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Abstract

This study primarily investigated the flow and aeroacoustics associated with the slat
of a three-element aerofoil in approach conditions. The study assessed importance
of several factors and examined their aerodynamic impacts. The factors investigated
were aerofoil incidence, slat angle, slat cusp geometry, fixing transition and blowing
in the slat cove.

A combination of experimental and computational techniques investigated the
factors selected. The experimental work employed PIV, pressure taps, a force bal-
ance, flush mounted microphones and an acoustic array. The computational work
used DES along with the FW-H acoustic analogy to obtain the far-field directivity.

Tonal features occurred at high incidence and originated at the slat trailing
edge, due to the blunt trailing edge and gap, and at the reattachment point. Fixing
transition removes the tone at the reattachment point and reduces the slat gap tone
at the trailing edge but does not remove the tone generated by the blunt trailing
edge. All of the tones found, only occurred at certain slat and wing settings.

Broadband sound was present in all conditions but had a strong dependence on
the incidence of the wing. The sound was loudest with the wing at a=>5° with a
reduction as the wing incidence was increased. The broadband sound also reduced
as the slat angle decreased from ag=23°. The shear incidence angle was a good
indicator of the impact of these two factors on the sound generated. Extending
the slat cusp reduced the broadband sound at low aerofoil incidence. However, for
a >10° the extension led to increased broadband sound. Neither blowing nor fixing
transition had a significant impact on the broadband sound generated by the slat
system.

The aerodynamic loads generated by the wing were mainly dependent on the
aerofoil incidence. However, other factors did influence the forces generated. Re-
ducing the slat angle increased the lift generated by the wing especially at low aero-
foil incidence but the lift to drag ratio was unaltered. At high aerofoil incidence,
extending the slat cusp reduced the lift generated. Blowing and fixing transition did

not significantly alter the forces generated by the wing.
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Chapter 1

Introduction to the study

1.1 Outline of the chapter

This chapter contains three main sections to introduce this study. The first section
gives an overview of the issue of aircraft noise. This is followed by an introduction
to the slat system, a part of the high-lift system. Finally, the aim of the project is
outlined and the structure of the thesis is presented.

The second section outlines the previous work concerning aerodynamic and
aeroacoustic characteristics of high-lift flows, especially those focused on slat flows.
The other main area covered is the range of different methods of flow control appli-
cable to the slat system. These areas subdivide into wind tunnel based experimental
studies, computational studies and measurement of real aircraft.

The final section identifies the specific variables investigated in this study and
the reasoning for their inclusion using the knowledge from the previous studies. This
section first outlines the features investigated and the reasons behind their selection.
The second half of this section outlines the features measured during this study to

assess their importance.

1.2 Introduction

1.2.1 Background

Environmental concerns have increased in importance over the last few decades.
This has led to increased regulation along with public pressure for improvements
in emissions and noise levels. The aviation industry is no exception to this trend
especially in the area of noise. These pressures have led to a combination of inter-

nationally agreed standards along with local regulations with the aim of reducing

1



1. INTRODUCTION TO THE STUDY

the noise levels experienced around airports. Reducing aircraft noise is therefore a
shared objective of aircraft manufacturers and airlines as well as the general public.

At the start of the jet age, the engine was the dominant source of aircraft noise.
This was largely due to the high flow speeds generated by turbojet and low bypass
turbofan engines. A lack of incentives to introduce improvements when aircraft
numbers were limited delayed addressing these problems. However, over the last 50
years engine noise has significantly reduced. Switching to higher bypass ratios has
been the largest step in reducing the noise levels produced. This move to higher
bypass ratios originated in a desire to increase fuel efficiency rather than to reduce
aircraft noise. Although noise concerns did not drive major changes, they have now
developed to a point where implementation of design solutions for reducing noise
level occur as long as the changes produce no major performance penalty. The
engines were the dominant noise source so they were understandably the first area
examined for the implementation of noise reduction technology. This area moved
from utilizing improved mixing of the core and bypass flows to increasing the use of
acoustic liners.

Engine noise has now reduced sufficiently to leave airframe noise as a significant
noise source. Airframe noise is especially important during the landing phase due
to the low thrust settings and dirty wing configuration. A dirty wing configuration
refers to the aircraft configuration with deployed undercarriage and high-lift devices,
making the aircraft ready for landing. The high-lift devices are the leading edge slats
and trailing edge flaps, which deploy from the wing. The main airframe noise sources
are the undercarriage, flap side edges and leading edge slats [1, 2, 3].

Sound levels from airframe and engine sources are now important values. How-
ever, they do not override aerodynamic and performance parameters. Hence, noise
reduction steps stop when there are significant performance penalties. This study
focused on the airframe sound generated by leading edge slat and examined some

possible ways of reducing its impact.

1.2.2 Slat system

The slat is an aerodynamic device primarily used in the landing phase of the flight.
Its main purpose is to re-energize the flow on the suction surface of the main element,
delaying stall. Supplying high-speed flow through the slat gap to the suction surface
achieves this aim. Deploying slats increases the aerofoil stall angle and Cpr4x, but
has little impact on the lift generated at low aerofoil incidence. As slats have little
benefit and provide increased drag they are not desirable for the cruise phase. The

requirement to retract creates the largest limitation to the geometry of the slat

2



1. INTRODUCTION TO THE STUDY

system. When deployed the slat is extended from the leading edge of the wing
creating a cove region (Figure 1.1). Inside the slat cove, there are two main flow

features.

1. A high-speed flow carrying the fluid through the slat cove and out through the
slat gap. This flow separates from the slat at the cusp and reattaches close to

the trailing edge before moving through the gap.
2. The recirculation region, containing slow moving flow.

These two flows form because of the requirement for the slat to retract, which
forces the slat to have a convex inner surface and sharp cusp. The high-speed flow
is beneficial because it replaces the upper boundary layer on the main element.
However, removing the recirculation region gives a noise reduction by removing the
instabilities that generate in the shear layer at the boundary of the recirculation.

In fact, the division between the recirculation region and the main flow though
the slat cove generates a shear layer, which originates at the slat cusp. The shear
layer is unstable and can break down into discrete vortices. The majority of the
vortices remain within the recirculating flow, this leads to a feedback mechanism,
increasing instabilities at the cusp. However, some vortices convect past the trailing
edge of the slat where they can interact with the trailing edge and create unsteady
flow in the gap.

Slat noise contains two different components with different sources:

1. Broadband noise, usually linked with unsteadiness in the recirculation region,
loudest at low frequencies (below 10 kHz). This instability can grow to a point

where unsteady flow passes through the slat gap generating the sound.

2. Tonal/ narrowband noise linked with laminar vortex shedding from the upper
trailing edge and to a lesser extent the slat cusp. This occurs in model tests
at much higher frequencies than the broadband noise. However, these features

are not present in full-scale tests.

1.2.3 Geometric definitions

In order to describe an aerofoil several definitions are used. When examining an

aerofoil section the key variables are (Figure 1.2):

1. Retracted chord (c), defined as the distance from the leading edge to the
trailing edge of the aerofoil with high-lift devices retracted.
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2. Aerofoil thickness (), defined as the maximum thickness of the aerofoil.

3. Aerofoil incidence («), defined as the angle between the free-stream flow di-

rection and the aerofoil reference line.

Retracted chord is usually used rather than the chord with the slat and flap
deployed (deployed chord) because it is not dependent on the slat and flap locations
so it remains constant for a given aerofoil.

Four variables define the position of the slat relative to the main element (Figure
1.3):

1. Slat gap (G), defined as the distance between the slat trailing edge and the

nearest point on the main element.

2. Slat incidence (ag), defined as the angle of the slat relative to its stowed

position.

3. Horizontal overlap (Op), defined as the horizontal distance from the main

element leading edge to slat trailing edge (positive downstream).

4. Vertical overlap (Oy ), defined as the vertical distance from the main element

leading edge to the slat trailing edge (positive up).

The first three variables are sufficient to define the slat position avoiding the need
for use of the vertical overlap.

The flap uses a similar set of variables defined between the flap leading edge
and the main element trailing edge to give: flap angle (ap), flap gap (Hp), flap

horizontal overlap (Ogr) and flap vertical overlap (Oyr).

1.2.4 Aims of the study

The aim of this study was to examine slat noise and in particular to assess the use of
blowing as a method of reducing slat noise. The aim encompasses two main tasks.

The first task was to investigate the sources of sound generated by flow over
the slat system to obtain baseline acoustic and aerodynamic values for the standard
landing setting. Measurement of both the broadband and narrowband components
of sound allowed comparison with other configurations.

The second task was to investigate the factors with influence over the sound
generated. These factors include values that vary during flight in addition to pure

flow control features such as blowing. The factors fall into two groups:
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1. Factors with significant influence on the aerodynamic performance of the wing.
This section contains factors such as flight speed, aerofoil incidence and slat

and flap settings.

2. Factors with little or no aerodynamic influence. These are largely local geom-
etry alterations or applications of flow control with no effect on the global flow

patterns.

Having little aerodynamic impact allows optimization of the factor to reduce
the sound levels. However, these alterations are mainly due to local changes to the
slat, which require modification of the slat hardware. By contrast, the aerodynamic
factors are often adjustable allowing avoidance of the worst flight regimes on current
aircraft by controlling the flight conditions.

Airbus UK sponsored this project and they have suggested the use of blowing
inside the slat cove as one possible method of reducing slat noise. This method
derives from the idea that the recirculation region generates low frequency sound
in the recirculation region due to movement of the reattachment point and that

blowing can prevent this.

1.2.5 Outline of the thesis

Chapter two describes the methods used in the investigation. This chapter expands
on the introduction chapter to specify the range of individual conditions investigated
and the measurements taken to acquire data for this study.

Chapters three and four contain the results of this study. These chapters present
the flow features and acoustics along with the trends observed when the flow condi-
tions change. Chapter three presents the experimental and computational aerody-
namic results. These contain the results showing the wing loading and flow patterns.
Chapter four shows the aeroacoustic results from the experimental and computa-
tional work. This chapter contains the work examining the sound levels generated
by the slat system and identifying the source of the sounds detected.

Chapter five then summarizes the finding. This chapter also contains recommen-
dations on the best method of controlling slat sound generation and an outline of

possible follow-on work.
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1.3 Literature review

1.3.1 Aerodynamic studies

Experimental studies

Experimental studies have been a major tool over the last century for the inves-
tigation of the aerodynamic features generated by high-lift devices. Studies have
investigated high-lift systems for many years in order to find the optimum geome-
try from a purely aerodynamic perspective. These studies have found the range of
conditions where the slat is aerodynamically acceptable.

Examining the pressure distribution has shown the working of the slat system.
The slat circulation is in the opposite sense to the main element circulation (Figure
1.4), reducing the suction around the nose of the aerofoil. This provides a more
favourable pressure gradient on the suction surface, delaying separation [4].

Slat optimization involves altering the slat geometry and rigging locations. Alem-
daroglu found the horizontal overlap had a strong impact on the pressure coefficient
(Cp) [5]. The changes were largest on the main element. Reducing the slat overlap
generated a smaller recirculation allowing more flow through the slat gap. The slat
gap is less significant aerodynamically than the horizontal overlap. Therefore the
slat can be adjusted for a given horizontal overlap to reduce the acoustics. This
optimum position was also dependent on the rest of the aerofoil and highly swept
aerofoils designed to operate at high aerofoil incidence need greater slat deployment
angles up to ag=45° [6].

The interaction between the slat wake and main element boundary layer in-
fluences significantly the main element. These flows can join to form a confluent
boundary layer, which reduces the maximum lift achieved. A confluent boundary
layer is defined as occurring where there is sufficient mixing between the boundary
layer and wake that the velocity defect decreases continuously away from the wall
[7]. When this occurs, the size of the boundary layer is increased resulting in a loss
of lift [8]. Early confluence occurs when the slat is located low vertically relative to
the main element, particularly when the gap is small [7]. This would rule out mov-
ing the slat wake closer to the main element as a method of reducing the acoustic
signature. Reducing the gap reduced the slat noise by up to 10 dB but resulted in a
4% drop in lift [9].

When considering experimental work it is important to assess the relevance of
the results when scaled to match real aircraft. Investigations into the impact of the

Reynolds number (Re) on experimental work found significant changes in the flow
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below Re=5x10°. These changes became more significant if the Reynolds number
fell further [10]. The maximum lift was also strongly Mach number dependent.
The slat was particularly Re dependent due to the location of the stagnation point
close to the cusp. This region changes from laminar to turbulent depending on the
Reynolds number and aerofoil incidence [11]. However, on a real aircraft the cusp
is turbulent over most conditions. Transition was found to start at Re=6x10° and
finish by Re=7.8 x10° [12] based on the reference chord and free-stream conditions,
although this depends on the particular slat geometry.

Another study [13] found the impact of the slat gap on the flow was also Reynolds
dependent. At lower Reynolds number, the gap setting at which lift rapidly drops
reduced significantly because thicker boundary layers led to earlier confluence.

Flows over aerofoils show hysteresis as high-lift devices deploy. Approaching stall
exaggerates the hysteresis around the aerofoil [14]. With free transition on the slat,
large hysteresis effects can generate when the flap moves. Fixing transition on the

slat reduced the hysteresis but this is not always practical.

Computational studies

Computational studies of high-lift devices started with simplified problems to find
the mean flow features. Over time, work has moved to more complex geometries
and unsteady simulations.

Early simulations to investigating an aerofoil used panel methods [15]. This
method picks up the basic inviscid flow features and incorporating a boundary layer
simulation improves the accuracy of the predictions. Through the addition of 3D
lifting surface theory, the simulation of a 3D multi-element wing became possible
[16]. However, although increasing model complexity can improve accuracy, panel
method based schemes cannot generate unsteady results.

Unsteady results require the use of a form of the Navier-Stokes equations. A
RANS based solver is the most common method used in industrial design. This be-
came a possible tool for the study of 2D aerofoils from the early 1990s. Due to the
complex geometries, most early studies used grids of around 5x10%cells. This allows
modelling of the steady flow but there are problems with separated flows. These
studies often used unstructured grids [17, 18]. With an unstructured grid, it was
important to focus the cells to resolve the boundary layers. Otherwise, artificially
enlarged boundary layers develop, which can altered the flow [19]. A wall spacing of
yT=0]10] was found to be inadequate and y™ =O[1] is required to accurately simu-
late the pressure distribution over a flap [19]. Where separation is not an issue the

wall spacing was less important and a slightly larger spacing can be used. Increasing
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the grid resolution by using around 2.50x10° cells slightly improved the simulations
[20]. It is possible to automatically generate an unstructured grid concentrated
around the complex flows [21]. However, the need to interpolate between points in
the numerical scheme limits unstructured grids. This results in extra computational
cost and makes the use of high-order schemes with larger stencils impractical.

One alternative to unstructured grids without the difficulties of a structured
mesh is to use a chimera grid [22]. The grid close to the wing matches the wing
elements and this overlaps with a global far-field grid. This method gives a better
quality boundary layer grid than an unstructured grid without the difficulties of a
fully structured grid. It is possible to apply a higher order code with this type of
grid but it would still face problems in the region where the grids are overset.

Structured grids are more complex to build because all the zones have to match.
However, they have the advantage of a smaller computational loading because the
grid contains ordered data points that enable a simple interpolation using (i,5,k)
stensils. Like other types of grid at low resolution and with a low order scheme it
has problems resolving complex flows such as separated and reversed flows [23, 24]. It
is possible to generate automatically suitable structured grids [25]. This is a complex
task especially for high-order schemes where problems can develop if the grid is not
ideal. Automatic gridding allows the development of an automatic optimization
program for high-lift systems. This studies a range of configurations to find the
best for given performance parameters. Currently examples of such a program
only include aerodynamic factors [26, 27] but as the power of computers increases,
acoustic requirements could be included in the optimization.

3D simulations have additional computational costs but pick up the features
missed by a 2D simulation, such as near the tips of finite length wings [28] or on swept
wings [29]. The swept wing case run by Khorrami et al. [29] used a RANS solver
based on the S-A model. Modelling the entire wingspan required 1.75x10° cells.
It was computationally expensive. However, for an un-swept wing it is acceptable
to take a much smaller slice of the span. This change allows the use of periodic
boundary conditions because it reduces the importance and scale of 3D features.

Work on the aerodynamic component of the flow helps to indicate the effective-
ness of different turbulence models. Comparison work carried out by Rumsey and
Gatski [30] found the k-¢ EASM model [31] has a weakness for wall bounded ad-
verse pressure gradients and the S-A model [32] was found to simulate separated
flows poorly. A model the study found worked well for the simulation of high-lift
flows including separated regions was the shear stress transport (SST) model of

Menter [33, 34]. If more resources are available then DES or LES becomes a pos-
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sibility and increases the ability to accurately model instabilities in separated flows
[35] even near to stall [36]. Where this is not possible, a hybrid method can combine
predefined discrete regions of RANS and LES regions [37], however, this works best

where there is a clear division between the regions.

Flight test studies

Full-scale tests are the most expensive investigative approach for high-lift devices
due to their size and the need for modification of an aircraft with specialist instru-
mentation. They are also the hardest to instrument due to the need to maintain
the external geometry of the aircraft. Hence, there are fewer full-scale tests rela-
tive to the number of wind tunnel tests. However, after resolution of the costs and
measurement difficulties, flight-testing allows testing of the full geometry without
the need for the scaling or simplification, which is inherent in all computational and
experimental studies.

An established flight testing technique is to fit pressure sensors to the wing to
allow comparison with scale tests. A Boeing 737-100 was fitted with an array of
pressure taps and hot films including on the high-lift systems [38, 39]. On approach,
the hot film showed that the flow on the upper side of the slat trailing edge transitions
from turbulent to laminar. This is likely to have an impact on the noise generated.
On the lower surface of the slat the flow experienced transition just upstream of the
cusp. This should eliminate any tones generated from a laminar separation. This
study is limited by the age of the aircraft, which had an old aerofoil profile including
triple slotted flaps so the flow over the slat could differ on newer designs. However,
it did show real aircraft slats operate close to the boundary between laminar and
turbulent flow and experiments have shown this is a determining factor in tone

production.

1.3.2 Aeroacoustic studies

Experimental studies

Current studies use a variety of microphone and other measurement techniques to
study the sound from a slat. The simplest method to obtain acoustic data is using
a single microphone to measure the sound spectrum generated by the wing. An
acoustic mirror improves on a standard microphone and allows the microphone to
scan the model for sound sources. Acoustic arrays are an alternative to the acoustic
mirror technique. These allow the calculation of a source map using an array of

microphones [40].
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Experimental tests are also very dependent on the level of details included be-
cause small design features determine the overall high-lift device noise contribution
[41]. Because of the necessary complexity of these devices, slats and flaps can provide
a 10dB increase over a clean wing with slats dominating in the rear arc. Other im-
portant noise sources are the slat tracks and the engine pylons [42]. As well as acting
as sources, slats destabilize the flow and can cause separation further downstream.

Olson et al. at the University of Notre Dame carried out an experimental study
on the tonal noise generated by a slat [43]. This focused on variations in the tones
measured by a single far-field microphone caused by alterations of the slat location.
The tests used a main element with c=559mm, tested at «=10° and a flap angle of
arp=13° at 30 m/s. Tones were loudest with a moderate slat gap of around G=0.015¢
and a negative horizontal overlap (Og < 0). Tones were angle dependent with no
tones at ag=10°, tones at ag=20° and narrowband peaks when ag=30°. This linked
to the change in pressure gradient from adverse to favourable on the upper surface of
the slat, which caused the flow to transform from turbulent to laminar. The laminar
separation created strong tones but if the separating flow was turbulent, it no longer
generates tonal features. This gives a reason why full-scale aircraft do not generated
tonal noise. The higher Reynolds numbers mean the flow is always turbulent when it
separates from the slat and it generates a largely broadband noise source. However,
this does not mean the noise is purely broadband because resonance in the slat gap
or the breakdown of the shear layer instabilities could generate narrowband features.

Storms et al. [44] carried out measurements using a microphone array on a three-
element model and this showed the slat tones followed a v° power law. Hence, with
flaps deployed, the sound generated by the slat increased due to increased circulation.
The study also found a sharp drop in SPL for a slat angle below ag=19°. This was
similar to the pattern found by Olson et al. [43] but was not limited to tonal noise.

The slat setting also affects broadband sound generation because the sound level
reduces as the flow speed past the slat trailing edge decreases [45]. Reducing ag
and increasing the slat chord minimizes acceleration through the gap but maintains
lift. The sound generated at the trailing edge is also dependent on the gap setting
so reducing the gap can give a noise reduction of up to 10dB [9]. However, this
restricts the gap flow leading to a 4% lift reduction.

The removal of tones by fixing transition was shown by Dobryzynski et al. [46] on
a 1:10 scale Airbus wing. At ag=12° it produced tones unless the flow was tripped
at the cusp. Although v° scaling gave a good fit for the majority of the spectrum,
above 25kHz a v® law was a better fit. This represents turbulence in free space.

However, as this is made of quadrapole sources it is a poor radiator so its overall

10



1. INTRODUCTION TO THE STUDY

contribution is minimal. Similar tests by Andreou et al. [47] found tones increased
SPL by up to 8dB but were removed by tripping the flow at the slat cusp.

A similar divide was found when investigating a 4.7% scale model of a DC-10
using an acoustic array [48]. Low frequency noise followed v° scaling but high fre-
quency noise followed v%. This indicates a 2D source generated the lower frequencies.
The slats mainly generated this low frequency sound. The higher frequencies were
from a dipole and largely from the flap side edge. An earlier study on the same
model also found a strong tone from the gap between the inboard and outboard
slat [49]. Due to the scale of the model, this was probably a model problem. How-
ever, gaps between slats do act as noise sources and the study highlights how small
features can produce strong tonal features.

When investigating a 1:10 scale A320, the slats were the dominant source in land-
ing condition and the noise scaled with v>7 [2]. The sound increased with aerofoil
incidence and the direction of the peak sound shifted to the rear. An earlier study
using a 1:11 scale model found a scale factor of v*3 [50]. The lower frequencies were
largely from the slat cusp but higher frequencies were from the interaction between
the gap and the slat trailing edge. This model was used to investigate Strouhal
dependence and some sources were found to be largely Strouhal independent, par-
ticularly at higher frequencies [51, 52|. Some tones only occur at lower speeds,
indicating these were due to thicker boundary layers leading to more interactions.

As the trailing edge tones are Strouhal dependent when models are fitted with
relatively thick trailing edges, this can produce unrealistically low frequency tones
[9]. This is probably the main reason experimental tests frequently find slat tones
but real aircraft rarely generate slat tones.

Takeda et al. at the University of Southampton studied the aeroacoustics of the
national high-lift aerofoil [53]. The study used PIV, LDA and hot wire measure-
ments along with flush mounted microphones and pressure taps. This model with
c=T764 mm was tested at v=30m/s to give a Re of 1.5x10°. Tests were carried out
with ag=25° and ag=40° at a=5°. PIV showed vortex shedding at 15kHz from
the trailing edge and large vortical structures ejected through the gap disrupting
the wake. The frequency spectrum was broadband at lower frequencies with tonal
components (9kHz and 15kHz), which linked with the cusp and trailing edge shear
layers. The 15kHz tone gave a Strouhal number of St=0.24 based on the trailing
edge thickness, a good match to the value of St=0.2 found by Storms et al. [44]
and St=0.27 by Olson [43]. When the slat gap dropped below 0.015¢, the higher
frequency tone fell below the broadband level so the feedback mechanism must have

been broken. This was especially important because sound radiated upwards is less
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of a problem as regulations only cover sound directed towards the ground.

Aerofoil incidence is also a contribution factor to slat noise. Increasing « from 6°
to 16° gives a 2-3dB reduction between 5-13kHz [47]. However, other noise sources
show the opposite trend. The slat horn (join with fuselage) increased in importance
as a source as the aerofoil incidence was increased [54]. Tonal features also tend to
increase as « is increased [55]. Noise generated is largely broadband in nature at
low aerofoil incidence [9]. The sound generated by the wing is also dependent on
the wing thickness to chord ratio. Thicker wings are generally quieter and have a
greater noise reduction as the aerofoil incidence increases [56].

Studies have examined the physical causes of slat noise by observing the unsteady
features in the flow around the slat. PIV showed the wake was unstable at low
aerofoil incidence [57]. The number of unstable features was reduced by 40% if the
aerofoil incidence was increased from a=4° to 10°. This instability was a possible
source of sound and corresponded well to the reduction in sound observed at high
angles of aerofoil incidence.

