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A combined experimental, computational and theoretical study is presented on the dynamics

and stability characteristics of turbulent flow past a circular cylinder placed near and parallel

to a moving ground. The study consists of four main parts: (i) wind tunnel experiment, (ii)

numerical simulation, (iii) linear stability analysis, and (iv) proper orthogonal decomposition

(POD) analysis. The main focus of the study is on the cessation of large-scale, von Kármán-

type vortex shedding in ‘ground effect,’ i.e., the cessation observed when the cylinder comes

close to the ground.

The experiments, performed at upper-subcritical Reynolds numbers of 0.4 and 1.0× 105,
show that the cessation of von Kármán-type vortex shedding and an attendant critical drag

reduction of the cylinder (equipped with end-plates) occurs at the gap-to-diameter ratio h/d

of around 0.35, at which point the flow through the gap between the cylinder and the ground

is still not blocked at all due to the ground moving at the same speed as the free stream. It

is subsequently shown that detached-eddy simulations (DES) can correctly reproduce these

critical phenomena, whereas unsteady RANS simulations predict them at much smaller h/d

of between 0.1 and 0.2, despite the fact that the unsteady RANS simulations are ‘overly

dissipative’ compared with the DES. The linear stability analysis of analytical wake profiles

then provides a possible explanation for the above experimental and computational results;

that is, the cessation of the von Kármán-type vortex shedding in ground effect may also be

largely explained by the change of inviscid instability characteristics in the near wake region

from ‘absolutely unstable’ to ‘convectively unstable,’ in analogy with the case for a cylinder

equipped with a backward splitter plate in a free stream. Finally, the near wake structure of

the cylinder in ground effect is further investigated with the POD analysis. The results show

that about 60% of the total kinetic energy in the near wake region (in the time-averaged

sense) is contained only in the first three POD modes even when the energetically dominant,

von Kármán-type vortex shedding becomes intermittent at h/d = 0.4. It is also shown that

both shedding and non-shedding states at this gap ratio can roughly be reproduced from the

combination of these three POD modes.
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Chapter 1

Introduction

1.1 Introduction

All solid objects in our daily lives are exposed to air, water, and other kinds of fluids, and

most of them are bluff bodies (or non-streamlined bodies) in terms of fluid mechanics. Flow

past bluff bodies contains a variety of fluid-dynamic phenomena, such as separation, vortex

shedding, and the transition to turbulence, all of which are of fundamental interest as well as

of great importance in many practical applications. In particular, the vortex shedding from

bluff bodies has been the subject of a number of studies as it may significantly affect various

fluid-mechanical properties of practical importance, such as flow-induced forces, vibrations

and noise, and the efficiencies of heat and mass transfer.

To study the complex physics of bluff body flows systematically, it is natural to focus on

bodies of simple two-dimensional shapes such as circular and square cylinders. Although the

instantaneous flow structures observed there are still three-dimensional and rather compli-

cated except for very low Reynolds number (Re) cases, the flow behind two-dimensional bluff

bodies, or the (nominally) two-dimensional wake, is one of the most basic or ‘canonical’ flows

in fluid mechanics. In fact, the flow past cylinders has been investigated by many researchers

so far (as will be reviewed later in Section 1.4.2) since this flow configuration is of direct

relevance to many practical applications, e.g., tall buildings, bridge towers, struts, aerial and

submarine cables, pipelines, cooling towers, and heat exchanger tubes.

When given a circular cylinder with its axis perpendicular to fluid flow, von Kármán-type

(asymmetric, alternating) vortex shedding may or may not occur behind the cylinder. As will

be described later in Section 1.4.2, the characteristics of the flow (and hence also of the force

acting on the cylinder) are mainly governed by the Reynolds number; the von Kármán-type

vortex shedding occurs when the Reynolds number exceeds a critical value of about 50 for a

circular cylinder in a free stream, for example. There are, however, many situations where

this type of vortex shedding may cease even at much higher Reynolds numbers, and one of

the simplest (but its mechanisms are still unclear) is when a cylinder is located near a plane

boundary or ‘ground’ – the focus of the present study is on this flow configuration.

Earlier studies have shown that the characteristics of the flow in this case are governed

not only by the Reynolds number but also by the gap ratio h/d, where h is the gap distance

between the cylinder and the ground and d is the diameter of the cylinder. For example,
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Bearman and Zdravkovich (1978) have reported that the von Kármán-type vortex shedding

was suppressed when h/d was less than about 0.3 for a circular cylinder placed near a fixed

plane ground. However the effect of h/d, or the ground effect, is in general very complicated

and still far from being fully understood, mainly because it can be significantly affected by

the state of the boundary layer on the ground (e.g., Hiwada et al. 1986; Lei et al. 1999; see

Section 1.4.3 for more details).

The main idea underlying the present study (especially for the experimental part of the

study in Chapter 2) is to place a cylinder near a ground running at the same speed as the

free stream, so that substantially no boundary layer develops on the ground. The concept of

such a moving ground has been widely used in the field of vehicle aerodynamics, especially of

high-performance racing cars, to properly consider the influence of the ground in the frame

of reference of moving vehicles (Bearman 1980; Zhang et al. 2006). This, however, has rarely

been applied to the study of flow past cylinders. By using a moving ground in a series of wind

tunnel tests, some fundamental aspects of the ground effect (that are otherwise obscured by

the influence of the boundary layer) are experimentally observed in this study.

The cessation of the large-scale, von Kármán-type vortex shedding in this flow configu-

ration is of special interest in the respect that it may be observed not only in laminar (or low

Reynolds number) but also in turbulent (or high Reynolds number) cases, depending on the

single geometric parameter h/d. This flow may therefore serve as a simple but challenging

test case for numerical simulation. In fact, the flow past a circular cylinder at high Reynolds

numbers of about 104 or above is still a challenging subject in today’s computational fluid

dynamics (CFD) even if the cylinder is outside the ground effect, since the direct numerical

simulations (DNS) of the Navier-Stokes equations for such flows are currently not feasible due

to the huge computational costs required (Spalart 2000). However, as will be reviewed later

in Section 1.4.5, recent studies have shown that the unsteady motion of the vortex shedding

behind a cylinder can be reasonably predicted, with acceptable computational costs, by using

some novel techniques such as unsteady Reynolds-averaged Navier-Stokes (URANS) simula-

tions and detached-eddy simulations (DES). It is therefore of great interest to see if these

numerical simulations can correctly predict the cessation of the large-scale vortex shedding

in ground effect, which is also investigated in this study.

The use of the moving ground in this study also gives us a very interesting and essential

question, i.e., the cause of the cessation of the vortex shedding in ground effect. Basically the

flow through the gap between the cylinder and the moving ground is not blocked but slightly

accelerated when the vortex shedding ceases (see Chapter 2 for more details), and hence the

cessation of the vortex shedding in this case cannot be explained by the blockage of the gap

flow. In general, the formation of von Kármán-type vortices behind a cylinder is considered

to be due to wake instability somehow caused by a communication between the two shear

layers separated from the cylinder. This can be confirmed, for example, by the cessation of

the shedding behind a cylinder equipped with a backward splitter plate of sufficient length,

which was first experimentally observed by Roshko (1955). Recent studies have shown that

the vortex shedding is explained by absolute instability in the near wake, which allows local

disturbances to propagate both upstream and downstream and thus produces a resonance
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between the travelling instability waves (Huerre and Monkewitz 1990; Oertel 1990). From

this point of view, it can be concluded that the splitter plate mentioned above suppresses

the vortex shedding as the plate restricts the propagation of disturbances in the near wake

region. Of interest here is that a similar explanation might also be applicable to the cessation

of the vortex shedding in ground effect, i.e., the existence of the nearby ground does not

block the gap flow but does somehow restrict the propagation of disturbances in the near

wake region and thus prevents the resulting von Kármán-type vortex shedding. This issue is

also examined, based on linear stability theory, in this study.

While the mechanisms of the wake instability are still not totally understood and many

investigations are still ongoing on such essential issues, another interest in the field of bluff

body aerodynamics in recent years is the development of control or suppression systems of

vortex shedding. In particular, the von Kármán-type vortex shedding from a circular cylinder

has been attracting the attention of many researchers as a simple but challenging test case for

active feedback flow control. One of the biggest issues in the development of such feedback

flow control systems is to reduce the huge amount of information concerning the flow field

to be dealt with in real time, and a possible solution to this issue is to use ‘low-dimensional’

or ‘reduced-order’ techniques based on, e.g., the proper orthogonal decomposition (POD)

method (Holmes et al. 1996). Recent studies have shown that the vortex shedding from a

cylinder could be adequately controlled based on rather limited information about energeti-

cally dominant flow structures obtained by the POD, but only in the laminar regime so far

(see Section 1.4.7 for more details). Against this background, the POD analysis is also per-

formed in this study on the experimental and computational data obtained in the turbulent

regime. Although the development of practical flow control systems is outside the scope of the

present study, the POD analysis of the turbulent near wake of the cylinder in ground effect,

especially in the intermediate gap regime where the vortex shedding becomes intermittent,

might provide an illustration of the capability of the POD-based low-dimensional techniques

to capture the onset/cessation of the turbulent vortex shedding.

The flow past a cylinder near a moving ground investigated in this study contains many

fundamental aspects of general bluff body flows. It is the author’s hope that this combined

experimental, computational and theoretical study will contribute to a better understanding

of the complex physics of bluff body flows as well as to a further development of various

practical applications in this field.

1.2 Objectives of the study

The main objectives of the present study are summarised as follows:

1. To observe experimentally the fundamental aspects of the flow past a circular cylinder

in ground effect, where a moving ground is used instead of a fixed ground in order to

avoid the confusing effects of the boundary layer developing on the ground.

2. To examine the capability of DES and URANS simulations to predict correctly the flow

past a circular cylinder in ground effect, by comparing with the experimental results.
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3. To discuss the mechanisms of the cessation of the von Kármán-type vortex shedding in

ground effect from the viewpoint of linear stability theory.

4. To investigate further the near wake structure of the cylinder in ground effect by using

the POD method, and to demonstrate the capability of the POD-based low-dimensional

techniques to capture the onset/cessation of the turbulent vortex shedding.

1.3 Outline of the thesis

This thesis is composed of six main chapters. In the remainder of this introductory chapter,

an extensive review is given on earlier studies on the flow past cylinders, including those in

ground effect. Also some basic concepts and recent progress of numerical simulations, linear

stability analysis, and POD analysis are summarised in this chapter with a major focus on

their applications to the flow past cylinders.

In Chapter 2, the results of wind tunnel experiments are presented. A distinctive, critical

drag reduction of a circular cylinder in ground effect is observed due to the use of a moving

ground, and this is found to be directly related to the cessation of von Kármán-type vortex

shedding in the near wake region of the cylinder.

In Chapter 3, the results of numerical simulations are presented. It is shown that DES

capture the cessation of the vortex shedding and the attendant drag reduction of the cylinder

in a physically reasonable h/d range, whereas URANS simulations predict them in a much

smaller h/d range. The reason of this ‘delayed’ cessation of vortex shedding in the URANS

solutions is also discussed in this chapter.

In Chapter 4, the mechanisms of the cessation of von Kármán-type vortex shedding in

ground effect are further investigated using a linear stability analysis. An analytical model

of general two-dimensional wakes in ground effect is proposed, and its fundamental stability

characteristics are examined in detail. The results are then compared with the experiments

and numerical simulations to show that the cessation of the vortex shedding in ground effect

may indeed be explained by changes in the stability characteristics of the near wake.

In Chapter 5, the POD is applied to the results of the experiments and numerical simu-

lations to investigate further the near wake structure of the cylinder in ground effect. It is

shown that the von Kármán-type vortex shedding is still energetically dominant even in the

fully turbulent wake and hence can be roughly reproduced by the combination of only a small

number of POD modes, suggesting the promise of POD-basis low-dimensional techniques for

the control of turbulent vortex shedding.

In Chapter 6, a concluding summary of the entire study is presented, followed by some

recommendations for future work in this research field.
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1.4 Literature review

1.4.1 Overview

In general, the configuration or type of flow past cylinders can be classified by the following:

the shape of cylinders, the number and arrangement of cylinders, and the type of surrounding

in which the cylinders are placed. Figure 1.1 illustrates some examples of the flow around

cylinders.

Figure 1.1: Examples of flow past cylinders.

For the shape of cylinders, a number of studies have been performed so far on circular

cylinders (as will be reviewed in Sections 1.4.2 and 1.4.3), whereas cylinders of different cross-

sectional shapes, such as square, triangular and half-circular, have also been widely studied

(as will be reviewed in Section 1.4.4). As concerns the number and arrangement of cylinders,

though outside the scope of the present study, flows around two cylinders arranged in side-by-

side, tandem, and staggered arrangements have often been studied as the basic components

of general multi-cylinder flows; a review on this topic (but only for circular cylinders) has

been given by Zdravkovich (2003).

In terms of the surrounding of cylinders, most investigations may be classified as either

unbounded or wall-bounded cases. In the latter category, several studies have focused on a

cylinder placed near and parallel to a fixed wall boundary or ground, whereas only a few

have been reported so far on a cylinder placed near a moving ground (as will be reviewed in

Sections 1.4.3 and 1.4.4). In addition to these, differences in the incoming-flow profile also
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give a variation of the flow configuration. Uniform cross-flow is the most fundamental and

well-studied incoming-flow condition, whereas uniform shear and/or oblique flows have also

been examined by many researchers; reviews on these topics (but only for circular cylinders)

have been given by Zdravkovich (1997, 2003).

Apart from the differences in the flow configuration described above, the global state or

pattern of the flow past cylinders generally depends on a variety of influencing parameters

(Zdravkovich, 1997). For a long circular cylinder placed in a free stream (i.e., uniform cross-

flow), for example, the most dominant influencing parameter, or the governing parameter, is

the Reynolds number Re (≡ U∞d/ν, where U∞, d and ν are the free-stream velocity, cylinder
diameter and the kinematic viscosity of fluid, respectively). The state of flow past a circular

cylinder may be classified by Re into four fundamental regimes: subcritical, critical, super-

critical and postcritical regimes, the details of which will be described in the next section.

In most practical cases, however, other influencing parameters may also have major effects

on the flow pattern. Those parameters include the level of free-stream turbulence (FST), the

surface roughness of the cylinder, and the aspect ratio of the cylinder. In addition to these,

for the wall-bounded cases, the gap-to-diameter ratio (or the ‘gap ratio’ for short) h/d also

has a significant influence on the flow pattern.

The flow around cylinders may be investigated by several different approaches, i.e., ex-

perimental, computational, and theoretical approaches. In the following, earlier experimental

works will be reviewed first for each type of flow configuration, and then some of the other

approaches (numerical simulation, linear stability analysis, POD analysis) will be reviewed

with a focus on their applications to the flow past cylinders.

1.4.2 Circular cylinders in a free stream

A single circular cylinder placed in a free stream is one of the most fundamental subjects in

bluff body aerodynamics. In the following, the fundamental effects of the Reynolds number

on this flow are reviewed first with some historical perspective, and then further details are

described for the ‘upper-subcritical’ Reynolds number regime, in which the present study is

performed. Finally, the effects of other influencing factors, such as the level of free-stream

turbulence and the aspect ratio of a cylinder, are also reviewed.

Flow regimes based on the Reynolds number (with historical perspective)

Since the early twentieth century the flow past a circular cylinder has been studied by many

researchers. It was already well known in the early years that, due to the principle of flow

similarity first studied in 1883 by Osborne Reynolds (see, e.g., von Kármán 1954, p.73), the

characteristics of the flow past a cylinder and also of the flow-induced forces on a cylinder

might be expressed as functions of the Reynolds number, Re, of the flow. In particular, the

influence of the Reynolds number on the drag acting on a cylinder had attracted the interest

of many researchers in the early years.

One of the most significant results on this issue was first published by Wieselsberger in

1922 (see Schlichting 1979, p.17), who performed mean drag measurements on cylinders of

various diameters thereby covering a wide Reynolds number range of 4 < Re < 8 × 105.
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The drag (or, to be precise, the drag coefficient CD) was found to suddenly decrease at the

Reynolds number of about 2 to 5× 105, i.e., the ‘critical’ Reynolds number Rec. According
to Zdravkovich (1997, p.6), Wieselsberger had already suggested in 1914 that a similar ‘drag

crisis’ found on spheres was related to the transition to turbulence near the separation line.

Then Taylor, who observed a drastic change in pressure distribution around a cylinder near

the critical Reynolds number, suggested in 1916 that the drag crisis of the cylinder was also

related to the transition to turbulence. The pressure distribution on a cylinder around Rec

was then further investigated by Flachsbart in 1932 (see Schlichting 1979, p.21) to describe

the mechanism of the critical drag reduction.

Following these experimental results in the early years, it had become widely accepted

that the flow past a circular cylinder could be classified into three fundamental regimes, i.e.,

‘subcritical’ (Re < Rec), ‘critical’ (Re ' Rec), and ‘supercritical’ (Re > Rec) regimes. The

main features of these three flow regimes may be summarised as follows:

• Subcritical (Re < Rec): The boundary layer on the cylinder remains laminar and the

transition to turbulence occurs after the flow separation. At higher Reynolds numbers

of about 2 × 104 to 2 × 105, for example, a sudden burst to turbulence occurs in the
separated free shear layers, which then roll up to form turbulent von Kármán-type

vortices. It follows that a wide turbulent wake is formed behind the cylinder and the

mean drag coefficient CD shows a higher value of about 1.2.

• Critical (Re ' Rec): The transition to turbulence occurs just after the separation and
the separated flow reattaches subsequently, i.e., separation-reattachment bubbles are

formed on the cylinder. This leads to a narrowing of the wake, an increase in the base

pressure Cpb, and consequently a significant drop of CD to about 0.3.

• Supercritical (Re > Rec): The von Kármán-type vortex shedding ceases as the location
of the transition to turbulence moves further upstream and the separation bubbles are

irregularly fragmented along the span of the cylinder. The width of the wake gently

increases and thus CD gently recovers as the Reynolds number increases.

These critical phenomena, however, had not been clarified in detail in the early studies,

and therefore the supercritical regime had generally been considered to begin just after the

critical drop of CD, at which the von Kármán-type vortex shedding had also been considered

to cease. Later, Bearman (1969) found that the von Kármán-type vortex shedding could still

continue, after the critical drop of CD, up to the Reynolds number of at least 5.5× 105 (note
that the critical drop of CD occurs with the formation of the separation bubbles, whereas the

cessation of the vortex shedding occurs due to the fragmentation of the separation bubbles),

and proposed that the cessation of the vortex shedding should be taken as a criterion of the

upper-end of the critical regime.

In addition to the above three fundamental regimes, Roshko (1961) discovered the fourth

regime at Re > 3.5 × 106, which was referred to as ‘transcritical’ at that time and is now
generally known as ‘postcritical’ regime. The main features of the postcritical regime may

be summarised as follows:
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• Postcritical (Re > 3.5×106): The transition to turbulence occurs before the separation
all along the cylinder span and the separation bubbles totally disappear. The regular

vortex shedding reappears and the wake becomes wider than that in the critical and

supercritical regimes (but still narrower than that in the subcritical regime). It follows

that CD shows an intermediate value of about 0.7.

Roshko (1961) noted in his article that ‘it seems unlikely that there will be any further

transitions, since the point of boundary-layer transition can now only move smoothly forward

on the cylinder’ as Re increases. In a theoretical sense, there might be an ultimate state of

flow for Re → ∞, where all flow regions around the cylinder are turbulent. However, it is
hardly possible to verify this state because the effects of compressibility cannot be avoided

at such high Reynolds numbers.

More recently, Roshko (1993) and Williamson (1996) proposed more detailed definitions

of the Re-based flow regimes, with thorough reviews on the flow physics especially for lower

Reynolds number regimes. Another comprehensive classification of the flow was presented by

Zdravkovich (1997), who classified the flow into five regimes, i.e., fully laminar (L), transition-

in-wake (TrW), transition-in-shear-layers (TrSL), transition-in-boundary-layers (TrBL) and

fully turbulent (T) regimes, as shown in Fig. 1.2 [reproduced from Zdravkovich (1997)]. Note

that, in this classification, the TrSL regime is subdivided into three regimes: ‘lower’ (TrSL1),

Figure 1.2: Reynolds number effects on the drag and lift coefficients of a circular cylinder
in a free stream [reproduced from Zdravkovich (1997)]. CDf and CDp are the friction and
pressure drag coefficients, respectively.
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‘intermediate’ (TrSL2) and ‘upper’ (TrSL3) sub-regimes, all of which are contained in the

subcritical regime described on Page 7. Meanwhile, the TrBL regime is subdivided into five

regimes: ‘precritical’ (TrBL0), ‘single bubble’ (TrBL1), ‘two-bubble’ (TrBL2), ‘supercritical’

(TrBL3) and ‘postcritical’ (TrBL4) sub-regimes, where the TrBL0 to TrBL2 regimes corre-

spond to the critical regime described on Page 7.

Upper-subcritical regime (TrSL3)

Among the flow regimes listed above, the upper-subcritical or TrSL3 regime (2 ∼ 4× 104 <
Re < 1 ∼ 2 × 105) is one of the most intensively studied regimes because of its practical
importance in many engineering applications. Also of interest is that the flow pattern is less

sensitive to the Reynolds number and hence the fluid-dynamic properties such as CD and Cpb

are almost constant in this Reynolds number regime, which is advantageous for researchers

who want to reveal the effects of other influencing factors on the flow physics.

This quasi-invariable nature observed in the TrSL3 regime is mainly due to the less sen-

sitivity of the transition point, and also of the first vortex formation length, to the Reynolds

number. In the intermediate-subcritical or TrSL2 regime (1 ∼ 2× 103 < Re < 2 ∼ 4× 104),
the transition point moves upstream and the vortex formation length Lf decreases as the

Reynolds number increases (Bloor 1964; Kourta et al. 1987). The decrease in Lf leads to a

decrease in Cpb – since ‘the growing vortices draw in fluid from the base region and it is this

continual entrainment process that sustains the low base pressure’ as suggested by Bearman

and Trueman (1972) – and hence to an increase in CD in this flow regime. In the TrSL3

regime, however, the transition to turbulence is reduced to a sudden burst occurring in the

free shear layers close to the cylinder (i.e., before the formation of the first vortex), and the

vortex formation region does not move any closer to the cylinder.

As concerns the vortex formation length Lf , several different definitions have been used

to date. Bloor (1964) detected the end of the formation region by the disappearance of low-

frequency fluctuations in the wake. In contrast, Bearman (1965) proposed, in his investigation

on the wake of a half elliptic cylinder, that the position in the wake at which the velocity-

fluctuation peak occurred could be regarded as the position of the first fully-formed vortex;

similar ideas have also been proposed for a circular cylinder by Gerrard (1965) and Griffin

and Votaw (1972). Meanwhile, Roshko (1993) discussed the relation between Cpb and the

mean recirculation length, Lr, which is simply defined by the distance from the centre of the

cylinder to the position where the mean streamwise velocity becomes zero and might be used

as an alternative to the formation length Lf . Recent experiments have shown that Lr in the

TrSL3 regime is about 1.2d (Cantwell and Coles 1983; Braza et al. 2006)

Although the vortex formation length is less sensitive to the Reynolds number and is

constant along the cylinder span in the mean sense, the instantaneous size and shape of the

vortex formation region varies along the cylinder span and also from cycle to cycle of the

vortex shedding in the TrSL3 regime (Toebes 1969; Shimizu and Kawamura 1972; Szepessy

and Bearman 1992). For example, Shimizu and Kawamura (1972) reported that the span-

wise correlation length of the streamwise velocity in the near wake region (2d downstream)

decreased from more than 10d in the TrSL2 regime to about 4d in the TrSL3 regime.
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Due to the random or turbulent characteristics in the near wake region, the flow-induced

force on a circular cylinder also irregularly fluctuates in the TrSL3 regime. Drescher (see

Zdravkovich 1997, p135) reported a simultaneous measurement of instantaneous pressures at

eleven points around a circular cylinder at Re = 1.13× 105 and thus showed the mechanisms
of CD and CL variations during a cycle of the vortex shedding. Basically, CD fluctuates

at double the vortex shedding frequency whilst CL fluctuates at the same frequency as the

vortex shedding. Due to the irregularity of the vortex formation, however, the fluctuations

of CD and CL are significantly modulated (Humphreys 1960). The Strouhal number St of

the vortex shedding is about 0.2 and the root-mean-square values of the force fluctuations,

C 0D and C
0
L, are about 0.05 and 0.5, respectively, in the TrSL3 regime.

Whilst the variations of CD and CL almost entirely come from the change in the pressure

distribution, the skin friction distribution around a cylinder is also of interest for the study

of the characteristics of the flow, especially of the flow separation points. Achenbach (1968)

measured skin friction distributions around a circular cylinder at several different Reynolds

numbers; at Re = 1.0× 105 (TrSL3 regime) the mean separation angle θsep was found to be
78◦, which was much smaller than that of 147◦ at Re = 8.5× 105 (critical or TrBL2 regime)
and also of 115◦ at Re = 3.6×106 (postcritical or TrBL4 regime). As concerns the fluctuation
of the separation points, Dwyer and McCroskey (1973) reported time-resolved skin friction

distribution on a circular cylinder at Re = 1.06× 105.
For the unsteady characteristics of the turbulent near wake of a cylinder, an extensive

investigation was carried out by Cantwell and Coles (1983), who measured instantaneous

velocity fields behind a cylinder at Re = 1.4 × 105 using a flying-hot-wire technique. They
showed a sequence of phase-averaged pictures of the flow and thus examined the topology of

the statistically periodic vortex shedding behind the cylinder. In recent years, the complex

three-dimensional near wake structures have been investigated in more detail by means of

particle image velocimetry (PIV) techniques. Most of the earlier studies with PIV have been

performed at Reynolds numbers lower than those for the TrSL3 regime, e.g., at Re of about

500 by Wu et al. (1996) and also of 1×104 by Chyu and Rockwell (1996). However, owing to
the improvement of both spatial and temporal resolutions of PIV systems in recent years, the

wake structures at high Reynolds numbers have also begun to be investigated, for example

at Re = 1.4× 105 by Djeridi et al. (2003) and Braza et al. (2006).

Effects of free-stream turbulence (FST)

In general, the characteristics of flow past a circular cylinder cannot be determined solely

by the Reynolds number; one of the other important parameters is the level of free-stream

turbulence (FST). In fact, most of the earlier experiments have been performed in wind or

water tunnels with relatively low levels of FST, and nevertheless substantial discrepancies

often exist among the results due to the differences in FST. It should also be noted that the

level of FST has a significant role in many practical applications, where relatively high levels

of FST are often encountered.

The level of FST can be statistically quantified by the intensity and length scale of tur-

bulence in a free stream. The intensity of turbulence is usually defined as the ratio of the
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root-mean-square (r.m.s.) value of the streamwise velocity fluctuations, (u02)
1
2 or u0 for short,

to the mean free-stream velocity U∞, whereas the length scale may be defined by the longi-

tudinal or streamwise integral length scale Lx, which is defined as

Lx =

Z ∞
x0

u0(x0)u0(x) /
³
u0(x0)2 u0(x)2

´ 1
2 dx , (1.1)

where u0(x0) and u0(x) are the fluctuations of streamwise velocities at two points separated

by a distance (x− x0) in the streamwise direction. A further discussion on the definitions of
the intensity and length scale of FST can be found in Bearman and Morel (1983).

A remarkable effect of FST can be seen on the critical Reynolds number Rec. Fage and

Warsap (see Zdravkovich 1997, p.446) measured drag on a circular cylinder placed behind

a rope netting with various distances thereby producing various levels of FST; the critical

Reynolds number decreased as the intensity of FST increased. This is because the FST has

an effect of promoting the transition to turbulence especially in the free sheer layers.

As concerns the scale of FST, Surry (1972) measured the mean CD and Cp distributions

on a circular cylinder with two different Lx/d of 0.36 and 4.3 coupled with a high intensity

of u0/U∞ = 0.1. The Reynolds number was about 4 × 104, which lies in the TrSL3 regime
(if the FST is sufficiently low). The large-scale FST had no appreciable effect on the force

characteristics of the cylinder, whereas the small-scale FST made the force characteristics

similar to those for the precritical (TrBL0) regime. This implies that the scale of FST needs

to be small enough in order to affect the flow in the TrSL3 regime, since the laminar part of

the free shear layers to be affected by the FST is very short in the TrSL3 regime.

Since the flow past a circular cylinder is affected by both the intensity and scale of FST,

many researchers have attempted to analyse their experimental results in terms of the two

parameters combined. Among them, Bearman (1968) showed that the critical Reynolds

number Rec could be expressed as a function of a turbulence parameter (u
0/U∞)/(Ly/d)

1
5 ,

where Ly is the lateral integral scale of the streamwise components of FST. This type of

parameter is often referred to as the Taylor number, since a similar parameter was first

proposed by Taylor in 1936 (see Bearman and Morel 1983). The Taylor number, however,

was originally derived through physical arguments on the problems of ‘attached’ boundary-

layer transition, and therefore Bearman and Morel (1983) noted that the drag reduction of

cylinders, which is triggered by the early transition in the ‘separated’ free shear layers, could

not be meaningfully analysed with the Taylor number.

Effects of cylinder aspect ratio and spanwise-end condition

Two other common influencing factors for the flow past a circular cylinder are the aspect

ratio of the cylinder l/d, where l is the cylinder length, and the spanwise-end condition of

the cylinder. Considering a closed test section in a wind or water tunnel, the spanwise-end

conditions may be categorised into the following three groups: (i) free-ends, (ii) closed-ends,

and (iii) ends equipped with end-plates.

