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Abstract

Understanding the structure of pollen grains is crucial for the identification of plant taxa and
understanding plant evolution. We employ a deep learning technique known as style transfer to
investigate the manipulation of microscope images of these pollen to change the size and shape of
pollen grains images. This methodology unveils the potential to identify distinctive structural
features of pollen grains and decipher correlations, whilst the ability to generate images of pollen can
enhance our capacity to analyse a larger variety of pollen types, thereby broadening our
understanding of plant ecology. This could potentially lead to advancements in fields such as
agriculture, botany, and climate science.

1 Introduction

Pollen grains are essentially the male gametes of plants, carrying the necessary genetic material for
plant reproduction(Knox, Williams, and Dumas 1986). The role of pollen in plants is crucial as it
allows plants to reproduce without relying on water for the transport of biological components
necessary for fertilization. Pollen grains come in a range of sizes and substructures at the nanometre
scale (Halbritter et al. 2018). The morphology of these pollen grains such as shape, ornamentation,
and aperturation (Mert 2009), play a crucial role in processes like germination (Matamoro-Vidal et
al. 2016). The surface of pollen grains can have unique features that help them cling to different
modes of transportation, such as bird feathers, bee legs, or animal fur, or help them sail through the
air on appendages that resemble airplane wings or hot air balloons. A pollen grain’s morphology can
change due to dehydration (Fatmi et al. 2020), as dehydration can cause pollen to become more
angular or irregular as the turgor pressure that maintained its shape is lost. Therefore, imaging of
pollen grains is a crucial technique as it provides information on the pollen’s morphology in 2D and
3D, providing key insights into the health of crops and the environment (Lau et al. 1995; Fernandez-
Mensaque et al. 1998). Various imaging methods, including fluorescence microscopy (Atlagic,
Terzi¢, and Marjanovic¢-Jeromela 2012), electron microscopy (Coutinho and Dinis 2009), and X-ray
tomography (Wang et al. 2015; Li et al. 2016) have been used to discern the external and internal
structure of pollen grains. Despite their utility, these techniques have significant limitations.
Fluorescence microscopy relies on specific staining protocols that can obscure natural morphological
details and requires precise sample preparation. Electron microscopy, though capable of high-
resolution imaging, is limited to surface morphology and necessitates labour-intensive preparation
steps and whilst X-ray tomography offers 3D imaging, is resource-intensive, involving costly
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equipment and time-consuming data analysis. Additionally, these methods are unsuitable for high-
throughput analysis due to the extensive time and expertise required, making them impractical for
studying the vast diversity of pollen species on a large scale.

Analytical methods have also been employed to explore the creation of pollen grain apertures, such
as the work by (Zhou and Dobritsa 2019), which used genetic and molecular biology approaches to
investigate the regulatory pathways controlling aperture formation in pollen grains. Their study
focused on the role of specific proteins and genes in determining the placement and structure of
apertures, which are critical for pollen function and viability. Whilst this research provides
fundamental insights into pollen development, it relies on labour-intensive experimental techniques
and lacks scalability for analysing large numbers of pollen species.

Owing to the vast number of pollen species, additional methods of pollen analysis and identification
have been sought to help understand pollen and thus plant ecology.

Over the past 10 years, advancements in graphics processing units (GPUs) and deep learning
algorithms have ushered in a new era of large-scale, data-driven research (LeCun, Bengio, and
Hinton 2015). The convolutional neural network (CNN), which is inspired by the visual cortex (Serre
et al. 2007), can be used to categorise images through outputting a label or value. CNNs have been
applied across the field of palynology (Daood, Ribeiro, and Bush 2016; Grant-Jacob and Mills 2022;
Romero et al., n.d.; Punyasena et al. 2012), with examples including pollen identification via visible
light microscopy of pollen grain types (Mahbod et al. 2021; Crouzy et al. 2016; Marcos et al. 2015;
Grant-Jacob et al. 2021), identification of 46 different pollen grain types (Sevillano, Holt, and
Aznarte 2020), and for identification of pollen grains from scattering (Grant-Jacob et al. 2019; 2018)
and holographic patterns (Sauvageat et al. 2020; Luo et al. 2022).

