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Abstract—Holographic multiple-input multiple-output
(HMIMO) systems are considered as one of the potential
techniques to meet the demands of next-generation
communications by replacing costly and power-hungry
devices with sub-half-wavelength antenna elements. However,
optimizing the beamforming matrix in the base station (BS) for
HMIMO systems is challenging, given the prohibitive overhead
of directly estimating the channels between the BS and the
user equipment. Instead of following the traditional method
of channel estimation and beamforming optimization, in this
paper we employ a deep-learning technique to optimize the
beamformers at the BS based on a loss function. Specifically, in
this paper we introduce a graph neural network (GNN) designed
to map the received pilot signals to optimized beamforming
matrices and to model interactions among user equipment within
the network. The simulation results show that our deep-learning
method effectively maximizes the sum-rate objective while using
reduced number of pilots than traditional channel estimation
and beamforming optimization techniques.

Index Terms—Beamforming, graph neural network, holo-
graphic MIMO, millimeter wave.

I. INTRODUCTION

O support the expected requirements of next-generation

wireless networks, holographic multiple-input multiple-
output (HMIMO) systems have emerged as a feasible and
promising technique that can propagate holographic radios
with acceptable power consumption and hardware cost [ 1]]. It is
becoming increasingly clear that the fifth-generation wireless
communication, or 5G, is now being implemented globally,
where massive MIMO (mMIMO) techniques are employed
to mitigate high path loss experienced at millimeter-wave
(mmWave) frequencies [2]]. Forecasts for subsequent wireless
network generations anticipate a shift from mmWave towards
Terahertz (THz) or even visible light frequencies, giving
rise to significant power consumption, expensive fabrication
cost, and extensive integration area in mMIMO systems [1]].
Consequently, HMIMO systems have emerged as promising
techniques to address these challenges, which leverage novel
materials such as Graphene or positive-intrinsic-negative (PIN)
diodes to optimize the associated cost and enable the manip-
ulation of high-frequency signals [1f], [2].

Additionally, HMIMO surfaces are regarded as nearly quasi-
continuous spatial apertures with antenna elements separated
by less than half the wavelength of the incident mmWave.
Therefore, HMIMO surfaces can compensate for the substan-
tial path loss inherent in mmWave propagation by forming
sharp beams with weak side-lobes and supporting more an-
tenna elements within a fixed aperture [1]], [3].

However, despite the significant progress, several vital
technical hurdles persist in HMIMO communication. First,
it is necessary to establish appropriate channel estimation
approaches to accurately precode and recover the transmitted
signal to fully control HMIMO surfaces due to different
hardware structures and the approximately continuous aperture
[1]], which lead to ultra-high computational complexity and
overhead. To this end, Cui and Dai [4] considered HMIMO
systems with large apertures and the near-field region, where
the channel characteristics are affected by both angle and dis-
tance. Drawing inspiration from the observed sparsity within
the far-field region, a paradigm shift to polar domain sparsity is
introduced in [5], leading to the proposition of a polar-domain
simultaneous compressed sensing (CS) algorithm tailored for
near-field channel estimation. Zhang et al. [6] introduced
a model-based approach employing dictionary learning and
sparse recovery for channel estimation in extremely large
MIMO (XL-MIMO) systems, which incorporates neural net-
works to approximate the transform matrix crucial in the
polar-domain CS algorithm. To tackle the non-stationarity in
estimating the HMIMO near-field channel, Han et al. [7|]
utilized a model encompassing the last-hop scatters under a
spherical wavefront, segmenting the large aperture array into
subarrays and applying a CS-based channel estimation method
on a subarray level. Additionally, Lu and Dai [8]] decom-
posed the problem of channel estimation for HMIMO systems
into Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) sub-
problems. Meanwhile, Wei and Dai [9] introduced a hybrid
channel model for HMIMO systems, encompassing both near-
and far-field scenarios, utilizing the scatterers existing in both
fields, where hybrid-field channel estimation was proposed by
harnessing the CS algorithm separately within the angular and
polar domains.

Furthermore, a deep-learning (DL) framework for hybrid-
field channel estimation was proposed in [[10], combining a lin-
ear and non-linear estimator. Dong et al. [|11]] investigated three
distinct Convolution Neural Network (CNN) architectures that
leverage the inherent spatial, frequency, and temporal correla-
tions present in mmWave channels to achieve accurate channel
estimation. Further Gao et al. [12] focused on mmWave
massive MIMO systems employing mixed-resolution analog-
to-digital converters (ADCs), where they compared traditional
channel estimation methods with a deep learning-based neural
network approach to demonstrate the improved performance
offered by the deep learning method. Li ef al. [13] investi-
gated channel estimation for communication systems aided by
reconfigurable intelligent surface (RIS), where they proposed a
method that leverages the statistical properties of the channels



that exist among the RIS, users, and access points to improve
channel estimation accuracy. In recent efforts to mitigate
channel feedback overhead within frequency division duplex
(FDD) MIMO systems, several studies proposed autoencoder
architectures [14f], [15], which can compress the channel
state information (CSI) while retaining essential characteristics
for accurate signal reconstruction at the receiver. Although
promising, the existing literature for channel estimation in
HMIMO systems is mostly based on the idealistic assumption
of channel sparsity [|16]] and considers the substantial training
overhead resulting from the deployment of a huge number of
antenna elements [1].

Additionally, the design of HMIMO beamforming is another
challenge given the large number of antenna elements and the
expected high beam resolution [1]]. For this purpose, some re-
search work explored a dynamic metasurface approach, where
each antenna element is associated with a tuning weight, which
can enable signal propagation along microstrip lines alongside
other signals. Under this scenario, Shlezinger et al. [|17]] devel-
oped efficient alternating optimization (AO) algorithms aimed
at determining the optimal configuration of surface weights.
This optimization maximizes the achievable sum rate for
uplink and downlink communication scenarios. Later, Wang et
al. [18]] extended the design to wideband channels employing
Orthogonal Frequency-Division Multiplexing (OFDM) sys-
tems and using low-resolution ADCs, where the weights of the
HMIMO beamforming have been jointly optimized along with
the digital signal processing, adhering to a predefined bit con-
straint. Employing a different optimization objective, You ef al.
[19] focused on maximizing energy efficiency within single-
cell multi-user mMIMO networks. They approached this by
concurrently optimizing the transmit precoding matrices and
the activation of weights, leveraging Dinkelbach’s transform
alongside the alternating optimization (AO) technique. Chen
et al. [20] addressed the non-convex optimization problem
by employing manifold optimization and sequential convex
approximation. Xu et al. [21] explored the near-field wideband
model, addressing the receiver beamforming problem through
an iterative algorithm.

