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Abstract 8 

Understanding the structure of pollen grains is crucial for the identification of plant taxa and 9 

understanding plant evolution. We employ a deep learning technique known as style transfer to 10 

investigate the manipulation of microscope images of these pollen to change the size and shape of 11 

pollen grains images.  This methodology unveils the potential to identify distinctive structural 12 

features of pollen grains and decipher correlations, whilst the ability to generate images of pollen can 13 

enhance our capacity to analyse a larger variety of pollen types, thereby broadening our 14 

understanding of plant ecology. This could potentially lead to advancements in fields such as 15 

agriculture, botany, and climate science. 16 

1 Introduction 17 

Pollen grains are essentially the male gametes of plants, carrying the necessary genetic material for 18 

plant reproduction(Knox, Williams, and Dumas 1986). The role of pollen in plants is crucial as it 19 

allows plants to reproduce without relying on water for the transport of biological components 20 

necessary for fertilization. Pollen grains come in a range of sizes and substructures at the nanometre 21 

scale (Halbritter et al. 2018). The morphology of these pollen grains such as shape, ornamentation, 22 

and aperturation (Mert 2009), play a crucial role in processes like germination (Matamoro-Vidal et 23 

al. 2016). The surface of pollen grains can have unique features that help them cling to different 24 

modes of transportation, such as bird feathers, bee legs, or animal fur, or help them sail through the 25 

air on appendages that resemble airplane wings or hot air balloons. A pollen grain’s morphology can 26 

change due to dehydration (Fatmi et al. 2020), as dehydration can cause pollen to become more 27 

angular or irregular as the turgor pressure that maintained its shape is lost. Therefore, imaging of 28 

pollen grains is a crucial technique as it provides information on the pollen’s morphology in 2D and 29 

3D, providing key insights into the health of crops and the environment (Lau et al. 1995; Fernandez-30 

Mensaque et al. 1998). Various imaging methods, including fluorescence microscopy (Atlagić, 31 

Terzić, and Marjanović-Jeromela 2012), electron microscopy (Coutinho and Dinis 2009), and X-ray 32 

tomography (Wang et al. 2015; Li et al. 2016) have been used to discern the external and internal 33 

structure of pollen grains. Despite their utility, these techniques have significant limitations. 34 

Fluorescence microscopy relies on specific staining protocols that can obscure natural morphological 35 

details and requires precise sample preparation. Electron microscopy, though capable of high-36 

resolution imaging, is limited to surface morphology and necessitates labour-intensive preparation 37 

steps and whilst X-ray tomography offers 3D imaging, is resource-intensive, involving costly 38 
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equipment and time-consuming data analysis. Additionally, these methods are unsuitable for high-39 

throughput analysis due to the extensive time and expertise required, making them impractical for 40 

studying the vast diversity of pollen species on a large scale. 41 

Analytical methods have also been employed to explore the creation of pollen grain apertures, such 42 

as the work by (Zhou and Dobritsa 2019), which used genetic and molecular biology approaches to 43 

investigate the regulatory pathways controlling aperture formation in pollen grains. Their study 44 

focused on the role of specific proteins and genes in determining the placement and structure of 45 

apertures, which are critical for pollen function and viability. Whilst this research provides 46 

fundamental insights into pollen development, it relies on labour-intensive experimental techniques 47 

and lacks scalability for analysing large numbers of pollen species. 48 

Owing to the vast number of pollen species, additional methods of pollen analysis and identification 49 

have been sought to help understand pollen and thus plant ecology. 50 

Over the past 10 years, advancements in graphics processing units (GPUs) and deep learning 51 

algorithms have ushered in a new era of large-scale, data-driven research (LeCun, Bengio, and 52 

Hinton 2015). The convolutional neural network (CNN), which is inspired by the visual cortex (Serre 53 

et al. 2007), can be used to categorise images through outputting a label or value. CNNs have been 54 

applied across the field of palynology (Daood, Ribeiro, and Bush 2016; Grant-Jacob and Mills 2022; 55 

Romero et al., n.d.; Punyasena et al. 2012), with examples including pollen identification via visible 56 

light microscopy of pollen grain types (Mahbod et al. 2021; Crouzy et al. 2016; Marcos et al. 2015; 57 

Grant-Jacob et al. 2021), identification of 46 different pollen grain types (Sevillano, Holt, and 58 

