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ABSTRACT: Permeability is a measure of the degree to which cells
can transport molecules across biological barriers. Units of
permeability are distance per unit time (typically cm/s), where
accurate measurements are needed to define drug delivery in
homeostasis and to model dysfunction occurring during disease.
This perspective offers a set of community-led guidelines to
benchmark permeability data across multidisciplinary approaches
and different biological contexts. First, we lay out the analytical
framework for three methodologies to calculate permeability: in
silico assays using either transition-based counting or the
inhomogeneous-solubility diffusion approaches, in vitro permeability
assays using cells cultured in 2D or 3D geometries, and in vivo assays
utilizing in situ brain perfusion or multiple time-point regression
analysis. Then, we demonstrate a systematic benchmarking of in silico to both in vitro and in vivo, depicting the ways in which each
benchmarking is sensitive to the choices of assay design. Finally, we outline seven recommendations for best practices in
permeability benchmarking and underscore the significance of tailored permeability assays in driving advancements in drug delivery
research and development. Our exploration encompasses a discussion of “generic” and tissue-specific biological barriers, including
the blood−brain barrier (BBB), which is a major hurdle for the delivery of therapeutic agents into the brain. By addressing
challenges in reconciling simulated data with experimental assays, we aim to provide insights essential for optimizing accuracy and
reliability in permeability modeling.

■ INTRODUCTION
Drug delivery research is a multidisciplinary field aimed at
improving the effectiveness and safety of therapeutic inter-
ventions. The challenges to get a drug on the market are many
and well evidenced elsewhere.1 One such challenge is to ensure
the safe delivery of the chemical agents to the site of action in the
body. As pointed out elsewhere,2 between 2000 and 2015, less
than 14% of drugs at stage 1 clinical trial went on to receive Food
and Drug Administration (FDA) approval,2,3 highlighting the
scale of the difficulties faced. Consequently, a myriad of
precision medicine in vitro or in vivo approaches have been
devised to predict drug delivery. However, routine permeability
estimations of therapeutic passage across key biological barriers
remain a formidable challenge.3

In silico computational screening approaches have been
developed to overcome such challenges. For central nervous
system (CNS) delivery, early stage screening models including
Lipinski’s rule of five,4 as well the pharmacokinetic predictor
QikProp program of Schrödinger,5 enable the prediction on the
probability of a drug crossing membranes based on the chemical
properties of a drug. Additionally, emerging artificial intelligence

(AI)-based cheminformatic models are working to enhance the
predictive capabilities by integrating more complex patterns and
interactions.6 However, these predictive models are limited in
providing detailed insights into the physical process of solutes
crossing biological barriers.7,8

To address the challenge of assessing barrier penetration
beyond scaffold optimization, additional techniques are
required. For transport across other membranes, such as in
kidney disease therapeutics, physiologically based pharmacoki-
netic (PBPK) models have proven popular.9−13 Similarly, a
recent systems biology simulation approach integrates pharma-
cokinetic models with molecular mechanics techniques to
directly incorporate tissue-specific vascular architectures as
model inputs.14
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The use of tissue-specific permeability (P) as a precise
measure of barrier penetration15,16 has proven to be useful in the
later stages of drug development.3,17−20 It should be noted that
permeability can be measured with in vitro, in vivo, or in silico
methodologies, each with their own advantages, challenges and
limitations. In recent years, a focus on benchmarking simulated
permeability values to experimental permeabilities has been
carried out extensively,3,20−26 with a particular focus on ensuring
reproducible values. Despite all this work, a systematic
comparison of permeabilities still comes with many caveats
and is not a routine procedure. Thus, the purpose of this review
article is 2-fold: (1) to provide the theoretical underpinnings of
in silico permeability and how to benchmark to these findings to
in vitro and in vivo reference data, and (2) to raise understanding
on the inherent challenges in utilizing experimental data as is,
including the inherent statistical variance among different
experimental benchmark data sets. The reader is strongly
encouraged to use this work as a steppingstone to further
examine nuances and underlying assumptions in permeability
calculations, beyond the blind use of these data sets.
Complex Membranes. Cell membranes contain a large

variety of lipid types and are crowded with embedded proteins.
Their inherent plasticity makes them essential for cell
functioning. Complex cellular membranes are characterized by
a heterogeneous lateral organization that is poorly understood.
When molecules are simulated across complex membranes, the
time scales to accurately sample such processes tend to be longer
and computationally more demanding.27

A prime example of a complex membrane is the plasma cell
membrane, which separates the interior of the cell from the
outside environment and directly regulates the transport of
materials.27 The plasma membrane contains hundreds of
different types of lipids,28 which are organized in a highly
heterogeneous fashion. As such, the plasma membrane is
implicated in all aspects of endogenous drug delivery. Because a
plasma membrane is present across all cells, selective drug
delivery has sought to target more specialized membrane
barriers, including the blood−brain barrier endothelial mem-
brane29 for CNS drug delivery,30 and the human Stratum
Corneum portion of the outer skin for transdermal drug
delivery.31 These plasma membranes display highly heteroge-
neous protein machinery across cell types, apical versus
basolateral surfaces, and disease states, adding additional
complexity for modeling.
The BBB represents a critical interface between the

bloodstream and the CNS, regulating the transport of molecules
and safeguarding the brain from potentially harmful sub-
stances.32,33 Dysfunction of the BBB is implicated in the
pathogenesis of various neurodegenerative and psychiatric
disorders, including Alzheimer’s disease, Parkinson’s disease,
and depression.34 Thus, understanding the mechanisms under-
lying molecular transport across the BBB is essential for
developing effective treatments for these and other debilitating
conditions. While there are approximately 1700 FDA-approved
drugs, the brain exposure is only known for around 200 of these
compounds.35,36 This knowledge gap poses a significant barrier

Table 1. Dataset of Blood-Brain Barrier Active Compounds Ranked by Decreasing Permeability Valuea

Molecule MW (g mol−1) Log Kow Papp (cm s−1) Papp Reference In vitro model or in vivo method

Propanol 60.1 0.05 3.30 × 10−3 [Brahm 1983]62 RBC
Ethanol 46.1 −0.31 1.10 × 10−3 [Brahm 1983]62 RBC
Nicotine 162.2 1.17 1.78 × 10−4 [Garberg 2005]63 Caco-2/MDCK
Ketoprofen 254.3 3.12 8.00 × 10−5 [Sun 2002]64 Caco-2
Effexor 277.0 3.2 6.00 × 10−5 [Hellinger 2012]65 Caco-2/MDCK
Bupropion 239.7 3.60 4.75 × 10−5 [Summerfield 2007]66 MDCK-MDR1
Diazepam 284.7 2.82 4.60 × 10−5 [Summerfield 2007]66 MDCK-MDR1
Naproxen 230.3 3.18 3.90 × 10−5 [Pade 1998]67 Caco-2
Clozapine 326.8 3.23 3.90 × 10−5 [Yang 2024]68 hCMECD/D3
Risperdal 410.4 3.49 3.00 × 10−5 [Summerfield 2007]66 MDCK-MDR1
Dilantin 252.3 2.47 2.70 × 10−5 [Summerfield 2007]66 MDCK-MDR1
Ibuprofen 206.3 3.97 2.70 × 10−5 [Wang 2019]7 MDCK
Buspirone 422.0 1.95 2.50 × 10−5 [Boateng 2023]69 Caco-2
Ritalin 233.1 2.25 2.47 × 10−5 [Yang 2016]70 MDCK
Caffeine 194.2 −0.07 2.10 × 10−5 [Wang 2019]7 MDCK
Duloxetine 297.4 4.00 1.66 × 10−5 [Hellinger 2012]65 Caco-2/MDCK
Lacosamide 250.3 0.73 1.60 × 10−5 [Zhang 2013]71 Caco-2
Glycerol 92.09 −1.8 9.50 × 10−6 [Shah 1989]72 BMEC
Ethosuximide 141.2 0.38 9.00 × 10−6 [Summerfield 2007]66 MDCK-MDR1
Sertraline 306.2 5.10 2.10 × 10−6 [Summerfield 2007]66 MDCK-MDR1
Temozolomide 194.1 0.4 1.86 × 10−6 [Avdeef 2012]73 Brain perf (3D)
Atenolol 266.3 0.16 1.30 × 10−6 [Adson 1995]74 Caco-2
Sucrose 342.3 −3.7 1.00 × 10−6 [Franke 1999]75 Caco-2
Nadolol 309.4 0.81 3.30 × 10−7 [Yamashita 2000]76 Caco-2
Doxorubicin 543.5 1.27 1.00 × 10−7 [Hellinger 2012]65 Caco-2/MDCK
Rhodamine 123 380.8 1.06 0.80 × 10−7 [Katt 2019]77 iPSC

aThe following parameters are supplied: (A) molecular weight (MW; g/mol), (B) octanol−water partition coefficient (Log Kow), (C) experimental
permeability Papp (cm s−1), (D) literature reference, (E) The models or methodologies employed to measure the permeability are red blood cell
(RBC), immortalized cell line of human colorectal adenocarcinoma cells (Caco-2), Madin-Darby canine kidney (MDCK), Madin-Darby canine
kidney with Multidrug Resistance Protein 1 expressed (MDCK-MDR1), rat brain perfusion (3D), Human Induced pluripotent stem cells (iPSC)-
derived cells, and Human Cerebral Microvascular Endothelial Cell Line (hCMEC/D3) mono-culture cells.
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to repurposing existing drugs for CNS disorders, highlighting
the critical need for innovative technologies capable of early
identification of therapeutics with the potential to penetrate the
blood−brain barrier (BBB).37