On the other hand, holographic principle-based works are
another category in which to design the HMIMO beamform-
ing, where the reference waves traverse the substrate, inducing
a distinct amplitude and phase at each antenna element.
This selective excitation, characterized by specific weights,
culminates in generating the desired object wave [3|]. Deng et
al. 3] introduced a novel approach termed holographic-pattern
division multiple access (HDMA) for a multi-user beam-
forming scenario. Their theoretical analysis substantiates that
employing a zero-forcing (ZF) precoding technique can po-
tentially attain the system’s asymptotic capacity in the context
of HDMA. In [22], the authors explored a scenario employing
an HMIMO-assisted OFDM downlink communication with a
single user, considering frequency-selective channels. The em-
phasis was on enhancing the achievable rate by concurrently
optimizing digital and holographic beamforming, employing
an amplitude control optimization algorithm. Continuing along
this line, Deng et al. [23|] proposed an iterative method for
the joint optimization of digital and holographic beamforming

at the holographic surface. Additionally, the authors of [24]]
proposed a technique for the joint optimization of beamform-
ing, which is specifically tailored to maximize the sum rates
in an HMIMO-assisted downlink multi-user communication
system. In addition, Li er al. [25] conceived a framework
that incorporates an intelligent omni-surface, and conducted a
theoretical analysis to assess the ergodic rate performance of
the proposed system design. Recent advancements in MIMO
systems have explored the structure of overlapped subarrays,
movable-antenna arrays, and a unified tensor approach for
sensing, as discussed in [26[]-[28]]. Although these approaches
appear promising compared with traditional mMIMO systems
[129], [30], it is crucial to acknowledge that the methods above
presume perfect CSI and may ignore the substantial overhead
of channel estimation [|I|]. These considerations underscore the
existing limitations within HMIMO beamforming strategies.

Recently, deep learning has become a powerful tool for
wireless communications, showcasing improved performance
across diverse domains like channel estimation, detection, and
beamforming. Specifically, the authors of [31] and [32] vali-
dated the correlation between user position and the CSI, which
has been approximated by neural networks drawing upon the
universal approximation theorem [33]] and then the downlink
instantaneous and statistical CSI were obtained through trained
neural networks to reduce the overhead. Shen et al. [34]
considered challenges inherent to radio resource manage-
ment, including power control and beamforming, which can
be effectively transformed into graph optimization problems
and proved that graph neural networks (GNNs), including
message passing process, can effectively solve the problem
and generalize to large scale. Additionally, the authors of
[35] and [36] proposed a deep learning-based strategy that is
capable of directly optimizing beamformers and the reflective
coefficients at the RIS using the received pilots, which signifies
a promising leap in optimizing wireless systems through
machine learning paradigms. Furthermore, Feng et al. [37],
[38] presented detection methods that are underpinned by deep
learning and aimed at reducing the complexity and overhead
for CS-aided multi-dimensional index modulation systems.

Consequently, within the scope of this study, we propose a
deep-learning approach to optimize the multi-user HMIMO
beamforming problem with implicit channel estimation for
mmWave systems. More specifically, we adopt a GNN archi-
tecture for capturing the user interactions within the system,
which can facilitate the extraction of a mapping function from
the received pilot signals to the beamforming vectors at the
base station (BS) to maximize the sum rate, while avoiding
the conventional two-stage paradigm. First, the communication
channels are estimated utilizing the received pilot signals, and
then this estimation is employed to address the non-convex
optimization problems. We consider an HMIMO-aided multi-
user mmWave system, where the user equipment sends uplink
pilots to the BS and then the received signals at the BS serve
as inputs for the optimized GNN, directly producing downlink
beamformers without requiring CSI estimation.

Compared with traditional hybrid analog-digital architec-
tures and existing deep learning-based approaches [39]]-[41]],
our method optimizes the baseband and holographic beam-



TABLE I
NOVELTY COMPARISON WITH THE LITERATURE

Our paper  [4]. [7]-19] (6], [10] 18] 13 (23] 1341 (35 [39)1-{41]
Multiuser v v v v v v
Multiplex v v v v v
Hybrid method HMIMO HMIMO HDMA  HMIMO RIS MIMO
Channel estimation Implicity CS DL Implicity ~ Partial CSI
Sub-half wavelength v v v
formers directly from the received pilot signals. This signif- Holographic Beamforming
icantly reduces the overhead typically required for obtaining K RF chains [7 "0 Surface
accurate channel state information, which is a crucial require- — — RF chain A
ment in conventional systems. Furthermore, our model ac- X .[Baseband
counts for wave propagation delay and attenuation, while most streams:| W
traditional designs assume idealized propagation conditions. - | RF chain | A
Additionally, we implement more efficient neural networks,
where each hidden layer consists of a single-layer fully con- Fig. 1. The holographic beamforming process.

nected network, with the number of neurons corresponding to
antenna elements.

The primary contributions of this paper lie in addressing
the conventional challenges associated with CSI estimation
and non-convex beamforming problems by employing a GNN-
based data-driven approach, thereby optimizing the HMIMO
system’s performance in mmWave communications. As shown
in Table [ while many approaches support multi-user sce-
narios, the proposed approach focuses on beamforming in
Holographic MIMO systems with implicit channel estima-
tion. Furthermore, our work considers the challenges of sub-
half wavelength deployments supporting ultra-dense antenna
elements within fixed aperture, which can lead to ultra-high
computational complexity and overhead. The contributions of
this paper can be summarized as follows.

o We consider the beamforming design of HMIMO sup-
porting multiple users, where the BS is equipped with
a large number of antenna elements under sub-half-
wavelength space operating at mmWave frequency. Ex-
plicitly, to compute the optimized beamforming matrix,
a GNN architecture is employed to directly map the
received pilot signals to the optimized beamformers. The
pilots can be utilized more effectively by the proposed
machine-learning framework than by the traditional chan-
nel estimation-based methods.

« We employ a hybrid holographic beamforming decom-
position algorithm to decouple the digital processing and
holographic beamforming that can satisfy the hardware
constraints of HMIMO systems with digital processing
and holographic beamforming.

o Numerical simulations demonstrate that the employed
deep-learning framework achieves superior performance
over conventional model-based techniques in optimizing
the sum rate. Furthermore, the solution addressed by a
GNN exhibits robust generalization across a variety of
signal-to-noise ratios (SNRs) and users. Additionally, the
results show the efficiency of the proposed solution in
reducing the high overhead of channel estimation and
effectively solving non-convex beamforming problems.