For the case of free-ends, i.e., when a cylinder of finite length is isolated in a flow rather

than connected to walls/plates, the aspect ratio of the cylinder significantly affects the flow

characteristics since strong swirling flows are induced around the free-ends. Wieselsberger
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(see Zdravkovich et al. 1989; see also Goldstein 1965, p.439) measured mean drag on circular

cylinders of various l/d; the drag coefficient decreased as l/d decreased below 40. This drag

reduction can be explained by the inflow from the outside of the free-ends into the near wake

region, increasing the base pressure of the cylinder. A strong ‘disturbing’ effect of free-ends

on the two-dimensionality of the flow has been observed by Fox et al. (1993), who measured

a spanwise pressure distribution on a long cantilevered circular cylinder and showed that the

disturbing effect could extend to a distance of 20d from the free-end.

Also for the case of closed-ends, i.e., when a cylinder is directly connected to the walls of

a test section, the flow characteristics could be affected by the aspect ratio of the cylinder.

This is because the so-called horseshoe-vortices (Baker 1979, 1980) are formed around the

closed-ends, which may significantly disturb the two-dimensionality of the flow if the aspect

ratio of the cylinder is not large enough. In general, using end-plates of an appropriate size is

an effective way to minimise the end effects of cylinders of small aspect ratios. Stansby (1974)

investigated the effects of rectangular end-plates of different size on the spanwise distribution

of Cpb on circular cylinders of l/d = 8 and 16, and concluded that rectangular end-plates of

suitable size could ensure nearly two-dimensional flows around the cylinders. More details

on the end-plates recommended by Stansby will be described later in Chapter 2.

Effects of other influencing parameters

In addition to Re, FST, l/d and the spanwise-end condition described above, there are still

many influencing parameters for the flow past a circular cylinder. These parameters include

the surface roughness and vibration of the cylinder. The type of the incoming flow, e.g., shear

flows and oblique flows, may also be considered as one of those parameters.

The surface roughness of a cylinder may be quantified by the relative roughness K/d,

where K is the average height of excrescences, and also by the texture of the roughness. The

texture here means the shape and distribution pattern of the excrescences. An extensive

investigation of the effects of the surface roughness was first reported by Fage and Warsap

(see Zdravkovich 2003, p.751), who showed that the critical Reynolds number Rec decreases

as K/d increases (see also Guven et al. 1980). The shift of the critical regime toward lower

Re due to the surface roughness was also confirmed through the measurements of Cp and Cf

distributions by Achenbach (1971). Another important effect of the surface roughness is to

narrow down the range of the critical and supercritical regimes as the roughness disturbs the

formation of the separation bubbles (Buresti 1981).

The effects of the vibration of cylinders on the flow are in general very complicated as

the vibration may be induced by the unsteady flow field itself, i.e., the movements of fluid

and cylinders interact with each other. Such flow-induced or vortex-induced vibration (VIV)

has been the subject of a number of studies and has been reviewed by many authors, e.g.,

Williamson and Govardhan (2004). Since VIV is outside the scope of the present study,

further descriptions on this topic are not provided here.

Although most of the earlier studies have been conducted in a free stream or a uniform

cross-flow, there have been several investigations with other types of incoming flows, such as

shear flows and oblique flows. The effects of shear flows on a circular cylinder are reviewed
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by Zdravkovich (1997), and those of oblique flows are also reviewed by Zdravkovich (2003).

These topics are outside the scope of the present study and are thus not described here. It

should be noted, however, that a cylinder placed in a shear flow is of some relevance to that

submerged in a thick boundary layer formed on a fixed nearby ground, which is reviewed in

the next subsection.

1.4.3 Circular cylinders in ground effect

The characteristics of flow past a circular cylinder placed near and parallel to a ground are

largely determined by the Reynolds number and also the ‘gap ratio,’ i.e., the ratio of the gap

distance between the cylinder and the ground, h, to the cylinder diameter d. However, the

details of the effects of h/d, or the ‘ground effect,’ are still far from being fully understood

because of other influencing factors, in particular the confusing effects of the boundary layer

usually developing on the ground.

Below is a review of earlier experimental studies, most of which were carried out with a

ground fixed relative to a cylinder and thus were subject to the influence of the boundary

layer on the ground. Some fundamental effects of the gap ratio on the flow are summarised

first, and then rather controversial results on the influence of the boundary layer developing

on a fixed ground are reviewed. A summary of these studies is given later in Table 1.1.

Fundamental effects of the gap ratio

One of the earliest experiments on this topic was reported by Taneda (1965), who visualised

the flow behind a circular cylinder towed through stagnant water close to a stationary ground

(i.e., the water and ground moving together relative to the cylinder and hence substantially

no boundary layer formed on the ground) at a very low Reynolds number of 170. The regular

von Kármán-type vortex shedding occurred at h/d = 0.6, whereas only a weak single row

of vortices was generated at h/d = 0.1. More details of the cessation of the regular vortex

shedding behind a towed cylinder were later visualised by Zdravkovich (1985a) and Lin et al.

(2005), but only at low Reynolds numbers of 3550 and 780, respectively.

Meanwhile, in the upper-subcritical (TrSL3) flow regime, Roshko et al. (1975) measured

CD and CL of a cylinder placed near a fixed ground (Re = 2.0 × 104) and showed that CD
rapidly decreased and CL increased as the gap ratio h/d was reduced to less than about 0.6 (as

will be presented later in Figs. 2.6 and 2.8). The thickness of the boundary layer δB formed

on the ground was 0.5d at the position of the cylinder in their study. Further investigations in

the TrSL3 regime were conducted by Bearman and Zdravkovich (1978), who measured mean

Cp distributions on a cylinder placed near a fixed ground (Re = 4.8 × 104, δB/d = 0.8) and
thus explained the variations of CD and CL in ground effect. It was demonstrated that the

lower CD for the smaller h/d cases was due to a higher base pressure, whereas the positive

CL was caused by a downward shift of the front stagnation point on the cylinder.

Bearman and Zdravkovich (1978) also measured velocity fluctuations in the near wake of

the cylinder to study the variation of the vortex shedding frequency in ground effect. The

Strouhal number St was found to be almost constant at 0.2 for all h/d down to 0.3, and the

spectral peak disappeared for h/d of less than 0.3. This threshold gap ratio is often referred
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to as the critical gap ratio (h/d)c for the cessation of the von Kármán-type vortex shedding

in ground effect. It should be noted, however, that the disappearance of the spectral peak

of the local velocity fluctuations in the near wake region does not necessarily coincide with

the global cessation of the vortex shedding. Price et al. (2002) recently reported, for lower

Reynolds numbers of 1200 to 1400, that the cessation of the vortex shedding was observed

at h/d ≤ 0.375 in their flow visualisation tests, but their hot-film anemometer indicated a

reasonably strong periodicity even at h/d = 0.125.

Similar measurements of St and (h/d)c have also been carried out at higher and lower

Reynolds numbers (Buresti and Lanciotti 1979; Angrilli et al. 1982; Grass et al. 1984). In

particular, Buresti and Lanciotti (1979) measured the shedding frequency for two different

types of cylinders, i.e., with smooth and roughened surfaces, placed near a fixed ground at

higher Reynolds numbers of 8.5 × 104 to 3 × 105 (δB/d = 0.1). For the smooth cylinder in
the subcritical regime (Re ≤ 1.9 × 105 in this case), the critical gap ratio (h/d)c was found
to be 0.4, and St was about 0.2 for h/d ≥ 0.4. The same results were also obtained for the
roughened cylinder in the subcritical regime (Re ≤ 1.4×105 in this case due to the roughened
surface). However, for the roughened cylinder in the postcritical regime (Re ≥ 2.4× 105 due
to the roughened surface), (h/d)c was found to be 0.3, i.e., slightly smaller than that in the

subcritical regime, and St scattered within the range of 0.22 to 0.25.

Controversial results on the influence of the boundary layer

Although the fundamental effects of h/d were successfully observed by the above authors,

the influence of the boundary layer developing on the ground is rather complicated and is

still unclear despite several extensive investigations reported so far.

Zdravkovich (1985b) observed in his force measurements (4.8 × 104 ≤ Re ≤ 3.0 × 105,
0.52 ≤ δB/d ≤ 0.97) that the rapid decrease in CD occurred as the gap was reduced to less
than the thickness of the boundary layer δB on the ground, and thus concluded that the

variation of CD was dominated by h/δB rather than by the conventional gap ratio h/d. He

also noted that CL could be significantly affected by the state of the boundary layer, though

it was insensitive to the thickness of the boundary layer. When the cylinder was immersed in

a rod-generated boundary layer, CL showed an increase as h/d decreased to less than about

0.5, similar to the results by Roshko et al. (1975) reviewed above. For the cylinder immersed

in a mesh-wire-generated boundary layer, however, negative CL (i.e., downforce) of about

−0.1 to −0.2 was obtained but only when h/d was around 0.5. Zdravkovich (1985b) argued
that the difference in the CL behaviour came from the difference in the mean velocity profile

in the two different types of boundary layers. Such negative CL values were also observed

by Lei et al. (1999) at lower Reynolds numbers of 1.3 to 1.45 × 104. They noted, however,
that the negative CL might be attributed to the presence of their tripping device itself, which

effectively changed the pressure distribution around the cylinder.

Meanwhile, Hiwada et al. (1986) measured the mean forces at Re = 2 × 104 with a wide
δB/d range of 0.23 ≤ δB/d ≤ 2.82, where CD decreased as h/d decreased and also as h/δB

decreased. For the case of the smallest δB/d of 0.23, however, the decrease in drag started

around h/d = 0.5, where the cylinder was still outside the thin boundary layer, suggesting
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that the drag reduction could be caused not only by the direct interference of the boundary

layer. Hiwada et al. (1986) also reported that the variations of CL were quite similar to those

by Roshko et al. (1975) and no negative CL values were observed for all δB/d investigated.

They also measured the vortex shedding frequency, and found the critical gap ratio (h/d)c to

be 0.3 for all δB/d investigated. On this point, however, Lei et al. (1999) later observed that

(h/d)c slightly decreased from 0.3 to 0.2 as δB/d increased from 0.14 to 0.48. Buresti and

Lanciotti (1992) have also reported that (h/d)c slightly decreased from 0.4 to 0.3 as δB/d

increased from 0.1 to 1.1 in their experiments.

More recently, Zdravkovich (2003) reported the drag behaviour for a cylinder placed near

a moving ground (i.e., substantially no boundary layer on the ground) at a higher Reynolds

number of 2.5× 105. In contrast to all the investigations reviewed above, the decrease in CD
due to the decrease in h/d did not occur in his measurements. It has not been clear, however,

whether this was attributed to the nonexistence of the boundary layer on the ground, or the

higher Reynolds number that seems to be within the critical flow regime rather than within

the subcritical flow regime, or any other influencing factors.

1.4.4 Non-circular cylinders in ground effect

The characteristics of flow past non-circular cylinders largely depend on their cross-sectional

shapes, in addition to the governing/influencing parameters for circular cylinders reviewed in

the previous subsections. In particular, the existence and location of sharp edges often have

a significant influence on whether and where flow separation occurs, and thus on the wake

characteristics as well as on the drag and lift forces acting on the cylinder.

Square cylinders in ground effect

Among non-circular cylinders of various cross-sectional shapes, square cylinders are one of

the most widely studied. In general, the characteristics of flow past a square cylinder are

significantly affected by the angle of attack (or incidence) α, but are not significantly affected

by the Reynolds number since the flow separation points are fixed at the sharp edges of the

cylinder. The effects of α on CD, CL, Cp and St have been investigated, but mostly in a free

stream, by Vickery (1966), Lee (1975), and Obasaju (1983), among others.

As concerns the ground effect, a square cylinder with α = 0◦ (i.e., two faces are normal

and the other two are parallel to the incoming flow) has been the subject of several studies,

e.g., at Re = 1.36 × 104 by Durao et al. (1991), at Re = 2.2 × 104 by Bosch et al. (1996),
and at Re = 1.89 × 104 by Martinuzzi et al. (2003). A remarkable feature of their results

was that there was little influence of δB/d on the critical gap ratio (h/d)c, which was found

to be about 0.3 to 0.4 for various boundary-layer thicknesses 0.13 < δB/d < 1.5. There was,

however, an ambiguity in exactly identifying (h/d)c since the vortex shedding was found to

be intermittent for gap ratios slightly larger than (h/d)c (Bosch et al. 1996; Martinuzzi et

al. 2003). Martinuzzi et al. (2003) suggested that this intermittency of the vortex shedding,

observed at 0.3 < h/d < 0.6 in their study with δB/d = 0.5, was due to the intermittency of

the reattachment of the separated shear layer (from the bottom leading edge) on the bottom

surface of the cylinder.
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Martinuzzi et al. (2003) have also reported the mean and fluctuating forces on the square

cylinder (Re = 1.89×104, δB/d = 0.5), where three different h/d regimes were identified. For
h/d > 0.9, the force coefficients were almost insensitive to the gap ratio. As h/d decreased

from 0.9 to 0.4, the mean CD monotonously decreased from 2.2 to 1.5 and also the mean CL

from −0.2 to −0.7. The fluctuations of CD and CL also decreased as h/d decreased in this

h/d regime. Below h/d = 0.4, however, the mean CL increased from −0.7 to about zero as
the cylinder came close to the ground, whereas CD continued to decrease to about 1.2. The

fluctuations of CD and CL were found to be small in this h/d regime.

Other types of cylinders in ground effect

Everitt (1982) reported that the critical gap ratio (h/d)c for a flat plate placed normal to

the incoming flow, which might be considered as an extreme case of rectangular cylinders

with α = 0◦, was 0.55 for several different δB/d of 0.72 to 2.53. The Reynolds number based

on the plate height d was 3.5 × 104. Meanwhile, Kamemoto et al. (1984) found (h/d)c for
a normal flat plate and also for a triangular cylinder (with one edge turned upstream and

one face turned downstream, cf. Fig. 1.1) to be 0.6 and 0.37, respectively (Re = 2.7 × 104,
δB/d = 0.375). Kamemoto et al. (1984) also reported that the mean CD decreased as h/d

decreased to less than about 1.0 for the normal flat plate, and less than about 0.7 for the

triangular cylinder, respectively.

Kumarasamy and Barlow (1995) focused on a half-circular cylinder, with the flat surface

turned downstream (cf. Fig. 1.1), placed near a fixed ground (δB/d = 0.1). The Reynolds

number was 4.67×105, which lies within the critical flow regime for a full-circular cylinder but
the laminar separation bubbles are not formed in this case because of the truncated geometry

of the cylinder. They reported that the critical gap ratio (h/d)c was 0.33, that is, the vortex

shedding ceased when the cylinder was still outside the boundary layer on the ground. The

effects of h/d on the pressure distribution around the cylinder were similar to those reported

by Bearman and Zdravkovich (1978) for a circular cylinder; the base pressure increased and

hence the drag decreased as h/d decreased.

More recently, Zhang et al. (2005) performed experiments on a half cylinder placed near

a moving ground. The Reynolds number was 6.8× 104 ≤ Re ≤ 1.7× 105, in which range no
appreciable effect of Re was found on the results. They found the critical gap ratio (h/d)c to

be between 0.525 and 0.55. A noteworthy finding was that the mean CD showed a sudden

drop at the critical gap ratio, i.e., CD was almost constant at 1.5 for h/d > 0.55 and at 1.0 for

h/d < 0.525, in contrast to the gradual decrease in CD usually observed near a fixed ground

(for all types of cylinders as reviewed above). Zhang et al. (2005) also showed by using PIV

measurements that the mean recirculation length Lr behind the cylinder was significantly

elongated as h/d decreased from 0.55 to 0.525, corresponding to the cessation of the vortex

shedding and also to the increase in the base pressure. This direct relationship between the

critical drag reduction and the cessation of the vortex shedding is of great importance for

understanding the fundamental aspects of bluff body flows in ground effect, and is also of

particular interest in the present study, where not a half-circular but a full-circular cylinder

is placed near a moving ground.
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1.4.5 Numerical simulations (CFD)

With the rapid progress of computer technology in recent years, computational or numerical

simulation is becoming a powerful tool for investigating the physics of various complex flows

in fluid mechanics. The flow past cylinders at high Reynolds numbers of about 104 or above,

however, is still a challenging subject in today’s computational fluid dynamics (CFD) since

the direct numerical simulations (DNS) of the Navier-Stokes equations for such high Reynolds

number flows are currently not feasible due to the huge computational costs required (Spalart

2000).

As reviewed in the previous sections, flow past cylinders generally accompanies massive

flow separation, vortex shedding, and the transition to turbulence. For the case of a circular

cylinder, a further difficulty arises from the fact that the flow separation points are not fixed

or determined by the geometry but depend on the flow pattern, especially on the location

of the transition to turbulence. This is the key reason why the critical drag reduction of a

circular cylinder, reported first by Wieselsberger in 1922 (cf. Section 1.4.2), still cannot be

reproduced with sufficient accuracy in the numerical simulations of today, including unsteady

Reynolds-averaged Navier-Stokes (URANS) simulations, large-eddy simulations (LES), and

detached-eddy simulations (DES).

In the following, some basic concepts and recent progress of URANS, LES, and DES are

reviewed with a major focus on their applications to the flow past cylinders. Further details

of the procedure of these simulations are described later in Chapter 3.

Unsteady RANS simulations

The concept of URANS is based on the triple decomposition of time-dependent variables

(Hussain and Reynolds 1970), where each instantaneous variable such as velocity and pres-

sure is decomposed into long-time-averaged, periodic, and turbulent (or stochastic/random)

components. The sum of the first two is often referred to as a coherent (or phase-averaged)

component, for which the Reynolds-averaged Navier-Stokes (RANS) equations are derived

and solved with using some turbulence closure models. In fact, the operation of the URANS

of today largely relies on turbulence models and techniques for traditional (steady) RANS

simulations, which have been well established compared with those for LES. A review of the

models for RANS/URANS has been given by Wilcox (1998). It should be noted, however,

that most of those turbulence models are basically adjusted to reproduce the spreading rate

of mixing layers in steady RANS simulations, i.e., the Reynolds stresses predicted by the

models implicitly contain contributions not only from the turbulent or random motions but

also from the coherent motions of the flow (Spalart, 2000), and thus the models are in general

‘overly dissipative’ (Menter et al., 2003) when used in URANS simulations.

As concerns the applications of URANS to the flow past cylinders, one of the first sys-

tematic investigations was conducted by Franke and Rodi (1991). They showed, for the flow

past a square cylinder (in a free stream, Re = 2.2 × 104), that URANS could predict the
periodic motion of the von Kármán-type vortex shedding behind the cylinder. The results

were considerably sensitive to the turbulence model used, but the time-averaged results of
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URANS basically agreed better with experiment than the results of steady RANS using the

same turbulence models. Within the scope of URANS approaches, Franke and Rodi (1991)

concluded that the Reynolds-stress model by Launder et al. (1975) yielded the best results,

compared with eddy-viscosity-based models such as the standard k-² model by Launder and

Spalding (1974).

An encouraging result of the k-² model, however, was later reported by Kato and Launder

(1993), who proposed an ad hoc modification of the model to avoid the excessive production

of turbulence in the stagnation region of a square cylinder in a free stream. This modification

was also used by Bosch and Rodi (1996) for a square cylinder placed near a fixed ground

(Re = 2.2 × 104). The original k-² model incorrectly predicted the cessation of the vortex
shedding at h/d = 0.5, at which point the vortex shedding was still observed experimentally

(Bosch et al. 1996), whereas the Kato-Launder modification yielded reasonable predictions

at all gap ratios investigated. Meanwhile, Iaccarino et al. (2003) recently applied the v2-f

model by Durbin (1995) to a square cylinder in a free stream (Re = 2.2 × 104); the results
were reasonable and comparable to those by the Kato-Launder k-² model.

As for a circular cylinder, less successful results have been obtained from RANS/URANS

despite a number of attempts so far. A special difficulty for a circular cylinder arises from

the fact that the flow separation points are not fixed but depend significantly on the location

of the transition to turbulence, which can hardly be predicted by common RANS/URANS

approaches. Some plausible results have been obtained, but only when the location of the

transition, or ‘trip,’ was given a priori (Celik and Shaffer 1995). An alternative way to cope

with this problem was proposed by Shur et al. (1996), who introduced the trip-less approach,

where the inflow boundary conditions are given in a special manner and no transition infor-

mation is given a priori (see Chapter 3 for more details). They applied this approach to the

subcritical flow past a circular cylinder at Re = 1.4 × 105 with using the Spalart-Allmaras
(S-A) model (Spalart and Allmaras 1992) and also the Shear-Stress-Transport (SST) k-ω

model (Menter 1994). The S-A model coupled with the trip-less approach yielded reasonable

results, although the quantitative agreement with experiment was not perfect.

More recent studies have shown that URANS, when coupled with sophisticated models to

roughly predict the transition to turbulence, could capture the qualitative trends of not only

the subcritical but also the critical and supercritical flows past a circular cylinder (Saghafian et

al. 2003; Holloway et al. 2004; Langtry et al. 2004), although it still predicts flows that are too

smooth or organised. In general, URANS cannot sufficiently capture the three-dimensional

flow structures of wide-ranging spatial/time scales even if the computation is performed in a

three-dimensional domain (Shur et al. 2005).

Large-eddy simulations

Such three-dimensional flow structures of wide-ranging scales may be analysed using LES,

in which ‘large-scale’ eddies (or motions) are directly solved whereas small ‘subgrid-scale’

eddies are filtered and modelled. The oldest and best known subgrid-scale model is the one

proposed by Smagorinsky (1963), where the concept of eddy viscosity was used in order to

model the subgrid-scale Reynolds stress (see Chapter 3 for more details). A disadvantage of
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the Smagorinsky model, however, was the need and difficulty of the modification of the eddy

viscosity in near-wall regions. Later, Germano et al. (1991) proposed the dynamic subgrid-

scale model (or ‘procedure’ in a proper sense), where the model parameters are not constant

but are calculated locally and at each time step by using a coarse ‘test filter.’ This method

was then modified by Lilly (1992) and is now widely used; further descriptions of the models

and procedures for LES can be found in, e.g., Ferziger (1996) and Pope (2000).

For wall-bounded flows, Pope (2000) classified LES into two categories: LES with near-

wall resolution (LES-NWR or ‘pure’ LES) and LES with near-wall modelling (LES-NWM).

In general, the former requires huge computational costs and is thus still infeasible for high

Reynolds number flows, whereas the latter requires (and is sensitive to) near-wall models or

treatments. The influence of the near-wall models/treatments in LES-NWM, however, has

not been examined enough compared with that in RANS/URANS.

The applications of LES to flow past cylinders have been reported by several authors.

Rodi et al. (1997) summarised the results of ‘Workshop on LES of Flow Past Bluff Bodies’

held in Germany in June 1995, where the flow past a square cylinder (in a free stream, Re

= 2.2 × 104) was selected as one of two test cases investigated by several research groups
in the world. Breuer (1998, 2000) reported similar LES assessments but for the flow past a

circular cylinder (Re = 3.9× 103 and 1.4× 105, respectively). Ma et al. (2000) also reported
their results for a circular cylinder at Re = 3.9 × 103. More recently, Catalano et al. (2003)
simulated the flow past a circular cylinder at Re = 5×105, 1×106, and 2×106. On the whole,
the results of LES agreed better with experiments than URANS, especially in the near wake

region of the square/circular cylinder. However, as noted above, an essential problem in the

use of LES is that a very fine filter is required at near-wall regions to resolve the ‘large-scale’

eddies that contain the bulk of turbulent kinetic energy (i.e., LES-NWR), which is infeasible

in the cases of high Reynolds number flows discussed here. Inevitably given a ‘coarse’ filter

(i.e., LES-NWM), the influence of the subgrid-scale model increases more and more (and also

the grid dependence of the results increases) as the Reynolds number becomes higher, and

the details of such influences are still unclear.

Detached-eddy simulations

The detached-eddy simulation (DES), the basic principles of which were given by Spalart et

al. (1997) and then the first results were reported by Shur et al. (1999), is one of the novel

attempts to combine URANS and LES to obtain realistic results for practical high Reynolds

number flows at acceptable computational costs. In this approach, the wall boundary layers

(or attached eddies) are analysed with URANS techniques whereas the separated regions (or

detached eddies) are solved based on the concept of LES. The main feature of DES is that

a single turbulence model serves as a statistical model (URANS mode) in near-wall regions

and also serves as a subgrid-scale model (LES mode) in far-wall regions, so that no explicit

boundary exists between the URANS and LES zones (such an approach is often referred to

as ‘non-zonal’ coupling of URANS and LES; see Chapter 3 for more details).

Travin et al. (2000) applied DES to flow past a circular cylinder for both the subcritical

(laminar-separation) and postcritical (turbulent-separation) cases. The former was simulated
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using the trip-less approach by Shur et al. (1996) at Re = 5 × 104 and 1.4 × 105, whereas
the latter was simulated using a fully-turbulent condition at Re = 1.4 × 105 and 3 × 106.
The results were comparable to LES in terms of predicting the major properties of the flow

(e.g., force coefficients, base pressure and separation angle) and also of capturing the three-

dimensional wake structures. However, also similar to LES, the quantitative agreement with

experiment was not perfect, especially at higher Reynolds numbers.

Due to the simple ‘mode-switching’ concept employed, however, the original DES has an

issue concerning the physical interpretation of the ‘grey area,’ where the operation mode is

switched between URANS and LES; the justification of this switch relies on the disparity in

the scales between the attached- and detached-eddies (Spalart 2001). In practice, the switch

between the URANS and LES modes can take place inside the boundary layers when using

excessively fine computational grids (since the mode-switching point is determined based on

the local grid spacing; see Chapter 3 for more details), and this often causes a premature or

grid-induced separation (Menter et al. 2003). It follows that the grid spacing in the original

DES must be carefully decided so that the boundary layers are analysed in the URANS mode

rather than in the LES mode. To achieve this may not be easy when dealing with general

industrial flows of complex geometry, as pointed out by Menter et al. (2003), who alternatively

proposed a so-called scale-adaptive simulation (SAS) model to remedy the problem of the

explicit grid dependency in DES. Nevertheless, a certain degree of grid convergence can still

be achieved in an ‘appropriate’ resolution range in the original DES, at least when the flow

configuration is relatively simple, as will be demonstrated in the present study.

1.4.6 Linear stability analysis

The origin of the stability analysis of flows goes back to Reynolds and Rayleigh in the late

nineteenth century, but the interest in the stability of bluff body wakes has been dramatically

increasing in the last two decades with the concept of absolute versus convective instability

being fully applied to this field of study (Oertel 1990). Recent studies have shown that

the von Kármán-type vortex shedding behind cylindrical bluff bodies may be explained as a

result of absolute instability in the near wake region, which allows local disturbances in the

flow to propagate both upstream and downstream and hence produces a resonance between

the travelling instability waves; comprehensive reviews on this topic have been given by, for

example, Huerre and Monkewitz (1990) and Huerre (2000).

Among a variety of techniques developed in the field of flow stability analysis, the local

(i.e., parallel or nearly parallel flow assumed) linear stability analysis based on Rayleigh’s and

Orr-Sommerfeld type equations is one of the most popular and well developed techniques,

the details of which have been documented by Drazin and Reid (1981) and Criminale et al.

(2003); see also Chapter 4 for more details. This type of stability analysis has been successful

in revealing the basic stability characteristics of many types of parallel (or nearly parallel)

shear flows, such as wall boundary layers, mixing layers, jets, and wakes.

As concerns the wakes of two-dimensional bluff bodies, the local linear stability analysis

has been performed by several researchers so far. Betchov and Criminale (1966) reported

first the results of spatio-temporal stability analysis of a simple analytical wake profile. Koch
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(1985) investigated a multi-parameter family of model wake profiles, including asymmetric

ones, using the concept of absolute versus convective instability. Monkewitz (1988) further

investigated the local absolute and convective instability of model wake profiles and its link

to the global dynamics of the wake, i.e., the onset and cessation of the von Kármán-type

vortex shedding, by comparing the results with experiments. Meanwhile, Hannemann and

Oertel (1989) applied the analysis to wake profiles directly obtained from the Navier-Stokes

equations and then compared the results between the stability analysis and the numerical

simulations. A similar investigation was also performed by Hammond and Redekopp (1997)

on asymmetric wake profiles numerically obtained. More recently, Castro (2005) reported a

comparison between the Navier-Stokes computations and linear stability analysis on a flat-

plate wake but with a symmetry plane imposed on the wake centreline and also with a slip

boundary placed parallel to the free stream.

The crucial part of this type of analysis is the link between the local linear stability

characteristics and the global mode selection of the flows. Monkewitz and Nguyen (1987)

proposed the initial resonance criterion for the wakes of two-dimensional bluff bodies; that

is, the global mode (i.e., the overall frequency and associated spatial structures) of the wake is

determined by the local resonance at the first streamwise station of local absolute instability.

This scenario was recently found to be the case not only in the framework of linear stability

theory but also in the theory of steep nonlinear global modes, which was first identified in a

model problem using the one-dimensional complex Ginzburg-Landau equation by Pier et al.

(1998) and was then confirmed in the context of real wake flows governed by the Navier-Stokes

equations by Pier and Huerre (2001). According to these authors, the upstream edge or front

of the region of local linear absolute instability acts as a wavemaker to generate nonlinear

waves travelling downstream and imposes its local frequency on the global oscillation of the

downstream flow. This shows that the results of local linear stability analysis may indeed

give some useful insights into the physics of the real (nonlinear) von Kármán-type vortex

shedding.