Periodic shedding can occur in the shear layer generated at the cusp [58]. Shed-
ding was observed between 4 and 10 kHz and scaled with mean shear layer velocity.
The aerofoil used had a finite thickness cusp and using this length the tone occurred
at a Strouhal number between 0.203 and 0.215.

As well as small vortices forming in the cusp and trailing edge wakes, large
spanwise rollers are intermittently ejected through the slat gap disrupting the wake
[59]. These large features develop inside the slat cove region before escaping from
the recirculation region.

PIV has allowed identification of three different shedding patterns through the
slat gap [60] (Figure 1.5):

1. State one, all shedding from the trailing edge with vortices of both signs.

2. State two, shedding from the trailing edge and positive vortices passing through

the slat gap from the cove.

3. State three, shedding formed from negative vortices from the trailing edge and

positive vortices through the slat gap.

The experiment was carried out with a=4°, a=6°, a=8°. The flow alternated be-
tween the three shedding states with the state number increasing as aerofoil inci-
dence decreases and the reattachment point moves closer to the trailing edge. This

reduced the recirculation and allowed more vortices go through the gap. State one
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only occurred at @=8°. This finding indicates fixing the reattachment point lim-
its the flow to one flow type and reduces the range of vortex shedding frequencies
generated.

An alternative mechanism is a whistle formed at the slat gap, which generates
resonance when the waves reflected off the main element match up with the waves
from the trailing edge [61]. This is possibly the source of tones but it does not take
into account instabilities moving through the gap. This is similar to the system
proposed by Tam and Pastouchenko [62]. The whistle frequency is determined by
imposing that the time taken for and acoustic wave emitted by the trailing edge
to reach the main element matches that of the reflected wave to reach the trailing
edge. This forms a feedback loop that is dependent on the gap distance and normal
velocity of the sound waves v,, (Figure 1.6). This gives:

I N(a? — u?)" 1)

2G '
where N is an integer, a is the speed of sound, u is the local velocity and G is the
slat gap. Instabilities in the slat gap generate the dominant frequency and higher
harmonics. However, the experimental results in Takeda et al. [53] did not find the

fundamental frequency predicted by the theory.

Component based methods

When studying the acoustics of high-lift systems, the computational methods used
have evolved over time. A full simulation of the flow that resolves acoustic waves is
computationally expensive, leading to the use of other methods.

The simplest way of modelling the noise generated by a wing is a component-
based method. This uses standard values for different airframe components such
as slats and flaps. A simple frequency distribution and directivity factor represent
most components. In Fink [63], slats are simply represented by an 11dB increase
over the value for a clean wing. This type of empirical method uses a large database
taken from real aircraft. The data allows the formation of an empirical relationship
between the geometry of the dominant noise sources, such as the slats and flaps,
and the sound produced [64]. Instead of using aircraft flyover data, it is possible
to use experimental data for specific components [65]. Empirical methods give a
good reading of the general noise level of an aircraft if it is of a design similar to
the baseline aircraft. However, they cannot be used to model any new design or

noise reduction technique unless similar flow physics and simple scaling laws can be
followed.
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An improvement on a purely empirical system is to include terms based on
knowledge of the system. This means the terms used have more relevance and are
applicable in designs incorporating some new geometric features [66]. The model is
a good fit relative to general trends from the flight data but does not incorporate
some of the finer flow features leading to poor modelling of tonal features.

The next step is to move from an empirical based solution to a simulation based
on the geometry under investigation to identify the key features of the flow, possibly
using a simplified geometry to accelerate the simulation. Examination of trailing
edges over a range of conditions show sound generally increases with an increase
in the aerofoil incidence [67]. Reducing the aerofoil thickness to chord ratio mini-
mizes this trend. The trailing edge shape is also important with rounded and blunt
geometries significantly louder than sharp trailing edges [68]. Trailing edge flows
can be further complicated by passing vortices, as they are at the slat trailing edge.
The vortex rotation direction has some influence on the sound generated, but for all

vortices the radiated sound scaled with v*? [69].

Acoustic analogies

Unsteady computational fluid dynamics can replace experimental models for simple
flow geometries. The most common method is to combine a RANS solver with an
acoustic analogy for the far-field. An acoustic analogy models the radiation of sound
from a finite volume of acoustically active flow to an observer in the far-field. This
approach is more computationally efficient that extending the computational domain
to the far-field. The acoustic analogy approach establishes that away from major
disturbances, sound propagates in a linear fashion. There are two main acoustic
analogies used in CAA: the Ffowcs Williams-Hawkings analogy and the Kirchhoff
analogy.

The Ffowcs Williams-Hawkings analogy builds on the acoustic theory developed
by Lighthill [70, 71]. Lighthill developed a model for aerodynamic sound generation
in free space in the absence of solid boundaries. A Lighthill acoustic analogy is
based on replacing an unsteady flow by a uniform steady field at rest and acoustic
sources. This led to the development of the Lighthill shear stress tensor 7;; which
is applied to a uniform acoustic field to recreate the real density variations.

The shear stress tensor T;; contains three components.

1. The Reynolds stresses pv;v;, which make up the fluctuating momentum changes.

2. The real stresses F;;, which is the real stress component.
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3. Hydrostatic pressure caused by density variations.

In a real flow both the Reynolds stresses and real stresses will act on the flow but
a uniform acoustic field will only be exposed to hydrostatic pressure. An acoustic
analogy is built using a uniform acoustic field and adding a an "external stress
system” to recreate the real density variation [70]. To recreate the real density
variation this must add the Reynolds and real stresses felt by the real flow and
remove the hydrostatic pressure usually experienced on a uniform acoustic field.
This external stress system is represented by the shear stress tensor 7;; [70], which

is defined as:

Tj = pvivj + Pij — a’pdy; (1.2)

where p is the density, v is the flow velocity, a is the speed of sound and P;; is the
compressive stress tensor made up of hydrostatic pressure and viscous stresses.

This allows the representation of disturbances by a distribution of quadrapoles
allowing the calculation of the far-field pressure fluctuations without simulating their
propagation. The FW-H equation uses the conservation of mass and momentum as
its basis. These laws apply to an infinite region of uniform flow containing a finite
region generating sound moving at a known velocity [72]. This allows to approximate
the flow in the inner region by a series of sources bounded by dividing surface. The
surface itself is a locus of monopole and dipole sources to maintain the conserved
variables passing into the outer zone. It is modelled so the external zone contains
only linearly propagating acoustic waves in a medium with a constant velocity.
In the inner zone the fluid is at the same constant velocity with turbulent features
replaced using the Lighthill stress tensor. A distribution of quadrapoles representing
the features contained in the inner volume and monopoles and dipoles based on the
surface representing the interaction with the outer zone replace the entire flow. One
form of the FW-H equations is [73]:

2
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where 0% = [(1/a?)(0?/0t?)] — V? is the wave operator, fn is a function that is zero
on the integration surface and positive in the inner zone, v is the freestream velocity,
u is the local fluid velocity, n is the outward normal to the surface, p’ is the acoustic

pressure and a is the speed of sound.
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This form of the FW-H equation can easily be divided into the three components

types of acoustic source that are used to replace the physical flow.

1. A quadrapole term m‘?—;x,{szH (f)}, which is distributed across the area con-
105

tained within the integration surface.

2. A dipole term —%{[Pijﬁj + pui(u, — v,)]0(fn)}, which is distributed on the

integration surface.

3. A monopole term 2{[pv, + p(u, — v,)]0(fn)}, which is distributed on the

integration surface.

The acoustic analogy uses the wave operator, which linearly propagates the sound
to far-field locations.

The Kirchhoff analogy evolved from the wave equation and originally applied to
light but later applications included modelling sound radiated from moving surfaces
[74]. As with the FW-H equation, it uses an integration surface to construct the
equation. However, this formulation has the advantage of not requiring a volume
integral but the disadvantage of not being possible to divide the terms into easily
understandable terms such as monopoles, dipoles and quadrapoles, the Kirchhoff

analogy is written as [33]:

op'v, Op 0
L 25 (1n)

,Un 0

B a a 3%

0%/ (2,t) = —( ['7:6(fn)] (1.4)
The FW-H equation has the advantage of being based on conservation rather than
on the wave equation so it is still applicable in regions where the flow is non-linear
and the wave equation is not applicable [73]. If the volume integral term is not used
the analogies are equivalent as long as the surface is in a linear region where the
wave equation applicable. Therefore, the location of the integration surfaces is more
critical for the Kirchhoff analogy. It is often difficult to spot if the surface is not
located correctly resulting in errors so the FW-H equation is more robust but it has

the disadvantage of requiring a volume integral to give the exact value.

Computational studies

For an analogy to produce accurate results, the integration surface must contain all
the acoustic sources. This requires the simulation of a large area, leading to cost and
accuracy problems, so alternative strategies were developed. One strategy is to use

a Linearized Euler simulation combined with additional acoustic sources. This can
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combine with a simplified geometry to model the main features. Takeda et al. [75]
used this method applied to a slat. The slat was represented by a semicircle and a
couple of rectangles and a dipole source was added downstream of the trailing edge
of the slat. This simplification allowed the use of a relatively small grid of 5x10%
cells and was an order of magnitude faster than a RANS/FW-H simulation. This
allows rapid comparison of a range of designs. The problem with this approach is
the reliance on user specified data for the acoustic sources and the simplification
of the geometry makes the results less reliable. However, it is a useful method for
theoretical studies and for initial investigations into acoustic changes due to variation
in slat geometry and location. The simplified geometry was also investigated using
RANS/FW-H to investigate the implications of trailing edge thickness and overlap
settings on the acoustics [76]. The trailing edge thickness helped to determine
the shedding frequency of trailing edge vortices. However, the Strouhal number
increased with trailing edge thickness, indicating other factors had an influence. A
reduction in the horizontal overlap reduced the feedback between the trailing edge
and the main element and gave a large drop in sound radiation. However, the
modified geometry made the prediction not comparable to experimental data that
used a proper slat rather than a semi-circle and rectangles, so it is possible that the
reduction is less significant for the real geometry. With the modified geometry, the
slat was further away from the main element with the exception of the overlapping
zone, which could have exaggerated the importance of the overlap.

An alternative method developed by Manoha et al. removes some of these accu-
racy issues. Early work [77] focused on combining a turbulent calculation close to
an aerofoil (in this case LES) with the Linearized Euler Equations (LEE) to prop-
agate the sound generated a short distance. An acoustic analogy (in this study the
Kirchhoff integral) then modelled the far-field values. This allowed the simulation
of a large enough area to contain the sound sources without the need to use costly
LES where it gave no added physics. This gave improved accuracy but the large
LES zone was still expensive when compared with a RANS simulation.

A later modification of this method reduced the drawbacks by replacing the LEE
region with a RANS simulation. The LES zone was reduced in size to only contain
the most complex elements of the flow [78] and was not needed in the regions which
are adequately simulated using a RANS solver. The region of viscous flow increased
without great expense due to the small difference in cost between LEE and RANS.
This method was computationally more expensive than RANS but less expensive
than the LES/LEE method because the LES zone was reduced. One study used
this method to calculate the far-field acoustics of a NACA0012 aerofoil with a blunt
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trailing edge. The slat cove used a LES method with 52 slices of 1.10x10° cells.
The RANS calculation around the aerofoil used the S-A model and 4.11x10° cells.
The FW-H analogy calculated the far-field. The main difference found compared to
RANS studies was small regions of separated flow close to the slat cusp inside of the
slat cove and above the leading edge of the main element. The main sound sources
were these locations as well as the cusp and trailing edge. However, other studies
have not detected these flow features and it is likely that they occurred due to the
particular aerofoil geometry studied. This had a blunt cusp so the recirculated flow
could not arrive nearly parallel to the main flow, encouraging separation. The main
element leading edge was also much sharper, increasing the tendency of the flow
around the aerofoil to separate.

Further work looked into different combinations of near-field, far-field and acous-
tic analogy [79]. This aim was to use appropriate schemes for each region without
excessive computational costs. The lack of a method of assessing the accuracy of
the solutions limited this work.

NASA has carried out work focused on developing the RANS based approach in
order to investigate airframe noise. Macaraeg’s paper lays out this project [80]. The
work started by looking at the near-field using a 3D URANS simulation to model the
EET as used in an earlier experimental study by Storms et al. [44]. However, this
required 5.70x 10 cells, which is not practical for most simulations, so work moved
on to 2D simulations [81]. These 2D simulations used Menter’s SST model on a grid
of 2.71x10° nodes, allowing the identification of the dominant high frequency peak
[82]. This work progressed to focus on the use of a RANS solver combined with
the FW-H acoustic analogy to model the aerodynamics and acoustics of an aerofoil
[83, 84]. The study found the majority of the flow features were identifiable using
a surface mounted integration surface for the majority of its length but including
the slat cove region. The result was further refined when the boundary was moved
slightly away from the surface of the main element but this was not necessary on
the outside of the slat. This allows the grid to be focused because the simulation
only needs accurate simulation of acoustic data within integration surface.

In a related study, the grid size was increased to 4.33x10° nodes and a time
accurate simulation was carried out to investigate the shear layer, which developed
from the slat cusp [85]. However, with the RANS solution the disturbances damped
out before they could break down into discrete vortices.

One possible solution to the above problem was to use the shear stress transport
(SST) version of the k-w turbulence model with the production term switched off

inside the slat cove, forming a laminar zone [86, 87]. The laminar zone reduces the
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dissipation of the model and allows the small acoustic features to develop. It is
justifiable because the boundary layer is laminar at the cusp and the recirculating
region contains low velocity flow so a laminar shear zone generates. Simulations were
set at a=4°, a=6° and a=8° at M=0.2 and ag=30°. This resulted in broadband
noise components appearing below 10 kHz and tonal noise at 45kHz. At a=8° the
vorticity was carried around the outside of the slat cove in the simulations and
this was a good match to experimental data. However, at a=6° the flow changed
and formed a large single vortex in the centre of the cove. This resulted in an
overestimate of the far-field sound by 10 dB. The study found PIV data gave a flow
field in between the simulations with and without a laminar zone. However, this
showed a laminar zone was still an improvement as it indicated the unstable flow
[88]. It was a good match to the acoustic spectra and the main error was due to
it being a 2D simulation. Experimental data follows a v> power law whereas 2D
computational data followed a v* distribution and 3D simulation should give a v®
scaling [89].

Emunds and Fisher examined a range of simulations showing the impact of slat
location settings [90]. Modifications did not alter the basic dipole shape with the
impact concentrated in the lower downstream direction. Increasing the gap by
raising the slat reduced radiation in this direction by increasing the shielding of
the slat trailing edge by the main element. The lack of a flap in the simulation
possibly had an impact by reducing flow through the slat gap [91].

With a 3D simulation, many of the two-dimensional numerical effects disappear,
but there is clearly a cost penalty. Studies by Choudhari et al. show that close to
the cusp, the shear layer rolls into spanwise vortices similar to 2D results. However,
downstream of the slat reattachment point streamwise features develop, which are
not reproduced by a 2D simulation [92, 93]. Allowing 3D features increases the
complexity of the flow, which increases due to interactions at the slat cusp. Low fre-
quency vortex shedding also occurs in the cove [94]. This shedding could correspond
to the ejections seen experimentally [59].

Changing the acoustic analogy allows improvements in accuracy of the simula-
tion. The previous work used an acoustic analogy based on data from the integration
surface. An assessment of the impact of adding a volumetric term of the SPL in the
far-field found large differences in the noise radiating from a wing, especially in the
forward and downward directions [95]. This occurred between 250 Hz and 450 Hz,
where the wavelength matches the size of the vortices in the cove region.

Another area not usually covered in computational work is the impact of gusts in

the oncoming airflow. These increase the magnitude of unsteady features [96]. Sim-
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ilarly, as the wing vibrates significant tonal features overshadow the sound normally
produced [97]. Accurately accounting of outside influences on the slat encourages
the development of a full aircraft model [98]. However, obtaining the required detail

is still many years away.

Flyover test studies

Full-scale acoustic tests originally used single microphones to measure total aircraft
noise. However, more recently the focus has shifted to using a phased array to
identify the components producing the noise during flyover tests.

Airbus A340 flyover tests confirmed the slats and flaps were the main sources
[99] although these sources were loudest at the joins between the flap/slat segments.
With landing gear deployed, the undercarriage dominated the noise production and
contained some strong tones [2]. Tests on a Boeing 777 did not find significant noise
from the slat with the exception of anti-ice holes [100]. This was different from scale-
models, which produced much larger slat noise. Vortex shedding from the wing tips
was an additional noise source producing low frequency tones (260-350 Hz) [101].
This tone was associated with flow separating ahead of the trailing edge outboard of
the flaps. Improving slat performance in this location should reduce the amplitude
of the tone by minimizing the flow separation.

While using microphone arrays, beamforming [102] allows calculation of the SPL
spectra at each noise source by integrating the SPL over the area occupied the each
noise source. Sijtsma and Stoker recorded sources found by beamforming as the
aircraft passed overhead to observe the impact of the directionality of the sound
[103]. With an Airbus A340, the engines had the highest peak power level followed
by the undercarriage. The flap edges and slat horn (join with fuselage) had a peak
SPL about 8dB below the engine exhaust noise. However, the microphones were
only 750 m from the runway threshold, which could have exaggerated engine noise
due to the use of higher thrust settings relative to the rest of descent in preparation
for the use of reverse thrust or an aborted landing. In addition, the jet engine
noise had greater directionality than airframe noise so the average engine noise was
less than 6dB above the slat horn noise. Thus as engine noise reduces, the slat
values being only 4dB below the landing gear value increases in importance. By
comparison, tests carried out in the same study with an older generation Boeing

737-400 showed the engine exhausts were dominant.
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1.3.3 Passive flow and noise control

Several control methods potentially reduce the noise generated by the slat and the
rest of the wing during the landing phase. These vary in complexity but all have
limitations, which have so far prevented their wide spread use in the aviation in-
dustry. Some of the flow control methods act to improve the aerodynamics of the
wing. Improved aerodynamics can give acoustic benefits by allowing lower approach
speeds or reduced use of high-lift devices. Other methods aim to reduce directly the
noise generated while trying to maintain the aerodynamic performance of the wing.

A possible way to reduce the noise on the ground is to move the aircraft further
from the ground [104]. Possible methods of achieving this include allowing a contin-
uous descent from cruise altitude and steeper glide slopes. Greater noise reductions
would require new aircraft with a larger overall maximum lift coefficient to allow
slower approach speeds. Airframe noise scales with v°, so reducing the airspeed
combined with a steeper glide slope would provide significant noise suppression dur-
ing approach. As air-traffic control technology evolves, the need for international
agreements on updated hardware retard quick changes. However, improvements in

this area are ongoing.

Application at the slat gap

A simple method of reducing slat noise is to seal off the slat gap. This eliminates
the tonal noise if the gap is completely sealed [61]. Olson et al. also showed that
tones reduced significantly if the gap was nearly sealed or the gap was very large
[43]. Both approaches reduce the maximum lift of the slat, so are not possible for
the whole wing. Sealing the gap also reduces the broadband sound generated by the
slat [47]. Leading edge droop devices allow the removal of the gap on the inboard
of the wing [105]. Using a leading edge droop results in a 5% drop in maximum lift,
relative to a slat, for the section but has less drag so is ideal for take off. The use
of a leading edge droop is a continuation of the general trend of simplifying high-
lift devices by removing gaps, which has occurred over the last 30 years. Further
simplification can be achieved using continuous moldline (CML) technology (flexible
ends to the droop section to avoid discrete ends becoming a source of noise) [106].
Streett et al. used CML with flaps and found that the side edge noise reduced by
5-15dB above 2.5 kHz [107]. The same study found edge sound was also significant
for slats. However, on swept wings the inboard tip generated sound 8 dB above the
rest of the slat. Applying a continuous moldline device gave reductions of up to
10dB in the peak SPL above 5kHz.
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Applications in the slat cove

A simple method to reduce slat noise is to install a slat cove cover, which extends
the cusp following the direction of the shear layer. The extension gave a reduction
of around 2dB to the far-field broadband noise with local drops of 4dB [41]. This
works mainly by smoothing the flow through the slat gap by reducing the separating
flow shear layer unsteadiness at the cusp. Another study [46] found a similar cover
could produce up to a 5dB drop in SPL especially at lower frequencies. A cover
had a negligible impact on the efficiency of the slat aerodynamically except the
small increase in friction on the air travelling through the slat cove. However, it is
difficult to manufacture a device to allow the slat with cove cover to retract and form
a smooth join with the main element. An alternative is to modify the direction of the
cover so it follows the shape of the main wing element in the retracted configuration.
This resolves the manufacturing problems with little performance penalty provided
the cover is not long enough to diverge significantly from the shear layer direction
when the slat is deployed. When combined with a boundary layer trip to attempt
to reduce separation, a small advantage at low frequencies appears. However, at
high frequencies the boundary layer trip cancels out the advantage of the cover by
counteracting the smoothing action of the cover [46]. Boundary layer trips are also
detrimental to cruise drag if left uncovered in the cruise settings.

A cover aligned with the main element acts as a blade seal, which provides a
smooth geometry during cruise [108]. An elongated blade seal eliminates most of
the small-scale vortices generated at the cusp. At low frequencies (<2kHz), a short
seal gives a 2-3dB reduction and extending the cover provides an additional 2dB
reduction. At higher frequencies and on the slat noise tones, the cover is even more
effective.

An alternative to treating the cusp is to eliminate it by smoothing it into a
continuous curve. This alteration gives improved aerodynamic performance and
lower levels of turbulence [109]. It maintains attached flow to a higher aerofoil
incidence than a standard flap. The problem with this type of slat is the gap it
leaves in the retracted configuration. This only produces a small change in efficiency
in the cruise setting, but due to the high percentage of the flight in cruise setting,
there is a requirement for a cover.

Another method of eliminating the sharp cusp is to fill the recirculation region
of the cove with a foam filler. This was found to give significant reductions in the
noise especially in the rearward radiated sound, but generated more high frequency
tones [2]. On a 1/6 scale A320 wing at 60m/s, these tones occurred at 12.5 kHz and

were up to 20dB above the surrounding frequencies. Fixing transition on both the
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upper and lower surfaces of the slat, to stop laminar instabilities forming, removed
the tones. There was a reduction in SPL of up to 5dB for frequencies between
1kHz and 4kHz. The only penalty was an increase of around 2dB for frequencies
above 15kHz but this still left them 8dB lower than the lower frequencies. As
with slat covers, the main problem is manufacturing the filler to allow the slat to
retract and still maintain an acceptable component life. This has been tested on
an A340 and combined with porous flap tips provided a 1dB reduction in the total
aircraft noise. This represented a 2dB reduction in airframe noise between 125 Hz
and 5kHz. Similar tests on a 26% scale Boeing 777 wing [110] found a similar
slat SPL reduction of 4-5dB when the filler was added. The only exception was a
small increase at 1.6 kHz. Streett et al. carried out similar tests at different aerofoil
incidence values [107] and found a cove filler was effective below 3kHz providing
a 3dB reduction but detrimental above 13kHz, at a=10°. However, at a=14° the
cove filler gave an advantage at all frequencies. Aerodynamically the cove filler
gave a small improvement below a=20° but led to a 2° reduction in the stall angle
[107]. Andreou et al. [47] also carried out tests using a slat cove filler and found it
reduced Cpyrax by 50% by limiting the flow through the cove. This indicates the
aerodynamic effect of a filler is aerofoil dependent, so each existing aerofoil requires
extensive optimization work. One possible solution is designing the filler to obtain
a slat gap with a slowly varying cross section. This would following the shape of the
shear layer to avoid the aerodynamic penalties [107].

As well as smoothing the flow, cove fillers also cover the detailed features in
the cove, which can cause additional sound generation. The slat track can have
a noise level around 8db above the rest of the slat [46]. This is largely because
the slat tracks are perpendicular to the wing (Figure 1.7). Aligning them with
the flow direction gives a 3dB reduction and streamlining the track geometry gives
further improvements . The cove region may also contain a bulb seal to seal the slat
gap during cruise [108]. This device generates a dead flow region, which provides
unsteadiness and destabilizes the flow at the cusp.