Several experimental techniques were developed to study
complex heterogeneous membranes such as the BBB, focusing
on the lateral organization of lipids, such as Time-of-Flight
Secondary Ion Mass Spectrometry (ToF-SIMS) imaging,38 as
well as the permeability of solute through membranes, such as
transwell assays.

In silico methods to investigate membrane properties have
advanced rapidly in the past decade. Tools such as FATSLiM,39

LiPyphilic,40 PyLipID,41 MDTraj42 and MDAnalysis43 enable
the examination of membrane properties with atomistic
granularity. The lipid diffusion constant and mean-square
displacement (MSD),44 the membrane curvature and the
applied stress,45 as well as their dependence on lipid
composition, the angular dynamics of embedded membrane
proteins,46 the area per lipid and bilayer thickness,47 are all
commonly explored parameters. It is furthermore known that
membrane composition affects the permeabilization of bio-
logical materials.48 For this reason, moving away from model
membranes to high-resolution complex membrane composi-
tions is important to get as close to the experimental conditions.
Experimental Approaches to Vascular Permeability

and ADME. The ADME principle, denoting absorption,
distribution, metabolism, and excretion, summarizes the internal
processes that describe how a drug moves throughout and is
processed by the body.49,50 Distribution describes how a drug
moves throughout the body, which is strongly dependent on
blood flow, binding to plasma proteins, and the permeability of
capillaries. For example, drugs that strongly bind to plasma
proteins and/or display low permeability across the BBB will be
unable to exert effects within the CNS. A similar concept,
bioavailability, denotes the fraction of the originally adminis-
tered drug that arrives in systemic circulation and depends on
the properties of the substance and the mode of admin-
istration.49,50 Bioavailability plays a crucial role in the
functioning of drugs regulated by key tissue barriers, be it

intestinal, epithelial, or endothelial, and so forth. Vascular
permeability is key to where a drug goes, and thus, what effect a
drug has.
Numerous experiments have been conducted to investigate

membrane permeability across various drug types. However,
these approaches have inherent limitations and are applicable
only under specific conditions and for certain drug types,
including small molecules, peptides, recombinant proteins,
antibodies, and nanoparticles. Several critical parameters have
been identified, such as molecular volume, rotatable bonds,
polar surface area, and charged groups.51 Generally, small, lipid
soluble, and noncharged compounds exhibit better permeability
to cross cell membranes through passive transport, while
charged small molecules can permeate the membranes via
active transport. Further simplified in vitro systems can mimic
the lipid bilayer itself without use of cell culture, including lipid
vesicles, supported lipid bilayers, and droplet interface bilayers.
These approaches have rapidly advanced and have the advantage
of being more directly comparable to in silico measurements.52

Peptides are sized between small molecules and proteins, and
they can traverse cell membranes either via suitable hydro-
phobicity and a neutral charge or through receptor-mediated
transcytosis. Peptide permeation has been studied using both
experimental and computational methods,53,54 and multiple
experimental methods have been widely used in peptide
permeation studies, e.g., transwell assay,55 liposome permeation
assay,56,57 electrical conductivity52,58 and microfluidic perme-
ation assay.52,59−61

In Table 1 we illustrate a range of compound permeabilities
for the case of establishing tissue-specific permeability assay,
where values are selected from assays that can serve as a proxy or
a model for CNS transport. This table showcases the challenging
and diverse set of assay types used to estimate these. These
challenges will be described in full detail in the section on
Benchmark Challenges.

Permeability Estimations. Diffusion versus Solvent Drag
Components to Flux of Solutes.Before outlining the theoretical
expressions for permeability in silico, in vitro and in vivo, we note
that the molecular flux used to describe permeability in in vitro

Figure 1. Transcellular and paracellular pathways across cellular barriers. Schematic of the apical endothelial cell membrane with embedded
glycoproteins (syndecans, CD44, P-gp). The glycocalyx extends beyond the endothelial cell membrane and is made up of the chains of glycoproteins
radiating outward, which preorganize the transport of small-molecules across the endothelial cell membrane.96−98 Sulfates denoted by ⬠, and
hyaluronic acid denotes by ☆. A transcellular permeation event with permeability Ptranscellular for a small molecule is depicted, as well as the substrate
recognition for solutes that are P-gp substrates, and their subsequent efflux. The cell−cell tight junction is illustrated, which acts to restrict the
paracellular pathway. Note that on the basolateral surface of the endothelial cells there is a specialized protein network termed the basement
membrane, which also can be a barrier to permeability.
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experiments has both a diffusive component and a solvent drag
component (convective flow), both of which are important.
Dynamics in molecular dynamics simulations are typically
diffusive, and do not include convective flow in the setup, due to
the system size being smaller than those in the experiments.
Solvent drag from convective flow in experiments can be a major
component to the permeability, and is highly dependent on
assay parameters like pressure gradients.78−81 This difference in
the theoretical formulation of permeability could be one reason
for the order of magnitude discrepancy between computational
and experimental permeabilities.
Paracellular and Transcellular Permeability. While

most bilayer simulations or model setups in silico target solely
the transcellular (through-cell) pathway, with associated
terminology Ptranscellular, the paracellular permeability, with
associated terminology Pparacellular is another major component
of in vitro and in vivo permeability taken by drugs through the
extracellular spaces between adjacent cells (Figure 1). In the
context of vascular biology, distribution of drugs can be strongly
determined by the paracellular pathway. For example, certain
types of endothelial cells are fenestrated (kidneys, intestines,
endocrine glands) or discontinuous (liver, spleen, bone
marrow) which allows the free passage of large molecules, and
serves the function of facilitating drug filtration and absorption.
Most other organs contain continuous endothelial cells which
express junctional proteins that regulate permeability between
them. The BBB has the highest expression of these proteins,
including tight junction protein claudin-5, which is necessary to
provide size-selective control over paracellular permeability.82

Only very small, nonpolar molecules like oxygen, carbon
dioxide, and certain lipid-soluble substances can cross the BBB
paracellularly. Larger molecules must use specific transporter
systems, like glucose transporter-1 for glucose. Similarly, in vitro
assays will be strongly dependent on paracellular permeability
including gaps in monolayers of cells or differences in tight
junction protein expression.83,84 Indeed, tight junction protein
expression dramatically alters in vitro measurements.83,85,86 In
vivo and in vitro systems measuring permeability that is
dominated by paracellular transport will be inherently inaccurate

relative to in silico approaches, which rely on membrane
diffusion. In Figure 1 we depict the transcellular pathway
compared to the paracellular pathway.
In addition to discriminating between the transcellular and

paracellular pathway, complex plasma membranes contain a
variety of efflux pumps and transporters among an array of
embedded membrane proteins. The endothelial membrane
expresses P-glycoprotein (P-gp) efflux pumps (Figure 1), a
notable example of ABC transporter, which are implicated in the
multidrug resistance to chemotherapeutics. This pump has
received notable interest since the 1980s,87−92 but the problem
of multidrug resistance of chemotherapeutics persists.93−95 In
the context of permeability, the P-gp pump lowers the effective
drug concentration inside the cell by efflux of the drug out of the
cell.
In the following sections, we lay out the theoretical

frameworks for in silico, in vitro and in vivo permeability,
specifically (A) transition-based flux counting, (B) inhomoge-
neous-solubility diffusion framework, (C) two-dimensional
transwell assay, (D) three-dimensional microvessel assay, (E)
in situ brain perfusion, and (F) multiple time-point regression
analysis for clinical imaging. For in silico approaches we refer to
permeability as “simulated” (Psim), while for in vivo/vitro
approaches we refer to permeability as apparent (Papp).