1.4.7 POD analysis

The proper orthogonal decomposition (POD) method – which was first introduced in the

field of fluid mechanics by Lumley (1967) as an unbiased technique to study the so-called

coherent structures in turbulent flows – has attracted the attention of many researchers

during the last two decades in the context of active feedback flow control. One of the biggest

challenges in the development of feedback flow control systems is to reduce the complexity of

the system, or to reduce the huge amount of information about the flow to be controlled, and

the POD can be used for this purpose, i.e., to extract only the (energetically) dominant flow

structures as spatial basis functions, or modes, and to build a ‘low-dimensional’ or ‘reduced-

order’ model of the flow to be controlled (Holmes et al. 1996).

The concept of POD is to decompose multi-dimensional data into a linear combination

of a finite number of orthogonal basis functions. In the context of fluid dynamics, the POD

is usually used to decompose an unsteady flow field into the so-called spatial basis functions

(or POD modes) and time-dependent modal coefficients. The basis functions obtained by
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the POD are ‘optimal’ (compared with other linear representations such as a Fourier series)

in the sense that the projection of the original data onto the basis functions is maximised

(Berkooz et al. 1993; Holmes et al. 1996), and this is the reason why the POD is a logical

and efficient way to build a low-dimensional basis that captures energetically dominant flow

structures. The original (or traditional) POD method introduced by Lumley (1967), however,

was computationally expensive and was not applicable to two- or three-dimensional flow field

data of high spatial resolution. Later, Sirovich (1987) proposed the snapshot POD method,

which provides POD modes equivalent to those by the traditional POD method but with less

computational costs required (see Chapter 5 for more details).

The wake of cylindrical bluff bodies is a typical example of unsteady flows to which the

POD analysis and also the POD-based low-dimensional feedback control techniques may be

applied. Deane et al. (1991) performed the POD of the near wake of a circular cylinder (Re

= 100 to 200); the laminar von Kármán-type vortex shedding was well represented by the

combination of the first two POD modes. Ma et al. (2000) also performed it but at a higher

Reynolds number of 3900, and showed that, even for the turbulent wake, the majority of the

fluctuating energy was captured in less than 10 to 20 modes as the von Kármán-type vortex

shedding was still energetically dominant compared to the background turbulence. Also van

Oudheusden et al. (2005) recently reported for the turbulent near wake of a square cylinder

(Re = 1.0×104) that about 75 percent of the fluctuating energy was captured in the first two
POD modes, with which the large-scale vortex shedding motion was well reproduced. On the

other hand, several advanced studies on the POD-based feedback control have already been

reported for a circular cylinder in a free stream (Gillies 1998; Cohen et al. 2003; Bergmann

et al. 2005), and also for a square cylinder placed in a channel (Galletti et al. 2004). These

studies have demonstrated the promise of the POD-based low-dimensional techniques for the

feedback control of the wakes of bluff bodis, but only in the laminar flow regime so far. The

possibility of the application of these techniques to the control of turbulent vortex shedding,

which is of more importance in practical engineering problems, has not been investigated in

detail.
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Chapter 2

Experimental Study of
Flow Past a Circular Cylinder
in Ground Effect

2.1 Introduction

The flow past a circular cylinder in ground effect has been the subject of a number of studies;

the details of the ground effect, however, are still far from being fully understood because of

the existence of several influencing factors, as reviewed in Section 1.4.3. The objective of the

experimental study described in this chapter is to elucidate the mechanisms of the ground

effect in more detail by wind tunnel tests using: (i) a moving ground, on which substantially

no boundary layer develops to interfere with the cylinder (and hence the rather ‘confusing’

effects of the state/thickness of the boundary layer are avoided), and (ii) a pair of end-plates,

with and without which the influence of the spanwise-end condition of the cylinder in ground

effect is explicitly examined.

The purposes of this chapter are to show experimental results and to discuss the funda-

mental physics of the flow, in particular the direct relationship between the cessation of the

von Kármán-type vortex shedding from the cylinder and the drag reduction of the cylinder

in ground effect. In the following, the details of the experiments will be described in Section

2.2, and then the results will be presented in Section 2.3. A further discussion of the results

will be given in Section 2.4, and finally a concluding summary will be given in Section 2.5.

Note that the experimental data presented in this chapter are later compared with numerical

simulations and linear stability analysis in Chapters 3 and 4, respectively, and then further

examined using the POD analysis in Chapter 5.

2.2 Experimental details

Mean drag and lift measurements, surface oil flow visualisation, and particle image velocity

(PIV) measurements were performed for a circular cylinder of an aspect ratio of 8.33, placed

near and parallel to a moving ground, at two upper-subcritical Reynolds numbers of 0.4 and

1.0× 105 (based on the cylinder diameter d and the free-stream velocity U∞). Details of the

experiments are described below.
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Figure 2.1: Schematic of circular cylinder model and end-plates.

Figure 2.2: Model installation in the wind tunnel.

2.2.1 Wind tunnel, cylinder, and end-plates

The experiments were performed in the 2.1× 1.5 m (70× 50) wind tunnel at the University of
Southampton. The tunnel is of conventional closed circuit design, and the working section of

2.1 m wide × 1.5 m high × 4.4 m long is equipped with a large moving belt rig (1.5 m wide

× 3.2 m long) and also a three-component overhead balance to measure the time-averaged

forces. The moving belt travels at the same speed as the free stream and works in conjunction

with a boundary layer suction system, which ensures uniform airflow in the near-floor region.

The intensity of the free-stream turbulence (FST) is less than 0.3%. A further description of

the wind tunnel facility is given by Burgin et al. (1986).

Figure 2.1 describes a standard layout of the cylinder model and end-plates used in this

study, and Fig. 2.2 is a photograph of the model installed in the wind tunnel. The cylinder

was placed above the moving floor with the axis lying parallel to the floor and perpendicular

to the free stream. The cylinder model used is 6 cm in diameter and 50 cm in length: the

aspect ratio l/d = 8.33. The model is made of aluminium alloy, and the surface is smooth;

the relative roughness K/d, where K is the estimated height of excrescences, is less than

0.01%. Aluminium end-plates 3 mm thick (or Perspex end-plates 6.5 mm thick in the case
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of PIV measurements) were attached to both ends of the cylinder for the majority of the

experiments. The size of the end-plates, described in Figs. 2.1 and also 2.3, basically follows

recommendations by Stansby (1974), who optimised the distance from the leading edge of

the plates to a cylinder placed in a free stream to provide an essentially two-dimensional flow

around the cylinder. An additional factor to be considered here, however, is the gap between

the end-plates and the moving floor since the plates are not allowed to contact the moving

floor. In this study, the distance from the bottom edge of the plates to the cylinder, denoted

by ye in Fig. 2.1, was set at three different levels of 0, 0.2d and 0.4d to examine the effects of

the end-plate position, i.e., four different end conditions in total (three with end-plates and

one without end-plates) were investigated in this study.

The model was mounted on two steel struts, which were connected to the overhead balance

of the wind tunnel. Two thin steel wires crossed between the struts to prevent the vibration

of the model. The total blockage of the test section caused by the cylinder model, end-plates,

and struts was less than 3%, and hence no corrections for the blockage effects were made for

the experimental results.

Figure 2.3: Drawing of aluminium end-plates.
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Table 2.1: Experimental conditions.

h/d 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.8 1.0 1.5 2.0

Force (ye/d = 0) ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
(ye/d = 0.2) ° ° ° ° ° ° ° ° °
(ye/d = 0.4) ° ° ° ° ° ° °
(no end-plates) ° ° ° ° ° ° ° ° ° ° ° ° ° ° °

Oil flow (ye/d = 0) 4 4 4 4 4
(no end-plates) 4 4

PIV (ye/d = 0) 5 5 5 5
(no end-plates) 5 5

(°: Re = 0.4 and 1.0× 105, 4: Re = 1.0× 105, 5: Re = 0.4× 105)

2.2.2 Force measurements

The time-averaged drag and lift measurements were performed as follows. First, the forces

acting on the ‘total’ package, consisting of the cylinder model, end-plates, struts, and wires,

were measured for each experimental condition (Reynolds numbers of 0.4 and 1.0× 105, gap
ratio h/d of 0.05 to 2.0, and the four cylinder-end conditions; see Table 2.1 for details).

Second, the forces acting on the ‘tare’ package, consisting only of the end-plates, struts, and

wires, were measured for each condition. The drag and lift coefficients of the cylinder, CD

and CL, were then calculated from the two sets of measurements, taking into account the

changes in air density due to slight variations of the free-stream temperature and pressure

during the tests.

The wind tunnel was started up and shut down for each gap ratio and end condition due

to the need to change these conditions (i.e., model configuration) manually, whereas the two

wind (and also the floor) speeds U∞ of 10 and 25 m/s, which approximately correspond to

the Reynolds numbers of 0.4 and 1.0 × 105, respectively, were consecutively tested without
shutting down the tunnel. Five consecutive measurements of the time-averaged drag and lift

forces, where each single measurement takes about 20 seconds to obtain the time-averaged

value, were conducted for each condition. The five time-averaged data were further averaged

to obtain the final results. In addition, a repeatability test was also carried out (but only

for one representative model configuration) to roughly estimate the uncertainties stemming

from the whole experimental process, as will be described below.

Uncertainties in force measurements

Two different levels of random uncertainties (or precision errors) were estimated for the time-

averaged CD and CL measurements, basically following the theory of uncertainty analysis by

Moffat (1982) and Taylor (1982).

First of all, the standard deviation σx of the five consecutive measurements of the time-

averaged drag and lift forces was calculated, for each experimental condition, to estimate the

first order uncertainty (Moffat 1982) of the measurements, i.e., the uncertainty coming only

from the unsteadiness of the system. For the lower Reynolds number cases (U∞ = 10 m/s),

the first order uncertainties (2σx/
√
5) were found to be 0.028 N for the drag and 0.019 N for

the lift at the maximum, which correspond to the uncertainties in CD and CL of ±0.016 and
±0.011, respectively, with 95% confidence. For the higher Reynolds number cases (U∞ = 25
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m/s), the uncertainties were found to be 0.082 N for the drag and 0.033 N for the lift at

the maximum, corresponding to the uncertainties in CD and CL of ±0.0075 and ±0.0030,
respectively, with 95% confidence.

Second, the standard deviation σx of three independent final results of CD and CL, which

were obtained from the repeatability test only for one typical model configuration (h/d = 0.6

with ye/d = 0), were calculated to estimate the other uncertainties stemming from the whole

experimental process, including the installation process of the model. For the lower Reynolds

number case, the uncertainties (2σx, not 2σx/
√
3) in CD and CL were estimated to be ±0.0089

and ±0.0241, respectively. For the higher Reynolds number case, they were estimated to be
±0.0040 and ±0.0097, respectively.

Finally, the sum of the uncertainties estimated from this repeatability test plus the first

order uncertainties (estimated for each experimental condition) was calculated as an estima-

tion of ‘total’ random uncertainties for each experimental condition, which will be plotted

later in Figs. 2.7 and 2.9. The fixed or bias errors, i.e., the uncertainties coming from the

nature of the experimental apparatus and thus cannot be detected from the repeatability test

described above, were assumed to be negligible in this study.

For the uncertainties in the gap ratio h/d, an accuracy of ±0.002 was obtained for the
smallest h/d of 0.05, and ±0.01 for the other cases. As for the Reynolds number, it was
found to vary from 0.37 to 0.41 × 105 for U∞ = 10 m/s and from 0.92 to 1.01 × 105 for
U∞ = 25 m/s due to changes in the free-stream temperature and pressure during the tests.

The uncertainties in the measurements of the wind speed U∞ were found to be negligible,

in terms of the influence on the Reynolds number, compared with the changes in the free-

stream temperature and pressure. Note that since the influence of the Reynolds number is

not significant in this upper-subcritical flow regime (as reviewed in Section 1.4.2 and will

also be shown in this study), the notations of Re = 0.4 and 1.0 × 105 are used as synonyms
of the two wind speed conditions of U∞ = 10 m/s and 25 m/s, respectively, for the sake of

convenience.

2.2.3 Surface oil flow visualisation

For the surface oil-flow visualisation (and also for the PIV measurements) the cylinder model

was painted matt black to obtain clear images of the flow pattern. A mixture of liquid paraffin

and fine powder Invisible Blue T70 was applied to the model surface, and then the tunnel

was run for about 30 minutes to evaporate the paraffin, making the surface flow pattern

visible and available to be photographed. Both the upper (open-side) and bottom (gap-side)

surfaces of the cylinder were directly photographed, after demounting the cylinder model

with special care not to disturb the flow pattern obtained, to estimate the flow separation

angles. The oil flow tests were conducted for several h/d with and without end-plates, but

only at the higher Reynolds number of 1.0× 105 (cf. Table 2.1).

2.2.4 PIV measurements

The PIV measurements were performed using a Dantec FlowMap 2D-PIV system (PIV2100);

the experimental setup for the PIV measurements is described in Fig. 2.4. A double-pulse
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Figure 2.4: Experimental setup for PIV measurements.

Nd:YAG laser (120 mJ/pulse) was located approximately 1.5 m (25d) downstream of the

centre of the cylinder to create a laser sheet of about 1 mm thick, illuminating the mid-span

plane behind the cylinder. Smoke particles of about 1 μm in size were used as tracer particles

to be illuminated by the laser sheet. The illuminated particle images were captured using a

Dantec HiSense CCD camera (1280×1024 pixels, 8 bits/pixel), which was synchronised with
the laser to implement the so-called ‘double-frame/single-exposure’ recording (Raffel et al.

1998). The time delay between the two laser pulses was set at 50 μs, and 400 pairs of images

were continuously recorded for each experimental condition with a sampling rate of 2 Hz,

which was unfortunately not high enough to resolve the time evolution of vortex shedding

behind the cylinder in this study.

Each pair of images recorded was then analysed using a cross-correlation technique with

an interrogation area of 32× 32 pixels with 50% overlapping in both horizontal and vertical

directions. The resulting vectors were validated by the correlation-peak-height, velocity-range,

and moving-average validations (Jensen 2004); the rejected vectors were replaced with inter-

polated values from the surrounding valid vectors. The 400 instantaneous velocity field data

obtained were then averaged, for each condition, to yield time-averaged flow field data. An

example of the convergence of the time-averaging is shown in Fig. 2.5; the convergence is

not perfect but reasonably acceptable, considering the complexity of the turbulent vortex

shedding in this near wake region.

The PIV measurements were carried out for several h/d with and without end-plates, but

only at the lower Reynolds number of 0.4 × 105 (cf. Table 2.1) due to technical difficulties
at the higher Reynolds number. For the majority of the measurements, only the near wake
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Figure 2.5: Convergence of the mean and r.m.s. values of local streamwise velocities (h/d =
0.6, ye/d = 0, Re = 0.4× 105); u0 is the r.m.s. of streamwise velocity fluctuation, i.e., (u02) 12 .

region of 0.2 < x/d < 2.7 was captured within a single camera view. The downstream region

of 2.5 < x/d < 5, however, was additionally measured for a few cases in order to detect the

length of an elongated recirculation region behind the cylinder.

2.3 Experimental results

2.3.1 Drag and lift coefficients

The variations of the time-averaged drag coefficient of the cylinder in ground effect are shown

in Fig. 2.6 for the four different cylinder-end conditions investigated. The results of some of

the earlier studies reviewed in Section 1.4.3 are also included in this figure for the purpose

of comparison. Note that, for the present results, only those for the higher Reynolds number

of 1.0 × 105 are shown here since no substantial differences were observed between the two
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Figure 2.6: Mean drag coefficient of a circular cylinder in ground effect.

Figure 2.7: Effects of the Reynolds number on the mean drag behaviour: (a) with end-plates
at ye/d = 0, (b) without end-plates.

Reynolds numbers tested. The effects of the Reynolds number are shown in Fig. 2.7, where

the estimated total random uncertainties (cf. Section 2.2.2) are also indicated by error bars

but only for the lower Reynolds number; the uncertainties for the higher Reynolds number

were too small to be plotted on the figure.

As can be seen from Fig. 2.6, for all three cases in which the end-plates were attached to

the cylinder (ye/d = 0, 0.2, and 0.4), a rapid reduction in CD occurred as h/d decreased to

less than about 0.5; this is similar to that observed by Roshko et al. (1975) and Hiwada et al.

(1986), who used a fixed ground rather than a moving ground. Unlike their results, however,

the drag reduction observed in the present study suddenly stopped around h/d = 0.35 and

then CD remained almost constant at slightly less than 1 as the cylinder came close to the

ground. As will be shown later, the critical change in CD around h/d = 0.35 seems to

coincide with the cessation of the large-scale von Kármán-type vortex shedding in the near

wake region of the cylinder.
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Figure 2.8: Mean lift coefficient of a circular cylinder in ground effect.

Figure 2.9: Effects of the Reynolds number on the mean lift behaviour: (a) with end-plates
at ye/d = 0, (b) without end-plates.

As concerns the influence of the position of the end-plates, there is a certain difference

between ye/d = 0 and 0.2 especially at larger gap ratios, but little difference between ye/d =

0.2 and 0.4. This may be interpreted such that the effectiveness of the end-plates is reduced

as the distance from the bottom edge of the plates to the cylinder, ye, is decreased close to

zero. At the largest gap ratio of h/d = 2, the drag coefficient of the cylinder with end-plates

at ye/d = 0.4 was found to be 1.3, which is comparable to that for a long circular cylinder

in a free stream (i.e., outside the ground effect) in the upper-subcritical (TrSL3) flow regime

(cf. Fig. 1.2), suggesting the full effectiveness of the end-plates in this case.

Meanwhile, the drag behaviour of the cylinder without end-plates is totally different from

that for the cylinder with end-plates; the drag gradually decreased, with no critical change, as

the gap ratio increased (cf. Fig. 2.6). At the largest gap ratio of h/d = 2, the drag coefficient

of the cylinder without end-plates was found to be 0.85, which is consistent with that for a

short circular cylinder of similar aspect ratio in a free stream (cf. Zdravkovich et al. 1989). Of
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greater interest here, however, is that no substantial influence of the cylinder-end condition

can be seen at smaller gap ratios of h/d < 0.35, where CD showed an almost constant value

of 0.95 for the cylinder with end-plates (ye/d = 0 and 0.2) and also for the cylinder without

end-plates. It should also be noted that this almost constant drag behaviour looks similar to

that recently reported by Zdravkovich (2003); the details of his experiments, however, have

not been clarified enough, as reviewed in Section 1.4.3.

Figure 2.8 shows the variations of the time-averaged lift coefficient of the cylinder in

ground effect, at the higher Reynolds number of 1.0× 105, for the four different cylinder-end
conditions. The results for a fixed ground by Roshko et al. (1975) are also shown here for

the purpose of comparison. It can be seen that both the ground condition (moving or fixed)

and the cylinder-end condition (with or without end-plates) have only minor effects on the

lift behaviour in ground effect. At the lower Reynolds number of 0.4× 105, however, a little
more scattered variations of CL were observed in this study, as shown in Fig. 2.9. Note that

here the estimated total random uncertainties (cf. Section 2.2.2) are also indicated by error

bars but only for Re = 0.4 × 105; those for Re = 1.0 × 105 were too small to be plotted on
the figure. It is difficult to judge if these slightly different variations of CL are attributed

to some essential physics of the ground effect or to some unknown errors due to the current

measurement system/procedure itself. Nevertheless, it may be concluded that, basically, CL

increased as h/d decreased to less than about 0.5 for all cases investigated.

2.3.2 Surface oil flow pattern

Figures 2.10 and 2.11 show, respectively, the oil flow patterns on the upper (open-side) and

bottom (gap-side) surfaces of the cylinder for six different configurations (four cases for the

cylinder with end-plates at ye/d = 0 and the other two cases for the cylinder without end-

plates). Note that only half of the cylinder span is shown here since the oil flow patterns

appeared to be symmetric in the spanwise direction for all cases tested. The airflow direction

is from downside to upside in Fig. 2.10, and is from upside to downside in Fig. 2.11.

As is obvious from the orderly oil-flow patterns in the upstream region, for all cases, the

airflow remains laminar and almost two dimensional before the separation, i.e., the flow is

subcritical. The separation line on the upper surface of the cylinder is straight when with

end-plates at ye/d = 0 [Figs. 2.10(a) to (d)], and is slightly curved near the ends when without

end-plates [Figs. 2.10(e) and (f)]. A similar pattern of this slightly-curved separation near

the free-ends has been reported for a circular cylinder of finite length in a free stream (i.e.,

outside the ground effect) by Zdravkovich et al. (1989). On the bottom surface of the cylinder

in ground effect, however, the separation line remains straight even without end-plates [Figs.

2.11(e) and (f)]. An enlarged photo of the straight separation line on the bottom surface of

the cylinder (without end-plates, h/d = 0.2) is also presented in Fig. 2.12.

It can also be seen from the oil flow patterns that the position of flow separation moves

upstream on the upper side and downstream on the bottom side as the cylinder comes close

to the ground; this qualitatively agrees with an observation by Bearman and Zdravkovich

(1978) for a circular cylinder near a fixed ground. Figure 2.13 summarises the magnitude of

the separation angle θsep [the angle from the front (x/d = −0.5, y/d = 0) to the separation
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With end-plates (ye/d = 0) Without end-plates

Figure 2.10: Oil flow patterns on the upper surface of the cylinder: (a-d) with end-plates,
and (e, f) without end-plates, for h/d = (a, e) 1.0, (b) 0.4, (c) 0.3, (d, f) 0.2; Re = 1.0× 105.

With end-plates (ye/d = 0) Without end-plates

Figure 2.11: Oil flow patterns on the bottom surface of the cylinder: (a-d) with end-plates,
and (e, f) without end-plates, for h/d = (a, e) 1.0, (b) 0.4, (c) 0.3, (d, f) 0.2; Re = 1.0× 105.
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Figure 2.12: Straight separation line on the bottom surface of the cylinder without end-plates
(h/d = 0.2, Re = 1.0× 105).

Figure 2.13: Time-averaged separation angle (estimated from surface oil flow patterns) vs.
gap ratio for the cylinder with end-plates (ye/d = 0) and without end plates.

point estimated from the oil flow patterns at the mid-span of the cylinder] for all gap ratios

investigated. As has been suggested by Bearman and Zdravkovich (1978), the lift variation

of a circular cylinder in ground effect (cf. Fig. 2.8) can be largely explained by this angular

shift of the flow field around the cylinder, i.e., the lift increases as the front stagnation point

shifts downward when the cylinder comes close to the ground.

Although the flow after the separation is basically time-dependent and thus cannot be

exactly captured by this oil flow visualisation, an interesting trend can be seen in the oil flow

patterns also behind the separation lines. That is, a relatively clear or organised flow pattern

appears when without end-plates [Figs. 2.10(e), (f) and 2.11(e), (f)], suggesting the existence

of a quasi-steady (i.e., not fully unsteady) flow even after the separation. Of interest is that

a similar pattern can also be seen on the cylinder with end-plates but only when h/d ≤ 0.3
[Figs. 2.10(c), (d) and 2.11(c), (d)]; such an organised pattern cannot be recognised on the

cylinder with end-plates when h/d ≥ 0.4 [Figs. 2.10(a), (b) and 2.11(a), (b)]. This difference
in the near wake structure can be more clearly observed by the PIV measurements, as will

be described in the next section.
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2.3.3 Near wake structure (with end-plates)

Figure 2.14 shows the time-averaged, mid-span (z/d = 0) flow field data, obtained from 400

samples of PIV data for each case, behind the cylinder with end-plates at ye/d = 0. The

time-averaged velocity vectors, streamwise velocity contours, and spanwise vorticity contours

are depicted in Figs. 2.14(a-d), (e-h), and (i-l), respectively, for four different h/d of 0.6, 0.4,

Figure 2.14: Time-averaged flow fields behind the cylinder with end-plates (ye/d = 0): (a-d)
velocity vectors, (e-h) contours of streamwise velocity, and (i-l) contours of spanwise vorticity;
at four different gap ratios: (a, e, i) h/d = 0.6, (b, f, j) h/d = 0.4, (c, g, k) h/d = 0.3, and
(d, h, l) h/d = 0.2; Re = 0.4× 105.
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0.3, and 0.2. Note that the velocity is nondimensionalised by the free-stream velocity U∞,

and the vorticity is also nondimensionalised by U∞ and the cylinder diameter d as

ωz = (∂v/∂x− ∂u/∂y) d/U∞ . (2.1)

Also note that the PIV data close to the cylinder and ground surfaces have been discarded

as they were disturbed by the reflection of light from the surfaces. It can be seen from the

figures that the recirculation region behind the cylinder is significantly elongated as the gap

ratio h/d is reduced from 0.6 to 0.3 and 0.2; see also Fig. 2.15 for the whole picture of the

elongated recirculation bubble. The elongated recirculation length Lr at h/d = 0.2 is about

5d compared to 1.35d at h/d = 0.6. Also of particular interest is that the flow through the

gap between the cylinder and the ground is not blocked or choked but slightly accelerated

even at the smallest gap ratio of h/d = 0.2.

Figure 2.15: Elongated recirculation bubble behind the cylinder in ground effect (h/d = 0.2,
with end-plates at ye/d = 0, Re = 0.4× 105).

More details of the near wake structure of the cylinder can be seen from instantaneous

PIV data. Figures 2.16(a) and (b) show typical instantaneous velocity fields at h/d = 0.6

and 0.2, respectively, and the corresponding instantaneous vorticity contours are plotted in

Figs. 2.16(c) and (d), respectively. In addition, Figs. 2.16(e) and (f) show the corresponding

instantaneous contours of the (two-dimensional) swirl strength, λci, that is the imaginary part

of the complex eigenvalue of the local velocity gradient tensor (cf. Adrian et al. 2000). Note

that the local velocity gradient tensor D2D is defined as

D2D =

⎡⎣ ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

⎤⎦ . (2.2)

Also note that the diamond symbols plotted in Figs. 2.16(e) and (f) indicate the position of

vortex cores, which were automatically identified by the position of the peaks of the swirl

strength that were above an arbitrary threshold of 0.8 s−1. It can be seen from these figures

that, at h/d = 0.6 [Figs. 2.16(a), (c), and (e)], large-scale von Kármán-type (alternating)

vortices are generated just behind the cylinder, which is a common feature of the wake of
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Figure 2.16: Typical instantaneous flow fields behind the cylinder with end-plates (ye/d = 0):
(a, b) velocity vectors, (c, d) contours of spanwise vorticity, and (e, f) contours of swirl
strength; at two different gap ratios: (a, c, e) h/d = 0.6, and (b, d, f) h/d = 0.2; Re
= 0.4× 105.
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Figure 2.17: Two typical instantaneous flow fields behind the cylinder with end-plates (ye/d =
0) at h/d = 0.4: (a, b) velocity vectors, (c, d) contours of spanwise vorticity, and (e, f)
contours of swirl strength; Re = 0.4 × 105; showing the intermittency of the von Kármán-
type vortex shedding.
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a circular cylinder in a free stream (i.e., outside the ground effect) in the upper-subcritical

(TrSL3) flow regime (cf. Section 1.4.2). At h/d = 0.2 [Figs. 2.16(b), (d), and (f)], however,

such large-scale vortices are not generated and instead a so-called ‘dead-fluid’ zone is created

behind the cylinder, bounded by two nearly parallel shear layers each producing only small-

scale vortices (due to the shear layer instability) in the near wake region. A similar dead-fluid

zone bounded by two nearly parallel shear layers was also continuously observed at h/d = 0.3

(not presented here).

Of further interest is that, at an ‘intermediate’ gap ratio of h/d = 0.4, the von Kármán-

type vortex shedding was found to be intermittent in the near wake region. Two typical

instantaneous flow fields at this gap ratio are shown in Fig. 2.17. As can be seen from the

figures, at a certain moment when the large-scale vortices are formed behind the cylinder

[Figs. 2.17(a), (c), and (e)] the near wake structure looks similar to that observed at the

larger gap ratio [Figs. 2.16(a), (c), and (e)], whereas at another moment when the vortex

shedding is suppressed [Figs. 2.17(b), (d), and (f)] the wake structure looks similar to that

observed at the smaller gap ratio [Figs. 2.16(b), (d), and (f)].

Although the time evolution of the near wake structure was not able to be captured in

this study due to the low sampling rate of the PIV recording, a statistical observation of this

intermittency of the vortex shedding can be made by plotting the position of vortex cores.

Figure 2.18 shows the plots of vortex cores, which were extracted from 100 instantaneous

Figure 2.18: Plots of vortex cores (extracted from 100 instantaneous PIV data for each case)
behind the cylinder with end-plates (ye/d = 0): (a) h/d = 0.6, (b) h/d = 0.4, (c) h/d = 0.3,
and (d) h/d = 0.2; Re = 0.4× 105.

40



Figure 2.19: Contours of the r.m.s. of streamwise velocity fluctuation behind the cylinder
with end-plates at ye/d = 0: (a) h/d = 0.6, (b) h/d = 0.4, (c) h/d = 0.3, and (d) h/d = 0.2;
Re = 0.4× 105.

PIV data and then superimposed onto one figure for each case, for four different gap ratios of

0.6, 0.4, 0.3, and 0.2. These plots clearly show that the von Kármán-type vortex shedding is

totally suppressed and a dead-fluid zone is formed behind the cylinder at h/d = 0.2 and 0.3,

and also show that the number of the vortex cores captured behind the cylinder at h/d = 0.4

is less than that at h/d = 0.6, i.e., the von Kármán-type vortex shedding is intermittent at

h/d = 0.4.