The subsequent sections of this paper are organized as
follows. Section [lI| describes the system model, the problem
formulation, and the traditional strategy of channel estimation.
Then, in Section we present the deep-learning framework
and GNN architecture tailored for the HMIMO system. Section
provides simulation results for the proposed scheme in
terms of sum-rate objectives. Finally, conclusions are pre-
sented in Sec. [V]

Notation: x represents a column vector. X represents a
matrix. || X|| 7 denotes the Frobenius norm of X, while det(X)
and |X| denote the determinant of a matrix. tr(X) denotes
the trace. [X]; ; represents an element in the i-th row and
j-th column of a matrix. X" and X are the transpose and
Hermitian transpose of matrices. X ! denotes the inverse of a
square non-singular matrix. CM*¥ denotes the set of M x N
complex matrices. CN(0,0?) represents a complex Gaussian
distribution following zero mean and o2 variance.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we first introduce the architecture and at-
tributes of an HMIMO surface and then we present the system
model for a multi-user mmWave holographic beamforming
system. In the proposed model, the users send uplink pilots
to the BS, which then computes the optimized holographic
beamformer from the received pilots to direct the signals in
the desired directions. The sum rate optimization problem
is presented, followed by a discussion of the conventional
strategy to solve this problem.

A. HMIMO Structure and principle

In HMIMO wireless communication, the transmitter sends
signals to the radio frequency (RF) chains responsible for
up-converting the baseband signals to the carrier frequency.
As shown in Fig. the signals, initially transmitted as
high-frequency currents in the RF chain, are converted to



Fig. 2. The Cartesian coordinate.

electromagnetic waves that propagate across the HMIMO sur-
face. The HMIMO surface subsequently utilizes holographic
beamforming to generate beams toward the intended direction.

The HMIMO hardware structure consists of three main
parts: feed, substrate, and antenna elements. A detailed ex-
planation of the roles and functions of these components is
elaborated below []1]:

o Feed: The feeds generate electromagnetic waves origi-
nating from the RF chain. These waves are designed to
propagate along the surface of the HMIMO system.

o Substrate: The substrate functions as a waveguide within
the HMIMO system, facilitating the propagation of the
reference wave along it. Specifically, the substrate allows
the reference waves generated by the feeds to travel to
the HMIMO surface directly and leak out to free space
after being tuned by the antenna elements.

o Antennas element: The antenna elements equipped on the
HMIMO surface with sub-wavelength spacing transform
the reference waves to object waves to realize the beam-
forming. Lumped elements, Graphene, or photosensitive
devices drive the tuning structure of the HMIMO sur-
faces.

The main role of the HMIMO is to create the holographic
pattern, which makes it possible to obtain the object wave
by controlling the reference wave. Precisely, the HMIMO
structure captures the interference pattern that arises from the
interaction between the reference wave and the object wave,
following the principles of holographic interference [24].

We adopt a Cartesian coordinate system in which the plane
defined by the y and z axes is aligned with the HMIMO
surface. In this configuration, the z-axis is perpendicular to the
HMIMO surface as shown in Fig. 2] Without loss of generality,
we assume that there are M = M, x M, antenna elements
alongside the y-axis and z-axis on the HMIMO surface.

The hologram must be designed and effectively constructed
using the HMIMO surface during the recording process. At
the m-th antennas element, the object wave approaches from
the direction specified by the angles (6, ¢) and the reference
wave activated by the feed k£ can be expressed as [3]]

— k(0 ) T
o (T, O, 1) = €77 (k1) T ;
. ok Lk
W, (e, k) = ek

where k(0y,pr) represents the wave vector for the desired
directional propagation towards the k-th user in free space.

GNN based
method

Fig. 3. The considered system model.

r,, denotes the position vector of the m-th radiation element
(antenna element) of the array. This vector specifies the
location of the antenna element in space relative to a reference
point, typically the origin or a specific point on the HMIMO
surface. ¥ is the distance vector from the k-th feed to the
m-th radiation element. k* is the propagation vector of the
reference wave from the k-th feed. By propagating the object
wave from a given direction to the HMIMO surface, the
interference wave, expressing a certain hologram, arises from
the superposition of the object and reference wave, which can
be defined as [3]]

\I,i(rmaek»@k) :\Do (I'm,ekaﬁﬁk) \P:(rﬁmkk) (1)

The information contained in ¥;, also called a holographic
pattern, is recorded by the HMIMO surface.

In construction, an object wave can be generated when the
reference wave, once excited, propagates along the surface of
the HMIMO structure, where the hologram has been estab-
lished by (TI). Specifically, the wave propagating towards the
direction (6, ¢) can be expressed as

T, o U, | T, |2

B. System Model

We consider a downlink multi-user system assisted by
HMIMO, in which a BS with an array of M = M, x M,
antenna elements serves K users, each having a single antenna.
Here, M, and M, represent the number of antenna elements
aligned along the y-axis and z-axis, respectively.

Initially, the users transmit uplink pilot signals to the BS,
and then the BS computes the optimized holographic beam-
forming matrix to direct the multi-user signals in the desired
directions, as shown in Fig.

Due to the lack of digital processing capability on the
HMIMO surface in the downlink stage, the BS is required to
manage signal processing at the baseband level. As depicted
in Fig. the BS encodes K distinct data streams using
baseband processing W. Subsequently, the BS up-converts the
processed signals to the carrier frequency, facilitated by the
RF chains. Each RF chain sends the up-converted signals to
its corresponding feed which transforms the high-frequency
current into an electromagnetic wave, termed the reference
wave. This reference wave is directed to propagate along
the HMIMO surface by utilizing a waveguide structure. The



direction of the reference wave at each element is controlled
through a holographic beamformer V to generate the desired
beams. Based on the principle of HMIMO, the holographic
beamformer V € CM*K ig formed as follows [3]

. .k Lk k
[V}m,k — o Ik(pr0k) tm | ik" Ty, ,efalrml’ )

where e7k" T represents the phase of the reference wave as it
propagates from feed k to the m-th radiation element. o and
e~rnl denote the attenuation constant and signal loss that
occurs as the wave propagates from the feeds to the surface,
respectivelyﬂ
Let s € CE*! be the transmitted symbols from the BS to K
users satisfying E[ss!] = I. Therefore, the transmitted signal
from the BS can be denoted as Ws. After the holographic
beamforming using the HMIMO surface integrated with the
BS, the signal received by the k-th user can be expressed as
131
e = hiVWs + n, 3)

where hi! € C'*M represents the downlink channel between
the k-th user and the BS, and n ~ CN(0,0?) denotes the
additive white Gaussian noise (AWGN). Assuming channel
reciprocity, the downlink transmission channel matrices are
merely the transpose of the uplink channel vectors [35].
Consequently, the achievable rate Ry for the k-th user can
be computed as

Yizk D VW2 402 ]

where wy, is the k-th column of the matrix W and o2 denotes
the noise power. |hjI'Vw;|? represents the interference signal
of the i-th user to the k-th user through the channel hi’.