In Silico. Molecular Dynamics (MD) simulations utilize the
numerical integration of Newton’s second law to forward-
propagate the positions and velocities of atoms of an atomic
representation of an assembly of atoms, thereby generating a
trajectory of positions of the atoms of the system.99−102 The
term “system” or “simulation box” here can denote any
biological assembly, e.g. a cell-mimetic assembly, consisting of
a model membrane, the relevant transmembrane proteins,
solvent and background salt concentration. The use of MD
simulations with a force field (FF) description of the solvated
membrane has proven to be a popular system representation for
calculating in silico permeability (P) values,24,103 and can be used
to investigate the free energy of drug permeation across the
transcellular pathway. MD simulations have been used to study a
wide range of membrane types,104−108 including plasma and

Figure 2. Basics of transition-based counting approaches for permeability. (A) Real computational time in calendar months as a function of the
experimental drug permeability (Papp) for the example of BBB permeation. This is obtained as a back-calculation8 in which the experimental
permeability is input into eq 6 to calculate the expected simulation rate constant k, and consequently, the time t (t =Nevent/k). The time t refers to the
time (months) to simulate solute transport at 37 °C using a modern GPU. The system setup for such a benchmark calculation is a solution volume of
∼100 nm3 and with a bilayer area of ∼25 nm2. For purposes of benchmarking, we assume that a minimum of 100 translocation events are required to
achieve steady-state permeability. This is an estimate we found to provide plateau values of k for our compound set.7,8,124 A benchmark of ∼100 ns per
day is assumed. The experimental values used to back-calculate to the real computational time are (Table 1) span a range from ∼10−7 cm s−1 (slowest)
to ∼10−3 cm s−1 (fastest). (B) Transitions illustrated for the case of ethanol permeating across a complex membrane in an unbiased MD simulation,
and for which we assume that passive diffusion to be the primary mechanism of transport. (C) Molar rate constant for ethanol throughout the MD
simulation, revealing the time needed to converge rate estimates as an input to the permeability calculation. Adapted from ref 8. Copyright 2021 ACS.
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mammalian membrane models. One of the main bottlenecks in
using in silico techniques lie in the shift between the available
computational sampling (ns to μs) and the inherent biological
time scales for small-molecule permeation (Figure 2). Most of
the top-selling FDA approved drugs109 have CNS permeabilities
of ∼10−6 cm s−1 and below. This renders the real-time
simulation time (tcomputing; months) of a single GPU computa-
tionally intractable, as it corresponds to tcomputing values on the
order of ∼10 to 100 months for a successful calculation. To
overcome this issue, the development of enhanced sampling
techniques such as umbrella sampling,110 metadynamics,111

adaptive biasing force (ABF)112 and steered MD,113 have
proven instrumental.114,115

When applying MD simulations specifically to the problem of
calculating permeabilities, several procedures have been
developed for use with metadynamics116,117 and ABF,20,106

among others. These methods do not directly provide transport
rates without a reweighting of the resulting ensemble or
inferences through an inhomogeneous-solubility diffusion
(ISD) framework.24 Unbiased all-atomMD simulations provide
detailed insights into the molecular mechanisms of transport
across the BBB without the need for a priori knowledge of the
permeation pathway or constrained coordinate systems.
Kinetics can be calculated from the transition-based counting
(TBC) approach, but this still requires simulation times in the
tens to hundreds of microseconds per drug partition to achieve
converged estimates at 37 °C. This is currently beyond the limit
of realistic sampling for routine MD simulations. Other
methodologies for permeability have only been parametrized
for the fast regime (permeability, P > 10−5 cm s−1).23 The recent
development of specialized supercomputing machines such as
Anton, Anton2 and Anton3 systems has made unbiased MD
simulations at the millisecond time scales routinely possi-
ble,118−120 but the democratized access to such machines is still
not routine, and as such, enhanced sampling techniques are still
required for users with access to small numbers of GPUs.
We describe two approaches to incorporate enhanced-

sampling simulations, first the TBC framework, and second,
the ISD framework, for transcellular permeability.

Transition-Based Counting (TBC). With this methodology,
the small-molecule permeability is modeled by counting the
number of transport events through planes perpendicular to the
bilayer located at either interface. In practice we define inward-
cell and outward-cell transport planes, with the number of
transport events (Nevent) given by the sum of the inward (Ni) and
outward (N0) transfers:

N N Nevent i o= + (1)

The rate constant, k, for translocation across the bilayer is
calculated from unbiased MD simulations of spontaneous trans-
bilayer solute crossing as the ratio of the total number of
transport events observed during a simulation by the simulation
time:

k
N

t
event=

(2)

It is common to use a molar rate constant (r = k/NA) in
calculations.
We proceed to outline the derivation for the expression of

Psim. In the diffusive regime of Fick’s law, the solute flux J (mol
cm−2 s−1) for transition events per an area patch in unit time can
be expressed in terms of the simulated permeability Psim (cm s−1)

and the concentration difference between the two sides of the
membrane:

J P Csim= · (3)

where ΔC = C0 − Ci, and Ci (mol cm−3), C0 are the
concentrations on either side of the membrane. Due to the
semi-isotropic pressure coupling imposed by the simulation
engine with e.g. the Parrinello−Rahman barostat,121 in which
the (XY)-plane of the box is allowed to relax independently of
the (Z)-plane, the box volume, V, and area of the bilayer patch,
A, will vary during the simulation and need to be averaged. Psim is
then obtained from eq 3, by estimation of the flux J, which itself
can be obtained as the ratio of the rate k (s−1) per unit molar area
(NAA; mol−1 cm2):

J k
N AA

=
(4)

where NA is Avogadro’s constant. This leads to a permeability
expression of

P k
N ACsim

A
=

(5)

Here C is the equilibrium concentration of solute in the solvent,
which applies to converged simulations. Because the in silico
permeability is calculated for a single apical membrane crossing,
the factor of 2 arises to account for the both the forward and
backward direction of these crossing events between the two
compartments of the simulation and prevents overcounting,
something which is not occurring for the supported lipid bilayers
in the in vitro transwell assay. For this derivation, the transport
across the cytosol is assumed to be much faster (kcytosol ≫ k).

P k
N AC2sim

A
=

(6)

MD simulations allow access to transport properties as a
function of the temperature of the system, such as the diffusion
constant for a small-molecule. Calculation of such properties is
nontrivial and is associated with a number of pitfalls explained
elsewhere.122,123 In Figure 2 we provide an example of the
workflow and time constraints for MD simulations used for
permeability estimation.
Similarly, the use of temperature-enhancedMD for estimating

transport properties such as the permeability7 is not a routine
procedure and requires careful reweighting of the transport
model to recover kinetics at 37 °C. Other approaches such as
ABF or Umbrella Sampling require a Bayesian posthoc
correction.106,125,126

Inhomogeneous Solubility Diffusion (ISD) Framework and
Diffusion Estimation. The ISD framework (eq 7) is a popular
methodology to calculate Psim (cm s−1) from biased simulations,
as demonstrated by Marrink et al. for water permeation.24,127

Uses have been shown with ABF,106,125 metadynamics117 and
umbrella sampling,128 in which the permeability is calculated
from the position-dependent diffusion D(z) and the free energy
ΔG(z) along the transition coordinate z, and the permeability
directly follows from solving the Smoluchowski equation under
stationary conditions:

P
G z RT
D z

dz1 exp( ( )/ )
( )z

z

sim 1

2
=

(7)

This approach has been widely covered elsewhere.3,24,125,126

One of the key challenges of these methods is the recognized
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difficulty to converge such calculations for heterogeneous
membranes. Recently, statistical mechanical frameworks based
on the Green−Kubo linear response theory have been applied to
calculate Psim.