The cessation of the von Kármán-type vortex shedding at smaller gap ratios may also be

presented in a more traditional manner, i.e., based on the statistics of velocity fluctuation.

Figure 2.19 shows the contours of the r.m.s. values of streamwise velocity fluctuation, (u02)
1
2 ,

for the four different gap ratios of 0.6, 0.4, 0.3, and 0.2. At h/d = 0.6, a pair of clear peaks

in the velocity fluctuation can be seen just behind the cylinder, which looks similar to that

observed behind a cylinder in a free stream (e.g., Braza et al. 2006). The vortex formation

length Lf , which is usually defined as the distance from the centre of the cylinder to the peak

of streamwise velocity fluctuation (cf. Section 1.4.2), is about 1.1d at this gap ratio; this is

also similar to that for a cylinder in a free stream. As h/d is reduced to 0.3 and 0.2, however,

the fluctuations become weak and the peaks move downstream, indicating the cessation of

the vortex shedding in the near wake region.
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2.3.4 Near wake structure (without end-plates)

Figure 2.20 shows the time-averaged, mid-span (z/d = 0) flow field data for the cylinder

without end-plates. The time-averaged velocity vectors, streamwise velocity contours, and

spanwise vorticity contours are described in Figs. 2.20(a, b), (c, d), and (e, f), respectively,

for two different h/d of 0.6 and 0.2. Then Fig. 2.21 shows the plots of vortex cores for the

two gap ratios, again extracted from 100 instantaneous PIV data for each case, and Fig. 2.22

shows the contours of the r.m.s. of streamwise velocity fluctuation. Note that here the data in

the upper region of the cylinder as well as in the vicinity of the cylinder and ground surfaces

have been discarded since they were disturbed by the reflection of light.

As can be seen from these figures, when without end-plates there are only minor differences

in the near wake structure between the two gap ratios. The recirculation region is elongated

and a dead-fluid zone is formed behind the cylinder even at h/d = 0.6 [Figs. 2.20(a), (c),

(e), and Fig. 2.21(a), respectively], i.e., von Kármán-type vortices were not generated even

at h/d = 0.6 when without end-plates. In fact, instantaneous mid-span flow fields for the

two cases (h/d = 0.6 and 0.2, without end-plates) were found to be similar to those for the

cylinder with end-plates with h/d = 0.2 [Fig. 2.16(b), (d), (f)], i.e., two nearly parallel shear

layers were regularly observed in the near wake region.

Figure 2.23 shows a comparison of the time-averaged streamwise velocity profiles for the

cases with and without end-plates at h/d = 0.6 and 0.2. Note that the profiles at x/d = 1.0,

1.5, 2.0, and 2.5 on the mid-span plane are plotted in these figures. The effects of the end-

Figure 2.20: Time-averaged flow fields behind the cylinder without end-plates: (a, b) velocity
vectors, (c, d) contours of streamwise velocity, and (e, f) contours of spanwise vorticity; at
two different gap ratios: (a, c, e) h/d = 0.6, and (b, d, f) h/d = 0.2; Re = 0.4× 105.
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Figure 2.21: Plots of vortex cores (extracted from 100 instantaneous PIV data for each case)
behind the cylinder without end-plates: (a) h/d = 0.6, (b) h/d = 0.2; Re = 0.4× 105.

Figure 2.22: Contours of the r.m.s. of streamwise velocity fluctuation behind the cylinder
without end-plates: (a) h/d = 0.6, (b) h/d = 0.2; Re = 0.4× 105.

Figure 2.23: Mean streamwise velocity profiles: (a) h/d = 0.6, (b) h/d = 0.2; Re = 0.4×105.
Circles (◦) show the results for the cylinder with end-plates (ye/d = 0), and cross marks (×)
show the results for the cylinder without end-plates.
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plates are significant at h/d = 0.6 since the von Kármán-type vortex shedding occurs if the

plates are used at this gap ratio, whereas no substantial effect can be seen at h/d = 0.2 as

the vortex shedding does not occur for both cases at this gap ratio.

2.4 Discussion of results

In the following, further discussions will be made on: (i) the relation between the cessation

of the von Kármán-type vortex shedding and the drag reduction of the cylinder in ground

effect; (ii) the cause of the cessation of the vortex shedding in ground effect; and (iii) the

intermittency of the vortex shedding in ground effect.

Link between the drag reduction and the cessation of vortex shedding

As concerns the first point of the discussion, it can be concluded that the drag reduction of

the cylinder in ground effect observed in this study (when with end-plates) is directly related

to the cessation of the von Kármán-type vortex shedding. It can be confirmed from Figs. 2.6

and 2.18 that, for the cylinder with end-plates, the gap regime in which the von Kármán-type

vortex shedding is continuously observed [cf. Fig. 2.18(a)] corresponds to the regime of higher

CD (h/d > 0.5), whereas the regime in which the vortex shedding is totally suppressed [cf.

Figs. 2.18(c) and (d)] corresponds to the regime of lower CD (h/d < 0.35).

This direct relationship is relatively straightforward to understand since in general the

von Kármán-type vortices behind a cylindrical bluff body continuously draw in fluid from

the base region of the body during their growth and thereby sustain a low base pressure and

therefore a high drag force acting on the body, for example as demonstrated by Bearman and

Trueman (1972) for a cylinder in a free stream. The critical drag reduction observed in the

present study may also be reasonably explained by this mechanism, i.e., the drag decreased

because the base pressure increased due to the cessation of the vortex shedding. Although

the base pressure of the cylinder was not measured in this study due to technical difficulties,

the increase in the base pressure was clearly observed in numerical simulations, which will be

presented later in Chapter 3.

It should also be noted that the intermediate value of the time-averaged CD observed in

the intermediate gap regime (0.35 < h/d < 0.5 when with end-plates, cf. Fig. 2.6) can also be

explained by the above mechanism since it is in this regime that the von Kármán-type vortex

shedding was found to become intermittent. In addition, the results for the cylinder without

end-plates are also consistent with the above explanation, i.e., lower CD was observed even

in the larger gap regime of h/d > 0.5 as the von Kármán-type vortices were not generated

when without end-plates.

This direct relationship between the drag reduction and the cessation of the von Kármán-

type vortex shedding observed in this study is because of the use of the moving ground. The

results obtained in this study, however, are also of great importance for understanding the

physics of the ground effect with a fixed ground. That is to say, the continuous decrease in

CD usually observed for a cylinder placed near a fixed ground (cf. Sections 1.4.3 and 1.4.4)

can now be explained by the combination of the effects of: (i) the cessation of the vortex
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shedding; and (ii) the direct interference of the boundary layer formed on the ground. For

example, the continuous drag reduction observed by Hiwada et al. (1986) at h/d < 0.5 with

δB/d = 0.23 (cf. Fig. 2.6) might be divided into two regimes: 0.3 < h/d < 0.5, where the

drag reduction is mainly due to the cessation of the vortex shedding, and h/d < 0.3, where

it is mainly due to the direct interference of the boundary layer [note that Hiwada et al.

(1986) found the critical gap ratio (for the cessation of the vortex shedding) to be 0.3 in their

study]. This explanation is also consistent with the observation by Zdravkovich (1985b) that

the decrease in CD occurred when h/d < δB/d; this is because he performed his experiments

with 0.52 ≤ δB/d ≤ 0.97, i.e., the boundary layer was thicker than the critical gap ratio in
his study (cf. Section 1.4.3).

Cause of the cessation of vortex shedding

Another important conclusion confirmed by using the moving ground in this study is that the

von Kármán-type vortex shedding from the cylinder (with end-plates) did cease at h/d < 0.3

to 0.4 despite the use of the moving ground [note that the flow through the gap between the

cylinder and the ground was not choked but accelerated even at h/d = 0.2, cf. Figs. 2.15 and

2.23(b)]. This leads to the second point of the discussion, i.e., the cause of the cessation of

the von Kármán-type vortex shedding in ground effect.

First of all, it should be noted that a very thin boundary layer still locally existed on

the moving ground in this study since the ground was running at the same speed as the free

stream rather than as the locally accelerated flow through the gap between the cylinder and

the ground. Therefore it might still be possible to argue that the very thin boundary layer

generated vorticity of opposite sign and thus interfered with the separated shear layer from

the bottom side of the cylinder, just as in the cases with a thick boundary layer formed on

a fixed ground (Grass et al. 1984; Taniguchi and Miyakoshi 1990). Judging from the mean

spanwise vorticity contours [Figs. 2.14(k) and (l)], however, the vorticity of the shear layer

from the bottom side of the cylinder appears to be as strong as that from the upper side of

the cylinder. Hence, there should be another explanation to the cessation of the shedding in

ground effect.

In general (i.e., for general two-dimensional bluff bodies in a free stream), the formation

of the von Kármán-type vortices is due to the wake instability caused by the communication

between the two shear layers. As reviewed in Section 1.4.6, recent studies have shown that

this wake instability can be explained by the existence of an absolutely unstable region in the

near wake, which allows local disturbances to propagate both upstream and downstream and

thus to produce a resonance between the travelling instability waves. From this viewpoint, the

cessation of vortex shedding behind a cylinder with a backward splitter plate (Roshko 1955),

for example, can be explained as that the plate prevents the resonance and hence the resulting

vortex shedding when the plate changes the state of the near wake from being absolutely

unstable to being convectively unstable. Of interest here is that a similar explanation might

also be applicable to the cessation of the vortex shedding in ground effect observed in this

study, i.e., the existence of the ground somehow restricts the propagation of disturbances in

the near wake region and thus prevents the resulting von Kármán-type vortex shedding. This
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issue will be further investigated using a linear stability analysis in Chapter 4.

For the cylinder without end-plates, however, an additional influence from the free-ends

(or the effect of the aspect ratio l/d of the cylinder) also needs to be considered, since the

von Kármán-type vortex shedding did not occur not only in the smaller gap regime but also

in the larger gap regime. Concerning this point, Zdravkovich et al. (1989) has reported for a

short circular cylinder (2 ≤ l/d ≤ 8) in a free stream that the dominant frequency of velocity

fluctuation in the near wake region was different from that for a long circular cylinder, and

hence he suggested the existence of a different type of vortex shedding behind a short cylinder

(compared to the von Kármán-type vortex shedding behind a long cylinder). Although the

PIV measurements in the present study were conducted only at the mid-span of the cylinder,

it is inferred that the von Kármán-type vortex shedding behind the cylinder without end-

plates was suppressed not only due to the influence of the nearby ground but also due to the

influence of the tip vortices generated from the two free-ends of the cylinder. In other words,

the results for the cylinder without end-plates show the combined effect of small h/d and l/d,

both of which tend to discourage the formation of the von Kármán-type vortices.

Cause of the intermittency of vortex shedding

The third and final point of the discussion here is the intermittency of the von Kármán-type

vortex shedding (behind the cylinder with end-plates) in the intermediate gap regime, which

may also be of some relevance to the mechanisms of the cessation of the shedding discussed

above. A similar intermittency of vortex shedding in an intermediate gap regime has been

observed by Martinuzzi et al. (2003) for a square cylinder placed near a fixed ground. They

suggested, however, that the intermittency of the shedding behind the square cylinder was

due to the intermittency of the reattachment of the separated shear layer (from the bottom

leading edge) on the bottom surface, which is not the case for a circular cylinder in ground

effect. Bearman and Zdravkovich (1978) also suggested, based on the measurements of local

velocity fluctuation in the near wake region, the intermittency of the vortex shedding for a

circular cylinder placed near a fixed ground; but the mechanism of this intermittency is still

unexplained.

A possible clue to the mechanism of the shedding intermittency can be found in the recent

experiments by Zhang et al. (2005) for a half cylinder placed near a moving ground (with

the flat surface of the cylinder facing downstream, cf. Fig. 1.1), where the vortex shedding

was suddenly suppressed and the drag coefficient of the cylinder was suddenly dropped from

about 1.5 to 1 as the gap ratio h/d was reduced from 0.55 to 0.525, as reviewed in Section

1.4.4. They reported that the flow separation from the bottom side of the half cylinder

was fixed at the cylinder edge (i.e., the separation angle θsep = 90◦) when h/d ≤ 0.525,

whereas that measured on the circular cylinder in the present study at h/d = 0.4 (at which

the intermittency of the shedding occurs) was slightly greater than 90◦ (cf. Fig. 2.13) and

presumably was not fixed but fluctuated in time due to the smooth geometry. Considering

the other similarities between the two experiments, it is inferred that the fluctuation or

unsteadiness of the flow separation point should be of some importance to the intermittency

of the vortex shedding from a circular cylinder in the intermediate gap regime.
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2.5 Conclusions

In this chapter, the characteristics of flow past a circular cylinder placed near and parallel to a

moving ground were experimentally investigated at two upper-subcritical Reynolds numbers

of 0.4 and 1.0× 105. The experiments were performed using a moving ground running at the
same speed as the free stream in order to avoid the confusing effects of the boundary layer

formed on the ground and thereby to reveal the essence of the ground effect. The influence

of the spanwise-end condition of the cylinder (the aspect ratio l/d = 8.33) was also examined

by conducting the experiments with and without end-plates.

For the cylinder with end-plates, on which the surface oil flow patterns were observed to

be essentially two-dimensional, significant effects of the gap ratio were observed on the near

wake structure and also on the time-averaged drag coefficient. The flow characteristics may be

classified into three gap regimes: large-gap (h/d > 0.5), intermediate-gap (0.35 < h/d < 0.5),

and small-gap (h/d < 0.35) regimes. In the large-gap regime, large-scale von Kármán-

type vortices were generated just behind the cylinder, resulting in higher drag coefficients

of about 1.3 as the vortices continuously entrained air from the base region of the cylinder.

In the intermediate-gap regime, the vortex shedding became intermittent, and hence the

time-averaged drag coefficient rapidly decreased as h/d was reduced from 0.5 to 0.35. In

the small-gap regime, the shedding totally ceased and instead a dead-fluid zone was created,

bounded by two nearly parallel shear layers each producing only small-scale vortices. Of

particular interest here was that there was little influence of h/d on the drag coefficient of

the cylinder in the small-gap regime: CD was almost constant at a lower value of slightly less

than 1 for h/d < 0.35, unlike with that usually observed near a fixed ground.

For the cylinder without end-plates, on the other hand, no such significant effects of h/d

were observed either on the near wake structure or on the drag coefficient. The von Kármán-

type vortices were not generated in the near wake region, resulting in a nearly constant, lower

drag coefficient of 0.85 to 0.95 for a wide h/d range from 2.0 to 0.05. A dead-fluid zone was

continuously formed and thus a large recirculation region was created behind the cylinder at

both larger and smaller gap ratios of 0.6 and 0.2.

Discussions were also given to the essential cause of the cessation of the von Kármán-type

vortex shedding (for the cylinder with end-plates) in ground effect. A very thin boundary layer

still locally existed on the moving ground and hence it might still be possible to argue that

this thin boundary layer generated vorticity of opposite sign to interfere with the separated

shear layer from the bottom side of the cylinder (just as in the cases with a thick boundary

layer formed on a fixed ground). A more probable explanation to the cessation of the shedding

observed in this study, however, is that the ground restricts the propagation of disturbances

and thus prevents a resonance between the travelling instability waves in the near wake region,

similar to the mechanism for the cessation of vortex shedding behind a cylinder equipped

with a backward splitter plate. This issue will be further investigated using a linear stability

analysis in Chapter 4.

Finally, the following point should be noted once again. It is true that these interesting

results obtained in this experimental study is largely due to the use of the moving ground.
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However, these results are of great importance also for understanding the fundamental physics

of the ground effect with a fixed ground. That is to say, the effects of a fixed ground on the

flow past a nearby cylinder may now be described by the combination of two main factors: (i)

fundamental influence of the ground itself, which was revealed in the present study; and (ii)

additional influence of the interference of the boundary layer formed on the ground. It should

be fair to say that this experimental study ‘indirectly’ resolved, at least to some degree, the

controversy concerning the continuous drag reduction of a circular cylinder placed near a

fixed ground (cf. Section 1.4.3), which can now be explained by the combined effects of the

cessation of the vortex shedding and the direct interference of the boundary layer.
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Chapter 3

Numerical Study of
Flow Past a Circular Cylinder
in Ground Effect

3.1 Introduction

The von Kármán-type vortex shedding from a circular cylinder at high Reynolds numbers

of about 104 or above is still a challenging subject in today’s computational fluid dynamics

(CFD) since the direct numerical simulations (DNS) of the Navier-Stokes equations for such

flows are currently not feasible due to the huge computational costs required. Recent studies

have shown, however, that some novel techniques such as unsteady RANS (URANS) and

detached-eddy simulations (DES) could predict, to some extent, the unsteady motion of the

vortex shedding with acceptable computational costs, as reviewed in Section 1.4.5.

The main objective of the numerical study described in this chapter, where the flow past

a circular cylinder placed near a moving ground is simulated, is twofold. The first goal is

to examine whether, and how accurately, URANS and DES can reproduce the cessation of

the von Kármán-type vortex shedding and also the critical drag reduction of the cylinder

in ground effect, both of which were observed in the experiments described in the previous

chapter. The flow configuration studied here may be considered, from the viewpoint of CFD

researchers, as one of the simplest (but still challenging) test cases that contain the problem

of large-scale vortex shedding and its cessation or suppression, and hence the results of the

present validation may serve as a primary criterion for the applicability of URANS and DES

to such vortical flows often encountered in engineering applications. The second objective, on

the other hand, is to investigate the predicted flow fields in more detail, and thus to provide

further insight into the physical mechanisms of the flow as well as into the reason why the

DES and URANS can/cannot correctly capture the cessation of the von Kármán-type vortex

shedding in ground effect.

In the following, the details of the computation will be described in Section 3.2, and then

some results of preliminary computations will be presented in Section 3.3. The main results

and discussion will be given in Section 3.4, and finally a concluding summary will be given

in Section 3.5. The DES in this study, which is based on the Spalart-Allmaras one-equation

model (S-A model; Spalart and Allmaras 1992), is performed in a three-dimensional domain
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with periodicity imposed in the spanwise direction, basically following the DES for a circular

cylinder in a free stream by Travin et al. (2000). Meanwhile, the URANS simulations are

carried out in both two- and three-dimensional domains, where the S-A model and also a

classical, low-Reynolds-number k-² model of Launder and Sharma (LS k-² model; Launder

and Sharma 1974) are employed. In addition to these, large-eddy simulations (LES) based

on the constant Smagorinsky model (Smagorinsky 1963) are also performed, but only for the

purpose of comparison in Section 3.3.

The Reynolds number of the flow is limited to the upper-subcritical regime (0.4× 105 ≤
Re ≤ 1.0× 105) in line with the experimental study in the previous chapter. The influence of
the Reynolds number in the numerical simulations will be presented in Section 3.3, but the

main discussion in Section 3.4 will be developed on the results for a single Reynolds number

of 0.4× 105 to focus on the issues relevant to the ground effect rather than to the Reynolds
number effect.

3.2 Computational details

3.2.1 Overview

Figure 3.1 summarises the computational domain and boundary conditions employed in this

study; the ground effect was simulated by changing the gap ratio h/d from 1.0 to 0.1. The

computations were conducted using a commercial CFD package, FLUENT6 (Fluent Inc.

2005), in which a finite volume method was used to discretise the governing/model equations

for incompressible turbulent flows to be numerically solved. The equations were spatially dis-

cretised with second-order accuracy on multi-block structured grids (cf. Fig. 3.2), temporally

discretised using a second-order fully-implicit scheme, and then iteratively solved. Further

details of the computation are described in the following subsections.

Figure 3.1: Computational domain and boundary conditions.
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Figure 3.2: Example of computational grids (h/d = 0.2).

3.2.2 Governing equations and turbulence models

In general the motion of incompressible Newtonian fluids is expressed, regardless of whether

the state of the flow is laminar or turbulent, by the following continuity and momentum (or

Navier-Stokes) equations:

∂ui
∂xi

= 0 , (3.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (3.2)

where xi (i = 1, 2 for two-dimensional, or 1, 2, 3 for three-dimensional systems) denote the

Cartesian coordinates, ui are the Cartesian components of instantaneous velocity of fluid,

p is instantaneous static pressure, ρ and ν are the density and kinematic viscosity of fluid,

respectively, and ν = μ/ρ, where μ is the dynamic viscosity. The physical properties (i.e., ρ,

ν, and μ) are assumed to be constant in the present study.

For the cases where the state of the flow is turbulent, however, to numerically solve the

above equations directly (i.e., direct numerical simulation) requires enormous computational

costs due to a wide range of spatial/time scales of the flow. Hence the following turbulence

models/approaches were employed in this study.

Unsteady RANS equations

As noted in Section 1.4.5, the concept of URANS is based on the triple decomposition of

time-dependent variables (Hussain and Reynolds 1970). For the flow system considered here,

the instantaneous velocity ui(t) and pressure p(t) are to be decomposed as follows:

ui(t) = bui + eui(t) + u0i(t) , p(t) = bp+ ep(t) + p0(t) , (3.3)

where bui, eui(t) and u0i(t) denote the long-time-averaged, periodic and turbulent (stochastic)
components of the velocity, respectively, and the same applies to bp, ep(t) and p0(t). The first
two components of each variable can be described as

bui + eui(t) = Ui(t) , bp+ ep(t) = P (t) , (3.4)
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where Ui(t) and P (t) are the coherent components of the velocity and pressure, respectively.

They can also be expressed by ui(t) and p(t) with the overlines here denoting the process of

ensemble-averaging, rather than time-averaging. Substituting the above relations into Eqs.

(3.1) and (3.2) and taking ensemble-averages, we obtain the governing equations of Ui(t) to

be solved in URANS computations:

∂Ui
∂xi

= 0 , (3.5)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+

∂

∂xj

Ã
ν
∂Ui
∂xj
− u0iu0j

!
. (3.6)

Equation (3.6) is referred to as the unsteady Reynolds-averaged Navier-Stokes (URANS)

equations, which contain unknown correlation terms u0iu
0
j to be modelled below. Note that

−ρu0iu0j = −ρ(uiuj − UiUj) = τij are called the Reynolds stresses since they act as apparent

stresses on the mean (i.e., ensemble-averaged) flow field.

Launder-Sharma k-² model

The low Reynolds number k-² model of Launder and Sharma (LS k-² model; Launder and

Sharma 1974) belongs to the family of linear eddy-viscosity models, in which the Reynolds

stresses are modelled based on the Boussinesq eddy-viscosity concept as

−u0iu0j = 2νTSij −
2

3
kδij , (3.7)

where νT is the kinematic eddy viscosity, and Sij denotes the mean strain-rate tensor:

Sij =
1

2

Ã
∂Ui
∂xj

+
∂Uj
∂xi

!
. (3.8)

In order to obtain the value of νT , in the LS k-² model, the following two model transport

equations are solved for the turbulent kinetic energy k and a quantity ²̃:

∂k

∂t
+ Uj

∂k

∂xj
=

∂

∂xj

(µ
ν +

νT
σk

¶
∂k

∂xj

)
+ 2νTSijSij − (²̃+ ²0) , (3.9)

∂²̃

∂t
+ Uj

∂ ²̃

∂xj
=

∂

∂xj

(µ
ν +

νT
σ²

¶
∂²̃

∂xj

)
+
²̃

k
(2C²1f1νTSijSij − C²2f2²̃) + E , (3.10)

where ²̃ is related to ², or the dissipation rate of k, by

² = ²̃+ ²0 . (3.11)

The kinematic eddy viscosity νT is then estimated as

νT = Cμfμ
k2

²̃
, (3.12)

with the following model constants and damping functions:

Cμ = 0.09 , C²1 = 1.44 , C²2 = 1.92 , σk = 1.0 , σ² = 1.3 , (3.13)

²0 = 2ν

Ã
∂
√
k

∂xj

!2
, E = 2ννT

Ã
∂2Ui
∂xj∂xk

!2
, (3.14)

52



fμ = e−3.4/(1+ReT /50)
2
, f1 = 1.0 , f2 = 1− 0.3 e−Re2T , (3.15)

where ReT is the (modified) turbulent Reynolds number locally defined as

ReT =
k2

²̃ν
. (3.16)

Further details of the model equations, constants and damping functions can be found in

the original paper by Launder and Sharma (1974) and also in some technical books, e.g., by

Wilcox (1998).

Spalart-Allmaras model

The Spalart-Allmaras model (S-A model; Spalart and Allmaras 1992) is another type of

eddy-viscosity-based RANS model. In the S-A model, the Reynolds stresses are estimated

based on the eddy-viscosity concept, but not taking into account the contribution from k, as

−u0iu0j = 2νTSij , (3.17)

since neither k nor ² is calculated in this model. Alternatively, the following single model

transport equation is solved for ν̃, which corresponds to a modified form of the kinematic

eddy-viscosity νT :

∂ν̃

∂t
+ Uj

∂ν̃

∂xj
=

1

σν̃

⎡⎣ ∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

Ã
∂ν̃

∂xj

!2⎤⎦+Cb1S̃ν̃ − Cw1fw µ ν̃
n

¶2
, (3.18)

where

S̃ =
q
2ΩijΩij +

ν̃

κ2n2

µ
1− χ

1 + χfv1

¶
, fw = g

Ã
1 + C6w3
g6 + C6w3

!1/6
,

fv1 =
χ3

χ3 + C3v1
, χ =

ν̃

ν
, g = r + Cw2

³
r6 − r

´
, r =

ν̃

S̃κ2n2
, (3.19)

and

σν̃ =
2

3
, Cb1 = 0.1335 , Cb2 = 0.622 , Cv1 = 7.1 ,

Cw1 =
Cb1
κ2

+
1 + Cb2
σν̃

, Cw2 = 0.3 , Cw3 = 2.0 , κ = 0.4187 . (3.20)

Here n is the distance from the nearest wall boundary, and κ is the von Kármán constant.

The physical meaning and derivation of each term/coefficient can be found in the original

paper by Spalart and Allmaras (1992). The kinematic eddy-viscosity νT is then calculated

from ν̃ as

νT = fv1ν̃ . (3.21)

Note that, as can be seen from the definition given above, fv1 serves as a damping function

for νT in near-wall regions. That is, the S-A model is also a low Reynolds number model,

which is basically designed to be used with a fine computational grid that can resolve the

viscous sublayer on a wall.
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Large-eddy simulation

Although performed only for comparison in this study, the fundamentals of LES are also

given here as they are closely related to DES described later. As noted in Section 1.4.5, the

concept of LES is to directly simulate the motion of large-scale eddies, which are generally

much more energetic and therefore influential on the global behaviour of the flow than the

small-scale eddies that are to be modelled. The large-scale motion of the flow can be defined

by the process of ‘filtering’ (Leonard 1974). It follows that a filtered flow field is solved in

LES in contrast to an ensemble-averaged flow field being solved in URANS.

For LES several types of filtering methods have been proposed so far. When the LES is

performed with the finite volume method, however, the process of spatial discretisation itself,

details of which will be described later, implicitly serves as a so-called box-filter:

ui(x1, x2, x3, t) =
1

Vcv(x1, x2, x3)

ZZZ
V
ui(x

0
1, x

0
2, x

0
3, t) dx

0
1dx

0
2dx

0
3 , x01, x

0
2, x

0
3 ∈ V , (3.22)

where the overline denotes the process of filtering, rather than ensemble-averaging or time-

averaging. Vcv is the volume of a control-volume (or a cell), and V is the domain of the

control-volume. It should be noted that the size of the box-filter is hence identical to that of

each control-volume in this case.

Filtering the continuity and the Navier-Stokes equations [Eqs. (3.1) and (3.2)], respec-

tively, yields the following governing equations to be solved in LES:

∂ui
∂xi

= 0 , (3.23)

∂ui
∂t

+
∂uiuj
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

. (3.24)

The filtered Navier-Stokes equation [Eq. (3.24)] contains unknown terms uiuj produced by

the filtering of the non-linear convection terms in the original Navier-Stokes equation (note

that the filtered products uiuj are not identical to the products of filtered variables ui uj).

Introducing the subgrid-scale Reynolds stress τ sij as

τ sij = −ρ (uiuj − ui uj) , (3.25)

which is analogous to the Reynolds stress τij in the RANS approach [cf. Eq. (3.6)], and

then using the notations Ui and P for the filtered (or resolved) velocity ui and pressure p,

respectively, we can rewrite Eqs. (3.23) and (3.24) as

∂Ui
∂xi

= 0 , (3.26)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+

∂

∂xj

Ã
ν
∂Ui
∂xj

+
τ sij
ρ

!
. (3.27)

The above equations are in the same form as the governing equations for URANS [Eqs. (3.5)

and (3.6)] except for the difference of τ sij and τij . Hence the governing equations for URANS

and LES can be solved using the same numerical schemes (note that this is an important

factor that makes DES feasible, although the spatial discretisation methods employed in the

present study are different between URANS and LES/DES as will be described later).
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One of the most basic and famous models to calculate the subgrid-scale Reynolds stress

τ sij is the Smagorinsky model (Smagorinsky 1963), which was employed in this study. The

model is based on the Boussinesq eddy-viscosity concept as

τ sij = 2νsT sij , sij =
1

2

Ã
∂Ui
∂xj

+
∂Uj
∂xi

!
, (3.28)

where

νsT = L2ss , s =
q
2sijsij , (3.29)

and

Ls = min

∙
κn , CsV

1
3
cv

¸
, Cs = (constant; 0.1 in the present study) . (3.30)

Here κ is the von Kármán constant [cf. Eq. (3.20)] and n is the distance from the nearest

wall. Note that the scale of the spatial filter (or the grid scale V
1
3
cv) required to perform

‘LES-NWR’ or ‘pure LES’ (cf. Section 1.4.5) is much smaller than that used in this study

(described later), and this is the main reason why the LES described above is used only for

the purpose of comparison in this study. A number of studies have been reported on ‘LES-

NWM’ and also on the dynamic Smagorinsky model, but the details are not provided here;

see Ferziger (1996) and Pope (2000) for more details on those topics.