Aznarte 2020), and for identification of pollen grains from scattering (Grant-Jacob et al. 2019; 2018) 59 

and holographic patterns (Sauvageat et al. 2020; Luo et al. 2022). 60 

In recent years, the application of deep learning models, CNNs have shown great promise in the field 61 

of palynology for pollen grain classification and analysis. However, existing studies primarily focus 62 

on classification tasks using real pollen images, often limited by the scarcity of high-quality and 63 

diverse datasets. Whilst CNN-based models have demonstrated impressive results in classifying 64 

pollen grains, such as the POLEN23E dataset for 23 pollen types with over 97% accuracy (Sevillano 65 

and Aznarte 2018), and the classification of 73 different pollen types with a higher than 90% 66 

accuracy (Astolfi et al. 2020) using the POLLEN73S dataset that comprises of 2523 images, these 67 

methods face challenges when dealing with underrepresented species or rare morphological features. 68 

These papers highlight the potential of deep learning in analysing and classifying pollen grains, 69 

which can significantly contribute to a range of fields such as agriculture, botany, and climate 70 

science. By automating the process of pollen identification, it becomes possible to analyse a larger 71 

variety of pollen types, thereby broadening our understanding of plant evolution and ecology. 72 

Style Generative Adversarial Network (StyleGAN) (Karras et al. 2020), first introduced by NVIDIA 73 

researchers in 2018, is a type of generative neural network that has brought significant modifications 74 

to the generator model by using an alternative generator architecture that is borrowed from the style 75 

transfer literature, which allows it to create and subsequently modify synthetic (generated) images.  76 

StyleGAN is more effective than other generative models in producing realistic images because it 77 

introduces a unique style-based generator architecture that allows precise control over image 78 

attributes at different levels of abstraction, from coarse to fine details. Additionally, its disentangled 79 

latent space enables the generation of high-quality, diverse, and photorealistic images with smooth 80 

interpolation across variations. This makes it an ideal tool for creating synthetic pollen images that 81 
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retain realistic qualities, which is vital for training deep learning models or enhancing datasets in 82 

fields such as agriculture, botany, and climate science. 83 

The unique feature of such a style-based network is its ability to control specific aspects of the 84 

generated image through the manipulation of the latent space, which describes a higher-abstraction 85 

representation of the generated image. This allows for the generation of images with specific 86 

characteristics, such as a particular style or feature. For instance, in the case of generating images of 87 

faces, the network can control aspects such as the pose, identity, and even details like freckles or hair.  88 

Previous synthetic generation studies in palynology have focused on generating low-resolution 89 

microscope images (Khanzhina et al. 2022) or using scanning electron microscope (SEM) images for 90 

higher-resolution representations (Grant-Jacob, Zervas, and Mills 2022). Whilst these approaches 91 

have been useful for generating synthetic data, they do not offer the demonstrate the potential of 92 

using StyleGAN for offering new insights into the relationship between these traits using multiple 93 

vector manipulation, nor do they project real images into latent space for manipulation. 94 

Unlike traditional approaches, this study introduces a novel application of StyleGAN for the 95 

synthetic generation of pollen images, enabling manipulation of multiple latent space vectors to 96 

control specific morphological features such as size, shape, and ornamentation to generate new 97 

images of pollen. Furthermore, it allows for the exploration of feature relationships, such as the 98 

correlation between size and ornamentation, which is often difficult to achieve through conventional 99 

imaging techniques. 100 

This paper explores the potential of using StyleGAN for interpolating between microscope images of 101 

pollen grains in latent w-space to generate additional images of specific pollen taxa and to simulate 102 

transformations from one pollen taxa to another. It also demonstrates that w-space latent vectors can 103 

be identified that allow characteristics, such as pollen size and shape, to be manipulated in generated 104 

images, and that this technique could potentially unlock further understanding of the palynological 105 

relationships.  106 

A block diagram concept of the study demonstrated in this manuscript is displayed in Figure 1, 107 

showing how 2070 microscope images are used to train a StyleGAN network, and then a single real 108 

image is then projected into the network and undergoes vector manipulation in latent space before 109 

being generated by the synthesis part of the StyleGAN network. 110 

2 Materials and Methods 111 

Data acquisition 112 

The image data used in this work is derived from the pollen dataset published by (Sevillano, Holt, 113 