In recent years, the application of deep learning models, CNNs have shown great promise in the field
of palynology for pollen grain classification and analysis. However, existing studies primarily focus
on classification tasks using real pollen images, often limited by the scarcity of high-quality and
diverse datasets. Whilst CNN-based models have demonstrated impressive results in classifying
pollen grains, such as the POLEN23E dataset for 23 pollen types with over 97% accuracy (Sevillano
and Aznarte 2018), and the classification of 73 different pollen types with a higher than 90%
accuracy (Astolfi et al. 2020) using the POLLEN73S dataset that comprises of 2523 images, these
methods face challenges when dealing with underrepresented species or rare morphological features.

These papers highlight the potential of deep learning in analysing and classifying pollen grains,
which can significantly contribute to a range of fields such as agriculture, botany, and climate
science. By automating the process of pollen identification, it becomes possible to analyse a larger
variety of pollen types, thereby broadening our understanding of plant evolution and ecology.

Style Generative Adversarial Network (StyleGAN) (Karras et al. 2020), first introduced by NVIDIA
researchers in 2018, is a type of generative neural network that has brought significant modifications
to the generator model by using an alternative generator architecture that is borrowed from the style
transfer literature, which allows it to create and subsequently modify synthetic (generated) images.

StyleGAN is more effective than other generative models in producing realistic images because it
introduces a unique style-based generator architecture that allows precise control over image
attributes at different levels of abstraction, from coarse to fine details. Additionally, its disentangled
latent space enables the generation of high-quality, diverse, and photorealistic images with smooth
interpolation across variations. This makes it an ideal tool for creating synthetic pollen images that
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retain realistic qualities, which is vital for training deep learning models or enhancing datasets in
fields such as agriculture, botany, and climate science.

The unique feature of such a style-based network is its ability to control specific aspects of the
generated image through the manipulation of the latent space, which describes a higher-abstraction
representation of the generated image. This allows for the generation of images with specific
characteristics, such as a particular style or feature. For instance, in the case of generating images of
faces, the network can control aspects such as the pose, identity, and even details like freckles or hair.

Previous synthetic generation studies in palynology have focused on generating low-resolution
microscope images (Khanzhina et al. 2022) or using scanning electron microscope (SEM) images for
higher-resolution representations (Grant-Jacob, Zervas, and Mills 2022). Whilst these approaches
have been useful for generating synthetic data, they do not offer the demonstrate the potential of
using StyleGAN for offering new insights into the relationship between these traits using multiple
vector manipulation, nor do they project real images into latent space for manipulation.

Unlike traditional approaches, this study introduces a novel application of StyleGAN for the
synthetic generation of pollen images, enabling manipulation of multiple latent space vectors to
control specific morphological features such as size, shape, and ornamentation to generate new
images of pollen. Furthermore, it allows for the exploration of feature relationships, such as the
correlation between size and ornamentation, which is often difficult to achieve through conventional
imaging techniques.

This paper explores the potential of using StyleGAN for interpolating between microscope images of
pollen grains in latent w-space to generate additional images of specific pollen taxa and to simulate
transformations from one pollen taxa to another. It also demonstrates that w-space latent vectors can
be identified that allow characteristics, such as pollen size and shape, to be manipulated in generated
images, and that this technique could potentially unlock further understanding of the palynological
relationships.

A block diagram concept of the study demonstrated in this manuscript is displayed in Figure 1,
showing how 2070 microscope images are used to train a StyleGAN network, and then a single real
image is then projected into the network and undergoes vector manipulation in latent space before
being generated by the synthesis part of the StyleGAN network.