129

One of the main requirements for using the ISD framework is
a viable method to obtain the diffusion coefficients. One such
approach employs Bayesian inference to obtain a consistent
joint solution ofD(z) and ΔG(z).122,130 This class of methods is
compatible with any kind of bias potential, including time-
dependent approaches like metadynamics111,131,132 or ABF.126

The challenge of this approach is its assumption of overdamped
Brownian motion, which is not always valid, and its dependence
on a time step parameter that is difficult to determine.106 While
enhanced sampling techniques remain highly useful and
extremely popular, they still require correction procedures to
obtain the unbiased kinetics. The position-dependent diffusion
coefficient D(z)�though less dominant in eq 7�can
substantially influence the results due to the challenges in
reliably estimating it.106

In neat solvents, diffusion coefficients can be calculated from
the mean squared displacement (via the Einstein−Smoluchow-
ski equation) or from velocity autocorrelation functions (via
Green−Kubo relations). Within a lipid membrane, however, the
asymmetries and large free-energy barriers preclude the
approximation of the solute’s motion as a random walk, making
thesemethods difficult to apply.133 Using a force autocorrelation
method134 avoids this problem but requires constraining the
solute’s position along z, which usually necessitates additional
simulations. Since all these methods have their own advantages
and disadvantages, choosing the right one usually depends on
the free-energy algorithm and should be guided by optimizing

the synergies between them to minimize the overall simulation
effort.

In Vitro. Experimentally, the customary method for
measuring the transcellular permeability coefficient is the in
vitro transwell assay,135 which uses a cell support system in
which endothelial cells are cultured to form a confluent
monolayer.29,136−138 The role of the membrane is to support
the cell layer mechanically, without acting as a significant
diffusion barrier. To meet these requirements, these membranes
have pores that are large enough to not restrict transport but
small enough to enable cells to form monolayers (0.4 μm pores
are very common). The membrane is then placed between two
fluid compartments so that any flux of solutes from one
compartment to the other must pass through the cell layer.
The apparent permeability (Papp) of the drug is determined by

measuring the amount of the molecule that crosses the
monolayer.139,140 The molecular transport is calculated using a
tracer flux assay, in which the molecular movement is tracked,
which is usually done in the absence of hydrostatic or osmotic
pressure gradients by having the same buffer composition and
fluid height between the two chambers; thus, diffusive
mechanisms will dominate and convective flux is minimal.
Fluorescent compounds are commonly used for these assays as
their concentration can be measured using microscopy or a plate
reader, but liquid chromatography-tandem mass spectrometry
can be used for nonfluorescent compounds. Many different cells
are used for this assay. Many cell sources are used to model BBB
permeability including Madin−Darby Canine Kidney (MDCK)
or Caco-2 cells,139,140 primary human brain microvascular
endothelial cell (BMECs),123,124 and BMEC-like cells derived
from induced pluripotent stem cells.141 Dramatic permeability
differences are observed across these cellular models, due to

Figure 3. In vitromeasurements of permeability. (A) Schematic of 2DTranswell assay for measuring permeability of cell monolayers. Cells are grown
on a porous membrane; if a monolayer does not form then transport between cells (paracellular) will dominate, whichmay not reflect the physiological
barrier properties. Solute or fluorophore is added to one chamber and the concentration over time is measured in the opposing chamber.
Measurements will only be accurate in the linear regime of dC/dt. Typically, a standard curve is used to calculate the concentration of a fluorophore and
its change over time in the basolateral chamber using a plate reader. From this curve, permeability is calculated by eq 13, which also is dependent on the
geometry of the Transwell membrane (typically circular). (B) Schematic of a 3Dmicrovessel assay for measuring permeability of cells patterned into a
tube. Tissue-engineering approaches are used to form a confluent tube of cells (typically endothelial cells) that resembles a in vivo blood vessel.
Fluorophore is perfused through the microvessel and real-time fluorescence microscopy is conducted to capture filling of the lumen (ΔI) and the rate
of fluorophore accumulation into the ECM(dI/dt), together with geometric properties of themicrovessel enabling permeability calculation (eq 17). In
the example plot of fluorescence intensity, the jump in fluorescence corresponds with perfusion of dye into the microvessel at time = 5 min. This
calculation does not depend on measuring the concentration of the fluorophore, however, a range of concentrations should be piloted to confirm
linearity with fluorescence and robustness of measurements. Polydimethylsiloxane (PDMS); extracellular matrix (ECM).
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differences in tight junction protein expression,144 differences in
epithelial versus endothelial nature of the cells, and differences in
efflux pump expression.142

The data obtained from these experiments may then be
compared to in silico simulations of transcellular transport to
gain insights into the mechanisms of BBB permeability.3,20−26

However, the choice of cell types and experimental conditions
can significantly influence assay outcomes, underscoring the
need for standardized methodologies and quality control
measures. The work of Wong et al.29 succinctly summarizes
the experimental procedure. We start the derivation from Fick’s
law of diffusion (eq 8), which governs the solute flux. Let J
denote the solute flux, expressed in units of mol m−2 s−1, D
denotes the diffusion constant of the solute, which is dependent
on intrinsic (i.e., size of solute) and extrinsic (i.e., temperature)
parameters, and is expressed in units of m2 s−1. Let dC/dx
denote the concentration gradient in ((mol m−3)/m). In Fick’s
Law, the minus sign indicates that solute is transported in the
direction of decreasing concentration:

J D
dC
dx

=
(8)

This calculation can be simplified to define the flux (J) in units
mol cm−2 s−1 across a permeable membrane by assuming steady-
state diffusion (constant concentration gradient) and that the
membrane is thin (no complex gradient). P is the permeability
coefficient (cm s−1), and ΔC is the concentration gradient (mol
cm−3).

J P C= · (9)

Two-Dimensional Transwell Assay. A Transwell forms a
permeable membrane containing a cell monolayer with area A
that is separated by an apical and basolateral chamber with
volumes of Vapical and Vbasolateral, respectively, as depicted in
Figure 3A. To measure permeability, a compound of known
concentration (C) is placed in a chamber to establish a
concentration gradient. Typically, this is done by replacing
media from the apical chamber. After media is replaced, solute
will transport into the basolateral chamber eventually reaching a
plateau based on the differences in volume between the
chambers (it will plateau at 50% of initial concentration if the
reservoirs are the same volume). In practice, this means that
measurements should be collected in the linear regime of
transport to satisfy steady-state assumptions. To identify the
linear regime, time course studies are usually conducted to
identify when flux starts to plateau (this occurs much more
rapidly for high permeability solutes). Over time, fluids in the
basolateral chamber are collected and replaced with fresh buffer
to re-establish a concentration gradient and to measure the
concentration over time.
The flux for the transwell assay is defined as the rate of

molecules crossing the membrane (dN/dt) divided by the
surface area:

J
R

dN
dt

1
2=

(10)

which is the form of eq 4 for a circular area. Assuming that the
solute is only present in the apical reservoir, the concentration
gradient dC for the transwell assay is defined as

C
N

V
Cd

apical

apical
apical= =

(11)

Thus, apparent permeability is defined from eq 9 as

P
dN
dt R C

1 1
app 2

apical
=

(12)

By redefining the permeability in terms of the solute
concentration, we get:

P
dC

dt R C
V

1 1
app

basolateral
2

apical
basolateral= ·

(13)

The first term can be calculated as the slope of concentration
across at least two time points of sampling the basolateral
compartment.

Three-Dimensional Microvessel Assay. A three-dimensional
microvessel is fabricated using cell and tissue engineering
techniques, summarized previously.143 The microvessel of
length L and radius R is filled with solute of amount Nvessel,
and over time outside of the blood vessel this solute accumulates
at rate dN/dt. The calculations of permeability are similar to
those in 2D, and the final experimental setup is depicted in
Figure 3B. First, the molecular flux is similar to the 2D
expressions (eqs 9−11):

J
RL2

dN
dt=

(14)

C
N
V

N
R L

d vessel

vessel
2= =

(15)

Solving for permeability, the expression then becomes

P
dN
dt N

R1
2

=
(16)

Typically in these models, permeability of fluorophores are
measured. Unlike in transwells, where the basolateral chamber is
accessible for fluid collection, in microvessels there is not a
tractable way to sample the interstitial space. Thus, time-lapse
fluorescence microscopy is typically conducted to measure the
concentration gradient when the microvessel lumen fills with
fluorophore (ΔI) and how fluorescence intensity changes over
time outside the microvessel (dI/dt). These equations were
applied in early studies to measure the permeability of single
perfused capillaries of frog mesentery,144 but have been widely
adopted within the in vitro microvessel field.137,145,146

P
dI
dt I

R1
2app =

(17)

These calculations make several assumptions: (1) fluores-
cence intensity is linear with concentration, which should be
empirically confirmed, (2) microvessels instantaneously fill with
fluorophore (immediate formation of a concentration gradient);
if this is not satisfied then transport will occur before the final
concentration gradient is formed; using a perfusion system that
has a long physical distance from the site of adding fluorescent
dyes to the microvessel can introduce this challenge, which will
particularly effect high permeability measurements, (3) the
concentration gradient is steady-state, (4) that all transport
occurs within the ROI, meaning that the ROI should be chosen
to reflect transport from the singular microvessel, and (5) that
diffusion dominates, while contributions of convective flux
(solvent drag) are minimal. Convective flux is described by the
Sterling equation and includes both hydrostatic and oncotic
pressures. Hydrostatic contributions can be minimized by
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perfusing microvessels under low pressure, while oncotic effects
can be minimized by ensuring that the interstitial fluid
surrounding microvessels has a similar protein concentration
as the microvessel perfusate. For example, perfusion of high
concentration fluorescently labeled albumin will introduce
oncotic effects that will draw water into the microvessel and
alter permeability beyond diffusive mechanisms.