and Aznarte 2020) and further detailed in (Holt 2020). This dataset comprises high-resolution 114 

microscope images of 46 different pollen taxa. The dataset is particularly well-suited for this research 115 

due to its diversity of taxa, which spans a wide range of morphological characteristics such as size, 116 

shape, ornamentation, and ornamentation. These variations are critical for training machine learning 117 

models to recognize and classify different pollen types accurately. 118 

To make sure that there was equal weighting in the training of the neural network, 45 images of each 119 

pollen taxa were used in training the neural networks (2070 total). The image files from the dataset 120 

were padded with zeros and then resized to 256 × 256 pixels (RGB), to ensure all images had the 121 

same aspect ratio whilst preserving the relative size information, before being used as training data. 122 
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Neural networks 123 

This work used two separate neural networks, the StyleGAN network and the CNN. The StyleGAN 124 

network was used to generate images of pollen and to subsequently modify specific properties of 125 

these generated images. Owing to a CNN ability to classify pollen grains with great accuracy, a CNN 126 

was used to validate the generated images. The CNN was used as a classifier network, to identify the 127 

taxa of each image generated by the StyleGAN network. The neural networks underwent training on 128 

a workstation running Windows 10 and equipped with an AMD Ryzen Threadripper PRO 5975WX 129 

with 32 cores operating at 3.60 GHz, 128 GB RAM, and two NVIDIA A6000 GPUs (each with 48 130 

GB memory).  131 

StyleGAN, a generative neural network, was used to create synthetic microscope images of pollen 132 

grains, where the appearance of these images was based on the training data. This work used 133 

StyleGAN2, which is available on GitHub (https://github.com/NVlabs/stylegan2-ada-pytorch.git). As 134 

shown in Figure 2, the StyleGAN network consists of two subnetworks, known as the mapping 135 

network and the synthesis network. The mapping network transformed a random noise vector z (1 × 136 

512) into a vector w (1 × 512), and the synthesis network transformed the vector w into an RGB 137 

image (256 × 256 × 3) of a pollen grain. Therefore, either a z or a w vector could be used to generate 138 

a synthetic image of a pollen grain. The z vector is known as a latent space vector in z-space, and 139 

likewise the w vector exists in w-space. Critically, as the mapping network is designed to disentangle 140 

the properties (or ‘style’) of pollen grains in the generated images, vectors in w-space correspond to a 141 

higher abstraction of the pollen grains and hence offer the capability to unlock manipulations of 142 

specific features in the generated images. In this work, as discussed later, this capability enables 143 

properties such as the size or shape of pollen grains in the generated images to be modified, or for an 144 

image of a generated pollen grain to be gradually transformed into an image of a different pollen 145 

grain. 146 

The architecture of the StyleGAN network is shown in Figure 3. The StyleGAN architecture consists 147 

of three main components: the Mapping Network, Synthesis Network, and Discriminator Network. 148 

The Mapping Network (left panel) consists of fully connected layers and takes a latent vector (z) 149 

sampled from a distribution (e.g., Gaussian noise) and transforms it into an intermediate latent space 150 

(w), which helps disentangle features for better control during image generation. The Synthesis 151 

Network (middle panel) starts with a learned constant tensor at a low resolution (4×4) and 152 

progressively increases the resolution through up-sampling (e.g., 4×4 → 8×8 → 16×16, up to the 153 

final resolution (n×n). Noise injections at each level add stochastic details, resulting in a synthesized 154 

image. The Discriminator (right panel) processes real or generated images, progressively reducing 155 

their resolution from high (n×n) to low (4×4), and outputs a prediction to differentiate between real 156 

and generated images. This network is connected to a loss function used to train both the generator 157 

and discriminator adversarially. The system is trained adversarially, with the generator aiming to 158 

produce images indistinguishable from real ones, whilst the discriminator tries to correctly classify 159 

them as real or fake.  160 

The training for the StyleGAN was conducted using Python with CUDA enabled. The network was 161 

trained on 2070 images with 5000 kimg (5 million images processed), meaning that each of the 162 

training images was used approximately 2400 times each. The training process took about 2 days and 163 