2 Materials and Methods
Data acquisition

The image data used in this work is derived from the pollen dataset published by (Sevillano, Holt,
and Aznarte 2020) and further detailed in (Holt 2020). This dataset comprises high-resolution
microscope images of 46 different pollen taxa. The dataset is particularly well-suited for this research
due to its diversity of taxa, which spans a wide range of morphological characteristics such as size,
shape, ornamentation, and ornamentation. These variations are critical for training machine learning
models to recognize and classify different pollen types accurately.

To make sure that there was equal weighting in the training of the neural network, 45 images of each
pollen taxa were used in training the neural networks (2070 total). The image files from the dataset
were padded with zeros and then resized to 256 x 256 pixels (RGB), to ensure all images had the
same aspect ratio whilst preserving the relative size information, before being used as training data.

3
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Neural networks

This work used two separate neural networks, the StyleGAN network and the CNN. The StyleGAN
network was used to generate images of pollen and to subsequently modify specific properties of
these generated images. Owing to a CNN ability to classify pollen grains with great accuracy, a CNN
was used to validate the generated images. The CNN was used as a classifier network, to identify the
taxa of each image generated by the StyleGAN network. The neural networks underwent training on
a workstation running Windows 10 and equipped with an AMD Ryzen Threadripper PRO 5975WX
with 32 cores operating at 3.60 GHz, 128 GB RAM, and two NVIDIA A6000 GPUs (each with 48
GB memory).

StyleGAN, a generative neural network, was used to create synthetic microscope images of pollen
grains, where the appearance of these images was based on the training data. This work used
StyleGAN2, which is available on GitHub (https://github.com/NVIlabs/stylegan2-ada-pytorch.git). As
shown in Figure 2, the StyleGAN network consists of two subnetworks, known as the mapping
network and the synthesis network. The mapping network transformed a random noise vector z (1 x
512) into a vector w (1 x 512), and the synthesis network transformed the vector w into an RGB
image (256 x 256 x 3) of a pollen grain. Therefore, either a z or a w vector could be used to generate
a synthetic image of a pollen grain. The z vector is known as a latent space vector in z-space, and
likewise the w vector exists in w-space. Critically, as the mapping network is designed to disentangle
the properties (or ‘style”) of pollen grains in the generated images, vectors in w-space correspond to a
higher abstraction of the pollen grains and hence offer the capability to unlock manipulations of
specific features in the generated images. In this work, as discussed later, this capability enables
properties such as the size or shape of pollen grains in the generated images to be modified, or for an
image of a generated pollen grain to be gradually transformed into an image of a different pollen
grain.

The architecture of the StyleGAN network is shown in Figure 3. The StyleGAN architecture consists
of three main components: the Mapping Network, Synthesis Network, and Discriminator Network.
The Mapping Network (left panel) consists of fully connected layers and takes a latent vector (z)
sampled from a distribution (e.g., Gaussian noise) and transforms it into an intermediate latent space
(w), which helps disentangle features for better control during image generation. The Synthesis
Network (middle panel) starts with a learned constant tensor at a low resolution (4x4) and
progressively increases the resolution through up-sampling (e.g., 4x4 — 8x8 — 16x16, up to the
final resolution (nxn). Noise injections at each level add stochastic details, resulting in a synthesized
image. The Discriminator (right panel) processes real or generated images, progressively reducing
their resolution from high (nxn) to low (4x4), and outputs a prediction to differentiate between real
and generated images. This network is connected to a loss function used to train both the generator
and discriminator adversarially. The system is trained adversarially, with the generator aiming to
produce images indistinguishable from real ones, whilst the discriminator tries to correctly classify
them as real or fake.