A porous liner can fit inside the slat and on the main element in the areas covered
when the slat retracts [111]. When tested this produced a drop of up to 3.5dB from
2-10kHz. The liner had little aerodynamic impact as long as the liners avoided the
area close to the stagnation point on the main element. The benefit of the liner was

concentrated in the rear downward direction [112].
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Application at the slat trailing edge

The slat trailing edge is another area of interest especially with respect to tonal
features and high frequency sources. One practical solution tested was to attach
brushes to the slat cusp and trailing edge. Full-scale tests on an A320 wing showed
adding brushes to the cusp had little impact. However, if added to the trailing edge
it reduced radiation below 1kHz by around 1dB. The reduction increased when
brush length increased from 50 mm to 150 mm. A slat should enhance the impact
of the brush because as well as shedding noise there is interaction with the flow
through the gap to damp. For a flat plate, brushes led to a drop of 10dB [113]
so similar improvements could occur when applied at the trailing edge. The main
limitation is the need to use relatively small brushes to prevent a reduction in the
mean flow through the slat gap.

Other trailing edge modifications include adding a thin sheet to extend the slat
trailing edge. This effectively sharpens the trailing edge so the shedding frequency
is no longer a strong tone [114]. Thinning the trailing edge can also give significant
reductions in the high frequency sound around the shedding frequency [115]. For
full-scale aircraft, this is problematic because a thin trailing edge would damage
easily. Also for full-scale aircraft, these tones are generally not a problem due to
the greater ratio of trailing edge thickness to the wing chord [2]. A serrated trailing
edge has also been tested and this provided a reduction in high frequency tones
of 6-7dB [115]. However, when testing a swept wing with serrations, peak noise
increased [114]. This was possibly due to the serrations introducing additional 3D
features and the average slat gap was increased. Cutting gaps in the trailing edge
to form rectangular brushes arranged like a comb reduced the aerodynamic penalty
compared to circular section brushes [116].

Khorrami and Choudhari studied a slat trailing edge constructed out of a porous
material and found significant reductions in the tones generated by shedding from
the trailing edge [117]. The remaining tones moved to a higher frequency where
human hearing has a reduced sensitivity. The area treated in this study was roughly
twice the trailing edge thickness. Simulation showed a reduction of up to 20dB in
the far-field noise associated with the trailing edge but debris clogging the pores

would be a major issue for real applications.

Application at the slat tip

The other treatable areas of the slat are the slat tips. These can feature porous

edges or brushes to stop large vortices forming. Fitting a porous edge was found to
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give a reduction of up to 2dB to the far-field, with local reduction of up to 10-15dB
for certain frequencies [2]. A similar study on flap edges by Angland et al. [118]
showed that porous edges allow some flow through the porous region weakening flap
tip vortices and moving them away from the surface. Alternatively, brushes fitted
to the slat horn provided local noise reductions of up to 8dB [54].

An alternative to porous or brush slat tips is to fit endplates to the slat to stop
the flow along the slat cove. Tests on both full-scale components and a 0.07 scale
model Bombardier CRJ-700 assessed these devices [114]. For standard slats, there
was a strong source at the inboard slat tip at 3.6 kHz. At this frequency, the SPL
reduced by 8dB when the endplates are used to cover the cove region but there was
no benefit at higher frequencies and a tone appeared at 30.3kHz. In an alternative
refinement of the end plate concept, the slat tip was modified to extend the slat
and align the inboard tip with the free-stream direction. The tip extension reduced
the sound generated at 14.1kHz by 2dB and did not create any tonal noise. By
adding a fence to the free-stream aligned tip and adding a fillet to the main element
leading edge at the join with the extended tip, the sound generated was reduced by
a further 3-5dB for all frequencies.

Separation control

Micro vortex generators are an attractive flow control strategy. They can be fitted
to the inside of the slat upstream of the upper trailing edge that hides the generators
during cruise conditions. The vortices influence the shedding from the trailing edge.
Alternatively, if there is a separation point on the leading edge of the main element,
micro-vortex generators can reduce separation. If this separation does occur, it adds
an additional sound source [78]. These devices have already been shown to delay
separation from a flap [119] but they were not tested inside the slat cove. However,
the vortices themselves are likely to generate noise, offsetting any noise benefit from
the flow control. As well as vortex generators there are a variety of riblets and
large eddy break up devices (LEBU) or compliant walls, which help to smooth the
incoming flow past the trailing edge [120]. Although these devices are of limited use
applied directly to the slat, their main purpose is to reduce separation which can
lead to a drag reduction of up to 50% and a 10% lift increase [121]. This allows
slower approach speeds or reduced use of slats with alternative methods used to

control the boundary layer over the aerofoil suction surface.
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1.3.4 Active flow and noise control

Active control offers variations on passive techniques and other techniques. The
drawback is the increased complexity and the actuator power requirements.

One family of active flow control is laminar flow control, which is aimed at
reducing separation, leading to reduced drag and higher aerofoil incidences [121].
This would then allow the use of a Krueger flap or leading edge droop instead of
a slat. Passive devices such as riblets and vortex generators can improve laminar
flow, but active methods expand the envelope where it is feasible.

One variation on passive techniques is to replace the micro vortex generators
with airjet vortex generators. The main advantage is the increased strength of the
vortex that can be achieved [122], which is useful in the slat cove where the flow is
quite slow. Applying the airjet generators increased aerofoil lift and delayed stall
[122]. This would allow slower approach speeds.

An alternative method of vortex generation is unsteady suction and blowing via
zero mass actuators [123]. This has the advantage of not generating its own tones
but still delaying separation. If separation reduces sufficiently, replacing the slat by
simple hinged slats becomes possible whilst still reaching C7, >2.5 [124, 125]. This
removes almost all the slat noise by eliminating the cove and the slat trailing edge
and the tones these generate. Alternatively, zero mass actuators used with standard
slats increase Cryrax and allow steeper glide slopes. Zero mass actuators applied to
the cusp potentially reduce the magnitude of instabilities in the cove region [126].

Zero mass actuators remain efficient over swept wings with lift improvements of
up to 10% [127]. The zero mass actuators tested were three times more effective
than constant blowing and allowed separated flows to reattach. The wing sweep
generates 3D features which increase the stall angle relative to a 2D aerofoil and
increase the flow control impact at the wing tips [125].

Another use of zero mass actuators is to mount one in the trailing edge of the
slat to remove the shedding frequency. These actuators are compatible with a thin
trailing edge that vibrates with the blowing. When applied to the trailing edge of a
wing, this technique reduced the tonal sound level by 6 dB [128]. This is potentially
even more significant when applied to the slat by avoiding the feedback due to
interactions between the main body and the unsteady gap flow.

Instead of a blowing based system, a vibrating surface can provide a similar
reduction in the size of the separated flow [129]. Similar effects occur when a strong
acoustic source is located close to the wing [130]. However, this is problematic for
noise control due to the additional noise source and it is impractical to implement

this acoustic based flow control strategy on full size aircraft.
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Another use of a vibrating surface is to mount one in the trailing edge of the
slat to remove the shedding frequency. These actuators are compatible with a thin
trailing edge that vibrates due to a piezo-electric plate (Figure 1.8). When applied
to the trailing edge of a wing, this technique reduced the tonal sound level by 6 dB
[128]. This is potentially even more significant when applied to the slat by avoiding
the feedback due to interactions between the main body and the unsteady gap flow.

An alternative method of eliminating slats is to employ a jet flap, which is formed
by diverting the engine exhaust though the wing trailing edge [131]. The difficulty
with this technique is in maintaining the efficiency of the engines and in avoiding
increased jet noise.

In most locations, separation is detrimental, but it is unavoidable at the slat
cusp and trailing edge. At these locations, the aim of flow control is to avoid the
formation of instabilities that generate excessive noise or reduce the aerodynamic
performance. Unsteady blowing applied to the cusp can unsettle the flow and help
control the flow through the cove. This type of system has already been applied to
large rectangular cavities such a bomb bays [132, 133] where a similar recirculation
occurs. This can result in a reduction of both tonal and broadband noise. Instead of
the application of a pulsed jet it is possible to use a vibrating surface [134] to control
slat flow instabilities. This could reduce the weight of the system by eliminating the
array of actuators with a single vibrating surface.

Blowing air normal to the aerofoil surface, for instance by using jets, can control
the flow over an aerofoil [135]. The effectiveness of this technique is sensitive to the
blowing direction and amplitude but can provide increased lift when the blowing
re-energizes the boundary layer. Increasing the blowing amplitude is not always a
benefit because it can lead to flow separation.

Steady blowing was also effective at reducing the noise in cavities [136]. Modify-
ing the flow by blowing achieved a steadier flow. If applied to slats, this technique
could stabilize the flow in the slat cove and possibly stop the interactions with the
slat trailing edge. However, the location of the steady blowing application is very
important to minimize the blowing rate and maintain a good flow control perfor-
mance.

A more complex system is to use a sensor in the wake to apply blowing in a closed-
loop control mode, in order to cancel out slat flow instabilities [137]. Theoretically,
a close-loop control system could eliminate the instabilities at the cusp and stop the
shear layer destabilizing due to unsteady flows in the recirculation region. However,
a practical system is unlikely in the near future due to the complexity and expense
of it.
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A plasma actuator can control separated flows in a cavity. At low-speeds, plasma
can attenuate cavity tones [138]. However, a plasma actuator can generate high-
frequency tones and could be a difficult system to integrate in real aircraft.

The slat tip also an intersting area for active flow control applications. Slat tip
noise could be reduced by using blowing to stop the formation of the slat tip vortices.
When applied to the side edge of a flap [139], it destroyed flap side edge vortices,
resulting in a noise drop of 3-4 dB above 1.25 kHz. However, the noise reduction was
no better than that from applying a fence to the suction side of the flap [140]. Slat
edges do not generate a vortex as well-defined as at a flap side edge so this technique
is unlikely to match this effectiveness and therefore its cost effectiveness.

A more complex system could use a controllable liner [141] or vibrating wall
[142]. These devices allow aircraft to change the frequency that is absorbed to
match different flow conditions, reducing the noise. However, the majority of the
approach is flown at a nearly constant attitude so the complex liner and control
mechanism is likely to be too expensive with respect to a non-tunable device.

Another noise reduction technique is active noise cancellation. This technology
has already found limited use inside aircraft but has great potential with external
flows. Application is easiest where the sound source is limited to a small source
area such as the slat trailing edge. Work on applying this technique to turbofan
engines [143] found the number of cancelling sources must outnumber the number
of tones being cancelled. Cancellation is theoretically useful for slats because there
are usually only a few major sound sources located at the slat trailing edges and
reattachment point. Large reductions in sound are achievable but require a complex
and expensive system, deterring the implementation of active noise cancellation on

aircraft for the near future.

1.3.5 Summary

In slat flow and noise studies, new experimental and computational research tech-
niques have moved investigations from steady aerodynamics to unsteady aerody-
namics and aeroacoustics. Conventional wind tunnel work involve the measurement
of the time-averaged aerodynamic forces and pressure distribution to optimize an
aircraft. To understand the noise sources one of the better techniques is to use
PIV to identify the flow patterns. Recent computational work has focused on un-
steady features using RANS or DES and examined the far-field noise reduction using
acoustic analogies. Computational complexity is increasing with computing power
to improve the spacial flow resolution. There is an increasing use of 3D rather than

2D simulations.
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With respect to slat acoustics, the trailing edge is the important area for high
frequency tonal features. At lower frequencies, slat noise is driven by the shear flow
from the cusp and unsteady ejections from the slat gap.

Reducing the noise generated by these features covers two main areas:

1. Improving the performance of the main element and flap to allow a reduced use
of slats, which can be achieved by reducing the flow separation over the flap
using passive devices such as riblets and vortex generators or active devices

like zero mass actuators.

2. Reducing the generation of unsteady features by smoothing the flow past the
slat trailing edge and slat gap, which can be done by using covers, fillers or
liners in the cove to smooth the flow, or by using brushes or porous surfaces

at the trailing edge of the slat.

The review of previous studies show the development of the tools used to in-
vestigate aerodynamic and aeroacoustic problems. These studies also give details
of the flow and control methods. The data from these sources is useful for this
investigation but like this study, they exhibit three limitations restricting real world

applications:

1. Results are geometry specific rather than general.

2. Computational and wind tunnel studies both require simplifications of a real
wing, either through lower Reynolds numbers or through the use of simplified

geometries.

3. The durability, cost, size and complexity of a slat noise suppression system

can prevent work progressing beyond an academic study.

1.4 Outline of the current study

1.4.1 Control factors investigated

This investigation used the approach of attempting to smooth the flow inside the slat
cove before it passes through the slat gap. Of particular interest was the occurrence
of intermittent shedding through the slat gap and finding a method to control this
flow feature. The main methods of controlling this disturbance investigated here in

were continuous blowing in the slat cove at the reattachment point and slat cusp
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extension. The investigation of blowing as a flow control technique is novel in the
context of slat flow control and was therefor pursued in this work
The investigation varied the slat angle and aerofoil incidence to cover a range of

flight conditions to explore the limitations of these control methods.

Constant flow rate blowing

On source of instability in the slat cove region is that the reattachment point on
the slat is not fixed increasing instabilities in the shear layer. These disturbances
can then pass through the slat gap where they interact with the slat trailing edge
generating noise. The aim of the blowing system was to fix the reattachment point
on the inside of the slat by providing a clear dividing point (Figure 1.9). By fixing
the recirculation zone, less unsteady features should travel through the slat gap.
Providing an additional input into the cove will also generate a boundary layer that
will move disturbances away from the slat trailing edge towards the centre of the slat
gap. The blowing system was adjustable to cover a range of flow conditions and can
switch off when not needed, which was an advantage. However, all blowing systems
have the disadvantages of complexity and power requirements. A blowing system
also acts as an additional noise source so its usefulness depends on the overall noise

levels.

Slat cusp geometry

Extending the slat cusp aimed at reducing the interaction at the slat cusp by elim-
inating secondary recirculation zones and smoothing the main recirculation region.
It also provided a sharper cusp, which should weaken the shear layer. The exten-
sion was a relatively simple device to fit and it was potentially advantageous during

cruise due to the cover creating a smoother retracted profile.

Aerofoil incidence

The effect of the aerofoil incidence on slat noise was investigated by monitoring the
sound levels produced at different incidences. Aerofoil incidence was a key parameter
as it was the primary method of altering the lift generated.

As the aerofoil incidence increased, the size of the recirculation zone reduced and
the gap velocity increased. These changes also altered the reattachment location on
the aerofoil. All these flow features were important with respect to slat noise and

the working of the blowing system.
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Slat angle

As with the aerofoil incidence, the slat angle was a key parameter in the flow through
the slat cove. Therefore, altering the slat angle was an alternative to changing the

aerofoil incidence with less aerodynamic consequences.

1.4.2 Flow features measured

Flow features

The primary aim of making aerodynamic wing measurements was to quantify the
performance of the entire aerofoil. Measurements of the flow also showed the pat-
terns in the flow, which helped with the identification of slat noise sources. The

aerodynamic measurements taken were:

1. Force measurements to allow the assessment of the overall lift and drag.

2. Surface pressure measurements to show the location of any significant flow

acceleration and diffusion along the wing profile.
3. PIV readings in the cove to allow the identification of the local flow structure.

4. Flow simulation to gain an enhanced spacial resolution of the flow with respect
to the measurements and to obtain far-field acoustic predictions by an acoustic

analogy.

Acoustic features

The unsteady surface pressure of the model was measured by a set of on-surface
microphones to show the local SPL values. An acoustic array was used to map the
source location on the wing to augment the time-resolved wall pressure data. Both
sets of microphone data collected show a broadband noise distribution. In addition,
the surface mounted microphones recorded tonal features that are absent in the
array data.

A computational analysis of the pressure at the monitoring points allowed the
simulation of the local time dependent flow. An acoustic analogy with the simulated
near-field flow allowed the calculation of the far-field acoustic radiation from the

near-field aerodynamic predictions.
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Figure 1.1: Features of the flow around a slat.
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Figure 1.2: Aerofoil geometry.
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Figure 1.3: Definition of slat position.
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Figure 1.4: Slat and main element flow circulation.

(a) State 1 (b) State 2

(c) State 3

Figure 1.5: Shedding states proposed by Jenkins et al. [60].
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Figure 1.6: Whistle feedback mechanism proposed by Tam and Pastouchenko [62].

Figure 1.7: Slat track orientation. (A) Perpendicular to the wing. (B) Aligned to
the flow.
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Figure 1.8: Vibrating trailing edge tested by Nakashima and Akishito [128].
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Figure 1.9: Proposed action of the blowing system.
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Chapter 2

Methodology

2.1 Introduction

This chapter details the methods used in this study. The initial section outlines the
geometry of the aerofoil studied along with the baseline reference settings for the
slat and flap. The next section covers the experimental work starting with details
of the model and experimental facilities. The experimental section finishes with
details of measurement methods. The computational section starts by presenting
the computational methods. It is followed by descriptions of the exact conditions
investigated and the grid. The final section outlines the technique used to model

the far-field sound levels based on the near-field aerodynamic predictions.

2.2 Geometry

2.2.1 Aerofoil geometry

This study used a three-element aerofoil provided by Airbus UK (Figure 2.1). All
three elements of the aerofoil had finite thickness trailing edges. Table 2.1 outlines
the dimensions of the elements. The study examined the aerofoil with zero sweep
angle and zero taper. Experimentally the wing had a finite span with end plates
but the computational work used a combination of 2D and periodic 3D simulations.
Simplification of the design involved not including any slat or flap brackets, which
are additional acoustic sources. However, the finite thickness trailing edges remained
because they are integral to the sound sources under investigation so they were not
idealized to perfectly sharp ends.

The axis system for the aerofoil used an origin located at the leading edge of the

aerofoil in its retracted configuration. When orientated as an aircraft wing x points
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towards the trailing edge, y points vertically upward and z along the span towards

the port wing tip.

2.2.2 Reference settings

The reference settings reflected the landing configuration with both the slat and flap
deployed. Table 2.2 shows the details of the locations.

This study compared the reference configuration with three other settings with
reduced slat angle and slat gap. The slat angle was moved in 5° increments giving
three slat angle settings of ag=23°, 18° and 13°. Investigating the impact of changing
the slat location involved reducing the slat gap from 0.017¢ to 0.01lc. For each of

these positions the flap was unaltered. Table 2.3 shows the changes in the settings.

2.3 Experimental methodology

2.3.1 Experimental aims

The aim of the experimental programme was primarily to examine the near-field
flow. Measurements of the near-field noise were mainly obtained through the micro-
phone array due to the need to filter out the relatively high background noise levels
present in the wind tunnel. Array measurements complemented the near-field data
and gave an indication of the far-field sound levels.

Initial measurements examined the sound levels of the reference configuration.
Changes in the near-field acoustics then allowed the assessment of the effectiveness
of the flow control at altering the source strengths. When changes in the acoustic
near-field appeared, PIV allowed the identification of the flow changes responsible for
them. Measurement of the aerofoil surface pressure distribution and aerodynamic
forces enabled the assessment of the aerodynamic impact of any changes in the flow
field.

Achieving these aims involved the use of five main measurement techniques:
1. Flush mounted surface microphones to measure the local sound levels.

2. An acoustic array to map the sound source locations.

3. PIV to map the flow features around the slat.

4. Pressure taps to examine the mean flow and show the aerodynamic impact of

changes to the aerofoil.
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5. Force balance to measure the aerofoil aerodynamic forces.

The sensors were located at the centre of the slat span in order to minimize the
appearance of any 3D features. These would not dominate on a real aircraft due to

the large aspect ratios used.

2.3.2 Model design

Model requirements

The wind tunnel model’s final configuration depended on a range of diverse require-

ments. These requirements include the need to

1. accurately match the geometry of the aerofoil section under investigation,
2. allow variations in the slat position,

3. allow the application of blowing at the desired location,

4. incorporate the pressure taps and flush mounted microphones,

5. allow visual access to the slat cove for PIV,

6. minimize aeroelastic deformation and vibration of the model,

7. avoid excess blockage and loading, and

8. minimize the impact of the endplates and tunnel mountings.

The five main measurement techniques influenced the model design. However,
the main restrictions on the model were the need to fit the pressure taps and micro-
phones inside the slat along with the blowing system.

The blowing system split the slat into three pressure chambers to distribute the
blowing across the full span. These vented to the slat cove via blowholes located
at the reattachment location. The slat required a large number of holes to give a
smooth distribution across the span and to minimize the impact of the gaps between
the blowholes. The size of the air supply tubing limited the size of the holes. The
cross-sectional area of the tubes was set at half the size of the blowing tubes so
its velocity was double the blowing rate. This was in addition to any losses in the
tubing system.

The pressure chambers joined to an external compressor, which provided air

compressed up to five bar via an adjustable control valve. This increased internal
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pressure, while the external pressure in the cove region reduced relative to ambient
pressure when the wind tunnel is running, creating the driving force for the blowing.
A pressure tap located inside each chamber monitored the internal pressure. The
external pressure was approximated using pressure taps located both sides of the
blowing location 2mm from the blowholes. A rotometer attached to the air supply
monitored the blowing rate. A manometer measured the pressure at this location
to record the density and hence mass flow rate of the blowing system.

The inside of the slat contained the pressure tap tubing and microphone cables
mounted in the slat in addition to the tubes linking the air supply to the blowing
system. The internal size of the slat determines the overall size of the model so this
becomes the determining factor in the minimum chord length. The slat was manu-
factured using a carbon fibre skin of at least 1.5 mm thick and this meant the slat at
the blowing location had to exceed 3 mm in width. An additional offset allowed for
the glue in the slat skin to spread during construction without blocking the holes.
The blowing location was fixed to coincide with the shear-layer reattachment line in
the slat cove, as determined by computational fluid dynamics (Figure 3.33). This
gave a minimum size of c=800 mm, representing a slat chord of 92 mm. This limited
the number of sensors that could be fitted inside the slat. The span was limited
to 1m to avoid excessive blockage in the tunnel. An alternative method was to
modify the profile in order to reduce the lift and blockage and allow a larger slat
cross-sectional area. However, a shortened trailing edge would reduce the circulation
around the wing and alter the flow around the slat.

The main element also needed fitting with pressure taps to allow monitoring of
the surface pressure distribution. Additionally, the leading edge of the main element
needed microphones to measure the unsteady pressure on the other side of the slat
cove. The main element was larger than the slat so the sensors did not impose any
additional restrictions on the main element design.

PIV had a smaller impact on the design of the model. The model needed end-
plates in order to achieve a quasi-2D flow in the centre span of the wing because
the model did not completely span the wind tunnel. Hence, the endplates required
optical access to the slat region, to allow the camera to see the flow in the cove, for
the PIV measurements. PIV also required that the model did not produce strong
reflections from the laser requiring the painting of the model black.

The microphone array had little impact on the model because of the array lo-
cation away from the model. The main requirement of the array was a direct view
of the model and minimization of acoustically reflective surfaces and other sound

sources.
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The model cusp extension fitted flush with the slat wall at the cove (Figure 2.2).
The extension also matched to the retracted slat setting so in this configuration it
would cover the gap between the slat cusp and main element. The extension was
manufactured using stereo-lithography so the edges had a minimum thickness of

0.5mm to avoid damage and vibration.

Model structure

The models 800 mm chord and 1,000 mm span also limited the forces generated to
manageable values. Limiting the span had structural advantages by reducing the
stiffness needed to prevent wing warping. However, a small aspect ratio required
large endplates to produce a near 2D flow at its mid-span. Cherry wood made up
the majority of the main element with a carbon fibre trailing edge added to prevent
deformation.

The slat and flap were constructed from carbon fibre skins. This enabled the
manufacture of the thin trailing edges and restricted the deformation of the slat
and flap by the aerodynamic loads. The use of carbon fibre allowed shaping of the
trailing edge within 0.1 mm of the design. The final design featured thirty external
pressure taps on the slat along with three internal taps to measure the pressure
inside the three air supply settling chambers of the slat. These were spaced out
based on the pressure distribution found computationally. The distribution was set
to give approximately constant change in pressure between adjacent taps around
the slat (Figure 2.3). The blowholes were drilled into the slat skin, each was 1 mm
in diameter and they were located in two lines each spaced every 5mm (Figure
2.3). The lines were 2.5 mm apart with the holes alternating between the two lines
(Figure 2.4). This gave 400 holes per metre of span . The slat and flap attached
to the endplates via 15mm thick aluminium ribs glued in place inside the skins.
Thinner 6 mm ribs divided the slat into three internal plenum chambers.