The HMIMO surface can generate multiple beams directed
toward the users, which is achieved through the superposition
of the holographic pattern represented by the matrices W and
V. The matrix W typically denotes the baseband precoder,
while V is the holographic beamforming matrix. For each user
k, the interference caused by the presence of other users can
be mitigated by jointly optimizing the beamformers W and
V at the BS [3]]. The baseband precoder W and holographic
beamformer V can be jointly optimized to maximize the sum
rate S p_, Ry.

The knowledge of the channel between users and the BS
is needed to optimize the digital precoder and holographic
beamformer. To achieve this, an uplink pilot transmission
stage is conducted prior to the downlink data transmission
stage. In time-division-duplex (TDD) systems, channel esti-
mation, can be acquired by uplink channel estimation due
to uplink-downlink channel reciprocity [31]]. In frequency-
division-duplex (FDD) systems, the CSI at both the transmitter
and receiver sides can be obtained by feedback link or by using
deep learning methodologies [32].

The strategy we implement for channel estimation is based
on the pilot transmission approach in the work of [46]]. The

Ry = log <1+

"Note that symbol-level synchronization in MIMO systems is outside the
scope of this paper, while this has been addressed in many state-of-the-art
works such as [42]]-[45].

strategy involves 7, samples within each coherence interval
specifically for conducting channel estimation based on uplink
pilots. This allocation supports a set of 7, orthogonal pilot
sequences, which are distinct. These pilot sequences are then
assigned to different users across the network. The simul-
taneous transmission of the pilots by the users, where the
k-th user transmits the pilot sequence x}I € C™ satisfying
xgxl =0if k# 1 and xgxk = T, , is carefully coordinated.
Subsequently, the received pilot signal at the BS represented
by the matrix Y € CM*7r is [46)]

K
Y =) pahixi + N, )
k=1

where N € CM*7» has independent and identically distributed
CN(0,0?)-elements. hy, € CM*! denotes the uplink channel
between the BS and user k£ and p, is the uplink power
constraint.

To estimate channel hy, for user £, the BS exploits orthog-
onality of the pilots by multiplying x; with Y to obtain [46]

Ve =YX = /purphy + Nxp. (6)

The processed received pilot signal, denoted as y;, € CM,
is sufficient to estimate hjy [46]. Typically, to ensure that
the channel hy can be recovered successfully, we need at
least 7, = K pilot symbols. When 7, = K, one choice
of pilot matrix is a discrete Fourier transform (DFT) matrix
as recommended in [35]. For comparison purposes, we also
examine a more general scenario where 7, # K. Under these
circumstances, we initiate by constructing a DFT matrix of
size 7 = max(7,, K), then truncate xy, to the first 7, columns
or the first K rows.

C. Problem Formulation

The paper aims to maximize the sum rates without explicitly
estimating the channel coefficients, given that the channel
estimation has a prohibitive overhead requirement. To directly
map the pilot signal to the optimized digital precoder and holo-
graphic beamformer for sum-rate maximization, we propose
to design the optimal digital precoder and holographic beam-
former based on the received pilot signal y. Specifically, our
objective is to address the subsequent optimization problem
131

max
(W V)=g({yx})

K
ZRkv

k=1
subject to  ||[W||% < pa,
1
0 < |[V]mkl < Manl...M,k: 1...K

(7
where 0 < |[V]p | < A—Z represents the transmitted power
spreading to M elements, accounting for the attenuation as the
signal propagates to the surface. py is the downlink power con-
straint. ¢g(-) serves as a mapping from the received pilot signals
to the digital precoding matrix W and the holographic beam-
forming matrix V. In contrast to traditional MIMO systems
that depend on complex phase shifting circuits, holographic
beamforming is facilitated by meta-material based radiation



elements. These elements can be created by incorporating low-
power and low-complexity RF switches, such as those made
from Graphene. The radiation phase of these elements can be
dynamically adjusted by manipulating the bias voltage applied
to the RF switches [1]].

Addressing problem presents a formidable computa-
tional challenge due to its non-convex nature. To address this
problem, we suggest representing the mapping function g(-)
using a deep neural network and training this network through
data-driven learning techniques. This strategy is inspired by
the universal approximation theorem, which posits that neural
networks with sufficient parameters can approximate a wide
range of functions with a high degree of accuracy [33]]. Before
delving into our proposed solution, it is crucial to outline
the traditional approach for solving the optimization problem,
which can be considered a benchmark for our proposed
solution.

D. Conventional Channel Estimation

This subsection describes the traditional method used to
address the challenge (7). This method consists of two sequen-
tial stages: an uplink channel estimation phase followed by a
downlink sum-rate maximization stage. The problem of max-
imizing the downlink sum rate, given the estimated channels,
has been extensively explored. For example, there are solutions
to the downlink sum-rate maximization problem that can be
implemented in a fully digital manner [47]], or, alternatively, in
a hybrid holographic manner [3]]. In the following discussion,
we concentrate on the phase of uplink pilot transmission and
the subsequent channel estimation process.

To estimate the channel hy, as formulated in equation (6)),
a variety of estimation techniques can be utilized by tackling
the following optimization problem

min e [[1£ (yx) — bill}] ®)
£0)

However, the optimal solution is computationally expen-
sive. Therefore, we compare a low-complexity least-square
(LS) and a higher complexity minimum mean squared error
(MMSE) approach with the proposed algorithm. The LS
estimator is given by [46]

. 1
hls = 9
k \/ﬁ'fp Yk, ( )

while the MMSE estimator is defined as [46]

hY™MSE — by /puRe Wy, Yk — Tk) (10)

where ¥, = (pu7,Ry, —‘y—O’QIA{)_l, the mean hy,y; corre-
spond to the LoS component and the received pilot signal,
respectively, and Ry € CM*M represents the covariance
matrix that describes the spatial correlation of the NLoS
components. It is essential to recognize that the effectiveness
of the MMSE estimator relies on having full knowledge of the
statistical distributions. In practice, these statistical parameters
are often estimated using the sample mean and covariance
matrix derived from the observed data points [46].

