sponsible for data access, management and delivery while the other grid middleware

services are the consumers of its data and responsible for long-running computations.

Some of the previous database-centric approaches in Grid environment have been in

fields such as High Energy Physics [98], Earth Sciences [99] and Geosciences [100].

The work described in Chapter 5 differs in that we provide an end-to-end experiment

workflow solution exclusively using the database capabilities. For example, integrat-

ing geographically separated data sources, metadata driven experiment workflow,

storing application-specific data types, ability to run processing/analysis against

them, storing results and the support for traditional visualization packages integra-

tion.

Despite the success of database systems in business applications its use in sci-

entific environments is still limited. We believe the experience from our work on

database systems has provided some insight into how present day database system

with its changing capabilities can be integrated into a Grid environment. Similarly,

some of the areas database systems need improvements to become more applicable

in scientific environments include support for scientific data types (numeric arrays,

matrices etc), support for long-running computations (MPI style jobs), fine-tuning
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bulk data movement operations, interoperability at all components between different

vendor database systems (not just at the data import/export or replication opera-

tions), scripting support for all possible database operations (essential for workflows)

and support for emerging Grid/Web Services security models to enable virtual or-

ganizations.

6.2 Further Work

There are many interesting opportunities for further work in both the ap-

proaches. In order for workflows to support different Grid middleware framework,

an abstract set of workflow APIs independent of application domains and underly-

ing workflow engines are important. This can be developed adhering to GGF/OGF

Simple API for Grid Applications specification. The MyCoG Grid APIs have been

developed for pre-WS components of Globus Grid services and it can be extended

to include appropriate tools and APIs for the emerging Web Services based Globus

components.

Unlike business computing, the message exchanges in scientific applications

are often data intensive. This requires support for routing messages through low-

latency and high bandwidth networks. In the federated database approach dis-

cussed, a high performance messaging layer can be developed so that fine tuning the

performance of message exchanges between database instances would be possible.

Similarly, compute intensive applications require support for task level parallelism

and a communication model that can support broadcast, group communication etc;

if compute/communication intensive application code is to be run under database

systems, an effective framework supporting the task scheduling and communication

model suitable for parallel computing are to be developed. One possible approach,

for example, would be to utilize operating system threads external to database in-

stances to handle long-running compute messages.

The SQL/MM data mining extension of the SQL:1999 standard defines stan-

dard interfaces to data mining algorithms. Since the experimental raw data, meta-

data and results are all stored inside database systems, it is possible to host data

mining services exploiting data mining extensions.
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In order for heterogenous databases to interoperate in a Grid and between

virtual organizations, the services hosted inside the databases are to be compliant

to emerging standards for the Grid fabric layer. What is the best model to host web

services inside the database? How can the database services wrapped effectively into

XML Web Services? How do database services publish and discover? The answers

to some of the above research questions will help database systems better integrate

in a Grid environment. A synergy between emerging Grid computing standards and

database systems would be of great mutual benefit for the two communities.



Chapter 7

Summary and Conclusions

Scientific and engineering experiments involve people and facilities that are dis-

tributed across organizations. During the last decade there has been a growing

interest in Grid computing and it is increasingly being adopted in many scientific

projects. The Grid integration requirements of experiment workflows from different

application domains vary due to their data, processing and functional character-

istics. In this thesis, we looked into some of the experiment workflows and their

integration challenges onto Grid, and presented two approaches to supporting end-

to-end workflows considering wind tunnels as an application example.

In Chapter 2, we have reviewed the related works in the field of Grid and

databases, and we have also discussed some of the experiment workflows from dif-

ferent application domains and highlighted the differences in their integration ap-

proaches. We have presented some of the unique integration requirements of wind

tunnel experiments in Chapter 3. The application specific workflow steps for wind

tunnel experiments substantiates the first hypothesis.

The first contribution from this thesis is the approach presented in Chapter 4

to an experimental workflow based on Globus Grid services. The experiment-specific

activities are derived from base Grid activities enabling new experiments to be eas-

ily added. The workflow activities hold enough metadata to automate the workflow

steps. The multi-language approach of the MyCoG Grid toolkit enables integration

of many of legacy scientific application code written languages such as FORTRAN.

The development of MyCoG under .NET and the workflow approach leveraging

MyCoG demonstrates the suitability of commodity environment to scientific work-

flows as identified in second hypothesis.

The other contribution from this thesis is the federated database services ap-
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proach to experimental workflows presented in Chapter 5. This approach shows how

present day database systems can host set of services to realizing end-to-end exper-

iment workflows. Federated database instances host services providing support for

local experiment site autonomy, data movement, running of user’s customized pro-

cessing algorithm and plotting/visualization. This workflow approach supports the

third hypothesis by realzing an end-to-end scientific workflows based on database

services.

Both the experiment workflow approaches can be easily extended to other

domains. The idea of having common grid workflow activities for data transfer and

processing, and annotating with metadata for specific experiments can be easily

applied in other application workflows as well.

The metadata capturing and their association with raw data, analysis and vi-

sualization of results, searching and mining for patterns will all be easy if widespread

adoption of database management systems is achieved in scientific Grids. This re-

quires more integration efforts similar to OGSA-DAI from the Grid communities.

Similarly, there are many file systems features scientist’s might prefer over database

systems until those short-comings are addressed. Some of them include easy-to-use

language APIs supporting SQL queries, support for scientific and user-defined data

types (arrays, matrices, complex numbers etc.), support for parallelism, support

for workflow system integration and simple command line interfaces to the whole

system.