Detached-eddy simulation

In the detached-eddy simulation (DES; Shur et al. 1999), a single turbulence model serves as

a statistical model for calculating τij in near-wall regions (URANS mode) and also serves as

a subgrid-scale model for calculating τ sij in far-wall regions (LES mode). A slightly modified

version of the S-A model was used by Shur et al. (1999) as the single turbulence model in

their DES; the same model was also used in the present study.

As noted before, the S-A model is a turbulence model originally designed to close and

solve the RANS equations [Eq. (3.6)], i.e., the model contributes to calculate the Reynolds

stress τij . Hence, in principle, applying the S-A model to the filtered Navier-Stokes equations

[Eq. (3.27)] is physically incorrect. However, under the condition of local equilibrium (where

the production of turbulence quantities is balanced by their dissipation or destruction), the

S-A model leads to the relation ν̃ ∼ n2S̃, which has a similar form to the Smagorinsky model
[Eq. (3.29)] for LES. It is this analogy that makes feasible the use of the (modified) S-A model

not only as a statistical model in the URANS mode but also as a subgrid-scale model in the

LES mode.

Specifically, the S-A model is used as the single turbulence model in DES after replacing

the wall-distance n with a new length scale ñ defined as

ñ = min [ n , Cdes∆max ] , Cdes = 0.65 , ∆max = max [∆x1,∆x2,∆x3] (3.31)

where ∆i is the size of each control-volume (or grid spacing) in the i-th direction. It follows

that the model works as a statistical model to calculate τij when n < Cdes∆max (URANS

mode), and as a subgrid-scale model to calculate τ sij when n > Cdes∆max (LES mode). That
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is, the solution of DES represents the ensemble-averaged flow field where n < Cdes∆max, and

the filtered flow field where n > Cdes∆max.

A big advantage of DES is that a grid highly stretched in the streamwise and spanwise

directions can be used in near-wall regions since the flow is solved there in the URANS mode.

This significantly reduces the computational cost of DES compared with that of (pure) LES,

without impairing the capability to capture large-scale eddy structures in far-wall regions.

The simple formulation of DES described by Eq. (3.31), however, raises an issue concerning

the physical interpretation of the ‘grey area’ (n ∼ 0.65∆max), where the operation mode is
switched between URANS and LES (i.e., the physical meaning of the solution is switched

between the ensemble-averaged flow field and the filtered flow field). The justification of this

switch solely relies on the disparity in the scales between the attached- and detached-eddies

(Spalart 2001). In practice, the switch between the URANS and LES modes can take place

inside the boundary layers when using excessively fine computational grids, and this often

causes a premature or grid-induced separation (Menter et al. 2003). It follows that the grid

spacing for DES must be carefully decided so that the boundary layers are analysed in the

URANS mode rather than in the LES mode.

3.2.3 Computational grids

Two- and three-dimensional multi-block structured grids were created, the former of which

were only for URANS and the latter of which were for both URANS and DES. The same

three-dimensional grids were also used for LES for the purpose of comparison with URANS

and DES, although recognising that the grids were not suitable for LES . The multi-block

grid topology shown in Fig. 3.2, which basically follows that used for a circular cylinder in a

free stream by Menter et al. (2003), was employed because of its applicability to the current

flow configuration (i.e., with a nearby ground). For the main part of the study (i.e., to study

the ground effect), fourteen different grids (seven for two-dimensional and the other seven

for three-dimensional cases, for h/d = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 1.0, respectively) were

created but keeping the same grid topology; details are described below.

For the two-dimensional (x-y) grids, 200 grid points were equidistantly located around the

cylinder, whereas 180 points were non-equidistantly distributed on the ground. The distance

from the solid (i.e., the cylinder and ground) surfaces to the nearest grid points is 0.0002d,

which ensures a sufficient spatial resolution of y+ ≤ 1.2 for the cases of Re = 1.0 × 105 and
y+ ≤ 0.6 for Re = 0.4× 105 (y+ is the dimensionless distance defined as y+ = uτn/ν, and uτ
is the friction velocity). The number of the grid points for the two-dimensional grids ranges

from 27,200 (for h/d = 0.1) to 35,300 (for h/d = 1.0).

The three-dimensional grids were then created by simply extending the two-dimensional

grids in the spanwise (z) direction. The spanwise length of the domain was set at 2d with

periodic boundary conditions imposed on the ends, following the DES by Travin et al. (2000),

and 40 grid points were equidistantly located in that direction, i.e., the total number of the

grid points for the three-dimensional grids ranges from 1.1 to 1.4 million (depending on h/d),

and the spanwise grid spacing ∆z = 0.05d. It should be noted that this spanwise grid spacing

was selected considering the thickness of the boundary layer on the cylinder surface (about
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0.03d at the maximum) since ∆z is the largest grid spacing (i.e., larger than ∆x and ∆y)

around the cylinder and hence in the DES directly affects the switching between the URANS

and LES modes in that region [cf. Eq. (3.31)]. Specifically, for the region around the cylinder,

a thin URANS layer of 0.65∆z (= 0.0325d) thickness was formed, in which 30 grid points

were allocated in the direction normal to the cylinder surface.

In addition to these fourteen grids for the main part of the study (i.e., the study on the

ground effect), another five grids of different spatial resolutions (in the x-y plane and also in

the z direction) were also created (but only for h/d = 1.0) to examine the grid dependency

of the simulations. Although a problem of explicit grid dependency in DES has been pointed

out by Menter et al. (2003) and other researchers, a certain degree of grid convergence was

achieved in this study due to the rather simple geometry of the flow simulated; details will

be described later in Section 3.3, where the grid dependency of URANS, DES, and LES will

be compared with each other.

3.2.4 Discretisation methods

For the spatial discretisation, FLUENT6 employs the finite volume method with the collo-

cated grid system (Rhie and Chow 1983). In this method, the governing and model transport

equations are spatially discretised, after being integrated over each control-volume defined

by the grid, into the following form of equations:X
faces

φfUf ·Af =
X
faces

Γφf (∇φ)f ·Af + S
φ
P Vcv , (3.32)

where φ denotes the variables to be solved in URANS, DES and LES (Ui, k, ²̃ and ν̃), and

f indicates each interface of the control-volume of interest. Uf is the velocity vector at face

f . Af = Afnf is the area vector, where Af is the area of face f and nf is the unit vector

normal to face f . Γφf and (∇φ)f are the ‘apparent’ diffusivity and gradient of each variable φ
at face f , respectively, and SφP is the ‘apparent’ source of φ at the control-volume of interest.

Note that SφP here includes the time-dependent term, and hence the equations need to be

further discretised temporally. Also note that the pressure term is also included in SφP for

φ = Ui. Hence in this study the SIMPLE algorithm (Patankar 1980) was used to solve both

the velocity and pressure fields implicitly; details will be described later.

For URANS computations in this study, the values of φf in the convection term [i.e., the

left hand side of Eq. (3.32)] were interpolated by using a second-order upwind scheme. For

DES and LES, however, a second-order central-difference scheme was used rather than the

upwind scheme, in order to reduce the influence of numerical diffusion (see, e.g., Ferziger and

Peric 2002). Meanwhile, Γφf and (∇φ)f in the (apparent) diffusion term [i.e., the first term of

the right hand side of Eq. (3.32)] were interpolated using the second-order central-difference

scheme (for URANS, DES and LES). The volume flux Uf · nf was calculated not by linear
interpolation but by the method of momentum-weighted averaging so as to avoid the problem

of oscillatory or ‘checker-boarding’ pressure field on the collocated grid system (cf. Rhie and

Chow 1983). Further details of the above schemes can also be found in the FLUENT6 guide

(Fluent Inc. 2005).
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For the temporal discretisation, a second-order (or three-time-level) fully-implicit scheme

was employed in this study as follows:

3φnP − 4φn−1P + φn−2P

2∆t
= F (φn)P , (3.33)

where the superscripts n, n− 1 and n− 2 represent time tn, tn−1 and tn−2, respectively, and
tn−i ≡ tn − i∆t, where ∆t is a short ‘time step’ to be given later. The subscript P denotes
the control-volume of interest, and F (φn)P is the sum of all the time-independent terms of

the spatially-discretised equation for φnP. Note that F (φ
n)P contains unknown values of φ at

the own and neighbour control-volumes at ‘new’ time t = tn, so that several iterations are

required to solve the flow field for each time point, as will be described below.

3.2.5 Solution algorithm

The discretised transport equations for φ, which are a series of nonlinear algebraic equations,

were linearised and solved in this study by using the ‘segregated’ solver in FLUENT6 (Fluent

Inc. 2005), in which the equations for each variable are sequentially (i.e., segregated from

one another) solved by using the Gauss-Seidel method coupled with an algebraic multigrid

(AMG) method. Since the momentum equations contain the pressure term, for which there

are no independent equations to be solved, the SIMPLE algorithm (Patankar 1980) was used

in the solution process to derive equations for the pressure correction P 0 from the combination

of the continuity and the momentum equations. Hence the whole solution process can be

summarised as follows:

1. Give initial conditions for all variables.

2. Calculate and update the coefficients of all the algebraic equations for t = tn based

on the values of φn, φn−1 and φn−2.

3. Solve the algebraic equations for U n
i .

4. Solve the algebraic equations for P 0n.

5. Correct the values of P n based on P 0n and the current values of P n.

6. Correct the values of U n
i based on P

0n and the current values of U n
i .

7. Solve the algebraic equations for kn, ²̃n and ν̃ n (as appropriate).

8. If the solution is judged to be...

(a) not converged, return to Step 2.

(b) converged, set the time forward (i.e., n = n+ 1) and then return to Step 2.

For most computations in this study, 20 to 30 iterations were found to be enough for the

solution at each time instant to be converged (judging from the magnitude of residuals as

well as from several test computations in which more iterations were carried out to directly

check the influence of the iteration errors). The dimensionless time step ∆t · U∞/d was
set at 0.021, which ensured sufficiently small CFL numbers of less than 2 for most part of

the computational domain (the CFL number is locally defined by ∆t · Ui/∆xi). A smaller

∆t · U∞/d of 0.0042 was preliminarily tested for comparison, and the difference between the
two cases were found to be very small, as will be shown later in Section 3.3.
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The above iteration process was first continued until the flow field had sufficiently deve-

loped, i.e., the influence of initial conditions (a uniform flow was given for most cases) had

become negligible, and then was further continued to obtain the long-time-averaged data of

the flow field. At least 100 dimensionless time units (t ·U∞/d), which corresponded to about
20 to 30 vortex-shedding cycles, were taken at this stage so as to obtain reliable statistical

information.

3.2.6 Boundary conditions

At the inlet boundary of the domain (see Fig. 3.1), a steady uniform flow of low turbulence

level was given so as to simulate the subcritical flow (Re = 4.0 × 104) around the cylinder.
Specifically, the turbulence level corresponding to the turbulent viscosity ratio of unity was

given for the DES and S-A URANS simulations, and also the turbulence intensity of 0.3%

was additionally given for the LS k-² URANS simulations. For the DES and S-A URANS,

however, the so-called trip-less approach (TLA) was additionally used, following Travin et

al. (2000), in order to obtain more ‘plausible’ results for the upper-subcritical flow (i.e., the

transition to turbulence taking place just after the flow separation from the cylinder, cf.

Section 1.4.2). Specifically, the turbulent viscosity ratio at the inlet was reduced from unity

to 10−9 after the flow field had sufficiently developed under the original boundary conditions.

This modification provides a ‘self-sustaining’ eddy-viscosity field behind the flow separation

from the cylinder. That is, the (almost) zero eddy viscosity values from the inlet propagates

to the region before the separation (i.e., laminar boundary layer) but the non-zero values

behind the separation are sustained as they diffuse into the separated shear layers and cause

a rapid production of themselves; thus the sudden increase in the eddy viscosity after the flow

separation can be imitated without giving any information on the transition point a priori.

After the change of the inlet turbulent viscosity ratio from 1 to 10−9, the computation was

further continued until the flow field had developed again, and thereafter the time-averaged

data of the flow were collected. For the LES, a totally laminar flow (i.e., no perturbation)

was given at the inlet, for comparison with the DES coupled with the TLA.

At the outlet boundary, a condition of zero-diffusion-flux in the streamwise (x) direction

(which assumes no velocity gradient in that direction and is referred to as the ‘outflow’

boundary condition in FLUENT6) was applied. Note that the distance from the cylinder to

the outlet boundary was sufficiently long for the outlet boundary condition to have negligible

influence on the near wake region of the cylinder flow. As concerns the upper boundary of the

domain (cf. Fig. 3.1), a symmetry (or slip) condition was imposed also because the distance

from the cylinder to the upper boundary was large enough. For the side boundaries, periodic

conditions were imposed as mentioned before. As for the cylinder and ground surfaces, no-

slip conditions (U = V = W = 0 for the cylinder, whereas U = U∞ and V = W = 0 for the

moving ground) were employed.

59



3.3 Results of preliminary computations (at h/d = 1.0)

In this section, some important results of preliminary computations are presented. First, the

influence of spatial and time resolution on the results is shown in Section 3.3.1 for URANS,

DES and LES. Then, with using the standard grids (i.e., the grids to be used in the main part

of the study in Section 3.4), the influence of the Reynolds number on the results is given in

Section 3.3.2 to show the ‘incapability’ of the simulations to reproduce the correct Reynolds

number effect. The influence of the use of TLA (cf. Section 3.2.6) is also presented in this

section.

Computational conditions for this preliminary section are summarised in Table 3.1. Six

different types of simulations are performed here, namely, ‘2D k-²’, ‘2D S-A without TLA’,

‘2D S-A’, ‘3D S-A’, ‘DES’, and ‘LES’. Note that these notations are consistent with those

used in the main part of the study in Section 3.4, where, however, only ‘2D k-²’, ‘2D S-A’,

‘3D S-A’, and ‘DES’ will be presented to discuss the issues relevant to the ground effect.

Table 3.1: Summary of the conditions for the preliminary computations.

Case Type Model TLA∗ h/d Re

2D k-² 2D, URANS LS k-² No 1.0 0.4, 1.0× 105
2D S-A without TLA 2D, URANS S-A No 1.0 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0× 105
2D S-A 2D, URANS S-A Yes 1.0 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0× 105
3D S-A 3D, URANS S-A Yes 1.0 0.4, 1.0× 105
DES 3D, DES (Modified) S-A Yes 1.0 0.4, 1.0× 105
LES 3D, LES Smagorinsky No 1.0 0.4, 1.0× 105

∗TLA: Trip-less approach (cf. Section 3.2.6)

3.3.1 Influence of spatial and time resolution

Tables 3.2 to 3.6 summarise the major results of preliminary computations on the influence

of spatial and time resolution (h/d = 1.0, Re = 0.4× 105). Note that ‘Baseline’ in the tables
indicates the case employing the spatial and time resolution that was eventually adopted in

the main part of the study in Section 3.4.

Tables 3.2 and 3.3 show the results for the 2D URANS simulations. Cases A1, A2 (=

Baseline), and A3 compare the influence of spatial resolution in the x and y directions. In

Case A1 the number of grid points in each (x and y) direction was reduced by 40 percent

from the baseline, whereas in Case A3 that was increased by 40 percent from the baseline. It

can be seen that, for both 2D k-² (Table 3.2) and 2D S-A (Table 3.3), the differences between

Cases A2 and A3 are very small, suggesting a sufficient degree of grid convergence in 2D

URANS simulations in this study. Meanwhile, Cases C1 (= Baseline) and C2 compare the

influence of time resolution on the results. Note that in Case C2 the time step size is reduced

to one-fifth of that used in the baseline case. It is obvious that, for both 2D k-² and 2D S-A,

the differences between Cases C1 and C2 are very small.

Table 3.4 summarises the influence of spatial and time resolution in 3D S-A simulations.

Again Cases A1, A2 (= Baseline), and A3 compare the influence of spatial resolution in the x

and y directions, and Cases C1 (= Baseline) and C2 compare the influence of time resolution

on the results. Similar to the results for the 2D S-A mentioned above, a good convergence

can be seen between Cases A2 and A3, and also between Cases C1 and C2. In addition to
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Table 3.2: Influence of spatial and time resolution (2D k-², h/d = 1.0, Re = 0.4× 105).
2D k-² Grid (x, y) Grid (z) ∆tU∞/d CD St θ+sep (

◦) θ−sep (◦) Lr

Baseline 35300 1 0.021 0.74 0.292 107.1 108.9 1.34

Different resolutions in (x, y)
A1 12708 1 0.021 0.76 0.285 105.9 110.1 1.25
A2 (= Baseline) 35300 1 0.021 0.74 0.292 107.1 108.9 1.34
A3 69188 1 0.021 0.74 0.298 107.0 109.0 1.33

Different resolutions in time
C1 (= Baseline) 35300 1 0.021 0.74 0.292 107.1 108.9 1.34
C2 35300 1 0.0042 0.75 0.294 107.1 108.9 1.29

Table 3.3: Influence of spatial and time resolution (2D S-A, h/d = 1.0, Re = 0.4× 105).
2D S-A Grid (x, y) Grid (z) ∆tU∞/d CD St θ+sep (

◦) θ−sep (◦) Lr

Baseline 35300 1 0.021 1.50 0.237 89.1 93.6 0.79

Different resolutions in (x, y)
A1 12708 1 0.021 1.46 0.241 87.9 93.6 0.79
A2 (= Baseline) 35300 1 0.021 1.50 0.237 89.1 93.6 0.79
A3 69188 1 0.021 1.50 0.236 89.6 93.6 0.78

Different resolutions in time
C1 (= Baseline) 35300 1 0.021 1.50 0.237 89.1 93.6 0.79
C2 35300 1 0.0042 1.50 0.238 89.1 93.6 0.79

Table 3.4: Influence of spatial and time resolution (3D S-A, h/d = 1.0, Re = 0.4× 105).
3D S-A Grid (x, y) Grid (z) ∆tU∞/d CD St θ+sep (

◦) θ−sep (◦) Lr

Baseline 35300 40 0.021 1.46 0.215 87.3 92.7 0.85

Different resolutions in (x, y)
A1 12708 40 0.021 1.39 0.211 86.1 90.9 0.92
A2 (= Baseline) 35300 40 0.021 1.46 0.215 87.3 92.7 0.85
A3 69188 40 0.021 1.46 0.215 87.8 93.5 0.82

Different resolutions in z
B1 35300 10 0.021 1.45 0.209 87.3 92.7 0.86
B2 35300 20 0.021 1.46 0.214 87.3 92.7 0.85
B3 (= Baseline) 35300 40 0.021 1.46 0.215 87.3 92.7 0.85
B4 35300 80 0.021 1.46 0.214 87.3 92.7 0.85

Different resolutions in time
C1 (= Baseline) 35300 40 0.021 1.46 0.215 87.3 92.7 0.85
C2 35300 40 0.0042 1.46 0.214 87.3 92.7 0.83

Table 3.5: Influence of spatial and time resolution (DES, h/d = 1.0, Re = 0.4× 105).
DES Grid (x, y) Grid (z) ∆tU∞/d CD St θ+sep (

◦) θ−sep (◦) Lr

Baseline 35300 40 0.021 1.33 0.210 79.2 85.5 1.35

Different resolutions in (x, y)
A1 12708 40 0.021 1.03 0.242 86.1 87.9 1.44
A2 (= Baseline) 35300 40 0.021 1.33 0.210 79.2 85.5 1.35
A3 69188 40 0.021 1.41 0.200 81.4 87.0 1.21

Different resolutions in z
B1 35300 10 0.021 1.40 0.205 84.6 90.0 1.01
B2 35300 20 0.021 1.34 0.211 80.1 86.4 1.29
B3 (= Baseline) 35300 40 0.021 1.33 0.210 79.2 85.5 1.35
B4 35300 80 0.021 1.47 0.201 81.9 87.3 1.11

Different resolutions in time
C1 (= Baseline) 35300 40 0.021 1.33 0.210 79.2 85.5 1.35
C2 35300 40 0.0042 1.32 0.212 80.1 84.6 1.36
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Table 3.6: Influence of spatial and time resolution (LES, h/d = 1.0, Re = 0.4× 105).
LES Grid (x, y) Grid (z) ∆tU∞/d CD St θ+sep (

◦) θ−sep (◦) Lr

Baseline 35300 40 0.021 1.58 0.209 91.8 99.0 0.92

Different resolutions in (x, y)
A1 12708 40 0.021 1.26 0.248 90.6 93.9 1.29
A2 (= Baseline) 35300 40 0.021 1.58 0.209 91.8 99.0 0.92
A3 69188 40 0.021 1.70 0.208 92.3 99.3 0.84

Different resolutions in z
B1 35300 10 0.021 1.24 0.226 93.6 99.0 1.34
B2 35300 20 0.021 1.39 0.216 90.0 95.4 1.25
B3 (= Baseline) 35300 40 0.021 1.58 0.209 91.8 99.0 0.92
B4 35300 80 0.021 1.68 0.205 91.8 97.2 0.89

these, Cases B1, B2, B3 (= Baseline), and B4 compare the influence of spatial resolution in

the spanwise (z) direction. Of interest is that, in the 3D S-A URANS, the number of grid

points in the spanwise direction has no significant influence on the mean flow characteristics.

This is basically because the three-dimensional vortical structures behind the cylinder are

captured only roughly in 3D S-A URANS even with a good spanwise resolution. Figure 3.3

shows a comparison of instantaneous wake structures predicted in Cases B1 and B3. Both

cases predicted not only spanwise vortices but also streamwise ‘rib’ vortices; the structures of

these vortices, however, are still much coarser (or much more organised) than those predicted

by the DES shown later in Fig. 3.4 (more detailed discussion on the flow will be given later

in the main part of the study in Section 3.4).

Table 3.5 summarises the influence of spatial and time resolution in DES. It can be seen

that the differences between Cases A2 and A3 are smaller than those between Cases A1 and

A2, suggesting a certain degree of grid convergence in the x and y directions, although not

as good as that for the URANS shown above. Meanwhile, the differences between Cases C1

and C2 are very small, i.e., the time resolution of ∆tU∞/d = 0.021 is sufficient for the DES

as well as for the URANS.

Of major concern here is the influence of the spanwise resolution in the DES. Note that

∆z (2d divided by the number of grid points in the z direction) is the largest grid spacing

(i.e., larger than ∆x and ∆y) around the cylinder and thus directly affects the switching

between the URANS and LES modes in that region (cf. Section 3.2.3). Compared with the

boundary layer thickness around the cylinder (about 0.03d at the maximum), the thickness

of the URANS region around the cylinder is slightly larger in Case B3 (0.0325d), much larger

in Cases B1 and B2 (0.13d and 0.065d, respectively), and smaller in Case B4 (0.01625d). It

is therefore unsurprising that some discrepancies from Case B3 (= baseline) are observed not

only in Case B1, where the spanwise resolution is simply too coarse to properly capture the

three-dimensional vortical structures behind the cylinder (cf. Fig. 3.4), but also in Case B4,

where the switch between the URANS and LES modes undesirably takes place inside the

boundary layer due to the too fine spanwise resolution. Of interest, however, is that only

small differences can be seen in the results between Cases B2 and B3. This shows that, even

though the mode switching in DES depends on the resolution of the grids, a certain degree

of grid convergence could be achieved in an ‘appropriate’ resolution range.
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Figure 3.3: Influence of the spanwise resolution on the near wake structure predicted by
the 3D S-A URANS (isosurfaces of the magnitude of instantaneous vorticity, h/d = 1.0, Re
= 0.4 × 105): (a-e) Case B1, and (f-j) Case B3. Note that the figures roughly correspond to
a half cycle of the von Kármán-type vortex shedding; CL increases from the local minimum
value at (a) and (f) to the local maximum value at (e) and (j).
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Figure 3.4: Influence of the spanwise resolution on the near wake structure predicted by the
DES (isosurfaces of the magnitude of instantaneous vorticity, h/d = 1.0, Re = 0.4 × 105):
(a-e) Case B1, and (f-j) Case B3. Note that the figures roughly correspond to a half cycle
of the von Kármán-type vortex shedding; CL increases from the local minimum value at (a)
and (f) to the local maximum value at (e) and (j).
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Finally, the preliminary results of the LES are summarised in Table 3.5. Compared with

the results of the DES, the grid dependency in the LES seems to be more significant. This is

basically because the grids are still too coarse for the LES especially in the near-wall region,

similar to most of the earlier studies that applied LES to circular/square cylinders in a free

stream (cf. Section 1.4.5). Although some more sophisticated near-wall treatments have been

proposed and they were not tested in the present study, this kind of grid dependency is often

a major problem in the application of LES to high Reynolds number flows.

In conclusion, good grid convergence was obtained in both 2D and 3D URANS simula-

tions, whereas that in the DES was not perfect but clearly better than the LES performed

on the same set of grids. Also the baseline time resolution ∆tU∞/d = 0.021 was found to be

sufficient in both URANS and DES.

3.3.2 Influence of the Reynolds number

Table 3.7 summarises the major results of preliminary computations on the influence of the

Reynolds number (h/d = 1.0). Note that the spatial and time resolution employed here is

that used as ‘Baseline’ in the previous section.

The Reynolds number range examined here (0.4× 105 ≤ Re ≤ 1.0× 105) corresponds to
the upper-subcritical or TrSL3 regime (cf. Fig. 1.2). Hence, as is obvious from the literature

review given in Section 1.4.2 and also from the experimental results presented in Chapter 2

(for example see Fig. 2.6), the physically correct behaviour of the flow to be expected here

is that the flow characteristics are not sensitive to the Reynolds number. This, however, is

a formidable task for today’s CFD to achieve, as reviewed in Section 1.4.5, and the results

summarised in Table 3.7 show how difficult it is to be achieved, i.e., significant influence of

the Reynolds number can be seen in both 2D and 3D S-A URANS and also in the DES.

A common tendency for these three cases is that the characteristics of the subcritical flow

are (to varying degrees) reasonably predicted at Re = 0.4 × 105 whereas the results at Re
= 1.0× 105 incorrectly show typical characteristics of the postcritical flow rather than of the
subcritical flow (e.g., larger separation angles, higher shedding frequency, smaller amplitude

of lift fluctuation, and lower drag coefficient). The only case that predicted less sensitivity to

the Reynolds number is the 2D k-², which, however, incorrectly shows the characteristics of

the postcritical flow mentioned above rather than of the subcritical flow at both higher and

lower Reynolds numbers.

Figure 3.5 shows the drag coefficient of the cylinder (h/d = 1.0) predicted at different

Reynolds numbers. The experimental results shown in Chapter 2 are also plotted here for

the purpose of comparison. The figure clearly shows the incapability of the computations to

predict the correct Reynolds number effect in this flow regime. At Re = 1.0 × 105 all cases
tested here predicted lower CD values of about 0.7 compared with the experimental value

of about 1.25. Of interest is that the advantageous effect of the TLA (to obtain ‘plausible’

upper-subcritical flows, cf. Section 3.2.6), which can be seen from the difference between ‘2D

S-A’ and ‘2D S-A without TLA’, also diminishes as the Reynolds number increases. At Re

= 0.4 × 105 the TLA did make the separation angles smaller and thus the drag coefficient

higher, but at Re = 1.0 × 105 the TLA did not make any substantial differences (cf. Table
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Table 3.7: Influence of the Reynolds number (h/d = 1.0).

Case Re CD CL C0L St θ+sep (
◦) θ−sep (◦) Lr

2D k-² 0.4× 105 0.74 0.05 0.24 0.292 107.1 108.9 1.34
1.0× 105 0.68 0.05 0.21 0.303 110.7 112.5 1.34

2D S-A without TLA 0.4× 105 1.05 0.06 0.80 0.251 92.7 95.4 0.94
1.0× 105 0.67 0.05 0.19 0.263 97.2 99.9 1.54

2D S-A 0.4× 105 1.50 0.12 1.21 0.237 89.1 93.6 0.79
1.0× 105 0.67 0.05 0.20 0.266 97.2 99.9 1.51

3D S-A 0.4× 105 1.46 0.08 1.13 0.215 87.3 92.7 0.85
1.0× 105 0.68 0.05 0.21 0.266 97.2 99.9 1.51

DES 0.4× 105 1.33 0.05 0.58 0.210 79.2 85.5 1.35
1.0× 105 0.70 0.04 0.10 0.305 96.3 99.0 1.62

Figure 3.5: Influence of the Reynolds number on the drag coefficient (h/d = 1.0).

3.7), showing the limit of the usefulness of the TLA in this Reynolds number range. This

is basically because, even with the TLA, the turbulent viscosity calculated in the boundary

layer gradually increases as the Reynolds number increases, leading to the delay of the flow

separation from the cylinder surface and thus the decrease in CD.

In conclusion, both 2D and 3D S-A URANS and DES reasonably captured the main

features of the subcritical flow (due to the use of the TLA) but only at the lower Reynolds

numbers, whereas 2D k-² failed to capture them at both lower and higher Reynolds numbers.