In Vivo.Historic studies by Ehrlich and Goldmann found that
dyes injected into the bloodstream did not stain the brain,147

providing early quantitative evidence of uniquely low perme-
ability of the BBB. Quantitative and semiqualitative methods
continue to be used to this day using dyes like Evans Blue or
biotin to observe how barrier properties change over develop-
ment and disease. Regardless, there remains a need for accurate
quantitative measurements and multiple techniques have been
developed to measure permeability in living animals or humans
(in vivo).148−150 These approaches are applied across broad
orders of magnitude of size, from the collection of entire organs
to measure drug concentration to the real-time imaging of a
single blood vessel perfused with solute directly upstream.
Calculations across these scales differ widely and rely on unique
sets of assumptions that can bias measurements. Some early
approaches perfused solutes through animal microvessels and
utilized calculations outlined above (eq 17);143,145 these
approaches have also been applied with more advanced imaging
modalities and noninvasive techniques to measure BBB
permeability.151 However, there remains a need for measuring
permeability that does not rely on the direct fluorescent imaging
of a vascular bed. We will describe two such approaches: (1) in
situ brain perfusion which is a “gold standard” approach to
measure permeability of any drug in laboratory animals, and (2)
multiple time-point regression analysis, including the two-
comportment Patlak model, which is widely used for clinical
imaging in humans.

In Situ Brain Perfusion. In this method the operator takes full
control of the cerebral circulation by isolating and cannulating
the internal carotid artery in a freshly euthanized animal and
perfusing with a solution of tracer of known concentration (Cp).
The concentration of tracer in the brain (Cb) is quantified, either
at a single time point or at multiple time points. For multiple
time points, the initial linear part of the data is then fitted to this
relationship:

C
C

K t Vi
b

p
in= ·

(18)

whereCb/Cp is the apparent volume of distribution, the slopeKin
is the transfer coefficient (expressed in mL/min/gram of brain
tissue) and the intercept Vi (at t = 0) reflects the intravascular
volume. For single point assays, Vi needs to be determined
empirically and this is done by including in the perfusate an
intravascular space marker which has zero BBB permeability.
Multiple time points are superior to single time point assays
since it allows for inspection of the relationship in eq 18, to
ensure the calculation is performed on the linear portion.
The determinants of Kin are the permeability (P, an intrinsic

property of the BBB; when measured referred to as Papp versus
Psim), the surface area available for transfer (S), and luminal flow
(F). P and S are convenient to consider together as a product
(so-called “PS product”, or PS), since it is frequently difficult to
disentangle these two parameters:

PS P S= · (19)

PS was related to Kin and F by Renkin152 and Crone,153 so Kin
can be derived since the flow is controlled by the experimenter,
and is known or can be derived:

K F e(1 )PS F
in

/= (20)

rearranged to

i
k
jjj y

{
zzzPS F

K
F

ln 1 in=
(21)

but in practice some investigators assume that Kin is numerically
equal to PS when flow is much larger than the PS product
(simulations show that when PS/F is less than 0.2, Kin
approximates to PS with error ≤10%154).
Finally, P (in cm/min) is derived from PS by dividing with

estimates of vascular surface area (SA, in cm2/g) from the
literature,155 since from eq 19:

P
PS
S

=
(22)

These experiments are essentially performed post-mortem
and the brain is deprived of its normal blood supply. While
animals are perfused with a highly oxygenated and warmed
solution (sometimes including washed erythrocytes), it is
possible that BBB permeability changes occur during the course
of the experiment as the neurovascular unit is deprived of its
natural environment.

Multiple Time-Point Regression Analysis. A more physio-
logical extension developed by Patlak and colleagues allows for
permeability estimation after administration of tracer. For CNS
permeability, the procedure involves obtaining concentrations
measured in tissue (Cb) and blood (usually arterial, so Ca) at
multiple time points.155 The Patlak model is used in laboratory
studies and clinical imaging techniques like PET (Positron
Emission Tomography) and dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI);156−158 it measures
the rate at which an agent (dependent on the imaging modality)
moves from the blood plasma (compartment one) into the
tissue (compartment two). Crucially, this is a two-compartment
model which assumes that tracer is irreversibly transferred from
blood to tissue (i.e., no back flow).

dC
dt

K Cb
ain= ·

(23)

since at early time-points, the influence of Kout · Ca is very small,
as there is very little tracer in the tissue compared to blood.
Integration of eq 23 leads to

C t K C d( ) ( )b

t

ain
0

=
(24)

To the right-hand side of eq 24, one needs to add the
contribution of intravascular tracer to Cb i.e. Vb. Ca(t) where Vb
is the cerebral blood volume. This is the Patlak equation:

C t V C t K C d( ) . ( ) ( )b b a

t

ain
0

= +
(25)

Dividing by Ca(t) purely to rearrange into a linear form:

C t
C t

V K
C d

C t
( )
( )

( )

( )
b

a
b

t
a

a
in

0= +
(26)

allows the data to be plotted to derive Kin and Vb by fitting. The
advantage of this method is that tissue concentrations can be
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measured in vivo using imaging techniques, and application to
humans becomes possible.159 Further improvements have been
made using bidirectional models,160,161 adjustments for non-
instantaneous luminal filling,162 and “blind” deconvolution of
solute imaging data.157,163−165 Depending on the context,
different adaptations of the Patlak model can be more or less
accurate. For example, bidirectional models are more accurate
when vascular permeability and vascular volume are high.157 As
with other approaches, this model assumes that the signal is
proportional to concentration, and is popular with a variety of
clinical imaging modalities;155,166,167 depending on the imaging
sequence, tissue characteristics, and contrast agent and its
concentration, a linear relationship can be approximated. Kin is
commonly also referred to as Ki (or Ktrans, if Ki is corrected for
the hematocrit) in MR perfusion studies, such that

K K / 1 haematocriti trans= [ ] (27)

By constraining eq 20 within the physiological ranges of F and
PS across various tissues, it is apparent that Kin is mostly
influenced by PS (luminal flow (F) has little effect), especially
when the PS is very low. Indeed, in the low permeability context,
Kin is nearly directly proportional to PS.
Challenges in Benchmarking Permeability Measure-

ments. Quantifying the Order of Magnitude Difference
between Simulation and Experiments. Directly comparing
simulated and experimental permeabilities involves inherent
risks. Simulated permeabilities for the CNS have been found to
generally be faster than experimental permeabilities even after
correction procedures. This has been found for simulated
permeabilities obtained with transition-based counting assays7,8

that are then benchmarked to Caco-2, MDCK or rat brain
perfusion. Similarly, for simulated permeability values obtained
from the ISD relationship, benchmarking to in vivo intestinal
perfusion assays revealed a disparity of 3−4 orders of
magnitude,168,169 with the simulated values being significantly
faster. The reason for this has been extensively explored,8,124,169

and appears to be a combination of force field effects, the
uniqueness of each permeating solute in relation to a single assay
that may not respond to all solutes in the same way, as well as the
choice of in vitro cell line benchmark or in vivomethodology with
their inherent limitations. We will delve more deeply into these
issues in the following subsections.