The training for the StyleGAN was conducted using Python with CUDA enabled. The network was
trained on 2070 images with 5000 kimg (5 million images processed), meaning that each of the
training images was used approximately 2400 times each. The training process took about 2 days and
18 hours, averaging 47 seconds per kimg. The training parameters included a learning rate of 0.0025,
a non-saturating logistic loss function, a batch size of 32, and ADAM (Adaptive Moment Estimation)
was used as the optimizer (Kingma and Ba 2014). The Fréchet Inception Distance (FID) score
(Heusel et al. 2017) was used to measure the similarity between the generated images and the training
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images. This score represents the distance between the feature vectors of the two sets of images,
where a score of zero would mean that the distributions of the generated and training images are
identical. The FID score was computed every 200 kimg during the training process, and the score
was observed until it plateaued around a value of 29 after 5000 kimg.

The CNN was trained to identify the taxa of the images generated by the StyleGAN neural network,
and was trained using the same image data as the StyleGAN network. Therefore, an image of 256 x
256 x 3 size was used as the input to the CNN, and the network output was a prediction of the pollen
taxa. There were no other pre-processing steps beyond resizing and cropping. The training data for
the CNN was split into percentages of 70% for training, 25% for validation, and 5% for testing, and
the architecture was the Inception v3 (Szegedy et al. 2017) used in MATLAB
(https://uk.mathworks.com/help/deeplearning/ref/inceptionv3.html,
https://uk.mathworks.com/matlabcentral/fileexchange/65679-deep-learning-toolbox-model-for-
inception-v3-network). In this work, no augmentation was used on the dataset. The network was
trained for 5 epochs, with an initial learning rate of 0.0002, a validation frequency of 200, a learn rate
drop factor of 0.1, a minibatch size of 2, and took 2 days 21 hours 48m hours to train. The CNN
achieved a classification accuracy of 86% (see Figure 4 for training accuracy and validation accuracy
graph over 5 epochs (34580 iterations) when applied to the testing data and is labelled as the
classification network in Figure 2.

Image generation

Figure 5 shows a schematic of the methodology for projecting an image into latent space, then
extracting relevant vector before manipulating the vector in latent space, either to increase or
decrease the size of the pollen or increase or decrease the spikiness. Compared to other work in
pollen image generation, we demonstrate not only manipulating latent space for image manipulation
in multiple ways, such as size and shape, but we also project experimentally obtained images into
latent space and manipulate them, potentially opening the opportunity to manipulate images and thus
species not present in the training data.

We generated 1000 synthetic images of pollen grains by using 1000 z vectors, where each of the 512
numbers in the vectors were randomly sampled from a normal distribution with p = 0 and 6 = 1. The
corresponding w-vectors for each of these generated images was also recorded, to support subsequent
latent space manipulations. Interpolation between two generated images with w-space vectors of wa
and wb could then be achieved by generation of an image using a w-space vector of wc = wa + k(wb
- wa), where Kk is a scalar between 0 and 1, and wc is the w-vector for the interpolated image. In this
case, the vector (wb - wa) therefore corresponds to a w-space vector that describes the structural
change between the two images. If, for example, wa corresponded to a small pollen grain and wb
corresponded to a large pollen grain then (wb - wa) would correspond to a w-space vector for
increasing the size of the pollen grain. However, this w-space vector would also correspond to the
changes in other features, such as the difference in the shape of the two pollen grains. Therefore, by
averaging over many such vectors, a vector for increasing pollen grain size was identified that
encapsulates the visual information contained in the training dataset. This ‘size” w-space vector could
then be added to (or subtracted from) any w-space vector corresponding to a generated image, to
increase (or decrease) the size of the pollen grain in the generated image. To achieve this, a folder of
synthetic images of ‘small’ pollen grains was created, and a folder of ‘large’ pollen grains was
created, from which the w-space vectors were obtained. Similarly, an ‘spike’ w-space vector for
pollen transitioning from no spikes to spikes, and a ‘round’ w-space vector for pollen transitioning
from triangular to round was identified. As shown later in this work, this allows the generation of a
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wide variety of images representing different types and sizes of pollen grains, along with bespoke
morphological changes to the pollen grains in these images.