18 hours, averaging 47 seconds per kimg. The training parameters included a learning rate of 0.0025, 164 

a non-saturating logistic loss function, a batch size of 32, and ADAM (Adaptive Moment Estimation) 165 

was used as the optimizer (Kingma and Ba 2014). The Fréchet Inception Distance (FID) score 166 

(Heusel et al. 2017) was used to measure the similarity between the generated images and the training 167 

https://github.com/NVlabs/stylegan2-ada-pytorch.git
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images. This score represents the distance between the feature vectors of the two sets of images, 168 

where a score of zero would mean that the distributions of the generated and training images are 169 

identical. The FID score was computed every 200 kimg during the training process, and the score 170 

was observed until it plateaued around a value of 29 after 5000 kimg. 171 

The CNN was trained to identify the taxa of the images generated by the StyleGAN neural network, 172 

and was trained using the same image data as the StyleGAN network. Therefore, an image of 256 × 173 

256 × 3 size was used as the input to the CNN, and the network output was a prediction of the pollen 174 

taxa. There were no other pre-processing steps beyond resizing and cropping. The training data for 175 

the CNN was split into percentages of 70% for training, 25% for validation, and 5% for testing, and 176 

the architecture was the Inception v3 (Szegedy et al. 2017) used in MATLAB 177 

(https://uk.mathworks.com/help/deeplearning/ref/inceptionv3.html, 178 

https://uk.mathworks.com/matlabcentral/fileexchange/65679-deep-learning-toolbox-model-for-179 

inception-v3-network). In this work, no augmentation was used on the dataset. The network was 180 

trained for 5 epochs, with an initial learning rate of 0.0002, a validation frequency of 200, a learn rate 181 

drop factor of 0.1, a minibatch size of 2, and took 2 days 21 hours 48m hours to train. The CNN 182 

achieved a classification accuracy of 86% (see Figure 4 for training accuracy and validation accuracy 183 

graph over 5 epochs (34580 iterations) when applied to the testing data and is labelled as the 184 

classification network in Figure 2.   185 

Image generation 186 

Figure 5 shows a schematic of the methodology for projecting an image into latent space, then 187 

extracting relevant vector before manipulating the vector in latent space, either to increase or 188 

decrease the size of the pollen or increase or decrease the spikiness. Compared to other work in 189 

pollen image generation, we demonstrate not only manipulating latent space for image manipulation 190 

in multiple ways, such as size and shape, but we also project experimentally obtained images into 191 

latent space and manipulate them, potentially opening the opportunity to manipulate images and thus 192 

species not present in the training data.  193 

We generated 1000 synthetic images of pollen grains by using 1000 z vectors, where each of the 512 194 

numbers in the vectors were randomly sampled from a normal distribution with µ = 0 and σ = 1. The 195 

corresponding w-vectors for each of these generated images was also recorded, to support subsequent 196 

latent space manipulations. Interpolation between two generated images with w-space vectors of wa 197 

and wb could then be achieved by generation of an image using a w-space vector of wc = wa + k(wb 198 

- wa), where k is a scalar between 0 and 1, and wc is the w-vector for the interpolated image. In this 199 

case, the vector (wb - wa) therefore corresponds to a w-space vector that describes the structural 200 

change between the two images. If, for example, wa corresponded to a small pollen grain and wb 201 

corresponded to a large pollen grain then (wb - wa) would correspond to a w-space vector for 202 

increasing the size of the pollen grain. However, this w-space vector would also correspond to the 203 

changes in other features, such as the difference in the shape of the two pollen grains. Therefore, by 204 

averaging over many such vectors, a vector for increasing pollen grain size was identified that 205 

encapsulates the visual information contained in the training dataset. This ‘size’ w-space vector could 206 

then be added to (or subtracted from) any w-space vector corresponding to a generated image, to 207 

increase (or decrease) the size of the pollen grain in the generated image. To achieve this, a folder of 208 

synthetic images of ‘small’ pollen grains was created, and a folder of ‘large’ pollen grains was 209 

created, from which the w-space vectors were obtained. Similarly, an ‘spike’ w-space vector for 210 

pollen transitioning from no spikes to spikes, and a ‘round’ w-space vector for pollen transitioning 211 

from triangular to round was identified. As shown later in this work, this allows the generation of a 212 

https://uk.mathworks.com/help/deeplearning/ref/inceptionv3.html
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wide variety of images representing different types and sizes of pollen grains, along with bespoke 213 

morphological changes to the pollen grains in these images. 214 

3  Results 215 

Following training of all the two neural networks, 1000 z-space vectors were used to create 1000 216 

images using the StyleGAN neural network, and the corresponding 1000 w-space vectors were also 217 

recorded. The CNN was then used to predict the taxa for each of these generated pollen grains.  218 