As demonstrated here and also in several earlier studies reviewed in Section 1.4.5, it is a

formidable task for today’s CFD to correctly predict the flow past a circular cylinder at the

Reynolds numbers close to the range between the subcritical and postcritical flow regimes.

Hence in the next section, the lower Reynolds number of 0.4 × 105 is employed in order to
discuss the capability of each simulation to predict the cessation of the von Kármán-type

vortex shedding in ground effect, which is the main topic of the present study.
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3.4 Main results and discussion

In this section, further results of computations are presented with a main focus on the issues

relevant to the ground effect. Computational conditions are summarised in Table 3.8. Note

that the Reynolds number is restricted to 0.4×105 in this section, following the discussion in
the previous section. Also note that all the computations shown below were performed with

the spatial and time rezolution used as ‘Baseline’ in Section 3.3.1.

Table 3.8: Summary of the conditions for the main computations.

Case Type Model TLA∗ h/d Re

2D k-² 2D, URANS LS k-² No 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0 0.4× 105
2D S-A 2D, URANS S-A Yes 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0 0.4× 105
3D S-A 3D, URANS S-A Yes 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0 0.4× 105
DES 3D, DES (Modified) S-A Yes 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0 0.4× 105

∗TLA: Trip-less approach (cf. Section 3.2.6)

3.4.1 Drag reduction and the cessation of Kármán vortex shedding

Figure 3.6 shows the time-averaged drag coefficient of the cylinder in ground effect. The

results of the experiments in Chapter 2 (with end-plates at ye/d = 0) are also presented in

the figure for comparison. An important feature of the ground effect to be discussed here

is the critical change in CD due to the cessation of the large-scale von Kármán-type vortex

shedding at h/d < 0.35. As can be seen from the figure, both 2D and 3D URANS predicted

the critical change in CD but at much smaller h/d of 0.2 to 0.1 (as they incorrectly predicted

the large-scale vortex shedding at h/d of down to 0.2, as will be shown later). Meanwhile,

the drag behaviour predicted by the DES agreed better with the experiments; the critical

drag reduction was qualitatively correctly captured at h/d of 0.4 to 0.3.

Figure 3.7 shows the mean lift coefficient of the cylinder in ground effect. All simulations

captured the rapid increase in CL when the cylinder came close to the ground (see Figs. 2.8

and 2.9 for the experimental results). The 2D and 3D S-A URANS, however, predicted a

local minimum CL around h/d = 0.3 to 0.4. This is due to an (overly) asymmetric pressure

distribution incorrectly predicted at these gap ratios, as shown later in Fig. 3.19.

Figure 3.8 shows the r.m.s. of the lift fluctuations of the cylinder in ground effect, and

Figs. 3.9 to 3.11 show the time variation of the drag and lift coefficients. Note that the solid

and dashed lines in Figs. 3.9 to 3.11 indicate the variations of CD and CL, respectively. It

is obvious from these figures that the DES captured the cessation of the large-scale vortex

shedding between two h/d of 0.4 and 0.3, consistent with the experiments in Chapter 2. On

the other hand, both 2D and 3D URANS incorrectly predicted strong fluctuations even at

h/d = 0.2 (note that at h/d = 0.1 the vortex shedding ceased and a steady solution was

obtained in both 2D and 3D URANS, as indicated by C 0L = 0 in Fig. 3.8). Figure 3.12 shows

the Strouhal number based on the lift fluctuations. The DES predicted St of about 0.21 to

0.22 for all h/d of greater than 0.3, which is comparable to the experiments for a circular

cylinder placed near a fixed ground by Bearman and Zdravkovich (1978). Both 2D and 3D

S-A URANS also predicted comparable St values at h/d ≥ 0.4, even though they failed to
capture the cessation of the vortex shedding at h/d ≤ 0.3.
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Figure 3.6: Mean drag coefficient of the cylinder in ground effect (Re = 0.4× 105).

Figure 3.7: Mean lift coefficient of the cylinder in ground effect (Re = 0.4× 105).

Figure 3.8: R.m.s. of CL fluctuations of the cylinder in ground effect (Re = 0.4× 105).
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Figure 3.9: Time variation of drag and lift coefficients (DES, Re = 0.4 × 105); solid and
dashed lines indicate CD and CL, respectively.

Figure 3.10: Time variation of drag and lift coefficients (3D S-A, Re = 0.4× 105); solid and
dashed lines indicate CD and CL, respectively.

Figure 3.11: Time variation of drag and lift coefficients (2D S-A, Re = 0.4× 105); solid and
dashed lines indicate CD and CL, respectively.
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Figure 3.12: Strouhal number based on the lift fluctuations of the cylinder in ground effect
(Re = 0.4× 105).

3.4.2 Instantaneous flow characteristics

Figure 3.13 shows typical instantaneous wake structures of the cylinder at h/d = 0.6 and 0.2

predicted by the DES. A clear difference can be seen between the two cases: three-dimensional

large-scale vortex shedding was predicted behind the cylinder at h/d = 0.6, whereas two

nearly parallel shear layers (but still having embedded three-dimensional turbulent structures)

were formed at h/d = 0.2. The mid-span sections of these two instantaneous flow fields are

shown in Figs. 3.14(a) and (b), respectively, where the contours of non-dimensional spanwise

vorticity are plotted. A comparison with the PIV results (cf. Fig. 2.16) suggests that the

DES successfully captured the main features of the wake structure of the cylinder in both

the large- and small-gap regimes.

Of further interest are the wake structures predicted at h/d = 0.4, which lies in the

intermediate gap regime defined in Chapter 2. Figure 3.15 shows instantaneous spanwise

vorticity fields behind the cylinder at h/d = 0.4 at two different time instants. It can be seen

that at tU∞/d = 75.6 [Fig. 3.15(a)], around which time the fluctuations of the forces almost

diminished to zero [cf. Fig. 3.9(c)], a small dead-fluid zone was temporarily generated behind

the cylinder. At tU∞/d = 136.5 [Fig. 3.15(b)], however, large-scale vortices were formed

just behind the cylinder, similar to those observed at h/d = 0.6 [cf. Fig. 3.14(a)]. This

qualitatively agrees with the experimental observation in Chapter 2 that the von Kármán-

type vortex shedding was intermittent in the intermediate gap regime.

Figure 3.16 shows typical instantaneous wake structures of the cylinder at h/d = 0.6

and 0.2 predicted by the 3D S-A URANS. Again it can be seen that the 3D S-A incorrectly

predicted the large-scale vortex shedding at h/d = 0.2. Also of interest is that, at h/d = 0.2,

the 3D S-A yielded an almost two-dimensional wake, whereas at h/d = 0.6 (and also at

h/d = 1.0, cf. Fig. 3.4), it yielded a three-dimensional wake consisting of not only spanwise

vortices but also streamwise ‘rib’ vortices. This can also be confirmed from the time variations

of the force coefficients presented in Fig. 3.10, i.e., the 3D S-A showed some low-frequency
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Figure 3.13: Typical instantaneous wake structures at h/d = 0.6 and 0.2 (isosurfaces of the
magnitude of instantaneous vorticity, predicted by the DES, Re = 0.4× 105).

Figure 3.14: Typical instantaneous spanwise vorticity fields at h/d = 0.6 and 0.2 (DES, Re
= 0.4× 105); the phases corresponding to those in Fig. 3.13.

Figure 3.15: Instantaneous spanwise vorticity fields at h/d = 0.4 at two different phases: (a)
tU∞/d = 75.6, (b) tU∞/d = 136.5 (DES, Re = 0.4× 105).
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Figure 3.16: Typical instantaneous wake structures at h/d = 0.6 and 0.2 (isosurfaces of the
magnitude of instantaneous vorticity, predicted by the 3D S-A URANS, Re = 0.4× 105).

modulations at h/d ≥ 0.4, but yielded almost totally periodic fluctuations at h/d ≤ 0.3.

In this connection, Shur et al. (2005) recently reported, for a circular cylinder in a free

stream, that this type of low-frequency modulation and moderate three-dimensionality in 3D

URANS may or may not be observed depending on the spanwise size of the domain and on

the turbulence model employed. The present results are of interest in showing that it may

also depend on a geometric parameter of the flow simulated, although the importance or

relevance of this discussion to the real physics is still unclear. It is well known that these

streamwise rib vortices are indeed experimentally observed in the laminar wake of a cylinder

(Williamson 1996), and hence the suppression of the rib vortices predicted by the 3D S-A

at h/d ≤ 0.3 might be of some relevance to the physical mechanisms of the cessation of the
von Kármán-type vortex shedding in ground effect. It must be remembered, however, that

the structures of the turbulent wake of the cylinder investigated in this study are much more

complicated, as predicted by the DES (cf. Fig. 3.13).

3.4.3 Time-averaged flow characteristics

Figure 3.17 compares the time-averaged separation angles on both upper (open) and bottom

(gap) sides of the cylinder in ground effect. The separation angles estimated from the oil flow

visualisation tests in Chapter 2 (at a higher Reynolds number of 1.0×105, with end-plates at
ye/d = 0) are also shown here for comparison (note that this Reynolds number for the oil flow

tests is still within the subcritical regime and thus comparing the results is still reasonable).

Also note that |θsep| plotted in this figure indicates the magnitude of the angle from the

front position (x/d = −0.5, y/d = 0) to the separation position (cf. Fig. 2.13). It can be seen
that the DES agreed better with the experiments, whereas the URANS simulations predicted

larger angles compared with the experiments.

Figures 3.18 and 3.19 show the mean pressure distributions on the cylinder predicted by

the DES and 3D S-A URANS, respectively. The results of the DES describe the mechanisms

of the drag and lift behaviours of the cylinder in ground effect; the rapid drag reduction at

h/d = 0.4 to 0.3 occurs primarily due to an increase in the base pressure, whilst the lift
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Figure 3.17: Time-averaged separation angle on a circular cylinder in ground effect.

Figure 3.18: Mean pressure distributions around the cylinder (DES, Re = 0.4× 105).

Figure 3.19: Mean pressure distributions around the cylinder (3D S-A, Re = 0.4× 105).
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Figure 3.20: Contours of non-dimensional mean streamwise velocity: (a-e) DES, (f-j) 3D S-A
(Re = 0.4× 105).

Figure 3.21: Recirculation length vs. gap ratio (Re = 0.4× 105).
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Figure 3.22: Comparison of mean streamwise velocity profiles (Re = 0.4× 105).

gradually increases as the gap decreases mainly because the high pressure region around the

front stagnation point shifts to the bottom side of the cylinder. Meanwhile, the results of the

3D S-A explain its incorrect predictions on the drag and lift behaviours. That is, the higher

CD values (except for h/d = 0.1, cf. Fig. 3.6) basically come from the lower base pressure

predicted, whereas the local minimum CL predicted around h/d = 0.4 (cf. Fig. 3.7) is due to

the (overly) asymmetric base pressure, the effect of which cancels out the (physically correct)

‘lifting’ effect of the downward shift of the front stagnation point.

Figure 3.20 shows the mean streamwise velocity contours predicted by the DES and 3D

S-A URANS. It can be seen that the DES predicted the recirculation region behind the

cylinder to be significantly elongated as h/d decreased from 0.4 to 0.3 and below, due to

the cessation of the von Kármán-type vortex shedding. This agrees with the results of the

PIV measurements in Chapter 2, and is consistent with the increase in the base pressure

described above in Fig. 3.18. In contrast, the recirculation region predicted by the 3D S-A

remains small even at h/d = 0.2, primarily because the 3D S-A failed to capture the cessation

of the vortex shedding as already shown in Figs. 3.10 and 3.16. This was also found to be the

case with the 2D URANS simulations. Figure 3.21 compares the length of the recirculation

region, Lr, predicted behind the cylinder. The results from the PIV measurements (at the

same Reynolds number of 0.4 × 105, with end-plates at ye/d = 0) are also plotted here for

the purpose of comparison. As is obvious from the figure, all URANS simulations in this

study predicted smaller Lr compared with those by the DES and the experiments, especially

at smaller gap ratios.

Figure 3.22 compares the mean streamwise velocity profiles behind the cylinder at h/d =

0.6 and 0.2. Note that the profiles at x/d = 0.5, 1.0, 1.5, 2.0, and 2.5 predicted by the DES

and 3D S-A are shown in each figure, and those obtained by the PIV measurements (but only

at x/d = 1.0, 1.5, 2.0, and 2.5) are also plotted for comparison. It can be seen that the DES

successfully captured the mean wake profile of the cylinder at both larger and smaller gap

ratios, i.e., the parabolic-like profiles because of the vortex shedding at h/d = 0.6 and the

top-hat-like profiles due to the cessation of the vortex shedding at h/d = 0.2. In contrast, the

3D S-A showed some discrepancies in the near wake region at h/d = 0.6, but totally failed to
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predict the correct profile at h/d = 0.2, again primarily because the 3D S-A failed to capture

the cessation of the vortex shedding at this smaller gap ratio. This was also found to be the

case with the 2D URANS simulations (not presented here).

3.4.4 Further discussion on the cessation of Kármán vortex shedding

After comparing the accuracy of the DES and URANS simulations in the preceding sections,

the focus of the discussion is now back to the onset/cessation of the von Kármán-type vortex

shedding. As demonstrated in this study, the capability of turbulence models/techniques

to correctly predict the formation and cessation of large-scale vortex shedding is of crucial

importance when they are applied to this type of bluff body flow. It is therefore worthwhile

– not only from the physical but also from the computational point of view – to address

the question: “Why did the von Kármán-type vortices incorrectly ‘survive’ in the URANS

simulations until the cylinder came much closer to the ground?”

The first point to be mentioned here is that the incorrect vortex shedding observed in

the URANS in this study seems to contradict a general view in CFD, i.e., vortex shedding

should tend to be suppressed when the predicted flow is ‘overly dissipative’ (cf. Section 1.4.5)

or the predicted eddy viscosity is excessively large. Figure 3.23 shows the contours of typical

instantaneous eddy viscosity ratio predicted by the DES and 3D S-A URANS at h/d = 0.6,

0.2, and 0.1. It is obvious that the 3D S-A URANS yielded a much larger eddy viscosity than

that by the DES in the region after the separation from the cylinder (note that in the region

before the separation the eddy viscosity was kept almost zero in both DES and URANS due

to the trip-less approach, cf. Section 3.2.6). This shows that the accuracy of the prediction

of the onset/cessation of the vortex shedding cannot be simply or directly linked with the

difference in the global level of eddy viscosity predicted.

A possible explanation for the ‘delayed’ cessation in the URANS, however, can be derived

from the mean wake profiles predicted by the DES and URANS at the smallest gap ratio of

0.1, at which not only the DES but also the URANS captured the cessation of the vortex

shedding due to the strong influence of the nearby ground. Figure 3.24 compares the mean

streamwise velocity profiles at x/d = 1.0 and 1.5 predicted by the DES and 3D S-A URANS

for h/d = 0.1. It can be seen that the DES predicted a wider top-hat-like wake profile with a

smaller backflow velocity in this region, similar to that predicted for h/d = 0.2 [cf. 3.22(b)],

whereas the 3D S-A still yielded a narrower parabolic-like wake profile with a larger backflow

velocity despite having captured the cessation of the vortex shedding. This difference in the

mean velocity profiles in the near wake region is of crucial importance when considering the

stability characteristics of the wake.

As reviewed in Section 1.4.6, from the viewpoint of hydrodynamic stability of the wake,

the key to the formation of von Kármán-type vortices is the existence of absolutely unstable

regions in the near wake region, which allows local disturbances to propagate both upstream

and downstream. Of interest here is that the near wake profiles predicted by the 3D S-A

URANS seem to be more (inviscidly) absolutely-unstable than those predicted by the DES. As

will be shown later in Chapter 4, a linear inviscid stability analysis of simplified wake profiles

in ground effect indicates that the state of the wake tends to change from being absolutely
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Figure 3.23: Instantaneous eddy viscosity ratio: (a-c) DES, (d-f) 3D S-A (Re = 0.4× 105).

Figure 3.24: Comparison of mean streamwise velocity profiles (h/d = 0.1, Re = 0.4× 105).
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unstable to being convectively unstable as the relative ground distance (i.e., the distance

from the wake centreline to the ground, H, divided by the wake width, B, see Chapter 4) is

reduced, as well as when the reverse or backflow velocity of the wake is reduced. This might

explain the main reason why the wakes in the URANS simulations were more susceptible to

the formation of the von Kármán-type vortices in this study.

The above interpretation of the incorrect vortex shedding turns out to be more probable

when the present results are compared with the 2D URANS simulations of flow past a square

cylinder placed near a fixed ground by Bosch and Rodi (1996). In their study, the standard

k-² model predicted an ‘earlier’ cessation of the vortex shedding in ground effect (i.e., the

shedding was predicted to cease at a higher gap ratio than that observed in experiments), in

contrast to the URANS simulations in the present study. They showed that the prediction

of the cessation could be improved by employing an ad hoc modification of the k-² model

proposed by Kato and Launder (1993) to prevent the excessive production of turbulence, and

thus suggested that the ‘earlier’ cessation of the vortex shedding in ground effect predicted

by the standard k-² model was due to the excessive damping caused by the excessive eddy

viscosity in the wake. However, these results may also be interpreted, from the hydrodynamic

stability point of view, that the wider wake predicted by the standard k-² model was less

absolutely-unstable than the narrower wake predicted by the model with the Kato-Launder

modification (note that the relative ground distance H/B decreases as the wake width B

increases). That is to say, it is inferred that in the present study all URANS simulations

predicted ‘delayed’ cessation of the vortex shedding behind the circular cylinder primarily

because they predicted narrower wakes and therefore larger H/B in the near wake region,

whereas in the study by Bosch and Rodi (1996) the standard k-² model predicted ‘earlier’

cessation of the vortex shedding behind the square cylinder primarily because the standard

k-² model predicted wider wakes and therefore smaller H/B in the near wake region.

3.5 Conclusions

In this chapter, the results of URANS, LES, and DES were presented for a subcritical flow

(0.4× 105 ≤ Re ≤ 1.0× 105) around a circular cylinder placed near and parallel to a moving
ground. The LES and DES were performed in a three-dimensional domain with periodicity

imposed in the spanwise direction, whereas the URANS were conducted in both two- and

three-dimensional domains.

The simulations were first performed with different spatial and time resolutions (for a

representative case of h/d = 1.0, Re = 0.4 × 105). Good grid convergence was obtained in
both 2D and 3D URANS simulations, whereas it was not obtained in the LES presumably

because the grids used in this study were not fine enough for LES. The grid convergence in

the DES was not perfect but clearly better than the LES performed on the same set of grids.

Also the time resolution was found to be sufficient in both 2D/3D URANS and DES. The

simulations were then performed with different Reynolds numbers (for a representative case

of h/d = 1.0 with the standard spatial and time resolution). As was expected from the results

of earlier studies by other researchers, all simulations in this study were also found to fail to
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capture the correct ‘subcritical’ flow characteristics around the cylinder at higher Reynolds

numbers. At the lower Reynolds number of 0.4 × 105, however, both 2D/3D URANS and

DES were found to yield reasonable results.

As concerns the prediction of the ground effect, which was examined with the ‘easiest’

Reynolds number of 0.4× 105, the DES successfully captured the main flow/force character-
istics, whereas the URANS did not. The DES predicted the cessation of the large-scale von

Kármán-type vortex shedding behind the cylinder between two h/d of 0.4 and 0.3, which was

consistent with the earlier experiments, whereas both 2D and 3D URANS also predicted it

but at a much smaller h/d of 0.2 to 0.1. The wake structures of the cylinder predicted by

the DES were in good agreement with the experiments in both large- and small-gap regimes,

and also in the intermediate-gap regime, where the DES captured the intermittence of the

large-scale vortex shedding in the near wake region. The time-averaged drag coefficients,

separation angles, and velocity profiles in the near wake region predicted by the DES were

also in good agreement with the experiments. These results suggest the promise of DES to

flows involving the problem of large-scale vortex shedding, and its control or suppression,

often encountered in engineering applications.

Another interesting difference was also observed between the 2D and 3D S-A URANS

solutions. That is, the former yielded fully periodic time variations in CD and CL at all h/d

of greater than 0.1, whereas the latter showed some low-frequency modulations at h/d ≥ 0.4,
where moderately three-dimensional wake structures consisting of not only spanwise vortices

but also streamwise ‘rib’ vortices were predicted. The vortical structures resolved in the

3D S-A URANS, however, were still much coarser than those by the DES despite the same

grid employed and hence almost the same computational costs required. As far as the time-

averaged properties of the flow were concerned, the difference between the 2D and 3D URANS

seemed less significant than those between the 3D URANS and the DES.

Also examined was the reason of the ‘delayed’ cessation of the vortex shedding in the

URANS simulations. The mean wake profiles predicted by the DES and 3D URANS were

compared for h/d = 0.1, at which gap ratio even the URANS captured the cessation of the

vortex shedding due to the strong influence of the nearby ground. It was inferred that the

near wake profiles predicted by the URANS were more (inviscidly) absolutely-unstable than

those predicted by the DES basically because the URANS predicted narrower wakes, which

effectively increased the relative gap distance between the wake and the ground. Further

discussions on this topic will be given in Chapter 4, where a linear inviscid stability analysis

is applied to simplified model wake profiles in ground effect.
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Chapter 4

Linear Stability Analysis of
the Wake of Cylinders
in Ground Effect

4.1 Introduction

As briefly discussed in the previous chapters, the mechanism of the formation of von Kármán-

type vortices behind cylindrical bluff bodies can often be explained by the existence of abso-

lutely unstable regions in the near wake region, which allows local disturbances to propagate

both upstream and downstream. For example, a linear stability analysis by Monkewitz (1988)

demonstrated the existence of an absolutely unstable region in the near wake of a circular

cylinder at the critical Reynolds number of about 50 for the onset of the von Kármán-type

vortex shedding. In analogy to this, the cessation of the vortex shedding at much higher

Reynolds numbers behind a cylinder equipped with a backward splitter plate, which was

first experimentally observed by Roshko (1955), may also be explained as the splitter plate

prevents the hydrodynamic resonance in the near wake region (Oertel 1990).

The objective of the linear stability analysis presented in this chapter is to show that a

similar explanation may also be applicable to the cessation of the von Kármán-type vortex

shedding from cylindrical bluff bodies in ground effect. Although the near wake structures of

two-dimensional bluff bodies are in general three-dimensional and highly complicated unless

the Reynolds number of the flow is very low, this study employs a traditional local (i.e.,

parallel-assumed) linear stability analysis method – this type of analysis has been successful

for many types of spatially developing flows as reviewed in Section 1.4.6. It is also assumed

that the fluid is inviscid and incompressible. The analysis is first applied to a four-parameter

family of velocity profiles, which is an extended version of a two-parameter symmetric near

wake model by Monkewitz and Nguyen (1987) and Monkewitz (1988), in order to investigate

the local absolute and local convective instabilities of the wake in ground effect. The analysis

is then compared with the results of the experiments and numerical simulations in the previous

chapters. Specifically, the streamwise variation of the local linear stability characteristics of

the wake is examined to discuss the link between the local linear stability characteristics and

the cessation of the von Kármán-type vortex shedding in ground effect. The discussion is

based on the transition scenario of steep global modes by Pier and Huerre (2001), in which
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the upstream edge of the region of local linear absolute instability acts as a wavemaker to

generate nonlinear travelling waves in the downstream direction (cf. Section 4.4.3).

In the following, the details of the model wake profiles and the analysis procedure will be

described in Sections 4.2 and 4.3, respectively, and the results of the analysis will be presented

in Section 4.4. Finally a concluding summary will be given in Section 4.5.

4.2 Modelling of local wake profiles

The local velocity profile of the near wake of general two-dimensional bluff bodies placed near

a ground may be approximated by the following analytical model equations:

U(y) = [1−R1 + 2R1F1(y)]
µ
Uc + U∞

2

¶
(for 0 ≤ y ≤ ∞) , (4.1)

U(y) = [1−R2 + 2R2F2(y)]
µ
Uc + Ug
2

¶
(for −H ≤ y < 0) , (4.2)

where

R1 =
Uc − U∞
Uc + U∞

, F1(y) =
n
1 + sinh2N1

h
y sinh−1(1)/b1

io−1
, (4.3)

R2 =
Uc − Ug
Uc + Ug

, F2(y) =
n
1 + sinh2N2

h
y sinh−1(1)/b2

io−1
, (4.4)

as described in Fig. 4.1. Here Uc and U∞ are the velocities at y = 0 and ∞, respectively. Ug
is a hypothetical velocity at y = −∞, and H is the transverse distance between y = 0 and

the ground. N1 and N2 determine the ratio of each mixing layer thickness to the width of

the wake, and b1 and b2 are the so-called ‘half-widths’ of the wake, which are respectively the

distances from y = 0 to the points where U(y) = (Uc+U∞)/2 for b1 and U(y) = (Uc+Ug)/2 for

b2. It should be noted that this model is an extended asymmetric version of the symmetric

near wake model by Monkewitz and Nguyen (1987) and Monkewitz (1988), which can be

reproduced from the above equations with Ug = U∞, N1 = N2, b1 = b2, and H =∞.

Figure 4.1: Near wake model of general two-dimensional bluff bodies in ground effect (note
that b1 = b2 = B/2 in the present study).
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Figure 4.2: Examples of local wake profiles in ground effect.

Since the primary objective is to examine the fundamental influence of the nearby ground

on the stability characteristics of the wake, N1 = N2 = N and b1 = b2 = B/2 are also

employed in this study for simplicity. It follows that U∞ and B are the characteristic velocity

and length of the flow (but note that B varies in the streamwise direction when the global

instability of the wake is discussed later in Sections 4.4.3 and 4.4.4), and N , Ug, Uc, and H

are the four parameters that are varied to determine the local velocity profiles in this study.

Typical examples of the velocity profiles are shown in Fig. 4.2. Note that, as N increases,

the thickness of each shear layer becomes thinner and hence the wake profile becomes closer

to the so-called ‘top-hat’ profile. Also note that the ground distance H is varied in a certain

range in this study such that the ground speed U(−H) obtained from Eqs. (4.1) to (4.4)

satisfies U(−H) ≥ 0.99Ug for a meaningful comparison with the experiments (and also the
numerical simulations) using the moving ground in the previous chapters. More details of

the comparison with the experiments will be discussed later in Section 4.4.3.

It should be noted that the wake profiles obtained from the above model are simplified or

ideal ones; the real near wake profile of a bluff body depends on its cross-sectional geometry.

The scope of the interest of this study is therefore limited to a qualitative description of the

stability characteristics obtained. This, nonetheless, gives useful insights into the mechanisms

of the cessation of von Kármán-type vortex shedding in ground effect.

4.3 Analysis procedure

The absolute and convective instabilities of the above wake profiles are investigated in this

study by using a local linear stability analysis, basically following Monkewitz and Nguyen

(1987). The flow analysed is assumed to be quasi-laminar, i.e., the turbulence is assumed

to affect the instability waves only indirectly through the mean velocity profile, not directly

through its stresses. It is further assumed that the fluid is inviscid, as the instabilities of

interest here are those of inviscid or inflectional type, and it is also assumed that the flow is

incompressible. It follows that the governing equations for the motion of small disturbances

to be examined in this study can be derived from the Euler equations and the continuity

equation as follows:
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µ
∂

∂t
+ U

∂

∂x

¶
u0 +

dU

dy
v0 +

∂p0

∂x
= 0 , (4.5)

µ
∂

∂t
+ U

∂

∂x

¶
v0 +

∂p0

∂y
= 0 , (4.6)

∂u0

∂x
+
∂v0

∂y
= 0 , (4.7)

where u0 and v0 are the perturbation velocities in the x (streamwise) and y (transverse)

directions, respectively, and p0 is the perturbation pressure. U(y) is the mean streamwise

velocity obtained from the near wake model of Eqs. (4.1) to (4.4).

The above perturbation equations can be re-written with the perturbation stream function

ψ0 (by which the perturbation velocities are given as u0 = ∂ψ0/∂y and v0 = −∂ψ0/∂x) asµ
∂

∂t
+ U

∂

∂x

¶
∇2ψ0 − d

2U

dy2
∂ψ0

∂x
= 0 , (4.8)

where ∇2 = (∂2/∂x2 + ∂2/∂y2). Since the main concern here is to show general criteria for

the absolute and convective instabilities of the flow, the so-called normal-mode analysis is

employed in this study, i.e., ψ0 is expressed in the form of complex normal modes as

ψ0(x, y, t) = φ(y) exp [ik(x− ct)] , (4.9)

where k = kr + iki and c = cr + ici denote the complex wave number and wave velocity,

respectively. The complex frequency, ω = ωr + iωi, is given by ω = kc = (krcr − kici) +
i(krci+kicr). It should be noted that ωi physically means the exponential growth rate of the

disturbance wave in time. Substituting Eq. (4.9) into Eq. (4.8) finally leads to the well-known

Rayleigh equation (see, e.g., Drazin and Reid 1981):

(U − c)
Ã
d2φ

dy2
− k2φ

!
− d

2U

dy2
φ = 0 , (4.10)

which, together with the boundary conditions

φ = 0 at y = −H and +∞ , (4.11)

defines the stability eigenvalue problem to be numerically solved in this study [the dispersion

relation is described as F(k, c) = 0, or alternatively F(k,ω) = 0, and the corresponding

non-trivial solution φ(y) is the eigenfunction].