3 Results

Following training of all the two neural networks, 1000 z-space vectors were used to create 1000
images using the StyleGAN neural network, and the corresponding 1000 w-space vectors were also
recorded. The CNN was then used to predict the taxa for each of these generated pollen grains.

The selection of 1000 z-space vectors was guided by the need to balance computational feasibility
with adequate coverage of the latent space's variability. The latent space of StyleGAN is inherently
high-dimensional, and z-space vectors are typically modelled as a standard Gaussian distribution,
meaning random sampling spans a representative subset of the space. Generating 1000 synthetic
images is a practical compromise, manageable in terms of resources whilst sufficiently capturing
variability for downstream tasks. To ensure the generated images reflected the training dataset’s
diversity, the Fréchet Inception Distance (FID) was used for validation, giving a value to 6.281 for
5000 kimg. Lower scores indicate higher similarity between the feature distributions of the real and
synthetic datasets. Scores below 10 are considered very good in most generative model tasks,
indicating higher similarity between the feature distributions of the experimental training and
generated datasets. In addition, we compared the distribution of taxa labels in the training data with
the 1000 predicted labels of the generated data, as shown in Figure 6.

The Jensen-Shannon (JS) divergence (Nielsen 2019) is a symmetric and bounded metric that
measures the similarity between two probability distributions, making it interpretable and robust. A
value of 0 indicates identical distributions, and the low divergence observed here suggests that the
synthetic data closely approximates the real dataset, capturing much of its variability with only minor
differences.

The JS divergence is calculated using,

1 1
Dis(P1Q) =§DKL(P||M) + EDKL(Q”M)

where P and Q are the two distributions being compared, M=1/2(P+Q) is the average distribution,
and Dk is the Kullback-Leibler divergence. The JS divergence is bounded between 0 and 1 (or
log(2)) for certain bases) and symmetrically averages over both distributions. The JS divergence was
calculated to be 0.073. This, along with the histogram comparison, indicates a relatively low
divergence between the real and synthetic datasets.

The low JS divergence highlights that the synthetic dataset does an accurate job of replicating the
variability of the real dataset. However, the histogram reveals that some specific categories might
still benefit from refinement.

The calculated w-space vectors of ‘size’, ‘spike’ and ‘round’ were added (or subtracted) from a range
of generated images to visualise the predicted changes in morphology of the generated pollen. As
displayed in Figure 7, -100%, -50%, 0%, +50%, +100% of the ‘size’ and ‘spike’ vectors were added
onto the w-space vector corresponding to a generated image of (a) Knightia and (b) Coriaria. The
central image shows the generated images with no additional w-space space vectors, and the change
in the horizontal direction shows addition (or subtraction) of the ‘size’ vector and the change in the
vertical direction shows addition (or subtraction) of the ‘spike’ vector. The classification CNN was

This is a provisional file, not the final typeset article



253
254
255
256

257
258
259
260
261
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290

291
292
293
294
295
296
297

applied to these generated images, and the predicted pollen taxa, along with prediction confidence, is
shown on each generated image. Each generated image also includes the area of the pollen grain,
calculated via summing the number of image pixels corresponding to the pollen grain. However,
labelling is omitted from of images without any visible grains.

In Figure 8, the same methodology was also applied to generated images of (a) Metrosideros and (b)
Disphyma, with a the ‘size” vector applied in the horizontal direction and the ‘round’ vector applied
in the vertical direction. The roundness value is also labelled on the figure, which quantifies how
closely the shape resembles a perfect circle, with higher roundness values indicating shapes that are
more circular, and lower values corresponding to more irregular shapes, where this value was
determined ((4mArea/Perimeter?) x (1 - 0.5/r)%, where r = Perimeter/(2m) + 0.5).