The hardwood construction of the majority of the main element allowed the
cutting of grooves in the surface to mount the sensors. After fitting the sensors, the
surface required filling, smoothing and painting to avoiding light reflection during
the PIV testing. There were 45 pressure taps on the main element, which were
concentrated near to the leading edge along with two microphones mounted in the
leading edge to monitor the pressure inside the cove (Figure 2.5).

The primary function of the endplates was aerodynamic. However, they also
acted as the mounts for both the slat and the flap. The need to investigate different
settings led to fitting adjustable outer windows around the slat. Slots were used to

allow the adjustment of the slat gap and of its overlap. These allowed changes of
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0.01c in both the horizontal and vertical directions. Replacing the panels to which
the slat attached allowed the slat angle to vary. Glass inner panels for the starboard
endplate allow optical access to the slat cove. The endplate construction used 6 mm
aluminium sheets machined to accommodate the windows. The sheets had cutouts
with honeycomb inserts to reduce their weight and 1 mm aluminium sheets covering
both sides to maintain the endplate stiffness. Rounding the edges of the endplates
minimized separation (Figure 2.6).

The model was mounted inverted, attached at three points. The two main struts
were attached to the pressure surface of the main element at x=0.37¢ spaced 700 mm
apart. They attached to steel top-hat inserts recessed into both surfaces of the wing
and distributed the load preventing damage to the main element. The inserts were
clamped together using an M12 bolt and covered using plasticine (Figures 2.4 and
2.7). The two main struts provide the pivot point for the model to allow alteration of
the aerofoil incidence from -5° to 22.5°. The third connection was a tail bar attached
to a structure mounted between the two endplates above the flap. The tail bar
construction used aerodynamically shaped steel tubing to minimize its aerodynamic
interference. The tubing formed a triangular structure to distribute the loading to
the endplates and avoid deformation (Figure 2.8).

The initial tests of the model were in a free transition configuration. Later on,
trip strips were added upstream of the slat cusp and trailing edge. The addition
of the trip strips prevented laminar flow separation around the cusp [2] and gave a
closer match to a higher Reynolds number flow with natural transition. The trip
strips were each 12 mm wide and used 80 grit. The strips were located 4-16 mm from
the cusp and 44-56 mm from the slat trailing edge on the convex side. The cove side

of the trailing edge remained free transition.

2.3.3 Wind tunnel facilities

The wind tunnel tests used the 3.5 mx2.6 m R. J. Mitchell tunnel at the University of
Southampton. The tunnel had a maximum velocity of 45m/s but for these tests, the
maximum speed used was 35 m/s due to the large lift forces and pitching moments
generated by the wing. Above this speed, the motor holding the tail bar could not
fix the aerofoil incidence at a steady value. This represented a maximum Reynolds
number of Re=2.33x10° based on the retracted chord of 800 mm. The design of the

tunnel gave a free stream turbulence level of less than 2%.
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2.3.4 Measurements

Test conditions

The tests used a reference aerofoil incidence of 5° with the slat and flap in their
reference positions. The test used 30 m/s as the baseline velocity. However, this was
too fast for the PIV system so PIV measurements for the reference configurations
were obtained at the reduced velocity of 25m/s.

The aerofoil incidence was set at 0, 5, 10, 15 and 20° and testing was carried out
at v=10, 20 and 30 m/s. The blowing system ran with the blowing set at 0, 60, 80,
100 and 120 litres per minute (LPM). Testing ran both with and without trip strips
applied to both the slat trailing edge and slat cusp.

Forces

To measure the aerodynamic forces, a 6-component balance system was used. The
balance was located above the model and attached to the three struts (Figure 2.8).
The wind tunnel model was large so the blockage of the wind tunnel affected the force
measurements. The force measurements were corrected for wind tunnel blockage
using ESDU 76 028 [144]. The forces also incorporated tare values to compensate
for the impact of the struts and endplates on the force readings. The force corrections

are examined in Appendix A.

Oil flow

To assess 3D features on the wing, oil flow runs were carried out at a=5° and 10°.
Oil flow involved applying a mixture of paraffin and titanium oxide powder to the
surface of the wing. Running the wind allowed the paraffin to evaporate leaving
streaks of titanium oxide, which identify the mean surface flow direction, transition

and separation.

Pressure taps

The pressure taps were monitored using two ZOC systems each with 32 channels.
The main element was attached to the low range zoc with a range of +10"H20O
which corresponds to maximum of Cp£4.5 at 30m/s. The slat pressure taps were
attached to the high range zoc, which had a range of £20”"H?O. Averaging the
pressure over 40 seconds for each reading taken gave the mean pressure values.
Recording each condition three times allowed further averaging. Repeating the runs

helped in the detection of malfunctioning pressure ports, which had large differences
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between the runs. Steel tubing with an outer diameter of 1.25 mm forms the basis
of the pressure taps. A 0.6 mm hole drilled in the side of the tube exposed the tube
at the measurement location. The tubes were glues in the slat, to the inside of
the carbon skin and sealed through the ribs that make up the pressure bulkheads
between the plenum chambers. On the main element, the tubes recessed into the
surface. The tubes connected to the ZOC systems using portex tubing with an inner

diameter of 1 mm.

Particle image velocimetry

The PIV system used a Dantec HiSense camera and a Gemini PIV 15 laser. The
laser used two tempest Ng:YAG lasers to produce twin pulses of light at up to 120mJ
per pulse. The light had a wavelength of 523nm. The system was set with the laser
mounted in the roof of the tunnel to illuminate the slat cove on the tunnel centre
line, at the slat mid-span. The camera was fitted outside the tunnel so it could view
along the slat through the glass window in the endplate (Figure 2.9). The camera
was fitted with a 60 mm lens at a distance of 1,800 mm from the measurement plane
while the laser was located at a distance of around 1,250 mm.

The camera synchronizes with the laser so the two images are taken when the
pair of laser pulses illuminates the flow. The typical time separation between the
pair of images was around 30us. The camera had a resolution of 1,280x 1,024 pixels.
This represented a plot resolution of 157x125 vector maps, constructed using an
area of 32x32 pixels with an overlap of 75%. Seeding particles were provided by
a smoke generator located downstream of the model allowing the smoke to become
more uniform as the flow passes around the closed loop tunnel. However, it was not
possible to get good readings at speeds above 25m/s. The large size of the tunnel
leads to a rapid deposition of the seeding particles and the generator cannot replace
them fast enough. The tunnel size also increases the attenuation of the laser sheet
intensity due to the wide angle of its lens and requires increased distance between the
camera and the area recorded. The slat restricting the amount of seeding entering
the cove region further complicated the situation. PIV ran at 10m/s, 20m/s and
25m/s. Tests at 30m/s did not yield usable results due to inadequate seeding in
the slat cove.

The PIV data gave a map of the velocity on a plane through the slat cove.
Plotting the vorticity allowed the visualization of the shear layer. The vorticity is
obtained from the velocity vectors using the central differencing numerical scheme
used in tecplot [145]. A vorticity plot gave the direction of the flow from the cusp

and showed the size and shape of the recirculation region. The vorticity plot showed
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the shear layer but was less good at picking out discrete vortices when the shear
layer breaks down. Where discrete vortices are present, the Q criterion developed
by Weiss and Okuba allowed their visualization [146, 147]. Subtracting the strain
rate (S) from the vorticity () gave the @) value. If the value is positive, then there

is a vortex.
1 2 2
Q=S (IQF = 15) (2.1)
Q- %(w _(va)") (2.2)
S = %(Vﬂ+ (Va)™) (2.3)

Microphone readings

There were six microphones fitted around the slat (Figure 2.3) and two near the
leading edge of the main element. The microphones used were Panasonic WM-60A
condenser microphones, each had a diameter of 6 mm and a length of only 5mm.
The microphones were sensitive from 20 Hz to 22kHz and gave a signal to noise
ratio of 58 dB. The microphones required an operating voltage of 2V, which the
pre-amps provided. The microphones on the slat were labelled S1-S6, when viewed
in a clockwise direction starting from the leading edge next to the cusp. On the
main element, M1 was located in the nose of the main element with M5 close to
the retracted trailing edge position. Performing a fast Fourier transform (FFT)
analysis on the signal from the microphones generated the frequency spectra. This
FFT averaged over 100 sets of data to smooth the signal and improve the signal to
noise ratio. The FFT used 2,048 samples from each data set, which was sampled at
48 kHz to give a Nyquist frequency of 23 Hz on the microphone spectra.

The surface mounted microphones had a constant response over the frequency
range allowing calibration at a single point. A pistonphone allowed collection of
the calibration values of the microphones; this produced a tonal signal at 1 kHz and
94dB. To give the correct amplitude the microphone fits inside the pistonphone.
For the surface microphone, this was not possible because the microphones could
not detach from the wing due to the need to keep the slat pressurized. This created
problems in obtaining an accurate reading of the absolute value of the sound levels,
but the microphones could still monitor changes in sound level caused by alterations

in the test conditions.
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Acoustic source distribution

Measuring the source distribution used a microphone array based on 56 Panasonic
WM-61 microphones. The WM-61 microphones are similar to the WM-60 micro-
phones except they have a reduced length of 3.4mm and the signal to noise ratio
was increased to 62 dB. After taking calibration readings, the microphone array was
assembled onto a plywood panel. Cling-film covered the panel to provide a smooth
cover and remove the interaction between the boundary layer and the microphone
openings. The array was mounted flush with the wind tunnel ceiling 1270 mm above
the model (Figure 2.10). The array recorded in 400 blocks of 512 samples at a fre-
quency of 48kHz to allow sufficient averaging. The array data gave the source
strength in fourteen 1/3 octave bands from 1kHz to 20kHz. The array determined
the SPL level over a 100x100 grid, located in the plane of the wing, to reconstruct
the sound measured. The noise map was assembled using the beamforming method
[148].

2.4 Computational methodology

The computational work divided into two main steps, computational fluid dynamics
(CFD) and computational aeroacoustics (CAA). The first step involved solving the
Reynolds averaged Navier-Stokes (RANS) equations to simulate the flow close to the
aerofoil. An unsteady simulation gave a time history of the near-field conditions,
which included the time-dependent near-field pressure fluctuation.

The simplest acoustic analysis used the near-field pressure history to estimate

local sound levels. An acoustic analogy estimated the far-field sound levels.

2.4.1 Computational aims

The computational work was complementary to the experimental work, filling in
the gaps in the data provided by the experimental study. The overall target was to
generate the near-field data necessary to employ an acoustic analogy. The exper-
imental work allowed the validation of the near-field simulation by comparing the
flow features around the slat. The experimental data was limited to the near-field,
so the computational work became the sole source of far-field SPL levels, which were
used to test flow control method effectiveness in aerodynamic noise reduction.
Simulations were also useful in the investigation of the shape of the unsteady
flow features, complementing the PIV work. The simulation gave a clearer image of

the small-scale features, enabling an improved analysis of the flow patterns.
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The computational work had the advantage of allowing higher Reynolds numbers
relative to the experimental work. However, simulations were time-consuming, so

the number of cases run was significantly limited.

2.4.2 Computational formulation

As with all CFD simulations, the basis of the method was a set of conservation laws.
To simulate the flow around the aerofoil section, the Navier-Stokes equations were

used to give conservation of mass, momentum and energy [149].

9p
- (pu) = 2.4
00 V) = S 2.4
dpu L -
ot + V.(puu) = -Vp+V.T+pg+ F, (2.5)

0 _
a(pE) + V.(u(pE +p)) = =V.(KyVT — X;h;J; + T.0) + Sh, (2.6)

where T is the stress tensor
2
7= p[(Va+ (Vu)') — gV.ﬂl]. (2.7)

In the above equations, p is density, t is time, u is the velocity vector, .5, is a mass
source, p is the static pressure, F is an external body force, F is total energy, K, £f s
the effective conductivity, 7" it the absolute temperature, h; is enthalpy of species 7,
7]- is diffusion of species j, T is the viscous stress tensor, S}, is a term for additional
heat sources, p is the molecular viscosity and I is a unit tensor.

For an adiabatic non-reacting, neutrally buoyant flow equations 2.4- 2.7 become:

dp .
5 T V() =0, (2.8)
% +V.(pum) = —Vp+ V.7, (2.9)
0 _
—(pE) + V.(@(pE +p)) = =V.(KefVT — E;h;J; +T.7). (2.10)

ot
All aerodynamic flows satisfy the Navier-Stokes equations, however, the equa-
tions cannot be solved exactly for most real flows. Hence, CFD uses finite difference
and finite volume schemes to approximate their solution. As with all numerical cal-
culation, the size of the numerical grid is a key factor in determining the accuracy
of the predictions. Computational limitations make it impossible to generate a grid

fine enough to capture the smallest scales of motion in engineering flows.
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One method of reducing the computational cost is to use Reynolds averaged
Navier-Stokes equations (RANS). These equations are based on the conservation of
mass and momentum equations that form part of the N-S equations. The RANS
equations are formed by replacing all the velocity components and pressure by time
mean and fluctuation about the mean components. The resulting values are aver-
aged. When averaged the fluctuating components average to zero when not com-
bined with another fluctuating component. Assuming the fluctuations in density,
and moecular viscosity are negligible, this leaves the —pu’u’ term, which is needed
to close the equations. This term is known as the Reynolds stresses and is modelled
by a turbulence model in RANS simulations. The RANS equations are [149]:

dp

—= + V.(pu) = 2.11

5 T V-(p1) =0, (2.11)
% + V.(puu) = =Vp + V.7 — V.(pu/t/) (2.12)

Where 7 and p are averaged values and / is the fluctuating velocity component.

RANS simulations model all of the Reynolds stresses. However, if the grid is fine
enough, the large-scale turbulent features are resolvable. If the large-scale turbulence
is simulated and modelling only covers the small scales, the simulations becomes a
large eddy simulation (LES). Detached eddy simulation (DES) is a combination
of RANS and LES where the simulation covers the large turbulent scales away
from walls but the full Reynolds stresses are modelled close to walls. The greater
the percentage of the unsteady flow simulated rather than modelled the better the
result. However, the simulation of the flow unsteadiness can only occur where the
grid resolution is adequate.

This study used Reynolds averaged Navier-Stokes equations and DES with a
finite-volume scheme applied on the computational grid built around the wing. The
solution then employed time marching to allow the solution to evolve temporally.
The use of sub-iterations improved the accuracy of the temporal scheme. For com-
putational cost reasons, the grid did not cover all small-scale features present in a

real flow, necessitating the use of a turbulence model.

Flow conditions

The CFD work concentrated on the reference geometry and a=>5°. The simulations
used the slat and flap in their reference positions. The simulations were carried out
at M=0.2, which is a standard landing velocity.

Both blowing and no-blowing cases were modelled. Initial 2D simulations had
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the blowholes replaced by a slot. Clearly this was not a realistic case so later work
used a narrow 3D grid which allowed the use of discrete blowholes. However, due to
the size of the computation, it was necessary to simplify the geometry by replacing
the round blowholes by square holes. This allowed simulation of the small-scale 3D

features around the blowholes.

Simulation technique

The simulation work was carried out using Fluent. Initial work used a 2D grid using
a variety of turbulence models in URANS simulations. These simulations did not
pick up any unsteady feature in the slat cove due to excessive numerical dissipation.

To reduce the numerical dissipation in the cove region, the turbulent production
term in the k —w shear stress transport (SST) turbulence model was switched off in
the area shown in Figure 2.11. This technique to reduces the eddy viscosity in the
cove region was developed by Khorrami et al. [86, 87] and assumes that the large
flow acceleration through the cove keeps the flow laminar. Some supporting evidence
for this is that the slat system featured a laminar separation from the slat cove for a
large part of the flight envelope. With the turbulent kinetic energy production term
suppressed, unsteady features developed in the slat cove allowing the investigation
of the application of flow control.

Including blowing in the cove simulation gave an initial assessment of the blowing
system. The main limitation was that the 2D simulation modelled blowing through a
slot rather than through small holes as used in the experiment (Figure 2.4). Therefor
the 2D simulation was not representative of the experimental setup.

To allow the simulation of the discrete blow holes, a narrow 3D simulation was
set up. Using periodic boundaries in the spanwise direection partially compensated
for the limited span of the model. The scale of the blowhole distribution, which was
set at 6.25x107 3¢, gave two blowholes across the numerical model span and fixed
the span of the simulation domain. Replacing the round blowholes by square holes
allowed the use of an extruded grid and avoided excessively skewed cells, simplifying
the geometry. Transition was modelled by suppressing the kinetic energy production
terms around the leading edge of the slat up to the location where the trip strip was
placed on the experimental work.

For the 3D simulations detached eddy simulation (DES) was used. This allowed
to resolve the main flow unsteadiness in the cove, removing the need for a laminar
zone. At the start of the time-resolved computations the conservative velocities were
initialized using the results from a Spalart-Allmaras steady RANS simulation.

The time step for the 2D time resolved computations was set at At=1x10"°

49



2. METHODOLOGY

seconds. A numerical experiment was performed on the selection of the time step.
It was found that increasing At to 1x10~% seconds did not give enough time steps for
the shear layer to break down before the vortices leave the cove. The 3D simulations

used the same time step size as the 2D simulations.

Grid

The 2D grid design was a multi-block structured C type grid, which fits around the
outside of the aerofoil. This extended out to a distance of ten chords downstream and
eight chord lengths upstream from the aerofoil reference point (Figure 2.12). This
reference point was located at the leading edge of the slat when it was in the retracted
position (Figure 2.1(a)). All grids were fully one-one block matched grids so they
require no interpolation across internal domain computational boundaries. This
reduced the impact of the joins between the blocks. The drawback of the selected
computational mesh geometry was that a large number of cells was generated away
from the slat, particularly in the wake region. The cells were concentrated around
the slat and the cell size expands rapidly to the far-field to keep the number of
cells to an acceptable number. In most directions the geometric stretching was kept
below 1.10 but it was higher at the far-field boundary and away from the slat cove,
which is the primary area of interest (Table 2.4).

The grid structure was complicated by the addition of the slat and the flap,
especially the near right angles at the slat cusp and upstream of the flap cove.
These make it impossible to use a conformal C type grid. The grid was smoothed
to minimize skewness and reduce the cell aspect ratios where possible (Figures 2.13
and 2.14).

Close to the wall, the wall-normal first interior cell is Az=1x10"%¢c. This gives
a yT value of one, which allows to resolve of the boundary layers. The cell size at
the far-field increased to Ax=0.5, which results in a range of scales of 5x10%. This
was acceptable in a 2D simulation, because the cells expand in both directions, so
the cell aspect ratios remain within acceptable limits. The use of large cells in the
far-field keeps the number of cells to an acceptable number of around 2.50x 10°.

The 3D simulations used a teardrop shaped grid. The grid was based on a 2D
grid produced by Zhaokai Ma [112] (Figures 2.15 and 2.16). The grid used a tear-
drop rather than a circular geometry to reduce the skewness of the cells above the
suction surface of the aerofoil. The grid placed the outer computational domain
boundary at a distance of ten chord lengths from the aerofoil reference point.

Forming the 3D grid required reducing the resolution away from the walls and

adding the discrete blow holes. For the narrow geometry, eleven equally spaced slices
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constituted the spanwise direction to allow the creation of simplified blow holes on
the inside of the slat (Figure 2.17). The grid contained 1.18x10° cells and had a
width of 6.25x103¢.

Boundary conditions

The far-field boundary of the grid used a pressure far-field boundary condition, which
fixed the pressure, Mach number and flow direction, at the boundary, allowing the
other values to vary. Therefore it must be located far enough from the aerofoil to
allow the fixing of those variables. The grid had an aerofoil incidence of a=0° so the
free-stream direction of the flow determined the aerofoil incidence. The pressure far-
field was a non-reflecting condition designed for compressible flow and uses Riemann
invariants for incoming and outgoing waves [150].

For the 3D simulations, periodic boundary conditions were used in the spanwise

direction.

Simulation settings summary

The 3D simulations used the following settings:
1. The code used was Fluent 6.2.

2. The simulation used a coupled, DES formulation, with the ideal gas law and

the energy equation to allow compressible flow.

3. The pressure was set with gauge pressure at 0, and operating pressure at
101,325 Pa.

4. The boundary used the pressure far-field condition. This was set with a Mach
number of 0.2, x component of 0.996, y component of 0.087 and a temperature
of 288°K.

5. The temporal scheme had a time step size of 1x107> with 30 sub-iterations
per time step using a third order MUSCL scheme [151].

6. The spatial scheme used a third order MUSCL formulation.

Analysis methods

Two main methods obtained the acoustics from the simulations. The simplest was to

record the data at a point and use a FF'T to calculate the acoustic spectra. However,
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this is a point analysis so it was hard to build up a picture of the acoustics of the
entire system.

The second method was an acoustic analogy to give the far-field directivity.

2.5 Far-field noise prediction

2.5.1 Acoustic analogy

The FW-H acoustic analogy generated the far-field data for this study. This took the
pressure data on an integration surface to obtain the pressure history at monitoring
points in the far-field. The far-field calculations used the FW-H solver developed as
part of sotonCAA (aka SHOCASES3D), which is a high-order CFD package with an
FW-H solver developed at the University of Southampton [152]. In this project only
the FW-H component was used which is based on the FW-H formulation developed
by Farassat and Succi [153, 154].

A total of 100 monitoring points were set up to form a ring 100 m from the slat
in the centre span plane. The pressure history at these points was calculated by
the numerical solution of the FW-H equation. The pressure history at the far-field
points was then analyzed to find the RMS pressure at each point and hence the

directivity of the radiated sound.

2.5.2 Integration surface

The integration surface used was located on the slat wall rather than away from the

surface. The integration surface was on the wall for two reasons:

1. The acoustic analogies did not work well where turbulent flow features pass
through the integration surface [155]. This was unavoidable for an integration

surface location close to the walls.

2. If the surface was located further from the walls, the grid resolution was not as

high as in the cove region and the simulation of sound waves was less accurate.

The analogy separately calculated the far-field contributions from the three aero-
foil elements using surface data. Combining the three values gave the total unsteady
pressure at the monitoring points. This was valid because all three far-field simu-
lations use the data from the same simulation so there was a common time at the
monitoring points during the combination process. The limitation of this technique
was that the quadrapole terms and the sound shielding provided by neighboring

surfaces were not included in the analogy.
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(a) Retracted geometry.

T

c
L x

T TN

(b) Reference geometry.

Figure 2.1: Slat geometry.

Geometric feature Value
1) Thickness to chord ratio (t/c) 0.128
2) Main element chord 8.76x107 ¢
3) Main element trailing edge thickness | 1.51x10 3¢
4) Slat chord 1.15x107 ¢
5) Slat trailing edge thickness 6.62x10~*¢c
6) Flap chord 2.48x107 ¢
7) Flap trailing edge thickness 3.11x10 3¢
Table 2.1: Aerofoil dimensions.
Geometric feature Value
1) Flap angle (ap) 30°
2) Flap gap (Hr) 1.65x10 ¢
3) Flap overlap (Ogr) 5.00x10 3¢
4) Slat angle (o) 23°
5) Slat gap (G) 1.68x1072%¢
6) Slat horizontal overlap (Og) | 5.06x1073¢
7) Slat vertical overlap (Oy) 4.25x107%¢c
Table 2.2: Reference slat and flap settings.
Position G Oy ag
Ref 1.68x1072%c | 5.06x10 3¢ | 23°
18° 1.68x102%¢c | 5.06x10 3¢ | 18°
13° 1.68x107%¢ | 5.06x107 3¢ | 13°
13°RG | 1.01x10%c | 1.51x10%¢ | 13°

Table 2.3: Slat positions investigated.
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Figure 2.2: Geometry of the slat cusp extension.

(a) Microphone locations (b) Pressure tap locations (c¢) Blow hole locations

Figure 2.3: Sensor locations on slat.
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Figure 2.4: Photo showing the blow holes, microphones and pressure taps.
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Figure 2.8: Model mounted in the R. J. Mitchell wind tunnel.

Figure 2.9: Slat viewed through window in endplate.
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a) Array Photo

(b) Array Design

Figure 2.10: Microphone array design.
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Figure 2.11: Location of the laminar zone.
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Figure 2.12: Size and shape of the 2D grid.
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Figure 2.13: Detail of 2D grid around the slat.
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Table 2.4: Grid stretching factors measured on the block boundaries from the first
to second cell.