Appendix A

Processing details

A.1 Laser Doppler Anemometry

The LDA raw data files contain samples at a single traverse position for a

particular Burst Spectrum Analyzer (BSA) channel. It follows the following format:

BSA_STATUS & BSA_PARAMS header for channel 1

burst

burst

...

...

Each of the ith burst encodes the arrival time (AT), transit time (TT) and the

velocity/frequency of the ith sample. The untransformed velocity component along

x direction is given by

Ux = fD1
λ

2 sin θ/2
(A.1)

where λ is the laser wave length, θ is half the angle between the laser beams and fD1

is the Doppler frequency for BSA channel 1. Similarly, the untransformed velocity

components Uy and Uz can also be given for y and z directions respectively.

The transformed velocity components are calculated by using the transforma-

tion matrix as below.




U

V

W


 =




1
2 cos ψ/2

0 1
2 cos ψ/2

0 1 1
1

2 sin ψ/2
0 1

2 sin ψ/2







Ux

Uy

Uz


 (A.2)

where U , V and W are the transformed components, Ux, Uy and Uz are the

measured components, and ψ/2 is the angle between z axis and the first axis.

The following are some of the output values due to LDA processing.
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Mean value:

Uweighted =

∑
Ui∆ti∑
∆ti

Uunweighted =

∑
Ui

N
i = 1, 2, 3, · · · , N (A.3)

where ∆ti is the transit time of ith particle inter arrival time (ti− ti−1) and N

is the number of samples.

Variance:

σ2
weighted = u2 =

∑
i(Ui − U)2∆ti∑

i ∆ti
σ2

unweighted = u2 =

∑
i(Ui − U)2

N
(A.4)

RMS Value:

σ =
√

u2 (A.5)

The variance values σ2
weighted and σ2

unweighted are utilized to calculated the

weighted and unweighted rms values respectively.

Cross moments:

uvweighted =

∑
i(Ui − U)(Vi − V )∆ti∑

i ∆ti
(A.6a)

uvunweighted =

∑
i(Ui − U)(Vi − V )∆ti

N
(A.6b)

A.2 Microphone Arrays

The first part of the microphone array processing is the Cross Spectral Matrix

(CSM) computation. CSM is an N ×N hermitian matrix A, where N is the num-

ber of microphones and each element Ann′ represent cross-spectral component for

microphones n and n′. Since Ann′ = A∗
n′n only the upper or lower triangular matrix

needs to be computed. The diagonal elements Ann are auto spectral components of

the microphone. The Cross Spectral Matrix A is given by,

A = 〈~u(t)~u∗(t)〉 (A.7)
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with elements

Ann′ =
1

T

∫ T

0

un(t)u∗n′(t)dt, n, n′ = 1, 2, · · · , N (A.8)

The un(t) represent the composite signal of microphone n and u∗n(t) is the complex

conjugate transpose of it.

The next step in the processing is called beamforming. During the microphone

array testing, beamforming is used to successively steer the phased array in a grid

selecting the regions of interest to ascertain noise source distributions.

The beamforming expression for each point in the grid is given by

b(xb) = 〈|~w∗(xb)~u(t)|2〉 = ~w∗(xb)A~w(xb) (A.9)

where ~w(xb) is a microphone weight vector defined for each source point xb of

interest and A being the pre-computed CSM.
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Appendix B

MyCoG.NET classes

B.1 MyCoG.GridSecurity and MyCoG.Proxy namespace

Figure B.1 shows classes in MyCoG.GridSecurity and MyCoG.Proxy names-

pace supporting authentication and delegation functionality. The GridSecurity class

implements Secure Sockets Layer (SSL) mutual authentication protocol. It uses

Proxy class to create X.509 proxy certificate and delegate client’s security creden-

tials to the server. The Proxy class in turn uses PKCS10Decode to decode the

certificate request received from the server.

B.2 MyCoG.GridFTP namespace

Figure B.2 shows classes in MyCoG.GridFTP namespace. GridFTPClient

class implements the standard FTP protocol and a set of GridFTP extensions;

the GridFTP extensions include GSI security on control and data channels, paral-

lel file transfers, partial file transfers and third-party transfers. For example, the

parallelUpload and parallelDownload member functions of the GridFTPClient class

support parallel data transfer in extended block mode as defined in GridFTP pro-

tocol extensions [22]. FTP is a request-response protocol with two types of network

connections between client and server - control and data. GridFTPClient utilizes

Figure B.1: Grid security classes
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FTPControlChannel to exchange client commands and server replies for the entire

duration of the FTP session (GridFTPSession class). The actual FTP commands

for the server are generated using Command and FeatureList classes. The replies

from the server are parsed using the Reply class. Many data channel connections are

created during the session to perform the actual data transfer. The data channel

host and port parameters are captured in HostPort and HostPortList (in case of

striping) utility classes.

B.3 MyCoG.Gram namespace

Figure B.3 shows classes in MyCoG.Gram namespace. The GramClient class

provides interfaces to Globus GRAM gatekeeper service for submitting, monitoring

and terminating jobs. The GRAM protocol is a subset of HTTP; GRAM request

messages are sent as HTTP POST requests while the GRAM reply messages are

received in the form of HTTP status codes. The job requests to gatekeeper service

are expressed in Resource Specification Language (RSL). The GRAMProtocol class

is used for framing request messages and HttpResponse class is used for parsing

gatekeeper responses. In cases of asynchronous job submissions, a callback handler

(GramCallbackHandler) can be registered with the job manager that communicates

state changes of the job to client’s callback. The stdin, stdout and stderr for a job can

be expressed as GASS URLs which are obtained subsequent to starting GassServer

on the client machine.
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Figure B.2: Classes under MyCoG.GridFTP namespace
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10.1002/cpe.1133.
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Conferences/Workshops:
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