Building Atomic-Detail Accurate Models. One key reason
for the order-of-magnitude disparity between simulations and
experiments is that small-molecule tissue permeability through a
cell membrane is affected by a multitude of biological factors
within in vivo and in vitro models (Figure 1). These factors are
only captured by the simulation model if the corresponding
features are explicitly included. First, brain microvascular
endothelial cells (BMECs) are interconnected by tight junction
proteins that form a paracellular barrier to the transport of large
molecules. By electron microscopy these proteins appear as
“zippers”.170−172 Thus, experimental and computational ap-
proaches would be expected to converge for blood−brain barrier
permeability measurements when paracellular permeability goes
to zero. Second, the endothelial cell membrane is coated in a
layer of glycan molecules termed the glycocalyx, which helps
preorganize the transport for small molecules and blocks the
permeation of larger molecules.96,98,173 Since simulation models
do not routinely include the glycan layer in their modeling, this is
a major system difference. The permeability for large molecules
when benchmarked to in silico permeabilities therefore needs to
be scrutinized extra carefully, and this discrepancy could be

mitigated by stripping the glycocalyx from the cell surface prior
to permeability measurements using compounds like heparin-
ase.
Third, simulation models do not routinely incorporate P-

glycoprotein efflux, which can lead to order-of-magnitude
differences in in vitro permeability.174−176 To quantify the effect
of efflux on the permeability, we quote the concept of “efflux
ratio” (eq 28) to denote the ratio of the basolateral-to-apical
(brain to circulatory direction) to the apical-to-basolateral
(circulatory to brain) directions:

P B A

P A B
Efflux ratio

( )

( )
app

app
=

(28)

By rewriting the total system flux J from eq 3 in terms of
passive and active transport components, we obtain expressions
for both components to be

J J J P C r Npassive active= + = · · (29)

where r is the transporter turnover rate and N is the number of
transporters. The consequence of active transport is that the
total flux may no longer be linearly dependent on the
concentration difference, depending on the rate of active
transport. Furthermore, when evaluating eq 29, it may help to
point out that N is typically found as the number of transporters
per micron squared.29,177,178 In the case of the P-glycoprotein
transporter, a value of 100 P-gp μm−2 has been used previously.
Fourth, the cell membrane composition in vivo is dynamic and

regulates other mechanisms of transcellular permeability like
transcytosis. Relative to other vascular beds, the BBB is enriched
for the transporter protein Mfsd2a179 which regulates the lipid
composition of the cell membrane to suppress caveolae-
mediated transcytosis.180 Fifth, many compounds use speci-
alized transporter systems to cross the BBB, which dramatically
increase permeability of the transcellular pathway; this includes
expression of glucose transpoter-1 by the BBB to shuttle glucose
into the brain. To capture such effects in silico, we are thus
advocating for users to move on from model membranes to
complex simulation setups, such as those mimicking the full
cell,181 but this comes at a considerable computational cost and
is not routine.

Assumptions of in Vivo Permeability Estimation. Having
gone over differences between the simulations and the reality of
the cell in vivo,we proceed to examine the assumptions made for
in vivo permeability estimation of P, the gold standard in CNS
permeability estimation. For CNS permeability estimation, one
assumes that minimum binding occurs on the luminal surface of
the vasculature, as well as that there is no additional barriers in
the perivascular space; although the permeability in relation to
the cerebrovascular endothelium would be mathematically
correct, it would not be accurate for a systems biological
application, since most therapeutics and biological substances
need access to the brain parenchyma to exert their action.
Transfer kinetics are assumed to follow a one-compartment
unidirectional model; multicompartmental models of increasing
complexity182,183 including those utilizing measurements from
extracellular space and cerebrospinal fluid compartments
attempt to deal with this issue,184,185 for which there is a risk
of overfitting with large number of parameters. Absolute
quantification of P is hampered by the fact that the surface
available for transfer, denoted S, is derived from the literature,
rather than being experimentally determined within the same
experiment. However, since S is essentially a scaling variable, it is
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acceptable to compare permeabilities between substances (e.g.,
Papp, substance 1 and Papp, substance 2), or to compare Papp and Psim if a
reference substance is used (e.g., comparing Papp, substance 1/
Papp, ref and Psim, substance 1/Psim, reference substance).

Diversity of Solute Permeability Behavior. In addition to
these systemic differences between simulations and experi-
ments, there is a diversity in the behavior and nature of the small
molecules studied, which need to be accounted for in
benchmarks and models. We illustrate this issue for three classes
of molecules crossing the BBB. The first type of compound is
one with moderate to high permeability across lipid membranes.
Both caffeine (2 × 10−5 cm s−1)8 and ethanol (1.1 × 10−3 cm
s−1) serve as examples for such behavior (Table 1), and both
immediately exert noticeable physiological effects on the CNS
after their respective consumption. A second class of molecules
with moderate to low permeabilities are the opioids, that have
highly opioid-drug specific entry into the brain. Some opioids
are strongly recognized by P-glycoprotein, such as lopera-
mide186,187 (which exerts no CNS actions), while others such as
heroin or morphine are effluxed to a lesser extent.188,189 A third
class of molecules are the very large drugs such as antibodies.
Antibodies display remarkably low permeability unless they are
engineered to hijack receptors expressed by the brain
endothelium, including transferrin receptor.190 To study the
permeability of large molecules, novel delivery platforms such as
the transcytosis-enabling modules (TEMs)191,192 are needed. In
Table 1 we illustrate a range of compound permeabilities for the
blood−brain barrier, showcasing the diverse set of assay types
used to estimate these. Future benchmarks need to be aware of
this diversity and the challenges it poses to accurate assessment.

In Vitro Models Have Inherent Advantages and Limi-
tations. In vitro permeability assays have a set of common
pitfalls, recently described elsewhere.193 To summarize, first,
only a short-range of Papp values allow for the extraction of
intrinsic membrane permeability, as most of the published
values are dominated by the diffusion component, which itself is
due to unstirred water layers.169 Second, it was found that many
of the non-CNS Papp values are affected by paracellular transport
when using epithelial or intestinal permeability assays. This is
not an issue in CNS permeability, due to the presence of tight
junctions that block paracellular transport. Third, there are
recovery issues in the in vitro assays, which are not present in the
simulations, as compounds are lost due to adhesion to
membranes or plastics.

Benchmarking Disparities between in Vitro and in Vivo. In
vitro systems do not fully recapitulate the complex nature of drug
delivery in vivo, e.g. in humans. This includes differences in
protein/gene expression of endothelial cells, microenvironmen-
tal differences, and incomplete capture of ADME principles in
vitro. As a first example, let us consider the permeability of
clozapine, an antipsychotic drug. In Table 2 we compare the
measured permeability for the antipsychotic clozapine from
three sources. While the experimental sources differ in their

assumptions, the fastest permeability reading was 6.4 times
greater than the slowest reading. In vivo methods measure
molecules crossing the membrane by all mechanisms. The
permeability is therefore not driven by passive diffusion or
unequal concentrations alone. If the delivery depends on an
active transport system, the kinetics will look different than
transport that is just following a gradient, particularly if the
concentrations are very high.
Second, a recent study194 collected 222 Papp values from

MDCK cell lines, and 143 Papp values from Caco-2 cell lines.
When analyzing the Papp values for the same chemical, it was
found the Papp to differ by up to∼1.83 log units with a median of
0.57 when collected from different sources. When analyzing Papp
values of the same chemical from the same source where only the
choice of cell line was different, the values differed by up to
∼1.31 log units with a median value of 0.31. This highlights the
choice of the cell line as having an impact on benchmarking. The
observed differences in permeability between Caco-2 and
MDCK cells are primarily attributed to variations in lipid and
protein composition, as well as cellular morphology, with Caco-
2 cells more closely mimicking the human intestinal barrier
while MDCK cells resemble renal epithelium; these distinctions
underscore the importance of cell line selection in accurately
modeling permeability.195

Third, in vitro studies commonly cite in vivo measurements as
a reference point for permeability values. This is typically used as
evidence for an in vitro model displaying “physiological” barrier
properties. Unfortunately, this practice has large potential for
error as there is not an accepted in vivo value for many
compounds as they are highly dependent on the approach used.
Pairs of in vitro and in vivo studies identify similar permeability
values, but values are still highly variable across approaches;
examples of congruent permeability findings for two compounds
include for lucifer yellow137,196 and 10 kDa dextran.197,198

Fourth, in vitro methods rely on spectroscopy to detect
fluorescence intensity. Some limitations that may compromise
accurate measurements include nonspecific binding of fluo-
rophores to Transwells, photobleaching of the fluorophore,
interference or autofluorescence of cell culture media (thus why
transport buffers are usually used during the assay), and
instrument sensitivity.