15
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ylc
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Surface 2D grid 3D grid
Slat outer surface 1.16 1.24
Slat cove surface 1.03-1.08 1.17
Slat trailing edge 1.04 1.10-1.15
Main element suction surface 1-1.07 | 1.10-1.11
Main element pressure surface | 1-1.05 | 1.11-1.15
Main element trailing edge 1.12 1.41
Flap suction surface 1.02-1.18 | 2.00-2.05
Flap pressure surface 1.06 1.35-1.79
Flap trailing edge 1.44 1.24
Far-field boundary 1.30-1.26 | 1.03-1.21
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(a) Surface Grid

(b) Blow hole locations

Figure 2.17: Detail of the grid on the surface of the aerofoil showing the blow holes
on the slat wall. The blow holes are located at 4.133x1072¢ and 4.446x 10~ 2¢c from
the slat trailing edge.
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Chapter 3

Aerodynamic Results

3.1 Introduction

This chapter covers the acrodynamic work and has experimental and computational
sections. In both sections, the first subsection contains the results for the reference
configuration. This establishes the unmodified flow pattern and the reference aero-
dynamic force levels. The following subsections then focus on the influence of the
four factors under investigation: «, oy, cusp geometry and blowing. An examination
of the reliability of the results and the reasons for differences are given at the end
of the chapter.

The experimental aerodynamic work covered three main areas
1. force measurements,
2. Cp distribution measured from the pressure taps, and

3. flow pattern measured using PIV.

The computational work shows the baseline flow patterns from both 2D and 3D
simulations with a baseline flow speed of M=0.2. The 3D grids at both flow speeds
allowed the assessment of the impact of blowing on the aerodynamic performance of
the aerofoil. The low blowing rate matched the experimental work to give 120LPM
across a 1m span. With the flow speed at M=0.2 the blowing rate was increased
to 270LPM to keep the ratio of blowing the free-stream velocities constant.

The computational modelling allowed the generation of three main types of re-

sults:
1. Force values.

2. Wall static pressure from which to calculate Cp.
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3. Flow pattern plots showing variables such as pressure, velocity and vorticity.

The force readings gave the overall aerodynamic impact of changes to the aerofoil
settings. The Cp and flow patterns showed changes to the local flows. Examination
of near-field flow helped to explain the physics of the aerodynamic and acoustic

changes.

3.2 Experimental results

3.2.1 Baseline results

The baseline conditions consisted of the reference slat and flap locations at a=5°.
In this configuration at v=30m/s, the wing was producing a lift force of 625N
which corresponds to Cp=1.47, with a lift to drag ratio of 5.52. Figure 3.1 shows
the chordwise surface pressure distribution for this configuration where only 24 out
of 30 slat measurement taps were operational. The distribution shows stagnation
points on both the main element and slat. In the slat cove there is a pressure rise,
however, C'p does not rise above zero. The peak suction occurs around the slat cusp
and on the main element at the slat gap. Peaks should have also occurred on the
trailing edge of the slat. However, the geometry of the slat made it impractical to
add taps to this location, preventing pressure measurement.

Figure 3.2 shows the flow pattern with both the mean and instantaneous readings
for the reference setting. At the reference conditions, the PIV measurements show
that the shear layer generated at the slat cusp did not significantly deviate from
the free-stream direction until it is close to the main element. This led to a large
recirculation zone with minimal flow through the gap. In this configuration, the slat
did not add to the lift of the aerofoil and, due to the low aerofoil incidence, separation
was not a major concern. The shear layer did not completely break down close to
the cusp but, after it reached the main element, the shear layer formed discrete
features. Fixing the transition point increased the vorticity in the shear layer but
reduced the formation of discrete vortices. Away from the walls, the shear layer
was clearly resolved. However, close to the walls, and at the gap, reflections from
the wall and areas of shadow distorted the image. These areas then generated un-
physical features in the spanwise vorticity plot. The PIV pattern is similar to the
one from studies by Jenkins et al. [60] and Takeda et al. [53] but the flow at the
cusp was altered by the lack of a cusp extension, which allowed a larger amplitude
shear layer greater instability to develop.

Plotting the @) value for the same PIV data shows the discrete vortices located
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within the shear layer (Figure 3.3). With free transition, the cove contained a large
number of small vortices convecting around the recirculation region, but few were
carried up to the main element stagnation point. With fixed transition, all the
vortices travelled towards the main element stagnation point significantly reducing

the number of vortices within the cove region.

3.2.2 Dependence on incidence

Over the aerofoil incidence range, the lift and drag increased, as the incidence was
increased (Figures 3.4 and 3.5). The range of angles measured did not reach the
stall point. The curves were close to linear from a= 0° to a=20°. However, close
to a=0° there was a small drop in lift possibly caused by the pressure side of the
flap moving into the wake of the main element. This was an indication of the wing
approaching stall. For a symmetrical wing the negative angle stall would match the
standard stall angle. However, the deployed slat greatly increased the camber of
the wing and made it easy for the separated flow in the cove to expand, leading to
a loss in lift. The loss of lift would be an issue below a=0°, however, this setting
does not have many practical uses in aircraft operations and the drop in lift could
be reduced by reducing the slat angle or retracting the slat. The drag curve does
show some curvature but appears almost linear rather than the expected form of
Cp=a+bC?%. This difference is partly down to the plot only containing a limited
aerofoil incidence range disguising the shape of the drag curve. The other main
factors are that the endplates will reduce the contribution of the induced drag and
that the wing is in a landing configuration. The landing configuration means that
the aerofoil experiences significant regions of separation around the slat cove and
behind the flap trailing edge. These regions are aerofoil incidence dependent and
will alter the profile drag component unlike with a clean wing setting.

As aincreased, the C'p minimum increased on the wing suction side although the
general pattern remained constant (Figure 3.6). The exception was at «=0° where
the shear layer from the cusp did not enter the cove generating a long recirculation
zone (Figure 3.7). Where this recirculation zone ended there was stagnation point,
but away from the leading edge, the spacing of the taps increased so the surface
pressure records missed the stagnation point resulting in an under-estimate of the
maximum Cp. However, this setting was clearly not a realistic condition for slat
utilization. The aerofoil incidence trend followed the same pattern as earlier tests
by Jenkins et al. [60] but this study included more taps in the cove, which expanded
the data available to include the reattachment point.

As «a increased, the PIV (Figures 3.8 and 3.9) showed that the size of the re-

70



3. AERODYNAMIC RESULTS

circulation zone shrunk significantly from occupying the entire cove region at a=5°
to being restrained close to the slat at a«=20°. The reduction in the size of the re-
circulation region allowed an increased flow through the slat cove. However, above
a=10°, as the gap became more aligned with the free-stream, the acceleration of the
gap flow was reduced, leading to a slight reduction in the suction generated around
the cusp. The flow velocity through the gap is likely to have a major impact on the
acoustics at the trailing edge but the total forces are more dependent on the overall
recirculation rather than on a localized feature. Fixing transition did not have a
significant impact on the mean flow and hence, on the aerodynamic forces of the
wing over the range of angles investigated (Figures 3.10 and 3.11). The trajectory
of the shear layer defining the size of the recirculation region, matched the pattern
found by earlier simulations by Storms et al. [44].

Under all conditions, the () value showed the presence of discrete vortices formed
within the shear layers (Figure 3.12). As the aerofoil incidence increased, the number
of vortices increased up to a=15° while their size decreased. This reduction insize
is because the vortices were increasingly constrained to the shear layer. At a=20°,

the number of vortices reduced along with the size of the recirculation zone.

3.2.3 Dependence on slat angle

The total force values were similar for the different slat positions. However, reducing
the slat angle did give a slight increase in lift generated (Figure 3.13). At a=5°
reducing ag from 23° to 13° gave a 5% lift improvement. However, by a=20°
the improvement was reduced to 1.6%. This occurred because the slat’s design
conditions were at high aerofoil incidence so at low aerofoil incidence the slat became
more effective when deployed at a reduced angle. Reducing the gap had no significant
impact at the conditions measured. The increase in lift was reflected in a similar
increase in drag so the lift to drag ratio was unaffected by the slat changes (Figure
3.14). The slat was likely to become more important towards the stall point but,
over the range considered, ag=13° was a better setting.

At ag=13°, the variation of C'p with a (Figure 3.15)was similar to the pattern
at the reference slat position (Figure 3.6). On the main element, the largest change
of C'p with decreasing o was around the leading edge, where there was a drop in
the peak suction indicating a drop in the flow velocity through the gap (Figure
3.15). On the slat, increasing ag moved the stagnation point closer to the cusp
(Figure 3.16). Moving the stagnation point increased the acceleration of the flow
over the upper surface of the slat giving increased lift from the slat. The stagnation

point was clearly also dependent on « (Figure 3.15). As « increased, the stagnation
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point moved towards the cusp and the peak suction moved from the cusp side to
the trailing edge side. For the reference slat, this change occurred at a=10° but at
as=13° this occurred before a=10° (Figure 3.17). Inside the cove, the reduced gap
velocity resulted in increased pressure on the slat wall, indicating a reduction in the
velocity in the recirculation region.

The PIV results for ag=13° (Figures 3.18 and 3.19) show why this slat setting
was more effective at low aerofoil incidence. The increased distance between the
cusp and main element and closer alignment with the flow allowed the shear layer
to go through the slat gap rather than impinge on the main element at a=5°. The
increased size of the cove left increased the space between the shear layer and main
element, leading to the lower peak suction values observed. The () value showed
the discrete vortices at ag=13° were contained within the shear layer (Figures 3.20
and 3.21). Relative to the reference slat angle the cove was larger, allowing the
shear layer to move further from the slat wall. This appears to have reduced the
interaction at the cusp creating more order in the shear layers leading to a reduction
in the size of the shed vortices. With free transition, the size of the vortices increased
with respect to fixed transition measurements but the pattern remained with few
vortices leaving the shear layer. At a=15° with free transition, the vortices seem to

form into a staggered pattern similar to a von Karman vortex street (Figure 3.22).

3.2.4 Influence of blowing

The aim of the blowing system was to influence the unsteady features in the slat cove
to alter the acoustics of this wing. Producing significant changes in the aerodynamic
forces by blowing was therefor not an aim of this study. Hence the blowing rates were
relatively small with respect to the free-stream flow. For this reason, the blowing
system did not have a significant impact on the total forces generated by the wing.

The blowing system did have an influence on the local flow in the cove as shown
on the Cp plot of Figure 3.23. Adding the blowing produced localized pressure
peaks (a) and (b) either side of the blowing location. These probably formed due
to the flow splitting either side of the jet, giving a clear dividing point as shown
in the schematic. These changes in the cove altered the shape of the recirculation,
creating a pressure peak located closer to the cusp. This indicated a fixed secondary
recirculation zone was formed, giving a high-pressure point. Without the blowing,
this upstream pressure peak was absent so there was either no secondary vortex or
this was intermittent. The flow was also altered slightly upstream of the cusp where
the pressure is slightly reduced (c).

The PIV images of the slat showed that the blowing did not significantly change
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the flow pattern in the cove (Figures 3.24-3.25). The jet was not visible on the
PIV because the blow rate of 120LPM corresponds to a mass flow rate of less than
0.01kg/s (Appendix B), which was much smaller than the mass flow rate through
the cove of approximately 0.5kg/s. The small size of the jet limited it to close to
the wall, where it was not resolved by the PIV due to surface reflections of the laser
sheet.

3.2.5 Dependence on cusp geometry

The addition of the cusp extension did not alter the forces generated by the wing at
a low aerofoil incidence. However, above a=10°, the cusp extension gave a reduction
in the lift generated (Figure 3.26). With the reference slat angle at a=10°, there
was a 2.5% drop in the lift generated by the wing. A 4% drop in drag at this
configuration accompanied this.

The Cp distribution around the wing reflected the change in the flow pattern
(Figure 3.27). The addition of the extension moved the reattachment point in the
cove closer to the cusp, as shown by the localized pressure change located around
x/c=0. Moving the reattachment point increased the flow through the gap increasing
the suction at the gap. However, further downstream, there was a reduction in the
suction generated, leading to the loss of lift. The loss in suction was probably due to
a mismatch between the gap flow and the flow over the suction surface of the main
aerofoil element, leading to a region of recirculating flow on the upper surface of the
aerofoil. The pressure distribution along the aerofoil pressure side was essentially

unaffected by the cusp extension.

3.3 Computational results

3.3.1 Baseline results

The baseline flow condition of ag=23° was simulated using both the 2D and 3D
grids at a free-stream speed of M =0.2. Both simulations gave lift values significantly
above the experimental results with C',=2.3940.003 for the 3D DES simulation and
C1=2.35 for the 2D RANS simulation. This increase relative to the experimental
values was clearly due to the simulations modelling an infinite wing so none of the
losses associated with a low aspect ratio wing are included. Although the model
did use end plates to reduce 3D effects these were not large enough to remove all of
the spanwise variations. The lift to drag ratio was also relatively high due to the

low incidence of the wing. At high incidence, although the lift was increased the
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drag increase was greater, leading to a reduced lift to drag ratio. For a complete
aircraft, there would be a further drag increase due to the presence of the fuselage
and empennage. The drag for the 3D simulation was C'p=0.045+0.003, giving a lift
to drag ratio of 53. There was a significant difference in the drag values, with the
2D value approximately double the 3D value.

The pressure distribution around the 3D grid at M=0.2 shows that there was
a pressure rise located in the slat cove at the reattachment point located at x=0
(Figure 3.28). Suction peaks were formed at both sides of the slat cusp where Cp=-
3.6. On the main element, there was a localized suction peak of C'p=-4.1 around the
leading edge followed by a more extended suction plateau of C'p=-3.4. The pressure
then increased away from the leading edge with a flap suction peak of C'p=2.4.

Examining the velocity distribution in the slat region showed the acceleration
through the slat gap (Figure 3.29). The high-speed flow, formed by the acceleration
around the main element leading edge, reached a velocity magnitude approximately
twice the free-stream value. Low-speed flow was located around the slat and main
element stagnation points and around the reattachment point in the slat cove. There
is also low-speed flow near the centre of the recirculation zone and in the cove close
to the cusp. The region close to the cusp featured complex velocity fluctuations,
indicating an unstable interaction between the recirculated and gap flows at this
point, highlighted by the vorticity in the cove (Figure 3.30). The cusp generated
most of the vorticity; however, there was an additional source located where the
recirculating flow in the cove separates from the slat wall, before the cusp, where
indicated by arrow 1. These two sources interacted near the cusp and influenced
significantly all the unsteady features in the cove. The majority of the vorticity
was located in the recirculation zone with some elongation of the vortex structure
through the gap close to the slat trailing edge. The pressure plots show the large
low-pressure region in the cove generated by the flow accelerating through the cove
(Figure 3.31). There was also a low-pressure region at the cusp, which identified the
start of the cove flow acceleration. The pressure plot also clearly shows the location
of the reattachment point and suction on the upper surface of the main element.

The pressure distribution for 2D simulations gave the same general pattern as
the 3D results (Figure 3.32). The main changes were the lack of the localized high
suction points on the main element at the slat gap and an increase in the pressure
at the reattachment point. The velocity pattern from 2D simulations was similar
to the 3D results; the largest difference was at the cusp where a clearly defined
secondary vortex forms (Figure 3.33). There was also an increase in the size of the

centre of the main recirculation zone that affected the flow past the main element.

74



3. AERODYNAMIC RESULTS

Examining the vorticity showed that the 2D simulation matched the main features
in the cove but did not capture the fine details, which will involve a 3D component
(Figure 3.34). The restriction to the 2D shear layer means that growth is slower and
explains the rise in pressure at the reattachment point by not allowing the force to
spread over a wider area. Specifically, 2D vortices in the 3D shear layer break down
into 3D vortices. This process is not modelled in the 2D predictions. Generally,
the 2D simulations gave a good match to the 3D simulations but the local features
contained 3D elements that limited the use of 2D simulations. The 2D method
matched the method used by Khorrami et al. [86] which also found significant shear
layer breakdown and this is matched to the 3D DES simulations. The domain of
the 3D simulation was narrower in the spanwise direction than those employed by
Choudhari and Khorrami [92], but this allowed compatibility with the discrete blow
holes used in this study.

3.3.2 Influence of blowing

The 3D simulations allowed assessment of the impact of blowing on the aerodynamics
of the wing. In the simulation carried out at M=0.2, there was a small increase in
the lift generated when a low blowing rate was applied. The change increased the
lift from C'1=2.38 to C'1=2.45. However, the higher blowing rate did not generate
a further lift increase. At the same time, there was a larger increase in drag of 20%
rising to 33% at maximum blowing. This magnitude of drag increase was significant
but during the landing phase, the lift value had a greater importance than the drag
level.

Adding a low blow rate of 120LPM to the simulation at M=0.2 produced some
localized changes in the pressure distribution (Figure 3.35). Increasing the blowing
rate further to 270LPM did not produce any further change. Compared with the
no-blowing case, the most noticeable change was an increase in pressure at the slat
cusp from Cp=-0.8 to Cp=-0.7, indicating a reduction in the local flow velocity.
The cove wall, close to the cusp, was nearly vertical, so the change in pressure on
this wall did not alter the lift generated. However, the pressure coefficient displayed
relative to the y-axis shows this surface had a significant impact on the overall drag
value (Figure 3.36). The plot shows the blowing significantly altered the cove flow.
As the blowing increased, the suction increased on this surface leading to the drag
rise measured. The changes only occurred on the cove side of the reattachment
point and the pressure on the slat wall through the gap was not blowing dependent.
However, there was an increase in the suction applied to the main element at the

slat gap indicating the blowing moved the gap flow closer to the main element. The
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final change occurred on the upper surface of the flap where the blowing increased
the suction level. Of the three changes, the change to the main element reduced
drag, the other two increased the drag level and led to the overall increase in drag.

The impact of blowing is clearly indicated in the velocity plots at both low and
high blowing rates (Figures 3.37 and 3.38). As the rate increased, the size of the
zone of separated flow at the cusp was increased and the recirculation zone became
restrained closer to the slat. The blowing also acted to move the main gap flow
away from the slat trailing edge producing lower velocities close to the wall. The
vorticity plot confirmed the shear layer movement away from the slat wall and also
showed how the recirculation moves away from the cusp (Figure 3.39).

The experimental work showed the size of the recirculation zone was aerofoil
incidence dependent. Hence, without blowing, an increase in incidence moved the
reattachment point anticlockwise around the slat towards the slat trailing edge. For
the reference condition the blowing moves the reattachment point slightly closer to
the slat trailing edge Figure 3.36). The blowing acts to provide a clear division
on the slat wall (Figure 3.23b) so the movement of the reattachment point due to

blowing will be dependent on the non-blowing location.

3.4 Experimental/ computational agreement

The force and Cp values obtained computationally were significantly higher than
those found experimentally. This was due to the simulations modelling infinite span
wings caused by the use of periodic boundary conditions. The difference in overall
loading reflected in the flow patterns inside the cove. The increased wing loading
reduced the size of the recirculation zone for the reference condition. This flow was
closer to the pattern observed at a=10°. These 3D effects make it inappropriate
to consider the experimental and computational work as relating to the same case.
However, both put forward information useful to understanding the slat flow. To
bridge this gap an estimation of the impact of a finite aspect ratio is required. Lifting
line theory can be used to approximate this value [156].

For an elliptical lift distribution, lifting line theory gives the induced drag as:

_
- 7AR

Cpi (3.1)

where Cp; is the induced drag and AR is the wing aspect ratio. The induced drag
is created by accounting for the downwash behind the wing due to the circulation

needed to generate lift. The downwash effectively alters the aerofoil incidence cre-
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ating a component of lift in the drag direction. The lift remaining can be found by
adjusting the lift by the induced drag angle. For an elliptical lift distribution, the

lift can be found using:

) (3.2)

when « is measured from the zero lift angle. This assumes that the aerofoil matches
the lift slope of 27 that derives from thin aerofoil theory. Rearranging the equation

gives:

AR
CL—QFOéAR+2 (3.3)
SO AR
CLSD = CLQD AR+ 2 (3.4)

For non-elliptical distributions, these equations are not exact due to variation in
the lift and downwash across the span leading to the need to add efficiency factors.

Modifying the equations for C'p; and C', gives:

(1490
CDz - 7TAR (35)
Cr AR (3.6)

=C
P20 AR+ 2(1+ 0)

where both o and ¢ are positive values based on the lift distribution.

The experimental model had large endplates, which force the model to act as
if it had a higher aspect ratio than the physical value of 1.2. The Effective aspect
ratio can be found by assuming that the difference in the drag value between the
computational and experimental work was due to the induced drag, which was not

calculated in the computational work. Hence:

1+¢)C?
(14¢)C?2 5 o2
OLSD = OL2D 2 mA0D = CLQD 2 Lip 1+o (38)
—(1:2223’3 +2(1+0) Ciyp +2mACD TS

Using the assumption used by Anderson [156] that o ~ ¢ reduces the equation to:

2
CLSD

CLgD = CLQD C%SD I 27TACD

(3.9)
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CQ
CLZD ==

3D

(3.10)

Substituting the values for Cp,,= 1.47, Cp,,=0.266 and Cp,,=0.045 gives
Cr,,=2.39 matching the measured value of 2.39.

Although force values could be partially adjusted for 3D effects this is not as easy
with the acoustic values limiting quantitative comparison between the results. The
aspect ratio difference was also clear in the flow patterns from the computational
and experimental sections. The computational work had an infinite span so did not
include the impact of induced drag and downwash, which had a similar impact as
increasing the aerofoil incidence.

The adjusted forces show a link between the experimental and computational
results and this extends to the flow patterns the generate the wing loading. Ex-
amining the surface pressure distribution show a common distribution from the
computational (Figure 3.28) and experimental data(Figure 3.6). However as with
the forces the computational values, which were simulated at a=>5° are a better
match experimental data taken at an increased aerofoil incidence of between a=15°
and a=20° due to the lack of the downwash. Inside the slat cove there is also a
similarity in the shape of the recirculation region between the computations (Figure
3.30) and experimental PIV data (Figure 3.9).

3.5 Summary

The experimental results show the incidence of the model had by far the largest
aerodynamic influence of the factors investigated. The incidence largely determined
the total forces generated along with the flow pattern inside the slat cove controlling
the recirculation size and reattachment point. The @) value plots showed discrete
vortices form within the shear layer, but fixing transition significantly reduced their
production.

The slat angle also had an influence on the flow in the slat cove. With reduced
slat angle, the cove was larger increasing the size of the recirculation region. With the
larger recirculation region, the shear layer appeared to have increased stability with
less formation of large discrete vortices, which can leave the shear layer. However,
the slat angle had a limited impact on the overall force values, reducing the slat
angle gave a 5% lift improvement at a=5° and as incidence was increased this
improvement reduced. The aerodynamic impact of altering the cusp geometry was
limited but produces a small lift reduction above a=10°. The blowing had little

global aerodynamic impact and changes were limited to small pressure changes in
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the slat cove region.

The simulations generated a lift of C';=2.39 for the reference wing with a small
drop when 2D simulations were used. Addition of blowing generated a small lift
improvement but led to a drag rise when applied at M=0.2.

The pressure distribution featured suction peaks at the slat trailing edge and
main element leading edge. Pressure peaks are located at the reattachment points on
the slat, main element and cove walls. The impact of the blowing focused on the slat
cusp region. Velocity and vorticity plots show the blowing moved the reattachment
point and recirculation zone as a whole, altering the size of the separated flow region
at the cusp.

The results are generally consistent with the trends from other, earlier studies

and introduce new work on the cusp extension and blowing.
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Figure 3.2: PIV spanwise vorticity plots (s7!) of the reference configuration with

free and fixed transition. v=25m/s.
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Figure 3.3: @ value (s72) of the PIV data at the baseline configuration with free
and fixed transition. v=25m/s.
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Figure 3.5: Experimental Cp vs « plot at the reference conditions.
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Figure 3.6: Experimental Cp plot showing the impact of the aerofoil incidence.
v=30m/s, ag=23°.
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Figure 3.8: PIV spanwise vorticity plots (s™') over the aerofoil incidence range.
v=25m/s, ag=23°, a=>5° 10°.
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Figure 3.9: PIV spanwise vorticity plots (s™') over the aerofoil incidence range.

v=25m/s, ag=23°, a=15°, 20°.
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Figure 3.10: PIV spanwise vorticity plots (s7') showing the impact of transition on
the mean slat flow patterns. v=25m/s, a=5°, 10°.
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Figure 3.11: PIV spanwise vorticity plots (s7') showing the impact of transition on
the mean slat flow patterns. v=25m/s, a=15°, 20°.
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Figure 3.12: Q value plots (s™2) using the PIV data showing the impact of the
aerofoil incidence on the mean slat flow patterns, v=25m/s.
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Figure 3.14: Experimental Cp vs « plot with the slat angle altered, v=30m/s.
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Figure 3.15: Experimental Cp plot showing the impact of the aerofoil incidence.
v=30m/s, ag=13°.