III. PROPOSED GNN BASED SOLUTION

The traditional strategy for channel estimation is predicated
on estimating the elements of hj based on the received
pilot signals yj, employing a mean squared error criterion.
Nonetheless, the accurate estimation of the channel is not the
end goal. Instead, the overarching aim is to optimize network
utility as delineated in equation (7). This work proposes a
straightforward solution to the problem rather than using
explicit channel estimation.

In particular, the objective is to utilize a neural network
to approximate the mapping function g(-) as expressed in the
optimization problem (7). The pursuit is to adopt a data-driven
scheme for training the neural network to imitate the optimal
transformation from the acquired pilot signals to the digital
precoder and holographic beamformer, thereby facilitating the
maximization of the network sum rate. The comprehensive
framework is depicted in Fig. [3| where the users first send
uplink pilots to the BS, which inputs the received signals to the
optimized GNN and obtains the downlink beamformer directly
without CSI estimation.

The results presented in [34] elucidate the mathematical
equivalence between the GNN architecture and the weighted-
minimum-mean-square-error (WMMSE) algorithm. The pref-
erence for using W, arises from the inherent limitations of
GNNs, especially when dealing with complex optimization
problems. GNNs can face challenges such as limited expres-
sive power, as discussed in [48]. Although a fully connected
neural network with sufficient width could theoretically ap-
proximate this mapping, such an approach would be com-
putationally demanding and resource-intensive, which makes
it impractical for real-world implementation. By focusing on
outputting W, the complexity of the neural network’s task is
reduced while avoiding the challenges associated with predict-
ing both W and V, which can improve the model’s efficiency
and feasibility. A comparative analysis of the two strategies
was conducted, focusing on the sum rate performance, where
the findings are presented in Table|lll It is important to empha-
size that the GNN architectures employed in both strategies
were identical, and both were trained using carefully tuned
hyperparameters, differing only in the design of the output
layer. This setup ensures a fair comparison and highlights the
effectiveness of using Wy, in optimizing the performance
while maintaining practical resource constraints. Remarkably,
the approach where the two-layer GNN is designed solely
to generate the digital precoder W, demonstrated superior
performance compared with the strategy that produces both
the baseband precoder W and the holographic precoder V
at SNR= 20 dB with K = 5, and M = 64. This outcome
highlights the efficiency of focusing the GNN on optimizing
the W, alone, thus achieving better performance in a more
practical manner.

We detail the GNN-based architecture specifically designed
for this task in the section.

A. Graphical Representation of Users

Managing interference between users is a crucial aspect of
multi-user communications. Hence, the digital precoder and
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TABLE I
SUM RATE PERFORMANCE OF DIFFERENT STRATEGIES
(M = 64).
SNR [dB] K Wy [bps/Hz] W,V [bps/Hz]
5 5 1.7 1.5
10 22 1.6
15 5 59 5.1
10 6.4 52

holographic beamformer must be coordinated to minimize
mutual interference. As a result, we put forward the use of
a neural network architecture, specifically GNN [49]], that is
founded on a graph representation of the digital beamformers
to handle multi-user interference [34]], [35]. The graph includes
K nodes corresponding to K users, as depicted in Fig. []
A representation vector, denoted as {z)}X_,, is associated
with each node, which gets updated in a GNN layer by
layer. The primary objective is to encode each node’s valuable
information in these representation vectors. Following multiple
layers, the representation vector associated with each node
will contain enough information to support the design of
beamforming vectors.

Compared with other neural networks, GNNs offer unique
advantages for beamforming in wireless communication sys-
tems. One key benefit is their inherent permutation equivari-
ance [35], [49]. This property ensures that the GNN architec-
ture remains unaffected by permutations in the user ordering
within the network. Consequently, a GNN-based beamforming
model trained for a specific number of users can be readily
generalized to networks with different user counts as long as
the underlying graph structure remains consistent.

Furthermore, GNNs naturally capture the crucial inter-
user interactions that influence beamforming decisions [49].
During the message passing phase within the GNN, each user
node’s update is informed by the information received from
its neighbouring user nodes in the graph. This allows the
GNN to effectively learn the complex dependencies and spa-
tial relationships between users, improving the beamforming
performance.

The GNN decreases model complexity compared with the

Normalization
Layer

Updating
Layer L

L+
nn

@) | ez Won
H(z2) )]

fully connected neural network (FNN) by adapting to the
specific problem structure [49]. In GNNSs, graphs are used,
with nodes denoting users and edges denoting relationships
between them. GNNs are designed to learn a single set of
parameters for information processing on the graph. These
parameters are applied to all nodes, regardless of the total
number of users [35]. In contrast, fully connected neural
networks typically have a layer where each user has its own
weights and biases. With more users, the number of parameters
in this layer rapidly explodes, making it computationally
expensive [34]. In the next subsection, we offer an in-depth
explanation of the GNN architecture and the training process.

B. GNN Architecture

This section outlines the proposed GNN architecture and
explains the training process. The primary goal of the GNN
is to acquire the graph representation vector {z) } | by first
initializing it, then updating it through L layers that include
aggregation and combination modules, and finally normalizing
it. The GNN takes the received pilot signal as the input data,
with the real and imaginary parts concatenated in a vector
form. Then, the initialization layer transforms the input data
into a representation vector, denoted as {z}.}X_,, followed by
L updating layers which conduct message passing through
all nodes to output {z£ }szl. Finally, a normalization layer
generates the beamformer matrix Wo,¢ via normalization.
Fig. [] depicts the overall architecture.

1) Initialization Layer: The initialization layer receives
input features {z?}# | from each user node and generates
{z}}&_| for the next layer. The input features come from the
received pilot signal of each user node and can be expressed
as

z = [R{yx} " S{yx} 1T, (11)

where $t and <& express the real and imaginary components.

With the input feature vector z{, we employ a FNN [35],
[49], denoted as fg to produce z,lC for the user nodes, which
can be modeled as

n’

1

z = fm(2)), k=1,... K. (12)

The representation vectors {z1}/  now contain features
related to the user channels and are subsequently forwarded
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Fig. 5. The architecture of the aggregation process used in each GNN layer.

to the L updating layers of the GNN, aiming to generate the
user beamformer W, from {zﬁ }szl, where W is the
optimized downlink beamformer which maximizes the system
sum rate.