The selection of 1000 z-space vectors was guided by the need to balance computational feasibility 219 

with adequate coverage of the latent space's variability. The latent space of StyleGAN is inherently 220 

high-dimensional, and z-space vectors are typically modelled as a standard Gaussian distribution, 221 

meaning random sampling spans a representative subset of the space. Generating 1000 synthetic 222 

images is a practical compromise, manageable in terms of resources whilst sufficiently capturing 223 

variability for downstream tasks. To ensure the generated images reflected the training dataset’s 224 

diversity, the Fréchet Inception Distance (FID) was used for validation, giving a value to 6.281 for 225 

5000 kimg. Lower scores indicate higher similarity between the feature distributions of the real and 226 

synthetic datasets. Scores below 10 are considered very good in most generative model tasks, 227 

indicating higher similarity between the feature distributions of the experimental training and 228 

generated datasets. In addition, we compared the distribution of taxa labels in the training data with 229 

the 1000 predicted labels of the generated data, as shown in Figure 6. 230 

The Jensen-Shannon (JS) divergence (Nielsen 2019) is a symmetric and bounded metric that 231 

measures the similarity between two probability distributions, making it interpretable and robust. A 232 

value of 0 indicates identical distributions, and the low divergence observed here suggests that the 233 

synthetic data closely approximates the real dataset, capturing much of its variability with only minor 234 

differences. 235 

The JS divergence is calculated using, 236 

𝐷𝐽𝑆(𝑃||𝑄) =
1

2
𝐷𝐾𝐿(𝑃||𝑀) +  

1

2
𝐷𝐾𝐿(𝑄||𝑀) 237 

where P and Q are the two distributions being compared, M=1/2(P+Q) is the average distribution, 238 

and DKL is the Kullback-Leibler divergence. The JS divergence is bounded between 0 and 1 (or 239 

log(2)) for certain bases) and symmetrically averages over both distributions. The JS divergence was 240 

calculated to be 0.073. This, along with the histogram comparison, indicates a relatively low 241 

divergence between the real and synthetic datasets. 242 

The low JS divergence highlights that the synthetic dataset does an accurate job of replicating the 243 

variability of the real dataset. However, the histogram reveals that some specific categories might 244 

still benefit from refinement.  245 

The calculated w-space vectors of ‘size’, ‘spike’ and ‘round’ were added (or subtracted) from a range 246 

of generated images to visualise the predicted changes in morphology of the generated pollen. As 247 

displayed in Figure 7, -100%, -50%, 0%, +50%, +100% of the ‘size’ and ‘spike’ vectors were added 248 

onto the w-space vector corresponding to a generated image of (a) Knightia and (b) Coriaria. The 249 

central image shows the generated images with no additional w-space space vectors, and the change 250 

in the horizontal direction shows addition (or subtraction) of the ‘size’ vector and the change in the 251 

vertical direction shows addition (or subtraction) of the ‘spike’ vector. The classification CNN was 252 
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applied to these generated images, and the predicted pollen taxa, along with prediction confidence, is 253 

shown on each generated image. Each generated image also includes the area of the pollen grain, 254 

calculated via summing the number of image pixels corresponding to the pollen grain. However, 255 

labelling is omitted from of images without any visible grains.  256 

In Figure 8, the same methodology was also applied to generated images of (a) Metrosideros and (b) 257 

Disphyma, with a the ‘size’ vector applied in the horizontal direction and the ‘round’ vector applied 258 

in the vertical direction. The roundness value is also labelled on the figure, which quantifies how 259 

closely the shape resembles a perfect circle, with higher roundness values indicating shapes that are 260 

more circular, and lower values corresponding to more irregular shapes, where this value was 261 

determined ((4πArea/Perimeter2) × (1 - 0.5/r)2, where r = Perimeter/(2π) + 0.5).  262 