The determination of whether the local velocity profile U(y) is absolutely or convectively

unstable can be made by examining the branch-point singularities of the dispersion relation

for k and ω based on the Briggs-Bers criterion (Briggs 1964; Bers 1983). Specifically, the flow

is found to be absolutely unstable (i.e., there exist unstable modes travelling upstream) if at

least one of the branch-point singularities that satisfy the so-called pinching requirement is

in the upper half of the complex ω plane [i.e., ω0i > 0, where the superscript 0 indicates the

zero group velocity; see, e.g., Huerre (2000) for a further description]. This can be confirmed

by mapping the dispersion relation ω(k) for constant kr and ki on the complex ω plane, or

equivalently k(ω) for constant ωr and ωi on the complex k plane, as will be shown later in

Section 4.4.
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As concerns numerical methods employed in this study, the standard fourth-order Runge-

Kutta method was used to numerically integrate Eq. (4.10), and Muller’s iterative method

(see, e.g., Press et al. 1992) was used to find complex eigenvalues satisfying the boundary

conditions of Eq. (4.11). The whole procedure was repeated a number of times in order to

map the dispersion relation k(ω) for each set of parameters (N , Ug, Uc, and H) and thereby

to obtain the boundaries between the absolute and convective instabilities. All computations

were performed using MATLAB (The MathWorks, Inc. 2002).

4.4 Results and discussion

In this section, the results of the stability analysis are presented. Firstly, in Section 4.4.1, the

analysis is applied to local wake profiles in a free stream to validate the analysis procedure.

Secondly, in Section 4.4.2, the analysis is applied to local wake profiles in ground effect. Then,

in Section 4.4.3, the analysis is compared with the experimental results to discuss the link

between the local stability characteristics and the global onset/cessation of the von Kármán-

type vortex shedding in ground effect. Finally, in Section 4.4.4, the analysis is compared

with the CFD results to re-examine the possible explanation of the ‘delayed’ cessation of the

vortex shedding in URANS simulations discussed in Chapter 3.

4.4.1 Local instability characteristics of wakes in a free stream

In order to validate the analysis procedure, it was first applied to local wake profiles in a free

stream (i.e., Ug/U∞ = 1 and H/B = ∞), which were originally investigated by Monkewitz
and Nguyen (1987). For these symmetric wake profiles, two types of modes exist, namely the

sinuous (or Kármán) and varicose modes, where the eigenfunction φ(y) takes the forms of

even and odd functions about the origin y = 0, respectively. It is known that only the sinuous

mode shows a sign of absolute instability for a physically realistic range of the parameters N

and Uc (Monkewitz and Nguyen 1987).

Figure 4.3 shows the dispersion relation k(ω) for the sinuous mode for the wake profile

described by Eqs. (4.1) to (4.4) with N = 1, Ug/U∞ = 1, Uc/U∞ = 0.051, and H/B =

∞. Note that the profile with the condition N = 1 corresponds to a fully-developed wake

profile, and the spatial stability of this particular profile was first investigated by Betchov

and Criminale (1966). It can be seen from this figure that, for this particular wake profile,

the branch point singularity exists at ωi ≈ 0 [and this branch point satisfies the pinching

requirement, i.e., one of the two ‘hills’ consists of k+ branches and the other consists of k−

branches in the terminology of Huerre (2000)]. Further analysis reveals that this branch point

singularity is found at ωi > 0 when Uc/U∞ < 0.051 and at ωi < 0 when Uc/U∞ > 0.051.

This means that Uc = 0.051U∞ is the critical centreline velocity of the wake, i.e., the flow is

locally absolutely unstable when Uc/U∞ < 0.051 and is locally convectively unstable when

Uc/U∞ > 0.051. This agrees with the results by Monkewitz and Nguyen (1987) and also the

results by Betchov and Criminale (1966).

The analysis was also performed on the symmetric wake profiles with N = 2, 4, 12.5, and

25, and the critical Uc/U∞ were found to be 0.089, 0.073, 0, and −0.032, respectively. This
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Figure 4.3: Dispersion relation for an unbounded wake profile (sinuous mode, N = 1,
Ug/U∞ = 1, Uc/U∞ = 0.051, H/B =∞).

also agrees with the results by Monkewitz and Nguyen (1987). It should be noted that the

wake becomes more unstable as N increases from 1 to about 2.3 but it becomes less unstable

as N further increases (Monkewitz and Nguyen 1987).

4.4.2 Local instability characteristics of wakes in ground effect

In the following, the analysis is applied to local wake profiles in ground effect (i.e., Ug and H

are now variables as well as N and Uc). Although the wake profiles are no longer symmetric,

there still exist two types of modes as the profile still possesses two inflection points: one of

them (hereafter referred to as Mode I) shows the eigenfunction φ(y) of even functions and the

other (hereafter referred to as Mode II) shows that of odd functions when H/B is sufficiently

large. Since Mode I is physically relevant to the von Kármán-type vortex shedding (Criminale

et al. 2003) and indeed shows a sign of absolute instability for a physically realistic range of

the parameters, only the results for Mode I are discussed below.

Example of the change of dispersion relation in ground effect

Figure 4.4 shows an example of the influence of the relative ground distance H/B on the

branch points of the dispersion relation (for the local wake profiles withN = 12.5, Ug/U∞ = 1,

and Uc/U∞ = 0). Here the curves labelled ‘Mode I-A’ indicate the mode that corresponds

to the sinuous mode for the unbounded wake (when H/B is sufficiently large). This can be

confirmed from ω0i → 0 as H/B →∞, which is consistent with the result by Monkewitz and
Nguyen (1987) that Uc/U∞ = 0 is the critical centreline velocity for the unbounded wake

profile with N = 12.5, as noted in Section 4.4.1. As H/B decreases to less than about 1.6,

however, another branch point with a larger ω0i → 0 value (labelled ‘Mode I-B’ in the figure)

appears on the dispersion relation. The key question here is whether this second branch point

is relevant to the stability of the wake, or in other words, whether this branch point arises

from the coalescence of upstream-propagating k+ branches and downstream-propagating k−

branches.
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Figure 4.4: Influence of H/B on the imaginary and real parts of ω at the branch points
(N = 12.5, Ug/U∞ = 1, Uc/U∞ = 0).

Figure 4.5 shows the maps of the dispersion relation for the cases with H/B = 1.7, 1.5,

and 1.3. At H/B = 1.7 [Fig. 4.5(a)], both branch points are of the so-called k+/k− type,

which can be verified from the fact that, for each branch point, one of the two hills originates

in the ki > 0 region and the other originates in the ki < 0 region. Mode I-A still has a larger

ω0i value than Mode I-B (cf. Fig. 4.4), and hence has a dominant influence on the stability

characteristics of the wake. At H/B = 1.5 [Fig. 4.5(b)], again both branch points are of the

k+/k− type, but the ω0i value of Mode I-A is now smaller than that of Mode I-B (cf. Fig.

4.4). This means that the more unstable mode is shifted from Mode I-A to Mode I-B as H/B

is reduced from 1.7 to 1.5. Of interest is that, at H/B = 1.3 [Fig. 4.5(c)], the branch point

for Mode I-A is no longer of the k+/k− type but of the k−/k− type, i.e., Mode I-A is not

relevant to the stability characteristics of the wake when H/B ≤ 1.3.
The value of ω0i for Mode I-B becomes larger than zero as H/B decreases to less than 1.5

(cf. Fig. 4.4), which physically means that the wake becomes absolutely unstable in this H/B

range. As H/B further decreases to less than about 0.95, however, ω0i for Mode I-B rapidly

decreases, and finally the state of the wake changes back to being convectively unstable

for H/B < 0.77. It should be noted that the analysis for this example was performed for
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Figure 4.5: Dispersion relation for local wake profiles (N = 12.5, Ug/U∞ = 1, Uc/U∞ =
0) with three different H/B; solid and dashed lines indicate the contours of ωi and ωr,
respectively.
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H/B ≥ 0.59, in which range the condition of U(−H) ≥ 0.99U∞ was maintained for the wake
profile with N = 12.5, and the ω0i value at H/B = 0.59 was found to be −1.09. This suggests
a strong ‘stabilizing’ effect of the nearby ground on the wake.

Absolute versus convective instability boundaries in ground effect

The main focus of the discussion is now on the transition between the absolute and convective

instabilities especially in the smaller H/B region, which was observed around H/B = 0.77

in the above example with N = 12.5, Ug/U∞ = 1, and Uc/U∞ = 0. Figures 4.6(a) and

(b) show the absolute instability boundaries in the (Uc/U∞) − (H/B) plane for different N
and for different Ug/U∞, respectively. Note that the kink of each curve around H/B = 1.5

corresponds to the turnover of the more unstable mode between Mode I-A and Mode I-B

described in the above example in Figs. 4.4 and 4.5. Also note that the range N ≥ 4 shown
here corresponds to the ‘top-hat-like’ near-wake profiles that are of interest in this study (cf.

Fig. 4.2), whereas the range 0.8 ≤ Ug/U∞ ≤ 1.2 covers almost completely the corresponding
(hypothetical) velocity-ratio range experimentally observed in the near wake region of the

cylinder in Chapter 2, as shown later in Fig. 4.9(c). For all the cases shown in Fig. 4.6, it can

Figure 4.6: Absolute instability boundaries in the (Uc/U∞)− (H/B) plane: (a) for different
N with Ug/U∞ = 1; (b) for different Ug/U∞ with N = 12.5.
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Figure 4.7: Absolute instability boundaries in the (Uc/U∞) − (Ug/U∞) plane for different
H/B (with N = 12.5).

be seen that the critical centreline velocity rapidly decreases as H/B decreases to less than

about 0.9. This again shows the strong stabilizing effect of the nearby ground on the wake;

at H/B = 0.6, for example, the wake with N = 12.5, Ug/U∞ = 1, and Uc/U∞ − 0.4 is still
within the region of convectively unstable rather than absolutely unstable, despite its strong

backflow.

Of further interest is the influence of the wake parameters N and Ug/U∞ on the results.

As concerns the influence of N , it can be seen from Fig. 4.6(a) that the profiles with smaller

N (i.e., with thicker mixing layers, cf. Fig. 4.2) are more absolutely unstable than the profiles

with larger N (i.e., with thinner mixing layers) for the range of N ≥ 4 examined here. This
tendency has already been reported by Monkewitz and Nguyen (1987) for the unbounded

wake profiles with Ug/U∞ = 1 and H/B =∞, as discussed in Section 4.4.1. For H/B ≤ 0.9,
however, there seems to be little influence of N on the stability characteristics of the wake,

even though the analysis for N = 4 was performed only for H/B ≥ 0.8 so as to maintain the
condition of U(−H) ≥ 0.99U∞ in this study.

As for the influence of Ug/U∞, only small differences can be seen in the results at H/B ≥
1.6 [cf. Fig. 4.6(b)]. At H/B ≤ 0.85, however, the figure shows an interesting trend that the
wake becomes more absolutely unstable as Ug/U∞ decreases. Figure 4.7 shows the absolute

instability boundaries in the (Uc/U∞)− (Ug/U∞) plane for H/B = 0.75, 0.8, and 0.85. It can
be seen that the most unstable Ug/U∞ range shifts towards Ug/U∞ < 1 as H/B decreases.

In other words, the wake becomes more unstable as the velocity on the ‘near-ground’ side is

slightly decreased compared with that on the ‘far-ground’ side. This interesting influence of

Ug/U∞ on the local linear stability characteristics of the wake might be related to a counter-

intuitive experimental observation by Lei et al. (1999) for a circular cylinder placed near a

fixed ground. As reviewed in Section 1.4.3, they observed that the critical gap ratio for the

onset/cessation of the von Kármán-type vortex shedding slightly decreased from 0.3 to 0.2

as the boundary layer thickness on the ground increased from 0.14 to 0.48 – this will be

discussed later in the next subsection.
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4.4.3 Global instability and Kármán vortex shedding in ground effect

In the previous subsection, the linear stability characteristics of local wake profiles in ground

effect were investigated. In summary the results showed that, when the relative ground dis-

tance H/B is small, the local linear stability characteristics of the wake are largely affected

by the parameters H/B, Uc/U∞, and Ug/U∞, but not by N . In this subsection, further in-

vestigations are performed to discuss the link between the local linear stability characteristics

and the cessation of the von Kármán-type vortex shedding in ground effect. Specifically, the

local linear stability analysis performed in the previous subsection is now applied to velocity

profiles varying in the streamwise direction so as to examine the streamwise variation of the

local stability characteristics of the wake in ground effect.

As briefly reviewed in Section 1.4.6, this type of analysis has been successful for many

types of spatially developing flows (e.g., Chen and Jirka 1997; Hammond and Redekopp 1998;

Alam and Sandham 2000; Castro 2005) since several researchers suggested in the mid-1980s

a close link between the local linear stability characteristics and the global mode selection

of the flows (Pierrehumbert 1984; Koch 1985; Monkewitz and Nguyen 1987). Among them,

Monkewitz and Nguyen (1987) proposed the initial resonance criterion for the wakes of two-

dimensional bluff bodies; that is, the global mode (i.e., the overall frequency and associated

spatial structures) of the wake is determined by the local resonance at the first streamwise

station of local absolute instability. This scenario was recently found to be the case not only in

the framework of linear stability theory but also in the theory of steep nonlinear global modes,

which was first identified in a model problem using the one-dimensional complex Ginzburg-

Landau equation by Pier et al. (1998) and was then confirmed in the context of real wake

flows governed by the Navier-Stokes equations by Pier and Huerre (2001). According to

these authors, the upstream edge or front of the region of local linear absolute instability

acts as a wavemaker to generate nonlinear waves travelling downstream and imposes its local

frequency on the global oscillation of the downstream flow. Hence the results of the linear

stability analysis presented here would still give some useful insights into the physics of the

cessation of the real (nonlinear) von Kármán-type vortex shedding in ground effect.

Approximation of experimental wake profiles by the analytical model

The streamwise variation of the wake profile to be investigated here is determined based

on the results of the earlier experiments in Chapter 2 on the circular cylinder placed near

the moving ground (at the upper-subcritical Reynolds number of 0.4 × 105 based on the
cylinder diameter d). Specifically, the local wake parameters corresponding to H/B, Uc/U∞,

and Ug/U∞ are extracted from the experimental mean velocity profiles at several streamwise

positions behind the cylinder. The influence of the parameter N is assumed to be negligible,

according to the results in Section 4.4.2 (note that only the small gap range of H/B < 0.9

is of interest here). An example of the comparison between the experimental data and the

model wake profile is shown in Fig. 4.8.

Since the real (experimental) near wake profiles have velocity overshoots on both sides

of the wake, here the parameters U∞ and Ug for the model wake profiles are determined by
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Figure 4.8: Example of a comparison of local wake profiles; open circles show the experimental
results in Chapter 2 (with end-plates at ye/d = 0, h/d = 0.2, x/d = 1) and the solid line
shows the model profile ( eU∞ = 1.381U∞, eUg = 1.400U∞, eUc = −0.172U∞, H = 0.866d,
B = 1.299d, N = 12.5).

the two local maximum velocities on each side of the wake (hereafter referred to as eU∞ andeUg), respectively. The parameter Uc, meanwhile, is determined by the minimum velocity of

the wake (hereafter referred to as eUc) rather than by the centreline velocity of the wake.
The wake width B is determined by the transverse distance between the two points where

the streamwise velocity reaches ( eUc + eU∞)/2 and ( eUc + eUg)/2, respectively. The ground
distance H is determined by the distance from the ground surface to the centreline of the two

transverse positions that define the wake width B. In addition to these extracted parameters,

a constant N of 12.5 is retained for the following analysis.

Streamwise variation of local stability characteristics in ground effect

Figures 4.9(a-c) show the streamwise variation of the local wake parameters H/B, eUc/ eU∞,
and eUg/ eU∞ extracted from the experimental mean velocity profiles behind the cylinder at

two different gap ratios of 0.2 and 0.3. Note that, in the experiments, the von Kármán-type

vortex shedding was found to be suppressed (at least in the near wake region of x/d ≤ 2.75) at
these two gap ratios (cf. Chapter 2). Also note that the figures show the variation of the wake

parameters at 1 ≤ x/d ≤ 2.75, in which region the experimental local velocity profiles showed
common characteristics (i.e., having a local maximum on each side of the wake and also a

local minimum near the centreline of the wake) and were therefore able to be approximated

by the model wake profiles in the manner described above.

It can be seen that, for both h/d cases, H/B gradually increases in the downstream

direction [Fig. 4.9(a)] since the flow is slightly deflected upward in this region. It is also

obvious that, at each streamwise position, H/B decreases as h/d decreases. Meanwhile,eUc/ eU∞ becomes increasingly negative in the downstream direction [Fig. 4.9(b)] since this
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Figure 4.9: Streamwise variation of the local stability characteristics of circular cylinder wakes
in ground effect: (a-c) local wake parameters extracted from the experimental data, and (d)
local stability characteristics calculated based on the extracted parameters.
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region corresponds to the upstream part of the large recirculation region behind the cylinder

(cf. Fig. 2.15). However, the difference in the variation of eUc/ eU∞ between the two h/d cases

appears to be very small. The velocity ratio eUg/ eU∞ also decreases as the wake develops

downstream [Fig. 4.9(c)]. This is because, on the far-ground side of the wake the ambient

fluid is entrained (i.e., momentum is supplied) as the shear layer spreads, whereas on the

near-ground side of the wake no supply of the ambient fluid is available and thus the velocity

overshoot diminishes faster than that on the far-ground side. This also explains the reason

why eUg/ eU∞ decreases faster at h/d = 0.2 than at h/d = 0.3.

Figure 4.9(d) shows the streamwise variation of ω0i calculated based on the extracted local

wake parameters shown in Fig. 4.9(a-c). Note that ω0i > 0 physically means that the wake is

locally absolutely unstable, as discussed in the previous sections. It can be seen that the state

of the (very) near wake region changes from being absolutely unstable to being convectively

unstable as the gap ratio h/d decreases. This local stabilisation in the (very) near wake region

is mainly explained by the decrease in the relative gap distance H/B shown in Fig. 4.9(a).

In the region further downstream, however, there still exists an absolutely unstable region,

the front of which is located around x/d = 1 for h/d = 0.3, and at x/d = 1.5 for h/d = 0.2.

This is largely due to the strong backflow in this region, as shown in Fig. 4.9(b).

According to Pier and Huerre (2001), this front should act as a wavemaker to generate

nonlinear travelling waves and a self-sustained global oscillation should develop downstream

of the front – this is not quantitatively consistent with the experimental observation in

Chapter 2 that the von Kármán-type vortex shedding was suppressed at these gap ratios, at

least in the region of x/d ≤ 2.75. In addition, the local frequency ω0r at the front of the locally
absolutely unstable region was found in the stability analysis to be 2.52 [rad/s] (for h/d = 0.3)

and 2.31 [rad/s] (for h/d = 0.2), which correspond to the Strouhal number (based on the

cylinder diameter d rather than on the local wake width B) of 0.31 and 0.27, respectively.

Although the corresponding experimental data (for a cylinder near a moving ground) were

not measured in this study, Bearman and Zdravkovich (1978) have reported (for a cylinder

near a fixed ground) that the frequency of the von Kármán-type vortex shedding in the near

wake region was almost constant at about 0.21 for h/d ≥ 0.3 – again some quantitative

differences exist between the experiments and the stability analysis.

These quantitative differences might be explained by the fact that the experiments in

Chapter 2 in this study [and also those by Bearman and Zdravkovich (1978)] were carried out

in the upper-subcritical Reynolds number regime, i.e., the near wake of the cylinder was fully

turbulent regardless of whether or not the von Kármán-type vortex shedding was suppressed

by the ground effect. In the stability analysis, on the other hand, the flow was assumed to

be quasi-laminar, i.e., the turbulence was assumed to affect the (organised) instability waves

only indirectly through the mean velocity profile. This assumption, however, generally leads

to only qualitatively correct results when applied to fully turbulent shear flows (Reynolds and

Hussain, 1972). Another possible cause of the differences might be the simple representation

of the velocity profile near the ground used in the stability analysis. It should be noted that,

in the experiments in Chapter 2, even though the ground was moving at the same speed as

the free stream, a very thin boundary layer still existed on the moving ground. Although the
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scale of this thin boundary layer is much smaller than that of the wake, its influence on the

stability characteristics of the wake is still unclear. Nevertheless, it may be concluded that

the present stability analysis has qualitatively indicated some fundamental mechanisms of

the cessation of the von Kármán-type vortex shedding in the near wake region of the cylinder

in ground effect.

Further comments on the stability of wakes in ground effect

Some additional comments are made below on the influence of the velocity ratio eUg/ eU∞ on

the onset and cessation of the von Kármán-type vortex shedding in ground effect. It was

shown in Section 4.4.2 that the local model wake profile becomes more absolutely unstable

as the velocity on the near-ground side (Ug) is slightly decreased compared with that on the

far-ground side (U∞) when the relative gap distance H/B is small (cf. Fig. 4.7). Here, if

we (boldly) assume that the near wake profile behind a cylinder placed near a fixed ground

(on which a boundary layer of a certain thickness exists) may also be approximated by the

model wake profile used in this study, the trend of the influence of Ug/U∞ (and thus ofeUg/ eU∞) qualitatively agrees with the counter-intuitive experimental observation by Lei et
al. (1999) that the critical gap ratio for the onset/cessation of the von Kármán-type vortex

shedding decreased as the boundary layer thickness on the ground increased. This might be

explained from the viewpoint of the stability of the wake because the flow through the gap

between the cylinder and the ground decreases (which might be considered to correspond to

a slight decrease in eUg/ eU∞ and to make the wake more unstable) when the boundary layer

thickness increases. In other words, as the boundary layer thickness on the ground increases

the so-called ‘effective’ gap ratio might be considered to decrease, but in a way such thateUg/ eU∞ decreases [like that described in Fig. 4.9(c)] and not such that H/B decreases [like

that described in Fig. 4.9(a)].

4.4.4 Re-examination of the instability of wakes in CFD

Before concluding this chapter, the discussion on the ‘delayed’ cessation of the von Kármán-

type vortex shedding in the URANS simulations in Chapter 3 is re-examined. Specifically,

the series of investigation on the stability of wakes performed above is now applied to the

wake profiles predicted by the DES and 3D S-A URANS simulations.

Figures 4.10(a-c) show the streamwise variation of the wake parameters H/B, eUc/ eU∞ andeUg/ eU∞ extracted from the mean wake profiles predicted by the DES and 3D S-A URANS

at h/d = 0.1 (Re = 0.4 × 105). Note that, at this smallest gap ratio, not only the DES but
also the URANS captured the cessation of the vortex shedding due to the strong influence

of the nearby ground (cf. Chapter 3). As briefly discussed in Chapter 3, clear differences of

the mean wake profiles can be seen between the DES and URANS simulations. The URANS

yielded larger H/B in the near wake region compared to the DES [Fig. 4.10(a)] basically

because the URANS predicted a narrower wake compared to the DES (cf. Fig. 3.20). Also

the backflow predicted in the URANS is stronger than that predicted in the DES in the (very)

near wake region of x/d ≤ 1.8 [Fig. 4.10(b)], although this trend is reversed at x/d ≥ 1.9 as
the recirculation region predicted by the URANS is shorter than that predicted by the DES
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Figure 4.10: Streamwise variation of the local stability characteristics of circular cylinder
wakes in the DES and 3D S-A URANS simulations: (a-c) local wake parameters extracted
from the simulation data, and (d) local stability characteristics calculated based on the ex-
tracted parameters.
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(cf. Fig. 3.20). Another remarkable difference can also be seen in the velocity ratio eUg/ eU∞
[Fig. 4.10(c)], which also contributes to the difference of the stability of the wakes predicted

by the DES and URANS simulations.

Figure 4.10(d) shows the streamwise variation of ω0i calculated based on the extracted

local wake parameters shown in Figs. 4.10(a-c). The results clearly show that the near wake of

the cylinder predicted by the URANS is more (inviscidly) unstable than that predicted by the

DES, as was predicted from the visual comparison of the velocity profiles in Chapter 3. Also

the results indicate that the wakes predicted by both DES and URANS are still convectively

unstable rather than absolutely unstable in the near wake region, which qualitatively agrees

with the cessation of the von Kármán-type vortex shedding predicted at this smallest gap

ratio. Although the analysis using the CFD results was performed only for this gap ratio

[because this is the only gap ratio at which both DES and URANS predicted the cessation

of the von Kármán-type vortex shedding; note that this type of stability analysis should be

applied to basis flow profiles that have not been altered by the instability to be investigated

(Hannemann and Oertel 1989)], the results shown here qualitatively support the discussion

in Chapter 3, i.e., the ‘delayed’ cessation of the von Kármán-type vortex shedding in the

URANS simulations is due to the excessively unstable wake profiles predicted.

4.5 Conclusions

In this chapter, the local and global stability characteristics of the wakes of general two-

dimensional bluff bodies placed near and parallel to a ground were investigated by using an

inviscid, linear, normal-mode stability analysis.

The analysis was first applied to the four-parameter (i.e., N , Uc/U∞, Ug/U∞, and H/B)

family of local velocity profiles, which was proposed in this study as an extended version

of the two-parameter symmetric near wake model by Monkewitz and Nguyen (1987) and

Monkewitz (1988), to investigate the fundamental local linear stability characteristics of the

wakes in ground effect. For H/B < 0.9 (roughly corresponding to h/d < 0.4, in which range

the onset/cessation of the von Kármán-type vortex shedding was found to take place for

the case of a circular cylinder), the local wake profiles were found to become more unstable

when the relative centreline velocity (Uc/U∞) decreases, and also when the relative ground

distance (H/B) increases. In addition, the wake was found to become more unstable when

the velocity on the near-ground side (Ug) is slightly smaller than that on the far-ground side

(U∞) [cf. Fig. 4.7]. The influence of the shape factor (N) of the wake, however, was found to

be very small in this H/B range.

The analysis was then compared with the experiments on a circular cylinder in ground

effect in Chapter 2 to discuss the global instability of the wake in ground effect. Specifically,

the analysis was applied to the model wake profiles with the parameters corresponding to

H/B, Uc/U∞, and Ug/U∞ extracted from the experimental mean velocity data at several

streamwise positions behind the cylinder. The streamwise variation of the local linear stability

characteristics of the wake was then examined based on the transition scenario of ‘steep

global modes’ by Pier and Huerre (2001). The results indicated that the very near wake of
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the cylinder changes from being absolutely unstable to being convectively unstable when the

cylinder comes close to the ground. This seems qualitatively consistent with the transition

scenario of the global mode for general wake-type flows, i.e., the cessation of the von Kármán-

type vortex shedding in the near wake region of the cylinder in ground effect may also be

explained by the change of the near wake from being absolutely unstable to being convectively

unstable, in analogy with the case for a cylinder equipped with a backward splitter plate.

The quantitative agreement between the experiments and the stability analysis, however,

was not good: the upstream edge of the absolutely unstable region was found in the stability

analysis to be around x/d = 1 when h/d = 0.3 and x/d = 1.5 when h/d = 0.2, whereas in the

experiments in Chapter 2 the von Kármán-type vortex shedding was found to be suppressed

at least in the region of x/d ≤ 2.75 at these gap ratios.
The analysis was also compared with the CFD results on a circular cylinder in ground

effect in Chapter 3 to re-examine the discussion on the ‘delayed’ cessation of the von Kármán-

type vortex shedding in the URANS simulations. The results indicated that the near wake

profiles predicted by the URANS were more (inviscidly) unstable than those predicted by the

DES, supporting the earlier discussion in Chapter 3 that the ‘delayed’ cessation of the vortex

shedding in the URANS was due to the excessively unstable wake profiles predicted.

Finally, the following point should be mentioned once again. In the stability analysis in

this study, the flow was assumed to be inviscid and quasi-laminar. This means that, when

the analysis is applied to the mean velocity profiles of turbulent flows, the turbulence is

assumed to affect the organised instability waves only indirectly through the mean velocity

profiles. This assumption, unfortunately, resulted in the quantitative disagreement between

the analysis and the experiments. Nevertheless, the qualitative agreement obtained between

them suggests that, even when the flow is fully turbulent, the organized instability waves of

inviscid or inflectional type indeed play key role in the onset/cessation of the von Kármán-

type vortex shedding in ground effect. What should be noted here is that this interpretation

is also consistent with the ‘delayed’ cessation of the vortex shedding in the ‘overly dissipative’

URANS simulations, i.e., the excessively large eddy viscosity yielded by the URANS does not

necessarily promote the cessation of the vortex shedding. It may therefore be concluded that

the cessation of the vortex shedding in ground effect is triggered mainly by the change in the

stability characteristics of inviscid type in the near wake region rather than that of viscous

type, even though the turbulence still significantly affects the inviscid stability characteristics

through the mean velocity profiles of the wake.
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Chapter 5

POD Analysis of
the Wake of a Circular Cyinder
in Ground Effect

5.1 Introduction

The proper orthogonal decomposition (POD) method has attracted the attention of many

researchers during the last two decades in the context of active feedback flow control (Moin

and Bewley 1994). One of the biggest challenges in the development of feedback flow control

systems is to reduce the huge amount of information about the flow to be controlled, and

the POD can be used for this purpose, i.e., to extract only the (energetically) dominant flow

structures as spatial basis functions, or modes, and to build a ‘low-dimensional’ or ‘reduced-

order’ model of the flow to be controlled (Holmes et al. 1996).