92



3. AERODYNAMIC RESULTS

Cp

x/c

Figure 3.16: Experimental Cp plot showing the impact of the slat angle. v=30m/s,
a=>5°.
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Figure 3.17: Experimental Cp plot showing the impact of the slat angle. v=30m/s,
a=10°.
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Figure 3.18: PIV spanwise vorticity plots (s7!) over the aerofoil incidence range.
v=25m/s, ag=13°, a=>5°, 10°.
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Figure 3.19: PIV spanwise vorticity plots (s™') over the aerofoil incidence range.

v=25m/s, ag=13°, a=15°, 20°.
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Figure 3.20: Q value plots (s72) using the PIV data over the aerofoil incidence range.
v=25m/s, ag=13°, a=>5°, 10°.
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Figure 3.21: Q value plots (s72) using the PIV data over the aerofoil incidence range.
v=25m/s, as=13° a=15° 20°.
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Figure 3.22: PIV spanwise vorticity plots (s™!) for the free transition case and no
tone with fixed transition. a=15°, ag=13°, v=30m/s.
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Figure 3.23: Experimental C'p plot showing the impact of blowing and schematic
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Figure 3.24: PIV spanwise vorticity plots (s~

the mean flow. v=25m/s, a=5°, 10°.
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Figure 3.25: PIV spanwise vorticity plots (s7!) showing the impact of blowing on
the mean flow. v=25m/s, a=15°, 20°.
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Figure 3.26: Experimental C} vs « plot with and without the cusp extension,
v=30m/s.
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Figure 3.27: Experimental Cp plot showing the impact of adding the cusp extension,
v=30m/s.
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Figure 3.28: Cp plot in the reference conditions from the 3D grid, M=0.2.
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Figure 3.29: Instantaneous velocity magnitude plot in the reference conditions from
the 3D grid (Normalized using the free-stream velocity v). M=0.2.
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Figure 3.30: Instantaneous spanwise vorticity plot (s7') at the reference conditions
from the 3D grid. M=0.2.
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Figure 3.31: Instantaneous gauge pressure plot (p — pref, Pa) at the reference
conditions from the 3D grid. M=0.2.
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Figure 3.32: Cp plot from the 2D simulation, M=0.2.
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Figure 3.33: Instantaneous velocity magnitude plot at the reference conditions from
the 2D grid (Normalized using free-stream velocity v). M=0.2.
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Figure 3.34: Instantaneous spanwise vorticity plot (s7!) at the reference conditions
from the 2D grid. M=0.2.
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Figure 3.35: Cp plot with low rate blowing. b=120LPM, M=0.2.
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Figure 3.36: Cp vs y plot with varied blowing rates. M=0.2. (A) Slat cove surface,
(B) Flap upper surface, (C) Main element, opposite to the slat trailing edge.
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Figure 3.37: Instantaneous velocity magnitude plot with low rate blowing from the
3D grid (Normalized using free-stream velocity v). b=120LPM, M=0.2.
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Figure 3.38: Instantaneous velocity magnitude plot with full rate blowing from the
3D grid (Normalized using free-stream velocity v). b=270LPM, M=0.2.
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Figure 3.39: Instantaneous spanwise vorticity plot (s7') with full rate blowing from
the 3D grid. b=270LPM, M=0.2.
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Chapter 4

Aeroacoustic Results

4.1 Introduction

This chapter presents the aeroacoustic data from the study. The first section con-

tains the experimental data, which were obtained using two techniques:

1. Flush mounted microphones on the model, which measured the local fluctuat-

ing pressure levels.

2. An acoustic array mounted directly above the model, which mapped the acous-
tic sources. The array data gave the spectra for the slat region and allowed

calculation of the changes in the spectra.

The second section presents the aeroacoustic data obtained from the computa-
tional program. Near-field values came from monitoring points in the slat cove,
which measured the pressure fluctuations (Figure 4.45 and Table 4.2). A FFT gen-
erated the local spectra from this data. The computational work also calculated
the far-field directivity and the acoustic spectra of the far-field, using the FW-H
equation on an integration surface.

The computational simulations complemented the experimental results by pro-
viding the far-field data but did not cover the range of conditions covered by the
experimental work.

The third section brings together the different sets of results to explain the base-
line results and the impact of the changes applied. The emphasis of the analysis was
placed on linking the flow features found around the slat with the sound generated.
This link assisted in the identification of the physical sound generation mechanisms.

The identification of the sound generation mechanisms showed the physical reasons
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for variations in sound levels. This section also contains work that examined the

level of agreement between these sources and how they related to real aircraft.

4.2 Experimental results

4.2.1 Baseline results

The source maps from the slat were divided into fourteen 1/3 octave bands ranging
from 1kHz to 20kHz. These plotted the SPL value (dB) on an imaginary grid
placed in the plane of the aerofoil. The array data used 1/3 octave bands because
it is a useful tool when examining broadband noise features but it does not pick
up narrowband tonal features. At the lowest frequencies (below 2kHz), the sound
was dominated by the noise from the wind tunnel fan. The tunnel had a suck
down arrangement so the fan was located just downstream of the test section, which
resulted in the highest fan noise levels occurring downstream of the wing and lowest
values occurring at the leading edge (Figure 4.1). From 2kHz to 16 kHz the slat
became the dominant noise source (Figures 4.2 and 4.3). The 20 kHz noise map
produced unrealistic flow patterns due to the frequency limits of the microphones
making this data unusable. The sound source strength distribution across the span
of the model was non-uniform, indicating the flow exhibited some 3D variation in
the distribution across the span. A spanwise non-uniform pattern was also detected
when examining the separation line on the inside of the cove close to the slat cusp
(Figure 4.4). The oil flow image shows that cellular features influenced the slat cove
flow. At the reference conditions, five cells appeared and the centre section produced
the highest sound levels in the array measurements. The model had a finite aspect
ratio, which provided the main driving force for the observed flow variation across
the span. However, the variation should have remained symmetrical about the
centreline of the model for time-averaged quantities. As the cell pattern in Figure
4.4 is asymmetrical it indicates the presence of asymmetric imperfections in the
shape of the wood and carbon fibre wing model. The spanwise variation in the
tones was also found in array readings by Storms et al. [44]. However, their model
included brackets and a half span flap, which added to the spanwise variation.

A measure of the acoustic spectra generated by the slat can be found by convert-
ing the SPL vales into fluctuating pressures then averaging the values across the area
containing the slat and finding the resulting SPL value. Figure 4.5 shows the results
from such integration at the reference conditions. The data followed the expected

broadband pattern of a gradual reduction as the frequency was increased (Figure
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4.5). The pattern found shows that the majority of the sound was generated at
low frequencies with energy then transferred to higher frequencies as large unstable
features decayed into smaller features. Altering the free-stream velocity changed the
magnitude of the sound generation but did not have a large impact on the shape
of the frequency spectra. The scaling of the spectra with velocity is addressed in
section 4.4.1.

Addition of a trip strip to the slat did not alter the general shape of the frequency
spectra generated by the slat. However, the trip strip did have an influence on the
sound produced especially around 3-8 kHz. This frequency range is associated with
shedding originating at the slat cusp, which fixing transition can remove. This thesis
later shows that certain conditions generated a tonal feature in this frequency range.

The surface microphones for the reference conditions showed the surface pressure
fluctuation was broadband in nature for all the microphone locations (Figure 4.6).
The only significant feature was the tone observed at 470 Hz by microphone S2
on the outside of the slat. This tone appeared above broadband levels in many
conditions, when the broadband unsteady surface pressure was low enough, and was
not dependent on the model settings. This indicates it was a tone associated with the
wind tunnel fan. The relative levels of the microphones show the unsteady surface
pressure was highest at the slat gap (M1) and reduced towards the reattachment
point (S3) and down to the cusp (S6). The microphones outside the cove had
the lowest values indicating a local sound source rather than an external source,
generated the majority of the unsteady surface pressure. The impact of changing
velocity on the surface microphone was similar to the array results, with amplitude
changes but similar frequency distribution (Figure 4.7). Examining the flow at lower
frequencies shows that the peak broadband SPL occurred at 100-250 Hz suggesting
the unsteadiness was driven by low frequency features.

With fixed transition, the flow at the gap was not significantly changed but there

was an increase in the SPL in the cove at low frequencies (Figure 4.8).

4.2.2 Dependence on incidence

The aerofoil incidence had a large influence on the source distribution as measured
by the acoustic array. Relative to the reference value of a=5°, the largest change
was at a=0° where the slat ceases to generate enough sound to appear above the
background levels on the source maps. Below 10 kHz the slat source strength reduced
at increasing incidence. Above 11 kHz, the slat source strength matched the reference
incidence value when the incidence was increased from a=>5°. At higher frequencies,

the pattern reversed and the slat source increased with incidence (Figure 4.9). The
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pattern from the source maps was clarified by examining the SPL spectra of the slat
(Figure 4.10).

The changes in the source pattern reflect a significant impact on the frequency
spectra as incidence was varied. The integration of the data matched the flush
mounted microphone readings in showing the quietest incidence was at a=0° . At
13kHz there was a clear jump in SPL at high incidence (a=15, 20°) indicating the
presence of a narrowband feature in this 1/3 octave band.

The differences are clearer when the change in SPL relative to a=0° is plotted
(Figure 4.11). At a=5°, there was a significant increase in the sound production
especially from 2kHz to 11 kHz where there was an increase of up to 10dB relative
to a=0°. Below 8 kHz as the incidence was increased further there was a reduction
in the difference relative to a=0°, resulting in little overall increase by a=20°. At
higher frequencies, there was an increase in the sound levels at higher incidence. The
increase was centred on 13 kHz matching the location found in the frequency spectra.
The magnitude of the peak increased with increasing aerofoil incidence. This trend
follows the pattern found with the surface microphones with a=5° being the loudest
at low frequencies and high frequency features appearing at high incidence.

When the transition point was fixed using trip strips, at low frequencies the
pattern was unchanged relative to a=0° (Figure 4.12). However, unlike the free
transition case, the large increase at higher frequencies did not occur. The change
was largest at high incidence around 13kHz, indicating suppression of the tonal
features. Plotting the difference generated by fixing the transition point highlights
the changes generated (Figure 4.13). As well as removing the tones there was also
a reduction in the level of the broadband noise generated at a=5° from 5-10 kHz.
The only penalty for adding the trip strips was an increase in SPL level at a=20°
of 4dB at 2.5kHz. However, this condition remained quieter than at lower aerofoil
incidence settings.

The surface microphones followed the trend set out by the array results, with
a=5° the loudest in most conditions and a=0° the quietest (Figure 4.14). The
microphones also showed the reasons behind the high SPL readings at high frequency
for a=15° and 20°. In these conditions, the tonal features generated are both loudest
at the slat gap. At a=15° a high frequency tone was generated at 22 kHz and there
was a rise in the SPL centred around 10kHz. At a=20° there was a mid frequency
tone at 13 kHz, which produced smaller sum-and-difference tones with a spacing of
2kHz, along with a narrowband rise on SPL from 10-18kHz. A sum-and-difference
tone occurs when a tone is generated in a flow that contains a driving frequency.

Tones are generated on both sides of the original tone shifted by the frequency of the
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driving frequency. The main tone matches the frequency predicted by the whistle
mechanism of Tam and Pastouchenko [62]. The mid frequency tone was linked with
a narrowband rise in broadband levels, which gradually reduced in magnitude as the
aerofoil incidence reduces. The generation mechanism for this narrowband rise in
SPL is linked to the feedback mechanism that generates the tone. When the feedback
is in phase at the trailing edge the sound will be greatly amplified generating the
tone. However, if the frequency is close to this value the feedback loop will still
act and return sound that is almost in phase there will still be a reinforcement of
the sound source. This amplification will be dependent on the phase shift of the
feedback and will result in a narrowband hump centred on the tonal frequency. In
the cove region, the tones were less important and there was a drop in the broadband
noise levels. The array measurements showed a rise where the tones were located
but the increase was only 5dB indicating the impact of the tones was much smaller
in the far-field than at the slat gap. Hence, the values taken in the cove region gave
a better indication of the far-field levels (Figure 4.12).

With fixed transition, the broadband unsteady surface pressure levels were largely
unchanged as was the high frequency tone. However, fixing transition did lead to
some localized changes in the broadband SPL. There was a drop in SPL in the cove
region at a=10° and an increase at the cusp at a=5°. These changes appeared on
the array readings indicating that they were local features caused by a small change
in the local unsteadiness. Fixing transition reduced the mid frequency tones. At the
gap, they were still a major feature but in the cove region, the tones were no longer
significant. Adding the trip strip aimed to promote transition to prevent laminar
separation at the cusp, which could lead to the generation of a Kelvin-Helmholtz
type single frequency instability in the shear layer. Removing this frequency al-
tered the mid frequency tone and reduced the associated narrowband rise in SPL.
The fact that tripping the separating boundary layer reduced the mid frequency
tone indicates that the tone is produced by an amplification of instabilities within
the shear layer, the growth rate of which is effected by tripping. The amplifica-
tion around the mid frequency uses the feedback mechanism proposed by Tam and
Pastouchenko [62], but the result of the amplification will depend on the original
fluctuation amplitude allowing upstream changes to alter the mid frequency tone.
The high frequency tone was unaffected by fixing transition, indicating it is caused
by the blunt slat trailing edge. Tripping has a minimal impact on the trailing edge
tone because it was not generated purely by the breakdown of a shear layer and the
flow on the inside of the slat is not tripped allowing the possibility of relaminariza-

tion at the reattachment point. Overall, fixing transition acted to suppress tones
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by preventing laminar separation at the cusp. However, tripping the flow added
turbulence to the shear layer that the flush mounted microphones could pick up.
The general trend of the broadband sound reducing and high frequency sound
increasing with increasing aerofoil incidence matched the trends found by Andreou
et al. [47]. This work built on that study by showing that the high frequency trend
at a=20° was associated with the mid frequency tone. The microphone array results
also matched the earlier study by showing SPL invariance with aerofoil incidence at
low frequency, but the surface microphones show that this is not the case and that
the tunnel noise masks the slat noise. A similar aerofoil incidence trend was found
by Storms et al. [44] including a drop in SPL at very low angles of attack. However,
the highest value was found to occur at a=10° rather than a=5° indicating that

this measurement is aerofoil geometry dependent.

4.2.3 Dependence on slat angle

At ag=13°, as with the reference slat position of ag=23°, the source maps show
the slat source was not dominant at low frequencies. Over the range 1.6 kHz to
13 kHz, the slat source appears but the level was lower than the reference conditions
especially at a=5°. The a=5° condition remained the loudest but the difference
relative to higher incidence was reduced. At high frequencies (10 kHz+) the slat noise
dropped below the background levels with the exception of the a=5° case where it
generated a clear line source along the slat (Figures 4.15 and 4.16). The exception to
the pattern, of reduced sound source levels at the low frequencies, occurs at 3.1 kHz
with a=15° and ag=13°. At this condition, there was a significant increase in the
source strength indicating the presence of a narrowband feature (Figure 4.17).

The spectra obtained from the array readings at ag=13° show, as expected, the
general pattern was unchanged with the exception of the single point at 3.1kHz
(Figure 4.18). This increase only occurred at a specific frequency, indicating it
was a narrowband or tonal feature rather than an increase in the broadband noise
level. However, there were several smaller changes relative to the reference slat
position case (Figure 4.10). The a=>5° spectrum remained the highest SPL for most
frequencies but was no longer significantly higher than the other lines. The change
in slat angle also removed the rise observed at high incidence at around 13 kHz in
Figure 4.11. In Figure 4.19 the change in SPL relative to a=0° is shown for ag=13°.
It is useful to compare this result to Figure 4.11 where the measurements for the
reference condition of ag=23° are shown. The increase in SPL at a=5° in Figure
4.11 was reduced by 3dB at 2kHz in Figure 4.19 and was less than 3dB above
3kHz. At high frequencies (10 kHz+), the SPL change relative to a=0° was lower
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at ag=13° than at ag=23°, leaving less than 3 dB between the SPL at any incidence
compared to a range of 10dB with the reference slat. The one exception was the
tone that occurs at a=15° but not at a=0°.

Combining the reduced slat angle with a reduced slat gap further reduced the
impact of the incidence of the wing. The main changes in the spectra were significant
reductions in the feature at 3.1kHz and a reduction in the variation in SPL at low
frequencies (Figure 4.20). Plotting the changes as the incidence was altered in Figure
4.21 shows that the change in SPL at low frequencies reduced by a further 2dB due
to reducing the slat gap compared to Figure 4.19.

Plotting the changes relative to the reference conditions show the overall changes
due to altering the slat settings (Figure 4.22). Both of the settings with reduced slat
angle gave a SPL reduction across the frequency range at both a=5° and a=10°.
The improvement due to reducing the slat anlge was largest at a=5° due to the
high SPL level of the reference conditions and the large improvement achieved by
increasing the incidence to a=10°. The impact of reducing the slat gap was smaller,
but was an advantage for frequencies up to 6 kHz. Above 6kHz, the original gap
setting was the better setting.

The location of the slat at the leading edge of the aerofoil means that the slat an-
gle relative to the free-stream direction can become a useful factor in controlling slat
noise. The broadband sound level generally reduced with increased angle between
the slat and free-stream. The increase occurred either when the aerofoil incidence
was increased or the flap angle was reduced. A 5° change in either of these variables
results in a 5° change in the angle between the slat and free-stream flow, however,
altering the aerofoil incidence had a greater influence on the broadband sound level.
Figure 4.22 shows that a 5° increase in aerofoil incidence gave a larger SPL reduction
than a 10° increase in slat angle up to 8 kHz. At higher frequencies the mid fre-
quency tone resulted in an increase with increased aerofoil incidence but this did not
occur with the reduced slat angle until «=20° (Figure 4.19), 10° higher than with
the reference slat angle (Figure 4.11) showing that it was slat angle dependent. The
greater importance of the aerofoil incidence relative to the slat angle, where tones
were not an issue, occurred because increasing the aerofoil incidence increased the
lift generated by the wing. The increased lift generated a local upwash around the
slat, which effectively further increased the aerofoil incidence and further reduced
the slat noise. The reduced gap setting was similar to the ag=13° case but it did
give a small reduction in SPL especially below 5kHz.

With both slat settings at ag=13° fixing transition had little impact with the
exception of narrowband features at a=15° (Figures 4.23 and 4.24). The largest
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narrowband feature was located at 3.1 kHz where there was a large SPL reduction
especially with the standard gap setting where the tone was larger. Unlike at the ref-
erence slat position of ag=23°, there were no large high frequency tones at ag=13°,
so fixing transition had little impact at high frequencies.

The surface microphone data recorded at a=5° show that there was no nar-
rowband feature for any slat angle (Figure 4.25). At a=10° there was much greater
variation in the levels found. For the cove microphones (S3, S6), the pattern matched
the pattern found by the array, with a reduction in SPL for aig=13° and little differ-
ence generated by reducing the slat gap. The best match to the array came from the
cusp microphone (S6) which picked up the convergence from 5-8 kHz and the larger
reduction away from this frequency (Figure 4.22). At the slat gap, the pattern was
different with the reduced gap having the highest noise levels. However, the increase
was due to the reduced gap size moving the sound source closer to the microphone
rather than a higher source strength since the array SPL for a=10°, ag=13°RG in
Figure 4.22 is lower than the SPL at a=10°, ag=13° with the standard gap width.
At @=15° a new tonal feature was present when ag=13° (Figure 4.26). This feature
contained several tones over the range of 3-5 kHz (Figure 4.27). These features were
sum-and-difference tones, which occur when a tonal feature interacts with another
disturbance present in the flow. The magnitudes of the tones were highest at the
reattachment point (S3) and slat gap (M1) indicating the sound originated at the
reattachment point (Table 4.1). Due to the high aerofoil incidence, this location was
downstream of microphone S3, which was the closest to the reattachment point. At
the slat gap (M1), the highest peak occurred at 3.45kHz. However, for the cove
microphones, the tone at 4.05kHz was the dominant feature. The spacing of the
tones indicates the wind tunnel fan, which produced a tone at 470 Hz, generated the
sum-and-difference part of the tones. The array image of this tone showed uneven
distribution of the tone across the span and unlike other variation was highly asym-
metrical (Figure 4.17). This pattern indicated a localized source for the tone due to
a small spanwise variation in the model and high sensitivity to the model settings.

Away from the tone, the slat angle had less impact especially at the cusp (S6).
At the slat gap (M1), the reference incidence had significantly higher high frequency
sound but the far-field noise did not share this feature (Figure 4.22). At a=20° the
pattern was similar with the reduced slat angle giving large SPL reductions at the
slat gap (M1), small SPL reductions at S3 and no large reductions at the cusp (S6).
As well as these broadband noise features, altering the slat incidence also removed
the mid frequency tone giving an improvement at 13 kHz.

Plotting the spectra at different wing incidences together in Figure 4.28 shows
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the variation with wing incidence was similar for all slat angles where no tones were
present (a=>5°, 10° and 20°). The SPL is highest for a=5° with reductions for
higher incidence. For both of the slat conditions, microphone M1 gave higher values
at a=5° and 10° than those observed in the cove and microphone S6 gave the best
match to the array data.

Overall, it was found that acoustically it was beneficial to reduce the slat angle.
This reduced the broadband SPL level (agreeing with Wild et al. [45]) and reduced

the tonal content of the flow.

4.2.4 Influence of blowing

Switching on the blowing system added an additional noise source to the wing in
addition to altering the aeroacoustic sound. The self-noise generated by the blow-
ing system was determined by the blowing rate and was unaffected by the flow,
allowing measurement with the wind off. The source maps show the blowing noise
is concentrated to the right side of the internal chambers of the slat (Figures 4.29,
4.30 and 4.31). The locations of the sound sources indicate the air entering the
plenum chambers, rather than the air exiting through the external skin of the slat
generated this sound. Only two sections of the slat were significant noise sources de-
spite all three haveing the blowing activated. This indicated an interaction between
the jet entering the slat cove and the surrounding tubes for the pressure taps and
microphone cables generated the noise. As the microphones and pressure taps were
located at the centre-span point and exited via the right side of the slat as viewed
in the array source maps, they are only present in two of the chambers. The spectra
generated by the blowing showed an increase in SPL as the blowing rate increased
(Figure 4.32). The SPL produced by the blowing did not produce any clear tones
but did generate a narrowband local maximum between 5kHz and 15 kHz.

With the wind activated, blowing noise partially covered both other local noise
sources and background noise. These noise sources were flow speed dependent, so at
low flow speeds, the blowing was a dominant source across the frequency spectrum
but at higher free-stream velocities other noise sources masked the blowing noise
at lower frequencies, limiting the impact of blowing self-noise to above 5kHz. In a
real system, the free-stream velocity is higher than in the tests and noise reduction
by improved plenum design should reduce the impact of blowing noise relative to
these tests. The emphasis should therefore move to reducing the aeroacoustic sound
levels.

The spectra generated with blowing showed the blowing system produced a very

confused picture at low frequencies (Figure 4.33). Up to 5kHz, the blowing altered
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the SPL by up to 3dB either up or down. Above 5kHz, there was a clear upward
trend as the frequency increased. The increase in SPL above 5kHz links directly to
the blowing self-noise. By examining the sources from the starboard end of the wing,
the blowing self-noise was not included and the increase is greatly reduced (Figure
4.34). At the wing tip, the increase only occurred above 10 kHz with a maximum
increase of 4dB at 20 kHz compared to increases of over 5dB above 5kHz.