The ability to use images of the real-world for interpolation could allow previously unseen pollen
grains to be examined. As such, by projecting an experimental image into the latent space, an
equivalent latent space image can be found and be used in the vector manipulation. The process of
mapping a real-world image into the latent space of the model is known as “projection”. An initial
latent vector is created, usually either at random or based on the average latent vector of the model.
This latent vector is then progressively refined using gradient descent to reduce the disparity between
the image produced from the latent vector and the original real-world image. The outcome of this
iterative optimization is a fine-tuned latent vector that encapsulates the real-world image in the
model’s latent space. This vector can be further manipulated or analysed as needed. Overall, this
procedure enables the model to effectively translate real-world images into its own latent space. In
Figure 9, we interpolate between two different taxa in (a) Knightia (LHS) and Kunzea (RHS), and (b)
Brachyglottis repanda (LHS) and Citrus (RHS) to demonstrate the capability of such a technique.
We also use the CNN to predict the generated pollen taxa. As seen in the images, it is possible to
interpolate between two taxa, generating what appear to be other taxa in the process. Discussion

The generated images shown in Figure 7 demonstrate that when the ‘spike’ vector is added (or
subtracted), not only does the appearance of the spikes on the generated pollen grains change, but the
taxa also changes. Likewise, as the ‘size’ vector is added (or subtracted), the generated pollen
changes size and taxa. When the size or spike vector is too negative, there is no image generation,
meaning the latent space vectors may not be mapped to the features that generate an image of pollen.
When both vectors are applied, such as +100% ‘size’ and +100% ‘spike’, a generated image that
resembles Lycopodium pollen is created. It should be noted that whilst the CNN predicts
Lycopodium, it is limited to the dataset in which it has been trained on, and the actual Lycopodium
pollen contains more ornamentation on its surface. Interestingly overall, when the ‘spike’ is added,
the size of the pollen grain increases, perhaps implying correlation between size and spikes (or
ornamentation), based on the dataset and calculated vectors used in this work. Indeed, this can be
observed in Figures 7(a) and (b), where only the edge of the pollen grains was visible in the smaller
grains, and as the spike vector is increased, the pollen changes taxa to that which are not only larger,
but have more ornamentation over the whole pollen as viewed by the microscope.

The ability to manipulate images in latent space is also demonstrated by changing the roundness in
Figure 8. It can be seen that the ‘size’ vector increases the size of the generated pollen grain, and
‘round’ vector generally increases the circularity. In Figure 8(a), there is little evidence that the
roundness of the pollen has correlation with the size, though for some taxa (e.g., Griselinia (0%,
50%) and Ixerbia (0%, 100%)) increasing the roundness does increase the size, due to how the neural
network has positioned such pollen in the multidimensional latent space. It is evident that increasing
the size or roundness does not merely at spikes or make the pollen rounder, but changes the structure
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or ornamentation as well. For example, increase the roundness of Carpodetus removes the lobe
structure as it transitions to Citrus. The conclusions drawn from these figures may be limited to the
training dataset, and hence additional training data might provide additional insights. If this approach
was applied to a much more varied dataset, perhaps containing thousands of taxa, latent w-space
vector arithmetic could have potential in helping understand the relationship between features and
traits in pollen grains, and to predict taxa changes (and results of these changes) due to environmental
and evolutionary factors.

The ability to essentially upload an image into latent space for manipulation could provide a power
tool in understanding relationships and behaviour of pollen. In Figure 9, which shows the transition
between two pairs of pollen images not present in training, we can see a transition between one taxa
to another, not by only straight pixel interpolation, but through different taxa. In (a) the image
transition occurs through 7 different taxa, and in (b) the transition occurs through 6 different taxa, as
classified by the CNN. The transition between pollen is dependent on how latent space has
distributed the data, as in (a) the transition is not simple a large triangular shape to a small triangular
shape. Although pollen grain taxa have been identified, the identification is limited to the training of
46 taxa, meaning that although a pollen grain maybe identified as Laurelia at 99%, it may not
necessarily look like it due to the limited data used in the CNN training. Owing to such as vast
number of pollen taxa present in the world, being able to train a latent space neural network on every
type would be extremely difficult. As such, this methodology demonstrates the possibility of using
pollen taxa not used in training so that it could be explored in latent space and manipulated to
understand it morphology in different environments, such as undergoing dehydration (Grant-Jacob et
al. 2022), or understand the pollen in the context of their phylogenetic relationships. This
methodology could be used in addition to work on using CNNs to analyse pollen morphology and
place extinct pollen morphotypes within a phylogenetic framework using Bayesian inference
(Adaimé, Kong, and Punyasena 2024).