In this chapter, the POD is applied to the near-wake field data of a circular cylinder in

ground effect obtained by the PIV measurements in Chapter 2 and also those obtained by

the numerical simulations in Chapter 3. As mentioned in Section 1.4.7, the vortical wake of

a cylinder is a typical example of unsteady flows to which the POD-based low-dimensional

feedback control may be applied (Gillies 1998; Cohen et al. 2003; Bergmann et al. 2005), but

the effectiveness of such low-dimensional control of the wake has been confirmed only in the

laminar flow regime so far. It has been reported that the turbulent wake of a cylinder (in a

free stream) may also be well-represented by a small number of POD modes (Ma et al. 2000;

van Oudheusden et al. 2005), but it is still unclear whether this is still the case when the

turbulent vortex shedding is being controlled or suppressed. Of interest here is that the wake

of a cylinder in ground effect gives a good example of the turbulent vortex shedding that is

being suppressed. That is to say, the POD of the cylinder wake in ground effect, especially in

the intermediate gap regime where the vortex shedding becomes intermittent, might provide

an illustration of the capability of the low-dimensional POD basis to capture the onset and

cessation of turbulent vortex shedding. The results presented in this chapter may therefore

be useful for the possible future application of the POD-based low-dimensional techniques to

the control of turbulent vortex shedding, even though the development of practical control

systems is outside the scope of the present study.

In the following, the details of the POD analysis are described in Section 5.2, and the
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results of the analysis are presented in Section 5.3. The results are presented for four different

gap ratios (h/d) of 0.6, 0.4, 0.3 and 0.2, and a single Reynolds number of 0.4× 105. Finally,
a concluding summary is given in Section 5.4.

5.2 Snapshot POD method

The proper orthogonal decomposition (POD), also known as Karhunen-Loève transform, is

a procedure that decomposes multi-dimensional data into a linear combination of a finite

number of orthogonal functions. In the context of fluid flow fields (and also other spatio-

temporal fields), the POD is usually used to decompose the field into the so-called spatial

basis functions (or POD modes) and time-dependent modal coefficients. For example, a

time-dependent velocity field ~u(~x, t) is decomposed as

~u(~x, t) = ~U(~x) + ~u0(~x, t) = ~U(~x) +
MX
i=1

ai(t)~φi(~x) , (5.1)

where ~U(~x) and ~u0(~x, t) are the mean and fluctuating parts of the velocity, respectively, ai(t)

are the time-dependent modal coefficients, and ~φi(~x) are the spatial basis functions. The

basis functions obtained by the POD are ‘optimal’ (compared to other linear representations

such as a Fourier series) in the sense that the averaged projection of the original field onto

the basis functions is maximised. It is due to this optimality that the POD is a logical and

efficient way to build a low-dimensional basis that captures the energetically dominant flow

features [see e.g., Holmes et al. (1996) for further description].

The present study employs the snapshot POD method, which was proposed by Sirovich

(1987) in order to reduce the huge computational costs required to calculate the basis func-

tions ~φi(~x) and the modal coefficients ai(t) by the original (or classical) POD procedure. In

the snapshot POD method the modal coefficients ai(t) are calculated, in a discrete form of

aki with k indicating a time instant t = tk, as the elements of the eigenvectors of the following

eigenvalue problem:

Caki = λia
k
i , (5.2)

where C is the two-time covariance matrix (of the size N×N) with its elements Cpq computed
from N sets of snapshots of the flow (i.e., instantaneous velocity field data) as

Cpq =
1

N

Z
Ω

~u0(~x, tp) · ~u0(~x, tq) d~x , (5.3)

and then ~φi(~x) can be obtained from the modal coefficients a
k
i and the instantaneous velocity

field data as

~φi(~x) =
NX
k=1

aki
~u0(~x, tk) . (5.4)

Note that the eigenvalues λi calculated from Eq. (5.2) are in proportion to the average

kinetic (or fluctuating) energy of each mode; thus, sorting ~φi(~x) in order of decreasing the

corresponding eigenvalues (i.e., λi ≥ λi+1 for i = 1 to N − 1) reveals the energetically
dominant modes. The value of λn/

PN
i=1 λi then represents the proportion of the kinetic
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energy contained in the n-th dominant mode relative to the total kinetic energy of the flow.

Hence the original instantaneous velocity field at a certain time instant t = tk may be

approximately reproduced from only the first n sets of ~φi(~x) coupled with the corresponding

modal coefficients aki , by using Eq. (5.1) with M = n, if the majority of the kinetic energy of

the flow is contained in the first n modes.

5.3 Results and discussion

In this study, the snapshot POD method described above was first applied to 400 samples

(i.e., N = 400) of the earlier PIV data in Chapter 2 for each h/d case of 0.6, 0.4, 0.3 and 0.2

(with end-plates at ye/d = 0, Re = 0.4× 105). The near-wake region in which the snapshot
POD was applied to the PIV data is illustrated in Fig. 5.1 for the case of h/d = 0.6. As

described in Chapter 2, the 400 samples were continuously recorded for each h/d case but

with a much lower sampling rate of 2 Hz compared to the frequency of the large-scale vortex

shedding of about 30 to 40 Hz. These samples can therefore be considered as independent

instantaneous data.

Then the snapshot POD was also performed on 100 instantaneous data (i.e., N = 100)

obtained from the DES and 2D S-A URANS simulations in Chapter 3 (Re = 0.4× 105). For
the DES, only two-dimensional velocity data at the mid-span of the computational domain

were used here for the purpose of comparison with the PIV results. For both DES and

URANS, however, the snapshot POD was performed on a larger area compared to that for

the PIV (cf. Fig. 5.1). The 100 instantaneous data from the DES were sampled over about

five vortex-shedding cycles, whereas those from the 2D S-A URANS were sampled within one

vortex-shedding cycle since the shedding motion predicted by the 2D S-A URANS was fully

periodic in time, as discussed in Chapter 3.

The snapshot POD procedure in this study, including the eigenvalue/eigenvector com-

putation defined by Eq. (5.2), was performed using MATLAB (The MathWorks, Inc. 2002).

All velocity data were non-dimensionalised by the free-stream velocity U∞ before the POD

procedure.

Figure 5.1: Near wake region to which the snapshot POD was applied (h/d = 0.6).

100



Figure 5.2: Relative kinetic energy (λn/
PN
i=1 λi) for the first four POD modes.

5.3.1 Relative kinetic energy distribution

Figure 5.2 shows the relative kinetic energy values (λn/
PN
i=1 λi) for the first four dominant

modes calculated from the PIV results (h/d = 0.2 to 0.6). Those calculated from the DES

and URANS results are also shown here for the purpose of comparison (h/d = 0.6). Note

that the 400 PIV samples used here are sufficient (in the statistical sense) to obtain reliable

information on at least these dominant modes; the influence of the number of PIV samples

on the relative kinetic energy values for these four modes is shown in Fig. 5.3 for each gap

ratio case. The convergence of the results is not perfect but reasonably acceptable. Also the

cumulative kinetic energy values (
Pn
i=1 λi/

PN
i=1 λi) for the first n modes are summarised in

Table 5.1 for reference.

For the results from the PIV data, a clear difference of the relative kinetic energy distri-

bution can be seen between the large-gap (h/d = 0.6, where the large-scale von Kármán-type

vortex shedding was continuously observed behind the cylinder) and the small-gap (h/d = 0.3

and 0.2, where the vortex shedding was suppressed) cases. At h/d = 0.6, the first two modes

are energetically dominant; in the time-averaged sense, more than 60% of the total kinetic en-

ergy of the wake is contained within these two modes. This tendency is similar to that for the

Table 5.1: Cumulative kinetic energy (
Pn
i=1 λi/

PN
i=1 λi) for the first n modes.

PIV PIV PIV PIV DES 2D S-A
h/d = 0.2 h/d = 0.3 h/d = 0.4 h/d = 0.6 h/d = 0.6 h/d = 0.6

n = 1 0.1599 0.1511 0.2659 0.3185 0.2961 0.4824
2 0.2486 0.2488 0.4464 0.6274 0.5855 0.9158
3 0.2993 0.3016 0.5943 0.6584 0.6217 0.9482
4 0.3397 0.3416 0.6314 0.6866 0.6516 0.9746
5 0.3768 0.3774 0.6589 0.7117 0.6781 0.9855
6 0.4090 0.4094 0.6811 0.7319 0.7029 0.9952

10 0.5020 0.5052 0.7409 0.7899 0.7695 0.9993
20 0.6312 0.6364 0.8186 0.8590 0.8599 1.0000
30 0.7034 0.7087 0.8581 0.8942 0.9068 1.0000
40 0.7543 0.7572 0.8846 0.9154 0.9374 1.0000
50 0.7919 0.7932 0.9039 0.9299 0.9582 1.0000

100 0.8924 0.8925 0.9530 0.9668 1.0000 1.0000
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Figure 5.3: Convergence of the relative kinetic energy (λn/
PN
i=1 λi) calculated from N sam-

ples of the PIV data for the first four POD modes.
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turbulent wake of a circular cylinder in a free stream (Ma et al. 2000). At h/d = 0.3 and 0.2,

however, only 25% of the total kinetic energy is contained within the first two modes as the

dominant large-scale vortex shedding motion is suppressed in the near wake region. Of inter-

est here is that, another type of energy distribution can be observed in the intermediate-gap

case (h/d = 0.4, where the large-scale vortex shedding was intermittent behind the cylinder).

In this case, the first three modes are energetically dominant; about 60% of the total kinetic

energy is contained within these three modes.

Another interesting trend can be seen in the results obtained from the DES and URANS

data at h/d = 0.6, where both simulations predicted the von Kármán-type vortex shedding

behind the cylinder. As can be seen from Fig. 5.2 and also from Table 5.1, the energy

distribution calculated from the DES results is quite similar to that from the PIV data

described above – about 60% of the total kinetic energy is contained within the first two

modes – despite the different number and area size of the samples analysed. Meanwhile, the

energy distribution calculated from the URANS results is rather different from that from the

PIV and DES results. More than 90% of the kinetic energy was found to be in the first two

modes, since the URANS simulations are ‘overly dissipative’ and cannot capture small-scale

turbulent structures, as discussed in Chapter 3. In fact, this high occupancy rate incorrectly

predicted by the URANS is close to that for the laminar wake of a circular cylinder in a

free stream (Deane et al. 1991), where more than 97% of the kinetic energy was found to be

within the first two modes.

5.3.2 Spatial basis functions

In the following, the characteristics of the POD modes/coefficients calculated from the PIV

results are examined in more detail. Figure 5.4 shows the contours of the streamwise velocity

component of the spatial basis functions (φx,n) for the first three modes for each gap ratio

case. At h/d = 0.6, the spatial patterns for the first two modes appear similar to those for

the turbulent wake of a circular cylinder in a free stream (Ma et al. 2003). The patterns are

clear and almost symmetric, indicating that the influence of the existence of the ground is

not significant and the von Kármán-type vortex shedding is still dominant at this gap ratio.

As first reported by Deane et al. (1991) for the laminar wake of a cylinder in a free stream,

the von Kármán-type, alternating vortex shedding motion can mostly be reproduced from

the combination of these two dominant modes.

Such an almost symmetric pattern corresponding to the von Kármán-type vortex shedding

can also be seen at h/d = 0.4, but only in the second mode [Fig. 5.4(b)]. The patterns for the

first and third modes are also relatively clear, but are less symmetric and somewhat elongated

in the streamwise direction. As will be demonstrated later, both shedding and non-shedding

states intermittently observed at this intermediate gap ratio can roughly be reproduced by

the combination of these three dominant modes. Meanwhile, no such dominant patterns can

be seen in the first three modes at h/d = 0.3 and 0.2 [Figs. 5.4(c) and (d)] as the large-scale

vortex shedding is suppressed at these gap ratios. It should also be noted that the spatial

patterns for the first three modes are quite similar between h/d = 0.3 and 0.2.
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Figure 5.4: Contours of the streamwise velocity component (φx,n) for the first three POD
modes.

5.3.3 Time-dependent modal coefficients

Figure 5.5 shows the plots of the time-dependent modal coefficients for the first three modes

for each gap ratio case. Specifically, the 400 pairs of the modal coefficients (aki , a
k
j ), where

k = 1 to 400, are plotted for (i, j) = (1, 2), (1, 3) and (2, 3) in each subfigure.

At h/d = 0.6, a certain relation can be seen between the first two modes, i.e., the plots

roughly show a circular orbit with the centre at (a1, a2) = (0, 0). It should be noted that, for

the laminar von Kármán-type vortex shedding in a free stream, the values of (a1)
2+(a2)

2 are

constant as a1 and a2 fluctuate with the same amplitude, the same frequency, and a phase

difference of 90 degrees (Deane et al. 1991). Hence the relation between the first two modes
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Figure 5.5: Correlation of the modal coefficients (an) for the first three POD modes.
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observed above again shows that the turbulent vortex shedding at h/d = 0.6 is indeed of the

von Kármán-type. The relations for (i, j) = (1, 3) and (2, 3), however, are not clear since the

third mode is ‘noisy’ due to the background turbulence motions.

Of interest is that, at h/d = 0.4, a different type of relation can be seen between the

first three modes [Fig. 5.5(b)]. It can be seen that a1 and a3 show a clear correlation when

a2 is close to zero, and also that the relation between a1 and a2 looks quite similar to that

between a3 and a2. As will be presented in the next section, the relation between these three

dominant modes is closely related to the intermittency of the large-scale vortex shedding; the

shedding states can roughly be reproduced by the combination of these three modes, whereas

the non-shedding states can roughly be reproduced by the combination of only the first and

third modes, i.e., with a2 ≈ 0.
At h/d = 0.3 and 0.2 [Figs. 5.5(c) and (d)], no correlation can be seen between the first

three modes, as the large-scale periodic vortex shedding is suppressed at these gap ratios.

5.3.4 Reproduction of instantaneous flow fields

It was shown in Section 5.3.1 that, in the time-averaged sense, about 60% of the total kinetic

energy of the wake was contained only in the first two or three modes when the large-scale von

Kármán-type vortices were continuously (h/d = 0.6) or intermittently (h/d = 0.4) generated

behind the cylinder. The crucial question here, however, is whether these limited numbers

of POD modes are indeed sufficient to describe the major dynamic features of the wake,

which would be the minimum requirement for the possible future application of POD to the

low-dimensional control of turbulent vortex shedding. To examine this, in the following some

instantaneous flow fields behind the cylinder are reproduced from the combination of limited

numbers of POD modes [using Eq. (5.1) with the calculated modal coefficients aki ] and then

compared with the original PIV data.

Figure 5.6 shows comparisons between the original instantaneous PIV data and the cor-

responding instantaneous velocity data reproduced from the first three and fifty POD modes

(i.e., M = 3 and 50) at h/d = 0.6. Note that Figs. 5.6(a) and (b) show an example of the

comparison, and Figs. 5.6(c) and (d) show another example of the comparison. Also note

that Figs. 5.6(a) and (c) compare the velocity vector plots behind the cylinder, whereas Figs.

5.6(b) and (d) compare the instantaneous streamwise velocity contours behind the cylinder.

It can be seen from these figures that the first three POD modes roughly capture the main

feature of the large-scale vortex shedding, although the details of the vortex structures are

more precisely reproduced by increasing the number of the modes from 3 to 50. The time-

dependent modal coefficients for the first three modes are (a1, a2, a3) = (0.038, 0.057,−0.064)
at the moment of Figs. 5.6(a) and (b), and (a1, a2, a3) = (−0.069,−0.023,−0.010) at the
moment of Figs. 5.6(c) and (d), respectively.

Of further interest are the results at h/d = 0.4, at which the large-scale vortex shedding

becomes intermittent in the near wake region. Figure 5.7 shows the comparisons between the

original PIV data and the corresponding data reproduced by the POD modes at h/d = 0.4.

Note that Figs. 5.7(a) and (b) show an example for the (temporarily) shedding states, and

Figs. 5.7(c) and (d) show another example for the (temporarily) non-shedding states. It can
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Figure 5.6: Reproduction of instantaneous flow fields based on the first three and fifty POD
modes (PIV, h/d = 0.6); (a, b) an example at t = t0, (c, d) another example at t = t0 + 0.5
second.
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Figure 5.7: Reproduction of the intermittency of the large-scale vortex shedding based on the
first three and fifty POD modes (PIV, h/d = 0.4); (a, b) shedding state, (c, d) non-shedding
state.
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be seen that the first three POD modes roughly capture the intermittency of the large-scale

vortex shedding at this intermediate gap ratio. The time-dependent modal coefficients for

the first three modes are (a1, a2, a3) = (−0.097, 0.072,−0.043) at the moment of Figs. 5.7(a)
and (b), and (a1, a2, a3) = (0.039,−0.004,−0.032) at the moment of Figs. 5.7(c) and (d),
respectively.

As concerns the non-shedding states [Figs. 5.7(c) and (d)], however, the details of the

small-scale vortices due to the shear layer instability cannot be captured even by the fifty

modes, since these small-scale vortices are less energetic than the large-scale vortices and are

therefore captured only by the modes of much lower levels. This difficulty comes primarily

from the fact that the information of two different types of flow states (i.e., shedding and

non-shedding) is contained in a single set of POD modes at this intermediate gap ratio. This

problem is closely related to the discussion on the robustness of the POD basis for real flow

control problems (Bergmann et al. 2005), which is outside the scope of the present study.

Nevertheless, the capability of the single set of POD modes (of only the first three levels)

to capture the main features of both shedding and non-shedding states demonstrated here is

promising for the possible future application of the POD-based low-dimensional techniques

to the control of turbulent vortex shedding.

5.4 Conclusions

In this chapter, the snapshot POD analysis was performed on the experimental and com-

putational data described in Chapters 2 and 3 for the turbulent near wake of the circular

cylinder in ground effect. The POD eigenvalues calculated from the PIV data showed that,

in the near wake region, about 60% of the total kinetic energy was contained only in the first

two modes when h/d = 0.6, and in the first three modes even when h/d = 0.4 (at which

the large-scale shedding was intermittent). The eigenvalues calculated from the DES data

showed a good agreement with those from the PIV data, but the results from the 2D S-A

URANS showed a large discrepancy from the PIV and DES results.

The spatial basis functions and time-dependent modal coefficients calculated from the

PIV data were then examined in detail. In particular, an interesting correlation was found

between the first three dominant modes at h/d = 0.4. It was also demonstrated that, at this

intermediate gap ratio, the main features of both vortex shedding and non-shedding states in

the near wake region could be successfully reproduced from the combination of these three

POD modes. Although the details of the small-scale vortices were not clearly captured even

by the first fifty POD modes, the results obtained in this study are promising for the possible

future application of the POD-based low-dimensional techniques to the control of turbulent

vortex shedding, for which the first requirement is to properly capture the large-scale motion

rather than the small-scale motion.

For the realization of such low-dimensional flow control systems, however, there are still

several issues to be resolved. One of the most significant would be the (real-time) estimation

of the modal coefficients ai for the flow field to be controlled. In this study the original flow

field was ‘reproduced’ from the spatial basis functions ~φi(~x) and also the time-dependent
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modal coefficients ai(t), both of which were obtained from the existing samples of the flow

field. In the case of feedback flow control, however, the time-dependent modal coefficients

need to be ‘estimated’ from the (rather limited) real-time data of the flow field. A possible

solution to this issue is to use the linear stochastic estimation (LSE); Bonnet et al. (1994)

reported, for an axisymmetric turbulent jet and also a two-dimensional turbulent mixing

layer, that the POD modal coefficients were successfully estimated from the LSE with limited

instantaneous velocity data measured on coarse hot-wire grids. More recently, Pinier et al.

(2007) demonstrated that turbulent flow separation from the upper surface of an inclined

airfoil could be effectively controlled with the POD modal coefficients estimated only from

limited instantaneous pressure data on the airfoil surface by using a modified version of the

LSE. Similar techniques might therefore be applicable to the control of the turbulent wake

of general bluff bodies; further investigations are needed on this issue.
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Chapter 6

Conclusions

In this chapter, a concluding summary of the study is presented. The achievements of the

study are summarised in Section 6.1, followed by some recommendations for future research

in Section 6.2. The objective of this chapter is to review the most important parts of the

study in the context of past (and also possible future) studies in this research field, rather

than to reiterate the whole results summarised in the concluding part of each chapter.

6.1 Summary of achievements

In this study, a combined experimental, computational and theoretical investigation was per-

formed on flow past a circular cylinder placed near and parallel to a moving ground – one

of the most fundamental flow configurations that accompany an important fluid-dynamic

problem of (turbulent) vortex shedding and its suppression behind bluff bodies. The basic

philosophy of the study was to obtain systematic knowledge about this fundamental but still

unresolved flow system, and thus to contribute to a better understanding of the physics of

general bluff body flows as well as to the development of a variety of engineering applications.

To make a meaningful contribution, an extensive literature survey was conducted in advance,

which was summarised as a part of the introduction of the thesis in Chapter 1.

In Chapter 2, the flow was experimentally investigated. One of the most crucial points of

this experimental study was the use of the moving ground facility in the wind tunnel, which

provided an ideal condition for observing the fundamental physics or essence of the ground

effect, i.e., the effect of the nearby ground itself with (practically) no influence of the boundary

layer on the ground. The outcome was more striking than expected; the drag coefficient of

the cylinder (with end-plates) decreased as the gap ratio h/d decreased to less than 0.5 but

became constant for h/d of less than 0.35, unlike the gradual drag reduction observed in the

earlier experiments for a cylinder near a fixed ground (cf. Fig. 2.6). The subsequent PIV

measurements showed that the critical drag reduction of the cylinder was directly related to

the cessation of von Kármán-type vortex shedding in the near wake region. Also revealed

by the PIV measurements was that the von Kármán-type vortex shedding could indeed be

suppressed even when the ground was moving and hence the flow through the gap between

the cylinder and the ground was not blocked at all. This clearly demonstrated that the direct

interference between the cylinder and the boundary layer on the ground, which was observed
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by many researchers in the earlier studies using a fixed ground, was not the only reason for

the cessation of von Kármán-type vortex shedding in ground effect – this finding triggered

the further discussion based on the linear stability analysis in Chapter 4.

In Chapter 3, the flow was numerically investigated using LES, DES, and URANS simu-

lations. The main objective of the numerical study in this chapter, however, was to critically

examine whether these state-of-the-art numerical simulations can indeed be used to predict

this type of bluff body flow, rather than to study the physics of the flow simulated. One of

the important conclusions was that a good/reasonable level of grid-convergence was achieved

in the URANS/DES, the computational costs of which were acceptable, whereas no satisfac-

tory grid-convergence was achieved in the LES performed on the same set of grids. Further

investigation showed that the DES correctly predicted the cessation of the von Kármán-type

vortex shedding (and the attendant drag reduction of the cylinder) in ground effect, suggest-

ing the promise of DES for this type of bluff body flow. Meanwhile, the URANS showed

some discrepancies with the experiments and the DES, but in such a way that the cessation

of the vortex shedding was delayed (i.e., the vortices incorrectly survived until the cylinder

came much closer to the ground), contrary to the general view in today’s CFD that vortices

should tend to be suppressed when the predicted flow is overly dissipative. The comparison

between the DES and URANS results clearly demonstrated that the accuracy of prediction

of the onset/cessation of large-scale vortex shedding cannot be simply or directly linked with

differences in the global level of eddy viscosity predicted, and this finding also triggered the

discussion based on the linear stability analysis in Chapter 4.

In Chapter 4, the mechanisms of the cessation of the von Kármán-type vortex shedding

in ground effect were further investigated by using a linear, normal-mode stability analysis.

The flow investigated in this chapter, however, was slightly different from that studied in

the previous two chapters in the sense that it was assumed to be inviscid and quasi-laminar.

Also, in contrast to the previous two chapters, this chapter focused on the wake of not only

a circular cylinder but general two-dimensional bluff bodies in ground effect. The analysis

was first applied to an analytical, four-parameter family of local velocity profiles, which was

proposed in this study as an extended version of the two-parameter symmetric wake model

by Monkewitz and Nguyen (1987). The results revealed the influence of the parameters of

the local wake profiles on their absolute versus convective instability characteristics, which

provided new fundamental knowledge, or a basis, for the study of two-dimensional wakes in

ground effect. The local linear analysis was then compared with the experiments and numer-

ical simulations in the previous two chapters, in line with the transition scenario of ‘steep

nonlinear global modes’ by Pier and Huerre (2001). Although the quantitative agreement

was not obtained due to the several assumptions applied in the analysis, the comparison in-

dicated that the cessation of the von Kármán-type vortex shedding in ground effect may also

be largely explained by the change of inviscid instability characteristics of the near wake from

being absolutely unstable to being convectively unstable. This also explained the possible

reason for the delayed cessation of the vortex shedding in the URANS solutions in Chapter 3,

i.e., the wakes predicted by the URANS were more (inviscidly) unstable than those predicted

by the DES.
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In Chapter 5, the near wake structure of the cylinder in ground effect was further inves-

tigated by applying the snapshot POD method to the PIV data in Chapter 2 (and also to

the CFD data in Chapter 3 for comparison). The purpose of this additional investigation,

however, was not just to analyse the near wake structure in more detail but also to demon-

strate the capability of the low-dimensional POD basis to capture the onset/cessation of the

turbulent vortex shedding in ground effect. At h/d = 0.6, about 60 % of the total kinetic

energy in the near wake region (in the time-averaged sense) was found to be contained only

in the first two POD modes. The spatial functions for these two POD modes were similar to

those for the wake of a cylinder in a free stream, indicating that the influence of the ground

was not significant and the von Kármán-type vortex shedding was still energetically domi-

nant at this gap ratio. Of particular interest were the results at h/d = 0.4, at which the von

Kármán-type vortex shedding was found to become intermittent in the experiments. Even

at this gap ratio, about 60 % of the total kinetic energy was contained only in the first three

POD modes, although the spatial functions were rather different from those at h/d = 0.6.

Further investigation showed that both shedding and non-shedding states at h/d = 0.4 could

be roughly reproduced from the combination of the first three POD modes – promising for

the possible future application of the POD-based low-dimensional techniques to the control

of turbulent vortex shedding.

6.2 Recommendations for future research

Although many useful results were obtained in the present study, there are still a number of

important issues to be investigated in this research field. Some recommendations for possible

future research are described below.

As concerns the experimental study, further insight into the physics of two-dimensional

wakes in ground effect might be obtained by testing a circular cylinder in different Reynolds

number regimes, or a cylinder with different cross-sectional shapes. Of particular interest

would be a circular cylinder in the postcritical regime, which is hard to be naturally obtained

in laboratory experiments due to the high Reynolds number required but can be artificially

created using a tripping wire or a roughened surface (cf. Section 1.4.2). Buresti and Lanciotti

(1979) have reported that, for a circular cylinder with a fixed ground, the critical gap ratio

was slightly decreased (i.e., the cessation of the vortex shedding was delayed) when the flow

was changed from subcritical to postcritical. If this is found to be the case also for a circular

cylinder with a moving ground, the importance of the relative ground distance H/B on the

cessation of the von Kármán-type vortex shedding discussed in Chapter 4 would be further

supported (note that the wake width B in the postcritical regime is narrower than that in

the subcritical regime).

As for the numerical study, it would be interesting to apply some other recent turbulence

models/techniques, such as the scale-adaptive simulation (SAS) model (Menter et al. 2003),

to the present flow problem. As discussed in Chapter 3, a reasonable level of grid-convergence

was achieved in the DES in this study, but a more grid-independent method would certainly

be desirable. The SAS model resolves the problem of explicit grid-dependency in the original
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DES and has already shown good results for a circular cylinder in a free stream (Menter et

al. 2003); hence the SAS of the flow past a circular cylinder in ground effect would provide

a further illustration of the usefulness of this type of turbulence model.

Although turbulent wakes are of more importance (than laminar wakes) in many engi-

neering applications and were therefore focused on in the experimental and computational

studies, this resulted in some difficulties in the comparison of the results between the exper-

iments/simulations and the stability analysis. The agreement between them was found to

be only qualitative presumably because the stability analysis was based on the quasi-laminar

assumption. Hence a possible future direction here would be to take into account the direct

influence of turbulence on the motion of organised instability waves in the stability analy-

sis. The governing equation of such organised instability waves in turbulent flows (so-called

turbulent Orr-Sommerfeld equation) has been derived by Reynolds and Hussain (1972) using

the triple decomposition of time-dependent variables, similar to that used for the URANS

formulation in Section 3.2. This equation, however, contains unknown terms representing

‘wave-induced’ Reynolds stress, the modelling of which is not straightforward. Therefore,

from the viewpoint of the comparison between the experiments/simulations and the stability

analysis, it might be sensible to perform similar experiments/simulations but in the laminar

regime and to compare them with the current stability analysis, even though laminar wakes

are of less importance in many engineering applications.

It would also be possible and desirable to perform further study in relation to the POD

analysis in Chapter 5. One of the main goals here is to use the POD-based low-dimensional

techniques for the control of turbulent vortex shedding, and the next step towards this goal

would be the development of a practical sensor-controller-actuator system. As mentioned in

the concluding part of Chapter 5, the key to the POD-based low-dimensional control is the

real-time estimation of the POD modal coefficients, and this needs to be performed using

only the flow data that are measurable in real time, probably on a wall surface. Pinier et al.

(2007) recently reported that turbulent flow separation from the upper surface of an inclined

airfoil could be effectively controlled with a limited number of sensors measuring pressure on

the airfoil surface, from which the POD modal coefficients were estimated in the controller,

and with synthetic jet (or zero-net-mass-flux jet) actuators placed upstream of the pressure

sensors. Similar techniques might therefore be applicable to the control of turbulent vortex

shedding from general bluff bodies, which would bring great benefit to various engineering

applications in the future.
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