The complex patterns generated by the blowing system as the slat setting and
aerofoil incidence were altered required an examination of the spectra produced over
a range of conditions to clarify the general trend. The array SPL spectra generated
with the configurations with 0° < o <20°, 13° < ag <23° and normal and reduced
slat gap were averaged and the minimum, mean and maximum SPL of the data
set was plotted in Figure 4.35. Below 5kHz, the pattern was to have little change
in the mean SPL, with a variation of 3dB in either direction. Above 5kHz, the
increase due to the blowing noise was clear and its magnitude increased with higher
blowing rates. Blowing noise occurred for all slat angles with the value at ag=13°
at the top end of the range shown due to the lower no-blowing broadband levels
at high frequency. The flow maps below 2kHz show that the fan-noise dominated
(Figure 4.1) and above 5kHz, the blowing noise dominated (Figure 4.35) so the
area of interest lies between 2 and 5kHz. In this region, the trend was upward as
the frequency increased but at 2.5 kHz, there was a small noise reduction for most
conditions. However, this drop was less than 1dB so it was much smaller than the
scatter produced by the various slat angles, wing incidences and slat gap settings,
which gives a range of around 4 dB.

Addition of a trip strip did not significantly alter the pattern when using blowing
because it did not alter either the fan or blowing noise sources (Figure 4.36). The
most significant change was the possible reduction found at 2.5 kHz was not present
with fixed transition.

Figure 4.37 shows the effect of blowing on the wall pressure fluctuations. At
the reference conditions, the impact of blowing was small at the reattachment point
(S3) and slat gap (M1). However, there was an increase in SPL of 2dB at the slat
cusp (S6) up to 10kHz. The changes measured locally did not match the array
measurements but the surface microphones are aligned to the centre of one of the
plenum chambers away from the jet flow entering the chambers. By not picking
up the internal jet noise, the change generated by the blowing only contain the
component caused by the blowing through the slat skin and changes to the flow in
the cove.

Applying blowing at low aerofoil incidence produced no significant change so it
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was not beneficial but there was no significant penalty. At higher aerofoil incidence,
there was a small penalty noticeable above 5kHz. With the reduced gap setting,
the blowing still gave no large improvement and the noise was higher above 20 kHz.

At the reference conditions, a combination of fixing transition with blowing gave
a small improvement at microphones M1 (slat gap) and S3 (reattachment point),
but was a major noise source at S6 (slat cusp) below 10 kHz (Figure 4.38). The lack
of an SPL increase in the rest of the cove indicates this was a local change caused
by altering the recirculation zone size rather than an additional noise source.

The combination of blowing and fixing transition had most potential when ap-
plied to the three tonal features, which originate at the wing. For the low frequency
tone (3-5kHz) (Figure 4.39), blowing without fixing transition had little impact.
However, fixing transition completely removed the tonal features.

For the mid frequency tone (13kHz) (Figure 4.40), blowing without fixing transi-
tion gave a 3 dB reduction in the tone but increased the secondary peak at 15.5 kHz.
Fixing transition gave a larger reduction but did not remove the tone. Fixing tran-
sition also strengthened the secondary tone and caused a small frequency shift. The
delta plots show that adding blowing to the fixed transition case gave a further
2dB reduction in the maximum SPL of the tone at microphone S3 (reattachment
point) but less than 1dB at M1 (slat gap) and S6 (slat cusp). However, relative to a
no-blowing case, the blowing increased the broadband noise level in the cove region,
especially close to the cusp (microphone S6).

Blowing also had little impact on the high frequency tone (Figure 4.41). Fixing
transition reduced the frequency of the tone from 22 kHz to 21 kHz but produced no
large reduction in its magnitude. Fixing transition actually gave a small increase
at the slat gap and a small reduction at S3 (reattachment point), with no change
in magnitude at the cusp. For the fixed transition cases, the delta plots show the
peak and trough caused by the shift in the frequency of the tone. Relative to fixing
transition, the blowing had little impact especially at M1 (slat gap). The maximum
increase due to blowing occurred at the slat cusp (S6) which had an increase of up
to HdB.

Overall, the blowing was less successful in suppressing slat noise than blowing
applied flap edges [136] largely because the blowing is located just upstream of
the slat gap. Because the gap is a narrow high-speed flow, blowing cannot move

instabilities away from walls, which is possible in geometries that are more open.
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4.2.5 Dependence on cusp geometry

The addition of the slat cusp extension at the reference conditions reduced the sur-
face pressure fluctuations (Figure 4.42). The improvement was largest at the slat
gap (M1) where there was a reduction of up to 4dB across the entire frequency
spectrum. Away from the gap, the changes were less pronounced. Microphone S3
(reattachment point) gave a small reduction at high frequencies (>5kHz) but little
change at low frequencies. At microphone S6 (slat cusp), the cusp extension was
beneficial at low frequencies but increased the sound level at high frequencies. Ex-
amining the change in SPL caused by adding the cusp shows that the cusp extension
was clearly useful at most frequencies at the reattachment point and in the slat gap
(Figure 4.43). Close to the cusp (S6) the extension was useful at low frequencies but
generated a small SPL increase at around 9kHz. The action of the extension was
to reduce greatly the size of the region of flow located at the cusp, which contained
interactions between the shear layer and the recirculated flow. Reducing this area
allowed a smoother recirculation and less destabilization of the shear layer. Micro-
phone S6 was located at the joint between the extension and the slat, which along
with the finite thickness edges of the component, was likely to be the source of the
increase in the high frequency noise.

As the aerofoil incidence was varied, the extension maintained its usefulness at
the gap for most settings as shown by microphone M1 (Figures 4.44(a), (c) and (e)).
At a=10° the extension gave large reductions above 5kHz but increases below this
value. At a=15° the impact was reduced with only small reductions at low frequen-
cies. The cusp did not remove the high frequency tone present in this condition. For
a=20° the extension did remove the tone and associated peaks. This gives a major
reduction in the peak SPL value. As a penalty, a high frequency tone appeared at
20 kHz, however, it was 25 dB quieter than the original tone.

Away from the gap, the extension was less advantageous. At microphone S3
(reattachment point) the extension produced a large increase in the broadband noise
level for a=10° up to 15kHz. At higher incidence, the increase was smaller but still
present. The tonal features, which occurred at a=20° were still removed but their
original magnitude was lower, meaning the tone was of the same magnitude as
its replacement at 20 kHz. At microphone S6 (slat cusp), the results were similar
although the penalties at high incidence increased.

With the slat angle reduced from ag=23° to ag=13°, (Figures 4.44(a), (c) and
(e))the extension maintained its effectiveness at the slat gap giving large reductions
at a=5° but large increases at a=10°. At high incidence, the extension had less

impact and did not remove the low frequency tones. However, the extension did
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generate the mid frequency tones at a=15°, where tones are not present with a
standard cusp (Figures 4.28 (a), (c) and (e)). In the cove, the extension had lit-
tle impact with a small increase of around 3 dB observed at all aerofoil incidence
settings.

Overall, the extension has some potential to reduce the noise level at the slat
gap but produced increases in the cove region. The benefit was also limited to
conditions where the trailing edge was aligned with the flow past the slat cusp.
When the slat angle reduced, or the wing incidence increased, the alignment was
lost and the impact of the extension reduced. The extension acted in a similar way
to slat cove covers that have been tested by Dobrzynski et al. [41, 46] and produced
a similar reduction in the broadband noise level. However, the extension in this
study modified the slat to give it a representative slat cusp geometry, similar to the

baseline case used by Dobrzynski et al.

4.3 Computational results

4.3.1 Baseline results

For the baseline 3D configuration, the flow was monitored using seven monitoring
points located within the flow thought the slat cove region (Figure 4.45). The
aerodynamic pressure spectrum was obtained at each of these locations (Figure
4.46). The most obvious feature was the narrowband feature observed at point
tel, which was located close to the slat trailing edge. The narrowband feature
was at 7kHz with harmonics at 14kHz and 21kHz and a high broadband level.
However, further downstream, at te2, the broadband level dropped significantly and
the tones disappear, showing that this feature was not radiating sound. The large
features found were caused by locating the monitoring point close to the trailing edge
resulting in large aerodynamic pressure fluctuations that cover any aeroacoustic
features. High broadband levels also occurred at sl1, which was just downstream
of the cusp where the SPL level was at its lowest. At the cusp, the shear layer
did not have time to become unstable but this occurred further downstream. The
recirculated flow acted on the shear layer just downstream of the cusp accelerating
the destabilization. Further from the cusp, at s2, s3 and at the reattachment point
(R), the SPL level was lower with little variation between the different monitoring
points.

The exception to the pattern was low frequency sound levels. Below 3kHz, the

reattachment point had the highest SPL value and the level gradually reduced away
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from this point.

The far-field directivity obtained from the baseline configuration had the overall
shape of a dipole aligned with the slat trailing edge (Figure 4.47). The slat element
generated the majority of this sound. The slat sound was roughly dipole in shape
aligned to the slat trailing edge with a slight increase in the downstream direction.
The main element also produced a dipole shape but it was orientated closer to
vertical with the sound concentrated directly above and below the wing. The flap
dipole aligned with the flap trailing edge but was not a significant contribution to
the overall sound distribution. In the overall plot, there was noticeable interference
between the components giving contributions to the far-field SPL as the pressures
were linearly added at the observer locations to determine the overall SPL. This
linear combination gave a jagged appearance to the directivity plot. However, over
time the cancellation and reinforcement of the sound waves would vary creating a
smoother shape. The directivity followed the basic dipole shape found by Singer et
al. [84] but did not include the shielding effects that are present in that simulation.
Emunds and Fischer [90] also found the dipole shape using pressure monitors around
the slat. However, they found that the downward lobe was amplified by the slat gap
but this was based on a 2D simulation because a wall integration surface was used

rather than an off wall surface.

4.3.2 Influence of blowing

With low rate blowing applied to the model, the main impact occurred downstream
of the blowing location (Figure 4.48). At tel, the sound level dropped significantly
and the tonal features disappeared. This indicated that the blowing moved the
disturbances away from the wall by creating a smooth, slow moving boundary layer.
The modified boundary layer was an advantage close to the trailing edge at tel with
reduced SPL, but further downstream at te2 there was an increase in the SPL. In
the cove, sl remained the loudest although there was a large increase in the sound
levels found at the cusp and reduction at s2. These changes indicate the cause was
due to changes to the size of the recirculation zone rather than changes within the
shear layer. At low frequencies, the location with the highest SPL was still the
reattachment point but the value at the other monitors was no longer determined
by the distance from this point.

At the higher blowing rate, the impact past the blowing point was greater, with a
significant reduction at both tel and te2 (Figure 4.49). In the cove region there was
less variation between the monitoring points than at lower blowing rates although s1

was the loudest at most frequencies and the reattachment point remained the loudest
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at low frequencies. The greater uniformity of the recirculation region indicated the
blowing has increased the amount of disturbances held in the cove. The noise level
increased at the cusp but the disturbances at the trailing edge reduced in magnitude.

Examining the individual monitoring points show how the impact of the blowing
varied around the slat (Figure 4.50). At the cusp, there was a significant increase in
SPL as the recirculation zone was better defined, but in the rest of the shear layer,
there was a slight reduction in the SPL recorded. Blowing had little impact at the
reattachment point but was a significant advantage at the slat trailing edge.

The far-field value with the blowing showed a significant reduction in the RMS
pressure at the monitoring points especially in sound originating from the slat (Fig-
ure 4.51). The prys reduced by a factor of around 0.5 in most directions, which
corresponds to a 6 dB drop. However, this result looks un-physical, especially with
respect to the reduction in the slat noise. The change was probably due to the
majority of the sound originating at the slat trailing edge. The reduction in the
sound at this location due to blowing was reflected in the far-field levels. However,
the main element acts to shield this noise source, so, in reality, the far-field noise
observed on the ground was radiated from inside the recirculation region where blow-
ing was less advantageous. The shielding was also directional and this was visible
when the far-field RMS pressure with blowing relative to the no-blowing value is
plotted (Figure 4.52). In most directions, there was a significant drop due to the
application of blowing. However, this was not the case in the downward section,
especially slightly ahead of the aerofoil. In this direction, there was an increase in
the sound observed at the far-field and this corresponds to flow un-shielded by the
main element. To solve this issue, the integration surface would need to be well
away from the aerofoil so it allowed the trailing edge to be shielded. However, mov-
ing the integration surface required an improved grid resolution to allow accurate
simulation of the acoustics within a large integration region. The large increase in
the upward direction was not physical and corresponded to the interactions between

the elements, which form the aerofoil.

4.4 Discussion

4.4.1 Broadband noise

For the baseline configuration, both experimental and computational results gave
a broadband distribution. The broadband sound level was highest from the reat-

tachment point to the trailing edge with a lower level observed in the cove region.
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The experimental results showed the reference condition gave the highest level of
broadband noise of all the conditions tested. Examining the flow pattern for this
condition using the PIV data showed that the reference condition was also the con-
dition where the shear layer approaches the reattachment point closest to the wall
normal. This angle is referred to as the shear angle (¢) in this thesis (Figure 4.53).
The high incidence between the shear layer and wall increased the interaction be-
tween them and allowed greater movement of the reattachment point. The shape of
the broadband spectra was similar for most conditions and the low frequency SPL
defined their magnitude. The values of sound recorded by the surface microphones
were linked to shear angles measured using PIV (Table 4.3). Plotting the values
shows higher shear angles lead to increases in the SPL measured in the cove at low

frequencies (Figure 4.54). The points gave a roughly linear trend, expressed as:

SPLgs = 0.371¢ + 82.3 (4.1)
SPLgg = 0.606¢ + 60.6 (4.2)

It is noticed that there is a greater change in SPL with the reattachment angle
at S6, close to the cusp, than at S3, which is close to the reattachment point. This
is significant and suggests that the shear layer separation angle is possibly mirroring
the reattachment angle changes at different aerofoil angles and slat angles.

However, the difficulty in obtaining a reliable angle of the shear angle, due to
its shape and the difficulty in getting PIV data close to the slat wall, limited the
accuracy of the data. This prevented an accurate fitting of the trend line. For a
given slat, this trend indicated the sound levels were reduced most effectively when
the incidence of the aerofoil increased. However, it was clearly advantageous to
reduce the slat angle. The influence of the main element on the angle at the low
incidence settings also suggested increasing the slat gap was also an effective means
of control, although it would have had aerodynamic penalties. This matches the
trend for aerofoil incidence found in this study and earlier studies [44, 47]. This
trend also matched studies that showed cove fillers [2, 110] or advanced slats with
smoothed cusps [109] generated less noise. For these slat designs, the flow remained
attached so the shear angle was zero. Figures 4.46, 4.48 and 4.50 show that the
main contribution to the unsteady aerodynamic pressure at the locations monitored
in the time-dependant CFD predictions also has a broadband SPL peak in the 1 kHz
to 3kHz range. The variations with  and ag could not be verified by the acoustic
array data due to the wind tunnel fan noise masking the wing noise in this frequency

range. At higher frequencies, the wind tunnel acoustic array results followed the
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same trend as the surface microphones with higher levels where the shear angle
was largest but the presence of narrowband features in the local unsteady pressure
distort the results. The trend was also limited to flows that passed through the gap,
so it is not valid at low aerofoil incidences (a=0°).

The other main factor determining the broadband level was the free-stream ve-
locity. The free-stream velocity determined the energy in the system, which then
led to the sound level. The impact of velocity can be expressed by a velocity scale
factor as shown in equation 4.3:

P’ va,

pREF2 (4]

SPLUQ = 10L0910

(4.3)

where the scale factor n is found by examining the SPL measured at different free-
stream velocities from cases with identical settings. Only the noise from non-blowing
cases can be scaled by equation 4.3 because the blowing noise can significantly
contribute to the sound levels recorded. The blowing component did not scale with
free-stream velocity resulting in a greatly reduced value for n. Experimental data
were obtained at three speeds 10m/s, 20m/s, and 30m/s allowing the calculation
of n using three pairs of data over a range of incidences and slat incidences (Figure
4.55). However, other factors complicated obtaining a single scale factor. At low
frequencies, significant sound was generated by the wind tunnel fan, which did not
scale at the same rate as the slat noise. At higher frequencies, the fan had less
influence over the scale factor, but tonal features can generate increased values when
activated. The impact of tonal features and fan noise was minimized in tests that
used a=5° at 20m/s and 30m/s. These conditions are the loudest relative to the
fan noise and do not contain any tonal feature (Figure 4.56). At these conditions,
there was still a discrepancy in the scaling at low frequency (<5kHz) and at high
frequency (>5kHz). At low frequency, the SPL scales with v>4. However, at high
frequencies the scale factor was v72. At higher frequencies (>13kHz) the scale
factor reduced but this was likely due to the increase in fan noise at high frequencies
and the microphone limitations at 20kHz. The difference between the low and
high frequency scaling rate is not always apparent when looking at a plot of the
spectra at different speeds (Figure 4.5) however this is an optical illusion caused by
the steepening of the spectra at higher frequencies. Plotting the difference in the
spectra there is a clear increase in the difference at higher frequencies (Figure 4.57).

The difference between low and high frequencies indicated that a dipole source
generates the majority of the low frequency noise. However, the high frequency

sound must have had a significant quadrapole component. For broadband noise,
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the dipole source was most important with significantly higher SPL at lower fre-
quencies. Scaling from v=30m/s to M=0.2 will result in a relative increase in the
high frequency noise which will increase by 25dB as opposed to 19dB for the low
frequency sound (using scale factors of 7.2 and 5.4). However, the low frequencies
will remain dominant.

The low frequency scale factor of 5.4 matched values of 5.3 and 5.7 found previ-
ously [50, 2]. The higher frequency factor of 7.2 contained significant narrowband
contributions which are quadrapole in nature similar to those found by Dobryzynski
et al. [46]. The transition point of 5kHz was significantly lower than the 25kHz
found by Dobryzynski et al. but this value was largely determined by the tonal
features and hence by the free-stream velocity which was run up to 60 m/s in the

earlier study.

4.4.2 Narrowband noise

The surface mounted microphones embedded in the slat recorded that the aerody-
namic pressure fluctuations a 4kHz low frequency tone at ag=13°, a=15° (Figure
4.39), a 13kHz mid frequency tone at ag=23°, a=20° (Figure 4.40) and a 21 kHz
high frequency tone at ag=23°, a=15° (Figure 4.41). The corresponding far-field
acoustic array data showed a 3.1 kHz low frequency 1/3 octave SPL peak at ag=13°,
a=15° (Figure 4.18) and a 13kHz mid frequency peak at as=23°, a=15° (Figure
4.10). This correlates the presence of tones in the mean wall aerodynamic surface
pressure with acoustic noise at the low and mid frequency ranges. The variation
in aerofoil incidence and slat angle allowed the impact of each of these tones to
be measured, building on earlier studies, which did not find all the types of tone
observed. Mapping of the appearance of tones followed on from work by Olson et
al. [43], who examined the impact of slat angle and gap settings, by including the
impact of aerofoil incidence. Using multiple surface microphones and the acoustic
array also gave more information on the origin of the sound.

The low frequency tone was strongest at the reattachment point S3 (Figure
4.39(c)) and fixing transition can remove the tone (Figure 4.39(d)). This indicated
the source of the tone had links to the laminar shear layer originating at the slat
cusp explaining the tones reaction to fixing transition. The tone was not observed
under most conditions indicating this was not caused by the shear layer acting alone.
When the tone was active, it was possible for the recirculation region to act as a
feedback mechanism, which caused the shear layer to break down and generate tones.
The flow pattern for this condition obtained using PIV (Figure 3.22) shows the shear

layer evolved into discrete vortices at this condition, but remained as a shear layer for
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other conditions. The @) value for this condition also showed a staggered pattern in
the vortices indicating greater instability in the shear layer (Figure 3.21) compared
to the take off condition of a=>5°. This change in local unsteady flow is likely to be
linked to the acoustic feature that occurs in this condition. As well as appearing with
as=13°, a=15° this tone was also observed at ag=18°, @=20° (Figure 4.58). Only
two conditions generated this tone and they both shared a common angle between
the slat and the free-stream flow but different values of aerofoil incidence and slat
angle. This indicates the resonance needed was dependent on the angle between
the slat and the free-stream flow rather than on the incidence of the wing or slat.
Finding the conditions where the tone appears builds on the study by Andreou et
al. [47] who observed the tone and found it could be removed by tripping the flow.
Takeda et al. [53] also found a tone originating from the cusp, although it occurred
at a higher frequency due to a significantly different slat geometry. Kaepernick et al.
[58] found that this tone had a Strouhal number of 0.21 based on the cusp trailing
edge thickness, making the generation mechanism similar to that at the trailing edge
(high frequency tone). However, in the current study the cusp os sharp and does not
provide a reference dimension to determine a vortex shedding type in the separated
flow.

The mid frequency tone was strongest at the trailing edge of the slat and was
not removed by fixing transition. The location of this tone indicates it was gener-
ated either by the gap or by the blunt slat trailing edge. Equation 2.1 in Tam and
Pastouchenko [62] was applied to the Airbus aerofoil of figure 2.1(b), tested with the
reference gap. This predicted the tone frequency as 12.3kHz. This frequency is a
good match to the pattern observed for the mid frequency tone in Figure 4.40. When
this tone did not occur, there was often a small SPL. hump at this frequency like in
Figure 4.14(e), indicating the mechanism was always active in generating noise but
it only formed a tone under certain conditions. The gap selectively amplified flow
instabilities over a particular frequency range determined by the gap velocity and
width, but the noise output depends on the disturbances entering the gap. Broad-
band noise will simply be amplified to form a small hump whereas a tone requires
a limit cycle to onset in the slat recirculation region. The hump increased in size
with increased aerofoil incidence and slat angle. This result links the tone predicted
by Tam and Pastouchenko to narrowband features that played an important part
in the high frequency slat acoustics (see broadband section 4.4.1). An advance of
the model by Tam and Pastouchenko could be to include a broadband distribution
form into that model. This topic could be expanded in future work.

The mid frequency tone is also more dependent on the slat angle than the angle
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between the slat and the free-stream flow, showing that the shape of the slat cove
influences the magnitude of this feature. The impact of slat angle is clearly shown by
the reduced importance of the tone at ag=13° (Figure 4.28 (a), (c), (e)) compared
to ag=23° (Figure 4.14 (a), (c), (e)). The same figure show that the angle between
the slat and free stream is not a good measure because configurations with constant
angles between the slat and free stream do not have similar mid frequency character-
istics, notable the pairs of ag=23°, a=20° with ag=13°, a=10° and ag=23°, a=15°
with ag=13°, a=5°. The limited dependence on transition indicates the trigger is
unlikely to be shear layer breakdown but it could be due to fluctuations in the shape
of the recirculation region.

The high frequency tone also originated at the trailing edge and fixing transition
did not remove this tone. The frequency of the tone did not match the expected gap
tone and the finite thickness of the trailing edge was the most likely source. The
flow at the trailing edge is not resolved by the PIV. However, the computational
work shows that the flow past the trailing edge was approximately fifty percent
higher than the free-stream velocity. This gives a local velocity of 45m/s around
the slat trailing edge. The frequency of the high frequency tone is 21 kHz (Figure
4.41). Using the 45m/s trailing edge flow velocity and the 6.60x 10~%¢ trailing edge
thickness to normalize this frequency, a Strouhal number of 0.26 is obtained. This

is a good match to the values found in other studies for trailing edge noise [44, 43].

4.4.3 Full scale values

To scale results to full-scale, there are two main factors to consider. The free-stream
velocity for landing is generally around Mach 0.2. This is equal to the value used by
most of the computational work but is 2.3 times larger than most of the experimental
work. The second factor is the increase in size from the model chord of 0.8 m to
a full-scale aircraft. For a single aisle aircraft such as the A320, the mean chord
for the wing is 3.61m although clearly this would vary along the span due to the
wing taper. This represents an increase in scale by a factor of 4.5 relative to the
experimental work and by 3.61 for the computational work, which used a chord of
1m.

The sound level generated by the wing scaled by v™, where v is the free-stream
velocity and the exponent is six for a dipole source. Since SPL uses a logarithmic
scale, the scale factor becomes a fixed addition to the SPL and an increase of velocity
by a factor of 2.3 represents the addition of 21.3dB for a dipole source.

The frequency scaling, which was important when investigating narrowband fea-

tures, was determined by Strouhal scaling. The Strouhal number of a particular
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feature should remain velocity independent. To scale from the model size and test
speed of 30m/s to the approach speed and size of an A320 aircraft resulted in a
frequency scale factor of 0.5. Hence, the high frequency tone moves from 22 kHz
to 11kHz and the mid frequency tone moves from 13kHz to 6.5kHz and the low
frequency tone moves to 2kHz. For the computation results, the scale factor was
0.277. The tones reduced in frequency when scaled to full size so they all remain
within hearing range for full-scale aircraft. However, on a full-scale aircraft slat,
laminar separation does not occur. This removes the low frequency tone. The other
tones did not occur in all conditions so they may not appear at full scale. The lack
of tones observed in flyover tests indicates, that although the tones should scale
to noticeable values, other factors prevent them from becoming prominent in the
measured fly over tests.