The ability to use images of the real-world for interpolation could allow previously unseen pollen 263 

grains to be examined. As such, by projecting an experimental image into the latent space, an 264 

equivalent latent space image can be found and be used in the vector manipulation. The process of 265 

mapping a real-world image into the latent space of the model is known as “projection”. An initial 266 

latent vector is created, usually either at random or based on the average latent vector of the model. 267 

This latent vector is then progressively refined using gradient descent to reduce the disparity between 268 

the image produced from the latent vector and the original real-world image. The outcome of this 269 

iterative optimization is a fine-tuned latent vector that encapsulates the real-world image in the 270 

model’s latent space. This vector can be further manipulated or analysed as needed. Overall, this 271 

procedure enables the model to effectively translate real-world images into its own latent space. In 272 

Figure 9, we interpolate between two different taxa in (a) Knightia (LHS) and Kunzea (RHS), and (b) 273 

Brachyglottis repanda (LHS) and Citrus (RHS) to demonstrate the capability of such a technique. 274 

We also use the CNN to predict the generated pollen taxa. As seen in the images, it is possible to 275 

interpolate between two taxa, generating what appear to be other taxa in the process. Discussion 276 

The generated images shown in Figure 7 demonstrate that when the ‘spike’ vector is added (or 277 

subtracted), not only does the appearance of the spikes on the generated pollen grains change, but the 278 

taxa also changes. Likewise, as the ‘size’ vector is added (or subtracted), the generated pollen 279 

changes size and taxa. When the size or spike vector is too negative, there is no image generation, 280 

meaning the latent space vectors may not be mapped to the features that generate an image of pollen. 281 

When both vectors are applied, such as +100% ‘size’ and +100% ‘spike’, a generated image that 282 

resembles Lycopodium pollen is created. It should be noted that whilst the CNN predicts 283 

Lycopodium, it is limited to the dataset in which it has been trained on, and the actual Lycopodium 284 

pollen contains more ornamentation on its surface. Interestingly overall, when the ‘spike’ is added, 285 

the size of the pollen grain increases, perhaps implying correlation between size and spikes (or 286 

ornamentation), based on the dataset and calculated vectors used in this work. Indeed, this can be 287 

observed in Figures 7(a) and (b), where only the edge of the pollen grains was visible in the smaller 288 

grains, and as the spike vector is increased, the pollen changes taxa to that which are not only larger, 289 

but have more ornamentation over the whole pollen as viewed by the microscope.  290 

The ability to manipulate images in latent space is also demonstrated by changing the roundness in 291 

Figure 8. It can be seen that the ‘size’ vector increases the size of the generated pollen grain, and 292 

‘round’ vector generally increases the circularity. In Figure 8(a), there is little evidence that the 293 

roundness of the pollen has correlation with the size, though for some taxa (e.g., Griselinia (0%, 294 

50%) and Ixerbia (0%, 100%)) increasing the roundness does increase the size, due to how the neural 295 

network has positioned such pollen in the multidimensional latent space. It is evident that increasing 296 

the size or roundness does not merely at spikes or make the pollen rounder, but changes the structure 297 
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or ornamentation as well. For example, increase the roundness of Carpodetus removes the lobe 298 

structure as it transitions to Citrus. The conclusions drawn from these figures may be limited to the 299 

training dataset, and hence additional training data might provide additional insights. If this approach 300 

was applied to a much more varied dataset, perhaps containing thousands of taxa, latent w-space 301 

vector arithmetic could have potential in helping understand the relationship between features and 302 

traits in pollen grains, and to predict taxa changes (and results of these changes) due to environmental 303 

and evolutionary factors.   304 

The ability to essentially upload an image into latent space for manipulation could provide a power 305 

tool in understanding relationships and behaviour of pollen. In Figure 9, which shows the transition 306 

between two pairs of pollen images not present in training, we can see a transition between one taxa 307 

to another, not by only straight pixel interpolation, but through different taxa. In (a) the image 308 

transition occurs through 7 different taxa, and in (b) the transition occurs through 6 different taxa, as 309 

classified by the CNN. The transition between pollen is dependent on how latent space has 310 

distributed the data, as in (a) the transition is not simple a large triangular shape to a small triangular 311 

shape. Although pollen grain taxa have been identified, the identification is limited to the training of 312 