Measuring Modulation in Permeability. Vascular perme-
ability is highly dynamic in homeostasis and disease. Addition-
ally, many approaches seek to actively increase permeability to
delivery therapeutic agents into the brain. There is a large range
of approaches utilized including inhibition of efflux pumps,
transient disruption of tight junctions (by hyperosmotic/
chemical agents, focused ultrasound), hijacking of receptor-
mediated transcytosis, and use of viral vectors, nanoparticles, or
exosomes.199,200 In silico, in vitro, and in vivo approaches have all
been applied toward developing approaches to modulate drug
permeability. However, some benchmarking challenges persist.
For example, due to species differences it is possible that

Table 2. Experimental Benchmarks for the Apparent Permeability of the Antipsychotic Clozapine from the Following Models or
Methods: (A) 2D in Vitro Permeability from Human Cerebral Microvascular Endothelial Cell Line (hCMEC/D3) Monoculture
Cells, (B) 2D in Vitro Permeability from Madin-Darby Canine Kidney Cells with Multidrug Resistance Protein 1 Expressed
(MDCK-MDR1), and (C) 3D in Vivo Permeability from Rat Brain Perfusion

Molecule MW(g mol−1) Log Kow Papp (cm s−1) Papp Reference In vitro model or in vivo method

Clozapine 326.8 3.23 3.90 × 10−5 [Yang 2024]68 hCMECD/D3
2.80 × 10−5 [Summerfield 2007]68 MDCK-MDR1
2.50 × 10−4 [Summerfield 2007]68 Brain perf (3D)
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permeability measurements may be distinct between in vivo
studies in rodents versus studies using human cells in vitro; the
relative contribution of species differences versus technical
artifacts is not known but could at least partially be determined
by conducting gene and protein expression analysis across these
assays. Crucially, while assumptions may be satisfied in one
context, once permeability is modulated they may no longer be
valid. For example, many chemicals can induce “focal leaks”
within 3D in vitro models where plums of fluorophore are
observed to transiently exit between adjacent endothelial
cells.145,201 These transient effects are local sites of extremely
high paracellular permeability and suggest that the ratio of
transcellular:paracellular permeability is not constant in time or
space. Permeability may be underestimated in the presence of
focal leaks as the concentration gradient is poorly maintained.
Despite these challenges, this highlights a major advantage of 3D
models: the direct imaging of fluorophore dynamics, which is
not visible in 2D models where fluid is passively collected from
reservoirs.
Guideline Recommendations for Improving Perme-

ability Assay Design. The previous section discussed the
challenges on benchmarking, with the ultimate goal to
improving agreement between in vitro, in vivo and in silico
prediction. The advantage of this is that (i) by achieving
congruent measurements between in vitro and in silico systems
we enhance the accuracy of such methods, (ii) by achieving
congruent measurements between in vitro and in vivo systems we
enable the use of in vitro systems to study permeability dynamics
without the use of animal models, and (iii) by achieving
congruent measurements between in silico and in vivo we
demonstrate the translatability of these measurements to predict
drug permeability.
We now present a community-led assessment of the best

practices to follow for improving permeability assay design:

1. Work out the explicit assay assumptions prior to performing a
benchmark. During large data set benchmarking between
simulated permeabilities and experiments (Table 1), one
should be considerate of the specific details and opt for
choices that improve the overlap of experimental
conditions. These choices include the cell line, the
incorporation or inhibition of efflux effects in the assay,
and the type of solute being benchmarked. A justification
needs to bemade in relation to their potential weaknesses.
The choice of the cell line can have order-of-magnitude
differences on the experimental permeability, while efflux
effects are known to have significant impacts on the
permeability,29 and this needs to be carefully accounted
for in assay design, such as opting away from MDCK-
MDR1 transfected cells, in which P-gp effects are
captured, or correcting for this in the transport
coefficients.

2. Nature of permeant af fects outcome. As we discussed above,
there is ample evidence that solutes permeate complex
membranes in group-type behavior.8,202 Where atypical
sized solutes are utilized, consider the challenges of such a
class of solute. Brocke et al. proposed five classes of
permeant behavior through complex membranes from
simulations,202 while other groups narrowed this down to
three discrete classes of behavior.8 Similarly, peptide
permeability requires specialized assays that differ from
those of small-molecule permeability, and do not
generally follow the Lipinski rule of 5.

3. Data utilization and data availability. To improve the
transparency of benchmarking, we recommend following
the FAIR (Findability, Accessibility, Interoperability, and
Reusability) data depositing guidelines recently pro-
posed,203,204 as this will improve the agreement to future
simulation setups and help new users in the community
follow best practices. In practice, this means depositing
raw publishable data in a repository in such a manner that
the data arrangement obeys the FAIR guidelines. We do
not have a single repository in mind, as we appreciate the
scientific community is global and has unique challenges
in different parts of the world, but some popular ones
include MDverse,205 MDDB (https://mddbr.eu/) and
BioExcel-CV19 (https://bioexcel-cv19.bsc.es/). We rec-
ommend users follow the best practices for data sharing,
such as those laid out by JCIM.206 Similar efforts for
experimental data deposits have been proposed, e.g.
NCBI GEO databases to deposit gene expression and
epigenomics data sets generated by next-generation
sequencing.207

4. Data checking. We recommend that users carefully check
the input data used for in silico prediction. This includes
standard error checking to ensure the best practices are
followed. As an example, the ISD framework requires
inputs from both thermodynamics and diffusion
estimation. A breakdown of the error analysis and
uncertainties for thermodynamics108,208 and diffu-
sion122,123,209,210 have been reported elsewhere. Follow-
ing good practices208 for calculating thermodynamics is of
utmost importance to ensure reliable data. For the TBC
approach, the monitoring of the convergence and
rigorous derivation of the permeability expression has
been discussed elsewhere.7,24 Similarly, the use of
simulation force field for small-molecules, e.g. GAFF211

or CGenFF,212 can vary widely in accuracy, and careful
reoptimization or inspection of the associated assigned
penalties is very important.

5. Avoid pitfalls. For in vitro measurements, it is advised to
confirm integrity of cellular monolayers prior to measure-
ments to ensure that transport is not dominated by the
paracellular pathway. This can be done using trans-
endothelial electrical resistance (TEER) measurements
and values can be benchmarked to prior studies for
consistency.29 Second, make sure to measure transport in
the linear regime, by conducting time course studies.88

Third, make sure fluorescent intensity is linear with
concentration, which has been a standard practice for
decades.144 Lastly, test the assumption validities in your
experimental or simulation setup. A number of resources
for good experimental213−216 and simulation204,208,217

setups (or “best practices”) exists, and the readers are
directed to those.

6. Data replication. Because of the complications of attaining
agreement between experimental and simulated perme-
ability, it is paramount that values be given with statistical
error bars, obtained from repeat experiments or
simulations. An excellent reference framework for this
recommendation is the work of Summerfield et al.66 in
which permeabilities from at least two methodologies are
reproduced side-by-side descriptors of mean and error.

7. Embrace multidisciplinary ef forts. Use of multidisciplinary
efforts will be particularly powerful in advancing studies of
permeability. Given inherent assumptions and limitations
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in individual approaches, collaborative efforts to bench-
mark and compare across experiments and simulations
will strengthen confidence in findings and hint at
mechanisms. For example, in vitro and in vivo work
recently applied the bee venom peptide melittin for
transient opening of the BBB.218 Use of both an in vitro
model using human cells and rodent models, are
complementary preclinical studies that hint at dose
discrepancies between in vitro and in vivo that require
further study. While this work speculates on mechanisms
by live-cell imaging of 3D microvessels, recent in silico
studies of melittin identify the membrane permeabiliza-
tion mechanism.219 This example highlights the potential
for in silico, in vitro, and in vivo approaches to synergize
toward improving drug delivery.