A key challenge in isolating specific features, such as size versus shape, through w-space
manipulation in StyleGAN is the potential overlap between latent vector representations for different
characteristics. The latent space in StyleGAN is highly compressed and abstract, meaning that
features like size, shape, ornamentation, and colour are not always entirely independent. As a result,
adjusting one feature may inadvertently affect others, complicating the process of isolating and
controlling a specific characteristic independently.

For example, when manipulating the latent vector to adjust the size of a pollen grain, the shape or
ornamentation of the grain may also change. This is because these features might share latent
dimensions in the vector space, and the model may not perfectly separate them. As seen in Figure 7,
when the ‘size’ vector is altered, the taxa of the pollen grain can change, along with its size,
indicating a correlation between size and taxa or other features like ornamentation. This overlap in
latent vector representations makes it difficult to manipulate one feature without influencing others.

Furthermore, the model's ability to separate features effectively depends on the richness and diversity
of the training dataset. If the dataset lacks sufficient variation in certain attributes, the model may
struggle to create distinct latent representations for each feature. This could lead to challenges in fine-
tuning or generating high-quality, realistic images where individual characteristics are clearly
separated, as seen in the generated images where manipulating the ‘spike’ vector also influenced the
size and ornamentation of the pollen. These issues highlight the complexity of manipulating specific
features in StyleGAN and the need for a more refined approach to disentangling latent
representations.
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Synthetic images generated by StyleGAN can be highly valuable for augmenting real-world datasets,
especially in areas like pollen classification, where obtaining a diverse and high-quality dataset may
be challenging. By generating realistic and controlled synthetic images, StyleGAN can help fill gaps
in datasets, increase their size, and improve the diversity of training examples available for deep
learning models. This can enhance the robustness and generalization ability of classifiers, making
them more effective in real-world applications.

For example, in the context of pollen classification, obtaining images of all possible pollen types with
varying characteristics (e.g., size, shape, ornamentation) under different imaging conditions can be
difficult. Augmentation of images could be achieved by carefully manipulating latent vectors,
specific features such as spike density, size, and ornamentation can be adjusted, enabling the
generation of images for underrepresented or difficult-to-capture species or scenarios. This synthetic
data can thus act as a supplement to the real dataset, improving classifier performance on less
common or poorly represented pollen types.

Moreover, synthetic images can be particularly useful in cases where real-world data is scarce due to
privacy concerns, cost, or limited access to expert annotation. For example, in clinical or
environmental settings where data collection is expensive or time-consuming, synthetic images can
fill in the gaps, allowing deep learning models to be trained on a more diverse set of examples.
Additionally, StyleGAN-generated images could be used to simulate edge cases or rare occurrences
that may not be adequately captured in real-world datasets, further enhancing the model’s ability to
handle a wide range of real-world conditions.

4 Conclusion and future scope

The results presented in this work demonstrate the significant potential of leveraging StyleGAN's
latent space manipulation to explore and understand pollen grain morphology. Through the
projection, generation and manipulation of synthetic pollen images, we have shown that adjusting
latent vectors such as ‘size’, ‘spike’, and ‘roundness’ not only alters the appearance of pollen grains
but can also lead to changes in their taxa classification. These findings suggest that latent space
manipulation offers a powerful method for studying the relationships between different features of
pollen grains, such as size, ornamentation, and shape, which are crucial for understanding both
environmental and evolutionary influences on pollen morphology.