A commercial civil aircraft wing also has sweep and taper, which would also
influence the scaling of results from this study. The impact of these features is not
easy to predict. Additional complications arise from additional features such as slat
tracks, the landing gear and the influence of the fuselage, which this study did not

cover.

4.4.4 Experimental/ computational agreement

The aeroacoustic results were based on the aerodynamic results so the differences
due to the aspect ratio were reflected in these results. However, the shape of the
spectra was consistent between the computational and experimental results along
with the intensity distribution around the slat cove. Comparison of the tones was
not possible as the simulations were carried out at a=>5° where there was no tone in
experiment. In the computational work, narrowband features were only detected at
the trailing edge but this feature did not transmit the sound to the other monitoring

points.

4.5 Summary

The microphone array identified the broadband sound sources on the wing and
recorded 1/3 octave band far-field noise spectra. The aerofoil acted like a typical
broadband noise source with the highest SPL at low frequencies and a reduction in
SPL as the frequency increases. The array showed that there was a spanwise distri-
bution in the sound source strength and this corresponded to a velocity distribution

across the span.
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The a=5° setting was the loudest for most conditions, especially at the reference
slat settings. The SPL reduced as the aerofoil incidence was increased above a=5°.
The quietest case was a=0°, although, at this incidence, the wing lift coefficient is
too low for landing. For the reference slat at high incidence, there was a narrowband
feature close to 13 kHz, which raised the SPL level above the a=5° value. Reducing
the slat angle from ag=23° to ag=13° gave a small advantage across the spectra. In
particular, it removed the high frequency feature and reduced the impact of aerofoil
incidence on broadband noise particularly at low frequencies. The only increase
occurred at 3kHz due to the presence of a narrowband feature at this condition.
Reducing the slat gap had less impact than changing the slat angle. It was generally
advantageous below 6 kHz but a disadvantage at higher frequencies.

Fixing transition had little impact on the broadband noise SPL values. However,
where there were narrowband features present, fixing the transition gave significant
reductions in the SPL measured at low frequencies (3-5kHz) and at mid frequencies
(10-17kHz).

The blowing system produced a significant additional sound source over the range
5-15kHz. The additional sound was mainly self-noise, generated by the air entering
the plenum chambers in the slat. This blowing noise originated at point sources
inside the slat. Away from these sources, blowing did not add significantly to the
flow noise. Below 5kHz, there was no clear trend for the use of blowing. There
was a possible improvement at 2.5 kHz but this only occurred at the free transition
condition.

The shear angle and the free-stream velocity largely determined the broadband
noise, with both strongly affecting the measured SPL. The SPL reduced as the
shear angle reduced. This occurred when the aerofoil incidence increased or the slat
angle reduced. Acting to reduce the shear angle generally reduced the size of the
recirculation region, allowing a smoother flow passage through the cove region.

The velocity scaling indicates, that at low frequencies, dipoles generated the
majority of the sound giving a scale factor of 5.4. However, at high frequencies, the
scale factor was larger, indicating a significant quadrapole contribution.

Surface microphones show that all configurations produced broadband sound but

there were four tones identified:

1. A tone at 470 Hz, which was not dependent on model settings and was due to

the wind tunnel fan.

2. A low frequency feature, which produced tones over the range of 3-5kHz,

located at the reattachment point. This tone occurred at a=15° with ag=13°.
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3. A mid frequency tone at 13kHz, located at the trailing edge. This tone oc-

curred at «=20° with the reference slat settings.

4. A high frequency tone at 22kHz, located at the trailing edge. This tone

occurred at a=15° with the reference slat settings.

Fixing transition over the slat cusp completely removed the low frequency tone
and significantly reduced the mid frequency tone. The three tones observed had
three different causes. The low frequency tone was generated in the shear layer
originating at the cusp. The mid frequency tone was a gap tone and the high
frequency tone was generated by the blunt trailing edge of the slat. All three tones
only occurred at certain conditions, despite all settings generating disturbances in
the shear layer and at the slat gap and trailing edge, indicating the tones only
occurred when the driving force was amplified. The narrow range of conditions that
generate tones means that the tones are avoidable by adopting a suitable operational
protocol at landing to fly the aerofoil off these conditions.

There were significant variations in the surface pressure records among the sur-
face microphones with a clear change moving from the slat trailing edge to the cusp.
The microphone at the cusp gave the best match to the array results with the mi-
crophone at the gap exaggerating the high frequency and tonal components of the
far-field sound generated.

Scaling the results to a full-scale aircraft landing speed increased the SPL ampli-
tude by around 20 dB relative to the experimental data due to the increased velocity.
Additionally, scaling the test data to a full-scale aircraft wing chord results in the
frequency of narrowband features reducing by a factor of two.

With the computational work, the monitoring points show for the baseline case
that the SPL was highest in the shear layer just downstream of the cusp and close to
the slat trailing edge at most frequencies. At the reattachment point the broadband
surface pressure spectrum peaked at low frequencies. The far-field sound originated
mainly from the slat and the main element, which both produced a dipole distribu-
tion aligned roughly with their trailing edges. The combined far-field noise radiations
approximated to a dipole directivity with the majority of the sound directed either
upstream, away from the ground, or downstream, towards the ground. Applying
blowing reduced the unsteady aerodynamic pressure generated at the trailing edge
of the slat. However, there was an increase at the slat cusp and no appreciable

impact on the unsteady aerodynamic pressure at the reattachment point.
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Figure 4.1: 1kHz noise map showing SPL (dB) in the reference conditions. Free
transition, v=30m/s.
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Figure 4.2: 3.1kHz noise map showing SPL (dB) in the reference conditions. Free
transition, v=30m/s.
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Figure 4.3: 10kHz noise map showing SPL (dB) in the reference conditions. Free
transition, v=30m/s.

Figure 4.4: Oil flow photograph of the separation line in the cove in the reference
conditions. Flow towards the camera, free transition.
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Figure 4.5: SPL spectra in the slat cove region measured at the array with the wing
in the reference conditions. Free and fixed transition.
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Figure 4.6: Surface microphone SPL spectra in the reference conditions, v=30m/s.
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Figure 4.7: Surface microphone SPL spectra showing the influence of the free-stream
velocity.
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Figure 4.8: Surface microphone SPL spectra showing the influence of fixing transi-
tion in the reference conditions, v=30m/s.
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Figure 4.10: Impact of aerofoil incidence on the slat SPL spectra measured at the
array with the wing in the reference conditions. Free transition, v=30ms.
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Figure 4.14: Surface microphone SPL spectra showing the impact of the aerofoil
incidence with free and fixed transition.
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Figure 4.18: Impact of aerofoil incidence on the slat SPL spectra measured at the
array with ag=13°. Free transition, v=30m/s.

143



4. AEROACOUSTIC RESULTS

A _ 50
) e 100
15 ¢ o 157
| ——o—-— 20°
10 -
fon) = = —A
m / \ @
) B = \
- B S Ty
a gL N
[9))] /y VA
a e
L b N
|y ° Yo e N
[~ o\ ¥,
S e i W
L v O — =
0 \ g /"/ o &) \S
-
- ’,/
- <]
1 I BRI |

5 10 15 20
Frequency (kHz)

Figure 4.19: Change in SPL spectra due to incidence change relative to a=0° with
as=13°. Free transition, v=30m/s.
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Figure 4.20: Impact of aerofoil incidence on the slat SPL spectra measured at the
array with ag=13°RG. Free transition, v=30m/s.

144



4. AEROACOUSTIC RESULTS

— s Q°
15 - -5
B —-—v—-- 10°
| 15°
| ——o—-— 20°
10
= B
K
E B / \A
1 5 / \
o
B / \
) <
< B / V/'/Wv\\ ?
B Al B e VNS
S e /’/§>'i>"® ) TR
2 — 5 \i¥o// vﬁ\*%..‘; SN ¢
Of— ; & <
- & T
° ¢
5 1 [ IR B |

5
Frequency (kHz)

10 15 20

Figure 4.21: Change in SPL spectra due to incidence change relative to a=0° with

as=13°RG. Free transition, v=30m/s.

8r
6
- ——&—— =13RG, 0=5
B — & - a=13°RG, a=10
4 - ——8— a,=13° 0a=5
- — & - 0,;=13° a=10
= ——6— a,=23°,a=5
>k — & - =23 0=10 a
o v/ AN
- Q)’ B
— ob—3 4
m
c) NG / ~ g
— 2 W\ / //
% N NS 7 '/
SN =
S N e N / ®
B Y RN %\ //
6 - \ / \ //
or W, 2
- - \\éb g
8k \® ~
8F 5
-10F
1ok ] A RIS B |

5
Frequency (kHz)

10 15 20
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Figure 4.25: Surface microphone SPL spectra showing the impact of the slat angle
for a=5° and 10°, v=30m/s.
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Figure 4.26: Surface microphone SPL spectra showing the impact of the slat angle
for a=15° and 20°, v=30m/s.
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Figure 4.27: Surface microphone SPL spectra with ag=13° and a=15°, v=30m/s.

Frequency | 2.95kHz | 3.45kHz | 4.05kHz | 4.4kHz
M1 83dB 85dB 82dB 78dB
S1 78dB 78dB 81dB 69dB
52 80dB 79dB | 79.5dB | 70.5dB
S3 76.5dB | 78dB 85dB 73dB
54 69.5dB | 82dB 83dB 73dB
SH 75dB | 83.5dB | 84.5dB | 76dB
S6 76dB 82dB 84dB 75dB

Table 4.1: Surface microphone peak SPL values at =15 and 20°, v=30m/s.
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Figure 4.28: Surface microphone SPL spectra showing the impact of the aerofoil
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Figure 4.29: 2kHz noise map showing SPL (dB) with b=120LPM. a=>5°, v=0m/s.
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Figure 4.31: 13kHz noise map showing SPL (dB) with b=120LPM. a=5°, v=0m/s.
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Figure 4.32: SPL spectra generated by the blowing system as measured by the array,
v=0m/s.
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Figure 4.33: Change in SPL spectra due to blowing with the wing in the reference
conditions. Free transition, v=30m/s, b=120LPM.
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Figure 4.34: Change in SPL spectra for the starboard 1/6 of wing (away from the
internal jet noise) due to blowing with the wing in the reference conditions. Free
transition, v=30m/s, b=120LPM.
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Figure 4.35: Range of SPL spectra with blowing at all free transition slat settings,
v=30m/s.
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Figure 4.36: Range of SPL spectra with blowing at all fixed transition slat settings,
v=30m/s.
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Figure 4.37: Impact of blowing on the surface microphone SPL spectra, v=30m/s.
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Figure 4.39: Surface microphone SPL spectra showing the impact of blowing and
fixing transition on the low frequency tone (3-5kHz). Delta values plotted relative
to free transition no-blowing case. ag=13°, a=15° v=30m/s.
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Figure 4.40: Surface microphone SPL spectra showing the impact of blowing and
fixing transition on the mid frequency tone (12kHz). Delta values plotted relative
to free transition no-blowing case. ag=23°, a=20° v=30m/s.
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Figure 4.41: Surface microphone SPL spectra showing the impact of blowing and
fixing transition on the high frequency tone (20 kHz). Delta values plotted relative
to free transition no-blowing case. ag=23°, a=15° v=30m/s.
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Figure 4.44: Surface microphone SPL spectra showing the impact of extending the
slat cusp, v=30m/s.

160



4. AEROACOUSTIC RESULTS

Wall
0.225 U Cusp
- A Shear 1
B \V4 Shear 2
0.2 > Shear 3
B < Reattachment
- & Trailing edge 1
0.175 O Trailing edge2
B O
0.15F
S 0125}
B <]
01f
B >
0.075 | v
- JAN
0.05 |- &
[ I 1 1 I
0'02§O.1 -0.05 0 0.05 0.1
x/c

Figure 4.45: Monitoring point locations around the slat.

Monitoring point x/c y/c
Cusp (c) -0.012 | 0.052
Shear 1 (s1) 0.002 | 0.058
Shear 2 (s2) 0.018 | 0.074
Shear 3 (s3) 0.014 | 0.094

Reattachment (R) 0.003 | 0.115
Trailing edge 1 (tel) | 0.032 | 0.149
Trailing edge 2 (te2) | 0.056 | 0.164

Table 4.2: Monitoring point coordinates.
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Figure 4.46: SPL spectra with the reference wing settings. M=0.2.
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left to right.
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Figure 4.48: SPL spectra with low rate blowing. M=0.2, b=120LPM.
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Figure 4.49: SPL spectra with high rate blowing. M=0.2, b=270LPM.
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Figure 4.50: Monitoring point SPL spectra showing the impact of blowing, M=0.2.
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Figure 4.51: Far-field directivity plot with full rate blowing. M=0.2, b=270LPM,
flow left to right.
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Figure 4.52: Relative far-field directivity plot showing the ratio of pry/s with blowing
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Figure 4.53: Definition of the shear angle.

a | ag | Transition | Shear angle | S3 SPL | S6 SPL
5% | 23° free 70° 108dB | 101dB
10° | 23° free 56° 106dB | 96dB
15° | 23° free o1° 100dB | 88dB
20° | 23° free 36° 100dB | 85.5dB
5° | 13° free 64° 106dB | 99dB
10° | 13° free 46° 96dB | 87.5dB
15° | 13° free 49° 97dB 86 dB
20° | 13° free 38° 96 dB 83dB
5% | 23° fixed 70° 110dB | 108dB
10° | 23° fixed 04° 103dB | 94dB
15° | 23° fixed 45° 100dB | 88dB
20° | 23° fixed 43° 100dB | 86dB
5° | 13° fixed Y 106dB | 98dB
10° | 13° fixed 50° 95dB 86 dB
15° | 13° fixed 36° 96 dB 85dB
20° | 13° fixed 36° 96 dB 84dB

Table 4.3: Shear angle and surface microphone SPL levels at 200 Hz.
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Figure 4.54: Surface SPL value at 200 Hz dependence on the shear angle.
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Figure 4.55: Velocity scale factor based on array data taken at 10, 20, 30 m/s.
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Figure 4.56: Velocity scale factor based on array data taken at 20m/s and at 30 m/s

with a=5°.

20

18

16

14

ASPL (dB)

12

10

1 [ IR B |
5 10 15 20

Frequency (kHz)

Figure 4.57: Change in SPL at reference condition between array data taken at
20m/s and at 30m/s.
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Figure 4.58: Surface microphone SPL spectra with ag=18° and a=20°, v=30m/s.
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Chapter 5

Conclusion and future work

5.1 Introduction

The chapter provides a summary of the main findings of this study. The results
demonstrate the impact of the various slat configurations investigated on the aero-

dynamics and aeroacoustics of the flow around a high-lift aerofoil.

5.2 Conclusion

This study has examined the impact of aerofoil incidence, slat angle, slat cusp
geometry and blowing for a representative aerofoil design to map its aerodynamic
and acoustic characteristics. This included the use of blowing at the reattachment
point, which is a new area of study. The range of data also complemented earlier
work and showed how the broadband SPL level and different tonal features changed
depending on the configuration. This led to the link between the shear angle and
the broadband sound level which was a new finding.

This is a summary of the main findings:

Broadband noise

The broadband noise generated by the slat system was loudest at the reference
settings and reduced at higher aerofoil incidences. It was lowest at zero incidence
because at this condition there is no significant flow through the slat cove region.
Examining the PIV data showed that the angle at which the shear layer reattached
to the slat was a key factor in the sound generated, with a reduction in the shear

angle leading to reduction in the broadband noise.
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Narrowband features

Three tones associated with the slat system have been identified:

1. A low frequency feature, which produced aerodynamic surface pressure tones
over the range 3-5kHz, located at the reattachment point. This tone occurred
at a=15° with ag=13°. The tone was related to the shear layer originating
at the slat cusp so fixing transition removed the tone. The appearance of the
tone is dependent on the angle between the slat and free-stream flow. This
tone propagates to the far-field and corresponds to a large increase acoustic

array SPL in the appropriate 1/3 octave band at a=15° with ag=13°.

2. A mid frequency tone at 13 kHz, generated in the slat gap. This tone occurred
at a=20° with the reference slat settings. Fixing transition to reduce the
disturbances entering the gap reduced the magnitude of the tone. This tone
also generated a narrowband hump that increases in magnitude with aerofoil
incidence. This tone also propagates to the acoustic array and corresponds to
an increase in the 1/3 octave band at 13kHz at a=15° and 20°.

3. A high frequency tone at 22kHz, generated by the blunt trailing edge of the
slat. This tone occurred at a=15° with the reference slat settings. This

aerodynamic surface pressure tone was not detected by the acoustic array.

Baseline condition

For the baseline configuration, the sound generated was broadband in nature. Both
the microphone array and surface microphones showed that the overall SPL level at
this configuration was high. The PIV data at this configuration showed a recircu-
lation zone that filled the majority of the slat cove region. The large recirculation

region led to a high shear incidence angle and high broadband noise levels.

Dependence on the aerofoil incidence

The incidence of the aerofoil had the largest impact on determining the angle at
which the flow separates from the cusp, the shear angle and broadband noise level.
The incidence also controlled the lift generated by the aerofoil for a given configu-
ration so its use in controlling sound is limited by aircraft operational requirements

on approach.
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Dependence on the slat angle

The aircraft operational requirements on approach dictate the aerofoil incidence
range, but the slat angle had less influence on the lift generated. At the low aerofoil
incidence of a=0°, the slat was of little use, so the slat would best be retracted in
this incidence. Reducing the slat angle reduced the size of the recirculation zone and
the shear angle, giving a reduction in broadband noise. This also increased the lift
generated. At high aerofoil incidence, the slat is used to maintain attached flow over

the wing suction side and broadband noise reduced at increasing aerofoil incidence.

Dependence on cusp geometry

The cusp extension tested provided a reduction in the broadband levels at low
aerofoil incidence. However, for o >10° there was an increase in the broadband
sound generated and a reduction in lift. The usefulness of the cusp extension was
limited to when the flow past the cusp aligned with the extension. Allowing a
greater range of condition to use the extension requires adjustable extensions, which
can flex so the wall at the cusp matches the natural direction of the shear layer
in that condition, but this would require further study. At low speeds in the wind
tunnel the cusp acted as an add-on device, but at full scale, the cusp geometry would
be built into the structure of the slat.

Impact of blowing

Blowing was not effective in reducing the broadband sound generated by the slat
system. Blowing had a limited impact on the narrowband aerodynamic surface
pressure but was not as effective as fixing transition and had little impact on the
forces generated in most conditions. Blowing also acted as a source of additional
high frequency noise especially where there were high-speed jets formed such as

where the flow enters the plenum chambers.

Impact of flow transition

Fixing transition had little influence on the lift, low patterns or broadband sound
generated by the slat. However, fixing transition did remove or reduce tonal and
narrowband features. It was possible to remove the low frequency tone completely
because it develops from the shear layer, but, with the gap tone, only a reduction
in amplitude was possible. Little change was possible with the trailing edge tone.
Full-scale aircraft feature transition to turbulent flow ahead of the slat, so the tones

removed by fixing transition are less important in a full scale application.
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5.3 Future work

In order to create a quiet slat system, the main task is to reduce the broadband sound
generated. For real world applications, the noise level must be reduced over a range
of lift settings. This study indicated the best way of controlling the broadband sound
was to reduce the shear angle. The next step is to examine methods of controlling
the shear angle. Altering the geometry on the inside of the slat wall, adjusting the
slat settings or employing a form of flow control could achieve this aim. However,
this study shows the slat settings had a larger impact on the sound generated and
were much easier to adjust than any active flow control method. In particular, using
a high aerofoil incidence where ever possible and having an appropriate slat angle
for the conditions appears to be the way forward. These passive means also have
the advantage of not requiring an additional power supply or generating additional

noise.
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Appendix A

Tunnel corrections

The forces recorded contained two main additional components that distort the data.
1. Additional forces caused by the presence of the struts and endplates.

2. The model generating blockage in the tunnel resulting in a change in the

freestream flow.

The compensation for the struts and endplates was achieved by removing tare
values taken by running the tunnel with only the struts and endplates (Table A.1).
To compensate for the wind tunnel blockage the forces are adjusted using the
method detailed in EDSU 76 028 [144]. The correction was largely determined by
the blockage of the tunnel. The tunnel area was 8.17m? with the blockage aerofoil

incidence dependant. The force corrections are given in Table A.2.
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A. TUNNEL CORRECTIONS

« Liftl() m/s LiftZO m/s LiftSO m/s Dragg m/s Drags m/s Drags m/s

0° 22N 3.2N 74N 194N 73.2N 159.0N

5° 1.2N 3.5N 6.5N 185N 71.0N 153.0N

10° 22N 2.6N 74N 184N 70.2N 150.4N

15° 1.4N 5.0N 73N 17.7N 69.5N 149.2N

20° 1.9N 5.7TN 6.4N 17.7N 69.7N 147.8 N

Table A.1: Tare values.

« | Blockage Area | Relative blockage | Force Reduction
0° 0.107 m? 0.013 0.76 %
5° 0.137m? 0.020 1.26 %
10° 0.225m? 0.028 1.79%
15° 0.282m? 0.035 2.33%
20° 0.337m? 0.041 2.88%

Table A.2: Force correction values.
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Appendix B

Blowing rates

Measuring the flow rate entering the plenum chambers using a flow rate meter
allowed adjustment of the blowing to 60, 80, 100 and 120LPM. To obtain the mass
flow rate the pressure of the air passing through the meter is needed to calculate the
air density. This used two pressure measurements, taken using a digital manometer.
Firstly, the pressure of the air supplied to the flow meter was measured relative to
the freestream by closing the valve in the flow meter. Secondly, the pressure drop
across the flow meter was measured to obtain the pressure drop due to restricting the
flow to give the desired flow rate. The pressure at the flow meter was the pressure
of the air supplied less the drop caused by the pressure drop in the valve.

The Cp plots show that at the blowing location the value of C'p &0 so the stan-
dard atmosphere pressure of 101,325 Pa can be used. Over the range of conditions,
there are small changes in the local pressure but, due to the low velocity of 30 m/s,
these changes will be relatively small and have little impact on the density. The
air supply was at 373,500 Pa above the pressure in the test section giving an abso-
lute value of 474,825 Pa. The pressure drop through the valve varied from 85,000 to
312,500 Pa allowing the air density to be obtained and the mass flow rates calculated
as up to 9.43x10~%kg/s (Table B.1).

After passing through the flow meter, the air entered the plenum chamber and
exited into the slat cove. Upon reaching the cove, the air will have returned to
close to atmospheric pressure and density allowing calculation of the jet velocity.
The slat contained 400 1mm diameter holes giving an area of 3.142x10~*m?2. This
corresponds to a maximum jet velocity of 24.49 m/s (Table B.2).

These estimates contain inaccuracies because not all of the pressure drop is across
the value increasing the pressure in the flow meter. In addition, the air passing
through the blowholes will not reach atmospheric pressure at the exit reducing the

mean jet velocity, although the centre of the jet will exceed the mean value.
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B. BLOWING RATES

b p in p drop Measurement p ) Mass flow
O0LPM | 474,825 Pa | 373,500 Pa 101,325 Pa 1.225kg/m? 0kg/s
60 LPM | 474,825 Pa | 312,500 Pa 162,325 Pa 1.963kg/m? | 1.96x107? kg /s
SOLPM | 474,825 Pa | 241,500 Pa 233,325 Pa 2.821kg/m? | 3.76x10 % kg/s
100 LPM | 474,825 Pa | 185,000 Pa 289,825 Pa 3.504kg/m? | 5.84x10 % kg/s
120 LPM | 474,825 Pa | 85,000 Pa 389,825 Pa 4.713kg/m? | 9.43x10 3 kg/s
Table B.1: Blowing rates.
b Mass flow in Volume flow Jet velocity

0LPM Okg/s 0m?/s Om/s

60LPM | 1.96x10%kg/s | 1.60x10™*m?3/s | 5.10m/s

S8OLPM | 3.76x103kg/s | 3.07x102m?/s | 9.77m/s

100LPM | 5.84x10%kg/s | 4.77x1073m?/s | 15.17m/s

120LPM | 9.43x10%kg/s | 7.69x1073m?/s | 24.49m/s

Table B.2:

Jet velocity.
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