2) Updating Layer: The L updating layers pass messages
between nodes to produce the user beamformers [34]. For
each updating layer, the output representation vector in the [-th
layer, denoted as z., is formulated by combining its previous
representation zﬁﬁ 1"and the aggregation of the representations

é ! from its neighbouring nodes. In a typical GNN, the
process is given by [49]

2h = Fhomne ([27" Shsgesne ({27} ,00)] )+ (13)

where X (k) denotes the set of neighboring nodes of the node %,
feombine (+) and fageregare (+) are the combining and aggregation
function in the [-th layer. Choosing a suitable aggregation
function faggregate () and combining function feombine (-) in
(T3) is vitally essential so that the GNN represents and
generalizes the features accurately. The combining function
fLosbine in (3) can be executed by a FNN to address opti-
mization problems, such as that in [[34]], while an efficient
implementation of fyggregate () has the form [49)]

a{ggregate ({ e 1}Je,/\/’(k)) <{ a 1}J€N(k))

where 1) is chosen to be invariant to input permutation and is
defined as the element-wise max-pooling function, given by

[’(ﬁ(Zl,..., [ZK]i)’ (15)

which demonstrates strong performance in practical applica-
tions and is consistent with the fact that the strongest user
dominates the multi-user interference [35]], [49].

To conclude, the overall operation of the [-th updating layer
can be shown in Fig. [5] and expressed as

2=t ([0 (27 aw)]) -

The representation vector zk of the [-th updating layer is
generated by passing its previous representation vector of node
k, zﬁ;l, and then concatenating with the aggregation output
of the neighbour nodes to an FNN.

3) Normalization Layer: Following L update layers, the
representation vectors {zl}/ | are delivered to a normal-
ization layer to produce the beamforming matrix Wy, €
CM*K while satisfying the total power constraint. To this
end, we first transmit z; ' to a fully connected layer fL*!
with 2M output units, modeled as [35]]

7fL+1( L+1) k—]. K

(14)

zi)|;, = max ([z1];, ...,

(16)

a7)

Algorithm 1 Iterative Matrix Decomposition for the HMIMO
GNN System.

Input: W
Output: W,V
1: Initialize V = ZW;
2: repeat L
3 Update W« (VEV)  VEW,
4 Update V + W, ,;WH (WWH)il;
) 1 .
Z. Update V « —=/V;
7

: until Convergence

. Update [V]pp < [V - €% T

followed by normalization steps

Z, =z L+2,...

WHZWHF
Wopt = Zo(1: M,2) + 5 Zo(M +1:2M,2),

where Z(il : 42,:) denotes the sub-matrix of Z sliced by
collecting from the i1-th to the ¢2-th rows of Z. pg is the
downlink power constraint.

It is worth noting that we use the same f0 f! andfL+!
for the progression of node representation vectors across all
user nodes, demonstrating the generalization of the GNN in
accommodating any number of users. If we modify the number
of users in the system, we must also adapt the number of
nodes accordingly. The operations learned through equations
(12), (16), and are independent of the user number and
still work without the need to retrain the neural network.

L+2} c IRQMXK7

(18)

C. Holographic beamforming decomposition

In the previous sections, we presented the GNN-based
HMIMO precoder matrix design to maximize the multi-user
sum rate. However, the holographic MIMO system consists of
a baseband precoder and holographic beamformer, where the
precoder produced by the GNN cannot be used directly to gen-
erate a directional beam wave. Therefore, to circumvent these
challenges, we aim to decompose the GNN-based HMIMO
precoder matrix into a baseband precoder and a holographic
beamforming matrix.

The decomposition problem can be formulated as

min ||[Wop — VWH2F ,

VW (19)

where W,; denotes the optimal precoder matrix produced
by the GNN network, and W, and V express the baseband
precoder and holographic beamforming matrix, respectively.
Note that as the paper does not focus directly on matrix decom-
position, we opt to convert (T9) into a convex quadratically-
constrained quadratic programming (QCQP) problem, whose
solutions to this problem can be found in Algorithm [I] [2].
The overall steps of the GNN-based implicit channel esti-
mation in hybrid holographic beamforming are summarized in
Algorithm 2] The CSI is necessary for generating the training



Algorithm 2 Off-line Traning of GNN-based method.

Input: Training dataset D = { (Y(”), H(”)) }:,ialta
data set V
Output: Optimized GNN
1: Initialize parameters in GNN;
2: repeat
32 forn=1... Ngaa do
Select (Y(”),H(”)) from D ;
Collect GNN output W,¢;
Compute Wy and Wgp by Algorithm
Compute train loss using (7));
Update GNN parameters via optimizer;
9:  end for
10: until Non-decrease loss in V

validation

A A

samples and evaluating the network sum rate. Once the neural
network is trained, CSI is no longer necessary for its operation.
It is worth mentioning that the neural network training is
completed offline. Therefore, it has no impact on the runtime
complexity of the proposed approach.

The neural network adapts its weights throughout the train-
ing process to maximize the sum rate in by employing
an unsupervised stochastic gradient descent method. The au-
tomatic implementation of neural network parameter updates
and gradient computations can be achieved using a standard
numerical deep learning software package [50]]. By conducting
end-to-end training, we can jointly optimize the baseband
precoder and holographic beamformer, directly leveraging the
information obtained from the received pilot signals. In the
forthcoming section, the simulation results demonstrate that
the proposed deep learning technique can more effectively ad-
dress problem (/) by requiring fewer pilots to attain equivalent
performance compared with the traditional method of separate
channel estimation and network maximization approach.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the performance of the proposed
GNN-aided algorithm for sum-rate maximization and compare
it with the channel estimation-based approach. Specifically, the
problem of maximizing the sum rate is formulated as

= GNN = |hIk:{W0ptk K
R = log | 1+ d , (20
Z ¥ kE::l & Zi#k |hII;IWopti|2 + 02 20

k=1

where ||W0pt||%, < pq. Consequently, the loss function is
defined as —E [Z{( RSNN}.

A. Simulation Setting

We consider a multi-user HMIMO system aided by GNN,
depicted in Fig. 3] where the system comprises K users and a
BS equipped with a uniform rectangular array positioned on
the Cartesian plane defined by the coordinates (y, z), charac-
terized by dimensions M, x M. The BS coordinates in meters
are (0,0,20) along the (z,y,z)-axes. Users are uniformly

distributed within a rectangular region [50,150] x [—50, 50]
in meters on the (z,y)-plane, with a fixed z = 0.