However, this approach is not without limitations. The results observed in this study are inherently
tied to the training dataset, which restricts the generalizability of the findings. The manipulation of
latent vectors is influenced by how the data is distributed in the multidimensional latent space, and
this may result in unexpected transitions, particularly when working with pollen taxa not included in
the training set. Further research into expanding the training dataset to include a broader range of
pollen taxa, and perhaps even thousands of species, could reveal deeper insights into the underlying
relationships between pollen traits and environmental factors.

The future scope of this work involves expanding the training dataset to include a broader range of
pollen taxa, which would improve the accuracy and reliability of generated images and enable more
precise feature manipulation. A larger, more diverse dataset would offer deeper insights into the
relationships between pollen traits and environmental factors. Additionally, the ability to manipulate
pollen images in latent space could be utilised to study the effects of environmental influences, such
as dehydration or climate change, on pollen morphology, and to simulate evolutionary changes in
pollen structures. This approach could also be integrated with phylogenetic frameworks to better
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understand the evolutionary relationships between different pollen taxa, as seen in work that places
extinct pollen morphotypes within a phylogenetic context. Furthermore, insights gained from latent
space manipulation could enhance predictive models for pollen identification and classification,
particularly for taxa not included in the training dataset. Ultimately, with continued refinement and
expansion, this methodology holds the potential to improve our understanding of pollen grain
morphology and its implications in areas such as agriculture, climate science, and botany.
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Figure 1. Block diagram concept of the study
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Figure 2. Schematic of the StyleGAN neural network (formed of the mapping and synthesis
networks) for generating images, and of then the use of a CNN for subsequent classification of the
generated images.

Figure 3. Diagram of StyleGAN with 3 networks (Left) The mapping network transforms a random
input into a style signal, controlling various aspects of image generation. (Middle) The synthesis
(generator) network uses the information (A) from the mapping network to generate images from low
to high resolution. It also incorporates random noise (B) to introduce variations and fine details.
(Right) The discriminator network compares real and generated images, updating the weights of all
networks through adversarial training to enhance performance.

Figure 4. Graph showing the accuracy of training and validation progress during training of the CNN.

Figure 5. Schematic of methodology of projecting an image into latent space, by generating random z
vector, generating an image then comparing that image with the projected to obtain the suitable
vector in latent space. The vector is then manipulated via adding or subtracting a vector before the
synthesis network generates a new image.

Figure 6 Histogram of distribution of taxa in training dataset and generated dataset (as predicted by
CNN).

Figure 7. Generated images of pollen grains created through latent w-space vector manipulation,
showing the addition of a ‘size’ vector (-100%, -50%, 0%, +50%, +100%) added in the horizontal
direction and a ‘spike’ vector (-100%, -50%, 0%, +50%, +100%) in the vertical direction, to
generated images of (a) Knightia and (b) Coriaria. Each generated image also shows the predicted
pollen taxa and predicted confidence, as well as the pollen size in pixels. Labelling is omitted from of
images without any visible grains.

Figure 8. Generated images of pollen grains created through latent w-space vector manipulation,
showing the addition of a ‘size’ vector (-100%, -50%, 0%, +50%, +100%) added in the horizontal
direction and a ‘round’ vector (-100%, -50%, 0%, +50%, +100%) in the vertical direction, to
generated images of (a) Metrosideros and (b) Disphyma. Each generated image also shows the
predicted pollen taxa and predicted confidence, as well as the circularity of the pollen grain.
Labelling is omitted from of images without any visible grains.

Figure 9. Generated images of pollen grains created through latent w-space vector manipulation,
showing the interpolation of projected images between (a) Knightia and Kunzea (b) Brachyglottis
repanda and Citrus. Each generated image also shows the predicted pollen taxa and predicted
confidence.
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