■ CONCLUSION
In this community assessment, we have laid out the analytical
framework for multidisciplinary methodologies to calculate
permeability: in silico assays using either transition-based
counting or the inhomogeneous-solubility diffusion approaches,
in vitro permeability assays in 2D or 3D, and in vivo assays
utilizing in situ brain perfusion and the Patlak method for clinical
imaging. We have gone through the systematic derivation of
permeability expressions, and covered the underlying assump-
tions made for each approach. We have performed a systematic
benchmarking of in silico to both in vitro and in vivo, depicting
the ways in which each benchmarking is sensitive to the choices
of assay design. Finally, we outlined recommendations for best
practices in permeability benchmarking and underscore the
significance of tailored permeability assays in driving advance-
ments in drug delivery research and development across diverse
physiological contexts. During benchmarking between simu-
lated permeabilities and experiments, the following should be
taken into consideration: (1) assay variability, including cell line
and efflux effects; (2) the class of solutes; (3) data utilization and
data availability; (4) input data checking for the in silico
prediction; (5) avoiding pitfalls; (6) data replication; and (7)
embracing multidisciplinary efforts.
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PBPK physiologically based pharmacokinetic

ToF-SIMS
Time-of-Flight Secondary Ion Mass Spectrom-
etry

MDCK Madin-Darby canine kidney
Caco2 immortalized cell line of human colorectal

adenocarcinoma cells
hCMED/D3 Human Cerebral Microvascular Endothelial

Cell Line monoculture cells
MDCK-MDR1 Madin-Darby canine kidney with Multidrug

Resistance Protein 1 expressed
hBMEC human brain microvascular endothelial cell
iPSC induced pluripotent stem cell
ISD inhomogeneous solubility-diffusion
ABF adaptive biasing force
2D two-dimensional
3D three-dimensional
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(65)Hellinger, É.; Veszelka, S.; Tóth, A. E.;Walter, F.; Kittel, Á.; Bakk,
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Delemotte, L. Sharing Data from Molecular Simulations. J. Chem. Inf.
Model 2019, 59 (10), 4093−4099.
(204) Amaro, R.; Åqvist, J.; Bahar, I.; Battistini, F.; Bellaiche, A.;
Beltran, D.; Biggin, P. C.; Bonomi, M.; Bowman, G. R.; Bryce, R. The
Need to Implement FAIR Principles in Biomolecular Simulations. arXiv
preprint arXiv:2407.16584, 2024.
(205) Tiemann, J. K. S.; Szczuka, M.; Bouarroudj, L.; Oussaren, M.;
Garcia, S.; Howard, R. J.; Delemotte, L.; Lindahl, E.; Baaden, M.;
Lindorff-Larsen, K.; et al. MDverse, Shedding Light on the DarkMatter
of Molecular Dynamics Simulations. Elife 2024, 12, No. RP90061.
(206) Soares, T. A.; Cournia, Z.; Naidoo, K.; Amaro, R.; Wahab, H.;
Merz, K. M., Jr Guidelines for Reporting Molecular Dynamics
Simulations in JCIM Publications. J. Chem. Inf. Model. 2023, 63,
3227−3229.
(207) Clough, E.; Barrett, T.; Wilhite, S. E.; Ledoux, P.; Evangelista,
C.; Kim, I. F.; Tomashevsky, M.; Marshall, K. A.; Phillippy, K. H.;
Sherman, P. M.; et al. NCBI GEO: Archive for Gene Expression and
Epigenomics Data Sets: 23-Year Update. Nucleic Acids Res. 2024, 52
(D1), D138−D144.
(208) Pohorille, A.; Jarzynski, C.; Chipot, C. Good Practices in Free-
Energy Calculations. J. Phys. Chem. B 2010, 114 (32), 10235−10253.
(209) Fitzgerald, J. E.; Venable, R. M.; Pastor, R. W.; Lyman, E. R.
Surface Viscosities of Lipid Bilayers Determined from Equilibrium
Molecular Dynamics Simulations. Biophys. J. 2023, 122 (6), 1094−
1104.
(210) Camley, B. A.; Lerner, M. G.; Pastor, R. W.; Brown, F. L. H.
Strong Influence of Periodic Boundary Conditions on Lateral Diffusion
in Lipid Bilayer Membranes. J. Chem. Phys. 2015, DOI: 10.1063/
1.4932980.
(211) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and Testing of a General Amber Force Field. J.
Comput. Chem. 2004, 25 (9), 1157−1174.
(212) Vanommeslaeghe, K.; MacKerell, A. D., Jr Automation of the
CHARMM General Force Field (CGenFF) I: Bond Perception and
Atom Typing. J. Chem. Inf Model 2012, 52 (12), 3144−3154.
(213) Valcourt, D. M.; Kapadia, C. H.; Scully, M. A.; Dang, M. N.;
Day, E. S. Best Practices for Preclinical in Vivo Testing of Cancer
Nanomedicines. Adv. Healthc. Mater. 2020, 9 (12), No. 2000110.
(214) Saunders, N. R.; Dreifuss, J.-J.; Dziegielewska, K.M.; Johansson,
P. A.; Habgood, M. D.; Mo̷llgård, K.; Bauer, H.-C. The Rights and
Wrongs of Blood-Brain Barrier Permeability Studies: A Walk through
100 Years of History. Front. Neurosci. 2014, 8, 404.

(215) Bernas, M. J.; Cardoso, F. L.; Daley, S. K.; Weinand, M. E.;
Campos, A. R.; Ferreira, A. J. G.; Hoying, J. B.; Witte, M. H.; Brites, D.;
Persidsky, Y.; et al. Establishment of Primary Cultures of Human Brain
Microvascular Endothelial Cells to Provide an in Vitro Cellular Model
of the Blood-Brain Barrier. Nat. Protoc. 2010, 5 (7), 1265−1272.
(216) Mensch, J.; Oyarzabal, J.; Mackie, C.; Augustijns, P. In Vivo, in
Vitro and in Silico Methods for Small Molecule Transfer across the
BBB. J. Pharm. Sci. 2009, 98 (12), 4429−4468.
(217) Hummer, G. Position-Dependent Diffusion Coefficients and
Free Energies from Bayesian Analysis of Equilibrium and Replica
Molecular Dynamics Simulations. New J. Phys. 2005, 7 (1), 34.
(218) Linville, R. M.; Komin, A.; Lan, X.; DeStefano, J. G.; Chu, C.;
Liu, G.;Walczak, P.; Hristova, K.; Searson, P. C. Reversible Blood-Brain
Barrier Opening Utilizing the Membrane Active Peptide Melittin in
Vitro and in Vivo. Biomaterials 2021, 275, No. 120942.
(219) Ulmschneider, J. P.; Ulmschneider, M. B. Melittin Can
Permeabilize Membranes via Large Transient Pores. Nat. Commun.
2024, 15 (1), 7281.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Perspective

https://doi.org/10.1021/acs.jcim.4c01815
J. Chem. Inf. Model. 2025, 65, 1067−1084

1084

https://doi.org/10.1111/j.1469-7793.1997.613bg.x
https://doi.org/10.1111/j.1469-7793.1997.613bg.x
https://doi.org/10.1016/j.mvr.2008.08.004
https://doi.org/10.1016/j.mvr.2008.08.004
https://doi.org/10.1016/j.mvr.2008.08.004
https://doi.org/10.1016/j.biomaterials.2018.07.014
https://doi.org/10.1016/j.biomaterials.2018.07.014
https://doi.org/10.7150/thno.21254
https://doi.org/10.2174/1381612822666160720163656
https://doi.org/10.2174/1381612822666160720163656
https://doi.org/10.1177/0271678X19867980
https://doi.org/10.1177/0271678X19867980
https://doi.org/10.1021/acs.jcim.8b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00665?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.7554/eLife.90061
https://doi.org/10.7554/eLife.90061
https://doi.org/10.1021/acs.jcim.3c00599?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00599?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkad965
https://doi.org/10.1093/nar/gkad965
https://doi.org/10.1021/jp102971x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp102971x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bpj.2023.01.038
https://doi.org/10.1016/j.bpj.2023.01.038
https://doi.org/10.1063/1.4932980
https://doi.org/10.1063/1.4932980
https://doi.org/10.1063/1.4932980?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4932980?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/ci300363c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci300363c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci300363c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/adhm.202000110
https://doi.org/10.1002/adhm.202000110
https://doi.org/10.3389/fnins.2014.00404
https://doi.org/10.3389/fnins.2014.00404
https://doi.org/10.3389/fnins.2014.00404
https://doi.org/10.1038/nprot.2010.76
https://doi.org/10.1038/nprot.2010.76
https://doi.org/10.1038/nprot.2010.76
https://doi.org/10.1002/jps.21745
https://doi.org/10.1002/jps.21745
https://doi.org/10.1002/jps.21745
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1088/1367-2630/7/1/034
https://doi.org/10.1016/j.biomaterials.2021.120942
https://doi.org/10.1016/j.biomaterials.2021.120942
https://doi.org/10.1016/j.biomaterials.2021.120942
https://doi.org/10.1038/s41467-024-51691-1
https://doi.org/10.1038/s41467-024-51691-1
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01815?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