46 taxa, meaning that although a pollen grain maybe identified as Laurelia at 99%, it may not 313 

necessarily look like it due to the limited data used in the CNN training. Owing to such as vast 314 

number of pollen taxa present in the world, being able to train a latent space neural network on every 315 

type would be extremely difficult. As such, this methodology demonstrates the possibility of using 316 

pollen taxa not used in training so that it could be explored in latent space and manipulated to 317 

understand it morphology in different environments, such as undergoing dehydration (Grant-Jacob et 318 

al. 2022), or understand the pollen in the context of their phylogenetic relationships. This 319 

methodology could be used in addition to work on using CNNs to analyse pollen morphology and 320 

place extinct pollen morphotypes within a phylogenetic framework using Bayesian inference 321 

(Adaïmé, Kong, and Punyasena 2024). 322 

A key challenge in isolating specific features, such as size versus shape, through w-space 323 

manipulation in StyleGAN is the potential overlap between latent vector representations for different 324 

characteristics. The latent space in StyleGAN is highly compressed and abstract, meaning that 325 

features like size, shape, ornamentation, and colour are not always entirely independent. As a result, 326 

adjusting one feature may inadvertently affect others, complicating the process of isolating and 327 

controlling a specific characteristic independently. 328 

For example, when manipulating the latent vector to adjust the size of a pollen grain, the shape or 329 

ornamentation of the grain may also change. This is because these features might share latent 330 

dimensions in the vector space, and the model may not perfectly separate them. As seen in Figure 7, 331 

when the ‘size’ vector is altered, the taxa of the pollen grain can change, along with its size, 332 

indicating a correlation between size and taxa or other features like ornamentation. This overlap in 333 

latent vector representations makes it difficult to manipulate one feature without influencing others. 334 

Furthermore, the model's ability to separate features effectively depends on the richness and diversity 335 

of the training dataset. If the dataset lacks sufficient variation in certain attributes, the model may 336 

struggle to create distinct latent representations for each feature. This could lead to challenges in fine-337 

tuning or generating high-quality, realistic images where individual characteristics are clearly 338 

separated, as seen in the generated images where manipulating the ‘spike’ vector also influenced the 339 

size and ornamentation of the pollen. These issues highlight the complexity of manipulating specific 340 

features in StyleGAN and the need for a more refined approach to disentangling latent 341 

representations. 342 
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Synthetic images generated by StyleGAN can be highly valuable for augmenting real-world datasets, 343 

especially in areas like pollen classification, where obtaining a diverse and high-quality dataset may 344 

be challenging. By generating realistic and controlled synthetic images, StyleGAN can help fill gaps 345 

in datasets, increase their size, and improve the diversity of training examples available for deep 346 

learning models. This can enhance the robustness and generalization ability of classifiers, making 347 

them more effective in real-world applications. 348 

For example, in the context of pollen classification, obtaining images of all possible pollen types with 349 

varying characteristics (e.g., size, shape, ornamentation) under different imaging conditions can be 350 

difficult. Augmentation of images could be achieved by carefully manipulating latent vectors, 351 

specific features such as spike density, size, and ornamentation can be adjusted, enabling the 352 

generation of images for underrepresented or difficult-to-capture species or scenarios. This synthetic 353 

data can thus act as a supplement to the real dataset, improving classifier performance on less 354 

common or poorly represented pollen types. 355 

Moreover, synthetic images can be particularly useful in cases where real-world data is scarce due to 356 

privacy concerns, cost, or limited access to expert annotation. For example, in clinical or 357 

environmental settings where data collection is expensive or time-consuming, synthetic images can 358 

fill in the gaps, allowing deep learning models to be trained on a more diverse set of examples. 359 

Additionally, StyleGAN-generated images could be used to simulate edge cases or rare occurrences 360 

that may not be adequately captured in real-world datasets, further enhancing the model’s ability to 361 

handle a wide range of real-world conditions. 362 

4 Conclusion and future scope 363 

The results presented in this work demonstrate the significant potential of leveraging StyleGAN's 364 

latent space manipulation to explore and understand pollen grain morphology. Through the 365 

projection, generation and manipulation of synthetic pollen images, we have shown that adjusting 366 

latent vectors such as ‘size’, ‘spike’, and ‘roundness’ not only alters the appearance of pollen grains 367 

but can also lead to changes in their taxa classification. These findings suggest that latent space 368 

manipulation offers a powerful method for studying the relationships between different features of 369 