Assume that the users are located where a LoS channel
exists between the users and BS, so the channel h;, is Rician
fading [35]], [46]:

K 1
by, = By (,/Hﬁh%"sﬂ/MhE“’S), @n

where the LoS and NLoS superscripts represent the line-of-
sight and non-line-of-sight components of the channel, respec-
tively, the Rician factor is denoted by «, and [ represents the
path-loss from user k to the base station.

User locations determine the LoS part of the channel hy.
To be specific, let ¢y, 0y represent the azimuth and elevation
angles at which the signal of user k arrives at the HMIMO
surface, as depicted in Fig. The antenna elements are
sequentially indexed row-wise by m € [1, M]. Consequently,
the position of the m-th element relative to the origin, as
illustrated in Fig. 2] is [51]]

w, = [0, i(m)du, jm)dy ], (22)

where i(m) = mod(m — 1, M,) and j(m) = [(m — 1)/M,]
are the horizontal and vertical indices of element m, respec-
tively. It should be noted that the mod symbol expresses the
modulus operation, and the notation |-] represents the floor
function, which truncates the argument to the nearest integer
less than or equal to the argument. d = dy = dy denotes
the space between adjacent antenna elements. The HMIMO
surface steering vector a(¢, ) can be expressed as [51]]

a(p,0) = ejk(%G)Tul’ s ejk(LP»G)TuN] T (23)
where k(ip, ) € R3*! is the wave vector

k(p,0) = 2—7T[Cos(0) cos(ip), cos(6) sin(y),sin(A)] T, (24)

A
and
_.BS
sin () cos (0) = %,
- 2s)
in () = £ %
s i

As a result of sub-half-wavelength setup in HMIMO surface,
the h°S is modelled as [51]

h; ~ CN (0,Ry), (26)

where the element [Ry]; ; = sinc (M) and sinc(z) =

sin(wz)

Tﬁle channel enters the near-field region when the HMIMO
array’s diameter expands to be sufficiently large. This con-
dition can be quantified by the Rayleigh distance, which is
expressed as % [52], where D is the size of the aperture.
Assuming the array has an aperture of D = 0.5 meters
and operates at a central frequency of f. = 30 GHz, the
computed Rayleigh distance is roughly 50 meters. However,
as elaborated in [52f], the effective Rayleigh distance, which
is defined from the perspective of the array gain that directly
affects the transmission rate, is roughly 15 meters. As a result,



TABLE III
PERFORMANCE COMPARISON OF DIFFERENT NUMBER OF
LAYERS (SNR= 20DB, K =5, M = 64)

2 layers 3 layers 4 layers
Sum rate [bps/Hz] 8.7 8.8 8.9
TABLE IV

THE PARAMETERS OF EACH LAYER IN THE GNN.

Name H Size Activation Function
o 2M x M relu
L M x M relu
L1l M ox oM /

it is reasonable to model the channel in the far-field region
since the user is located 50 meters farther from the BS.

We use a 2-layer GNN, i.e. L = 2. A two-layer architecture
for the GNN reduces the model complexity while achieving
acceptable performance, as shown in Table This observa-
tion aligns with previous studies’ findings [34], [35]], showing
shallow GNN architectures’ high efficiency. The parameters of
the FNNs f0 ! ~and fL+! with [ = 1,2 are summarized
in Table [Vl We utilize shallow GNN and fewer neurons
per layer, which is set based on the number of antennas
to reduce the computation complexity for mutual coupling
results from the ultra-dense distribution of antenna elements
[51]. Simulation results demonstrate that the proposed GNN
can attain substantial performance improvements, even when
operating with a limited pilot length.

We deploy the designed network using the deep learning
library Pytorch [50] and PyTorch Geometric [53]]. The training
of this neural network is conducted employing the Adam
optimization algorithm, starting with a 10~ learning rate.
The 10,000 samples are divided into 6000, 2000, 2000 for
training, validation, and testing, respectively. At each training
epoch, we transform batch data consisting of 1024 samples
to compute the gradients and update the parameters of the
neural network. The training process is stopped whenever the
loss function on the verification data does not decrease over
10 consecutive epochs. Table [V| displays the parameters we
used in our simulation.

Finally, we compare the performance of the proposed GNN
with the following benchmarks:

e Benchmark 1 - Perfect CSI plus WMMSE: Given full
CSI, the WMMSE technique, as introduced in [47], is
implemented to address the problem of maximizing the
sum rate.

o Benchmark 2 - MMSE channel estimation plus WMMSE:
First, we calculate the channels through the MMSE
estimation technique outlined in Section III, followed by
optimizing the sum rate via the WMMSE method. The
essential statistics requisite for the MMSE estimator are
derived from the analysis of 10000 channel realizations.

e Benchmark 3 - LS channel estimation plus WMMSE:
We first estimate the channels using the LS estimator
presented in Section III. Subsequently, we proceed to

TABLE V
SIMULATION PARAMETERS.
Name H Value
Frequency f. 30 GHz
Element space d A4
Elements number M 64
Rician factor k 10 dB

—O— GNN
—&O— MMSE CE + WMMSE
LS CE + WMMSE

—&— DNN

7.5

Sum rate [bps/Hz]
~

Fig. 6. Comparison of the sum rate performance versus propagation attenu-
ation with M = 64, K = 5, and SNR = 20 dB.

maximize the sum rate by leveraging the WMMSE al-
gorithm.

e Benchmark 4 - DNN: We deploy a deep neural network
that shares a nearly identical architecture with the pro-
posed GNN for optimizing the sum rate, except that the
message-passing process in the updating layer is removed
to emphasize the superiority of the proposed GNN.

e Benchmark 5 - Perfect CSI plus SVD: Given full CSI, the
problem of maximizing sum rate is addressed through the
application of the Singular Value Decomposition (SVD)
algorithm, which breaks down the channel matrix into
simpler parts, and by choosing a singular value that is
not zero, the signal transmission is established.