pollen grains, such as size, ornamentation, and shape, which are crucial for understanding both 370 

environmental and evolutionary influences on pollen morphology. 371 

However, this approach is not without limitations. The results observed in this study are inherently 372 

tied to the training dataset, which restricts the generalizability of the findings. The manipulation of 373 

latent vectors is influenced by how the data is distributed in the multidimensional latent space, and 374 

this may result in unexpected transitions, particularly when working with pollen taxa not included in 375 

the training set. Further research into expanding the training dataset to include a broader range of 376 

pollen taxa, and perhaps even thousands of species, could reveal deeper insights into the underlying 377 

relationships between pollen traits and environmental factors. 378 

The future scope of this work involves expanding the training dataset to include a broader range of 379 

pollen taxa, which would improve the accuracy and reliability of generated images and enable more 380 

precise feature manipulation. A larger, more diverse dataset would offer deeper insights into the 381 

relationships between pollen traits and environmental factors. Additionally, the ability to manipulate 382 

pollen images in latent space could be utilised to study the effects of environmental influences, such 383 

as dehydration or climate change, on pollen morphology, and to simulate evolutionary changes in 384 

pollen structures. This approach could also be integrated with phylogenetic frameworks to better 385 
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understand the evolutionary relationships between different pollen taxa, as seen in work that places 386 

extinct pollen morphotypes within a phylogenetic context. Furthermore, insights gained from latent 387 

space manipulation could enhance predictive models for pollen identification and classification, 388 

particularly for taxa not included in the training dataset. Ultimately, with continued refinement and 389 

expansion, this methodology holds the potential to improve our understanding of pollen grain 390 

morphology and its implications in areas such as agriculture, climate science, and botany. 391 
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Figure 1. Block diagram concept of the study 532 
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Figure 2. Schematic of the StyleGAN neural network (formed of the mapping and synthesis 533 

networks) for generating images, and of then the use of a CNN for subsequent classification of the 534 

generated images. 535 

Figure 3. Diagram of StyleGAN with 3 networks (Left) The mapping network transforms a random 536 

input into a style signal, controlling various aspects of image generation. (Middle) The synthesis 537 

(generator) network uses the information (A) from the mapping network to generate images from low 538 

to high resolution. It also incorporates random noise (B) to introduce variations and fine details. 539 

(Right) The discriminator network compares real and generated images, updating the weights of all 540 

networks through adversarial training to enhance performance. 541 

Figure 4. Graph showing the accuracy of training and validation progress during training of the CNN. 542 

Figure 5. Schematic of methodology of projecting an image into latent space, by generating random z 543 

vector, generating an image then comparing that image with the projected to obtain the suitable 544 

vector in latent space. The vector is then manipulated via adding or subtracting a vector before the 545 

synthesis network generates a new image. 546 

Figure 6 Histogram of distribution of taxa in training dataset and generated dataset (as predicted by 547 

CNN). 548 

Figure 7. Generated images of pollen grains created through latent w-space vector manipulation, 549 

showing the addition of a ‘size’ vector (-100%, -50%, 0%, +50%, +100%) added in the horizontal 550 

direction and a ‘spike’ vector (-100%, -50%, 0%, +50%, +100%) in the vertical direction, to 551 

generated images of (a) Knightia and (b) Coriaria. Each generated image also shows the predicted 552 

pollen taxa and predicted confidence, as well as the pollen size in pixels. Labelling is omitted from of 553 

images without any visible grains. 554 

Figure 8. Generated images of pollen grains created through latent w-space vector manipulation, 555 

showing the addition of a ‘size’ vector (-100%, -50%, 0%, +50%, +100%) added in the horizontal 556 

direction and a ‘round’ vector (-100%, -50%, 0%, +50%, +100%) in the vertical direction, to 557 

generated images of (a) Metrosideros and (b) Disphyma. Each generated image also shows the 558 

predicted pollen taxa and predicted confidence, as well as the circularity of the pollen grain. 559 

Labelling is omitted from of images without any visible grains. 560 

Figure 9. Generated images of pollen grains created through latent w-space vector manipulation, 561 

showing the interpolation of projected images between (a) Knightia and Kunzea (b) Brachyglottis 562 

repanda and Citrus. Each generated image also shows the predicted pollen taxa and predicted 563 

confidence. 564 