B. Simulation Results

We begin by examining the effect of propagation loss as
the wave travels from the feed to the surface, where o = 0
indicates that no propagation loss occurs. Fig. [ demonstrates
that as « increases, all methods experience a decline in
performance. However, the proposed GNN approach continues
to outperform the others in terms of sum rate. Given that the
materials used to fabricate surfaces exhibit minimal loss, as
discussed in [24]], [54], we disregard power loss in subsequent
simulations. We next evaluate the performance of various
methods for sum rate optimization as a function of the antenna
spacing, while considering the effects of mutual coupling,
which are more significant when the spacing is less than half a
wavelength. Fig.[/|illustrates the relationship between sum rate
and antenna spacing, where it can be seen that the sum rate
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Fig. 7. Comparison of the sum rate performance versus antenna spacing with
M =64, K =5, and SNR = 20 dB.
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Fig. 8. Comparison of the sum rate performance versus the length of pilots
with M = 64, K =5, and SNR = 15 dB.

experiences an upward trend with increasing antenna spacing.
Hence, as shown in Fig.[7} the mutual coupling has a negative
impact on the performance of all methods for a fixed number
of antennas, where increasing the antenna spacing leads to
a larger aperture and reduced mutual coupling. Notably, the
proposed GNN-based scheme achieves the highest sum rate
across all antenna spacings, except for Benchmark 1, demon-
strating its robustness to mutual coupling and effectiveness
in optimizing the sum rate. The CE-based methods, repre-
sented by Benchmark 2 and Benchmark 3, exhibit moderate
performance gains as the antenna spacing increases. Although
the DNN-based approach maintains consistent performance
across different antenna spacings, it remains inferior to the
GNN-based and CE-based methods, indicating its relatively
limited optimization effectiveness compared to the GNN-based
scheme.

We analyze the effect of the uplink pilot length on the
downlink sum rate performance with M = 64, K = 5,
and considering SNR of 15 dB. Fig. [§ shows that our pro-

3.5 —he—GNNw/ 7 =15

—p— MMSE CE + WMMSE w/ 7, = 15
LS CE + WMMSE w/ 7 =15

-ode - GNN W/ 7 =5

Sum rate [bps/Hz]
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Fig. 9. Comparison of the sum rate performance versus the length of frame
with M = 64, K =5, and SNR = 15 dB.

posed GNN-based algorithm, the conventional perfect CSI
plus WMMSE, the SVD, and the DNN strategies have ap-
proximately constant downlink sum rate performance as the
pilot length increases, while the conventional LS and MMSE
channel estimation plus WMMSE strategies experience a grad-
ual increase. Our proposed GNN-based algorithm can achieve
performance close to Bechmark 1 with fewer pilots (equal
to the number of users) and still better than Bechmark 2
with four times more pilot length, emphasizing the superiority
of reducing pilot overhead. The DNN method has a similar
trend as the proposed algorithm but worse performance partly
because it cannot extract graph structure information between
different users or nodes as our proposed algorithm does.

We also investigate the influence of varying frame lengths
on sum-rate performance. The first 7, samples of a frame
with total length 7. are designated for pilot signals, while the
remaining 7, — 7, samples are allocated for data transmission.
As illustrated in Fig. [0] all methods experience improved
performance with longer frame lengths, as more resources can
be devoted to data transmission. It is noteworthy that Bench-
marks 2 and 3 benefit from longer pilot duration, whereas the
proposed GNN demonstrates superior performance with fewer
pilot samples. The sum rate is calculated based on 7, — 7,
excluding the pilot samples.

Next, we evaluate the performance of the HMIMO system
when the BS is equipped with different numbers of antennas
for K = 5, 7, = 5, and SNR = 15 dB. We can observe
from Fig. [I0] that as the number of antennas increases, the
proposed GNN-based algorithm consistently outperforms the
benchmarks except for the perfect CSI plus WMMSE algo-
rithm. It is worth noting that the gap becomes more significant
as the number of antennas increases. This is because our
proposed method can extract channel features and suppress
interference efficiently through the message-passing process in
the update layers compared with other benchmark methods.

Then, we analyze the impact of SNR and diversely trained
parameters on the sum rate, showcasing the generalization
capabilities using M = 64, K = 5, and 7, = 5. Initially, the
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Fig. 13. Comparison of the sum rate performance versus the number of
training epochs with M = 64, K =5, and 7, = 5.

performance of the GNN-based algorithm and other bench-
marks is plotted under identical train and test parameters.
To evaluate generalization, we train two additional GNNs:
one at SNR= 10 dB and another at 20 dB. These trained
neural networks are then tested under varying SNR conditions.
Fig. |'1;1'| illustrates the results, where across all strategies, the
performance improves with increasing the SNR. Notably, our
proposed GNN-based approach consistently outperforms the
benchmarks, except for Benchmark 1, across different SNR
levels. Moreover, training the GNN at either 10 dB or 20
dB (while testing it at different SNRs) results in minimal
performance degradation. This observation indicates the ro-
bust generalization capability of the proposed neural network
model across various SNR conditions.

Additionally, we assess the system’s performance for vari-
able numbers of users, showcasing the GNN’s robustness and
generalization capability with parameters set to M = 64 and
SNR= 15 dB. In this simulation setup, the pilot length is
equivalent to the number of users, denoted as K. In addition
to the standard simulation with equal train and test parameters,
we train other GNN and DNN models using K = 5 and
evaluate their performance across varying numbers of users.
The results, depicted in Fig. [I2] illustrate notable trends.
The proposed GNN-based algorithm demonstrates remarkable
generalization across different user counts, consistently out-
performing explicit channel estimation benchmarks. The DNN
method notably shows a decline in sum rate with an increasing
number of users when trained on K = 5 users, underscoring
the robustness and superiority of our proposed GNN-based
approach.

We conclude our analysis by assessing the convergence
behavior of the proposed GNN model for M = 64, K = 5,
and 7, = K. The sum rate plotted against the number of
training epochs is presented in Fig. [I3] Fig. [[3] indicates that
around 20 training epochs suffice to attain near-maximum
performance across different SNRs. This result highlights the
efficiency of the proposed GNN model in achieving near-
optimal performance within a reasonably small number of



training epochs across diverse SNR conditions.

V. CONCLUSION

Traditional communication system design heavily relies on
accurate CSI for optimizing transmission schemes, which is
challenging for HMIMO systems due to their large number
of antenna elements. This paper introduces an alternative
methodology to leverage a trainable neural network to produce
beamformers at the BS directly from received pilots, bypassing
explicit channel estimation. A versatile GNN architecture
deciphers the mapping from the received pilots to per-user
beamformers at the BS, enabling direct multi-user sum-rate
maximization. Simulation results demonstrate the proposed
neural network’s efficiency in solving the optimization prob-
lem with significantly fewer pilots than conventional methods.
Future research directions can encompass hardware imperfec-
tions such as wave-guide issues and practical deployment con-
siderations, offering valuable insights into real-world HMIMO
implementation.
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