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Research Article 

 

Thomas A. Grant*, Anton N. Vetlugin, Eric Plum, Kevin F. MacDonald* and Nikolay I. Zheludev 

Localization of nanoscale objects with light 
singularities

Abstract: Unprecedented atomic-scale measurement resolution 
has recently been demonstrated in single-shot optical localiza-
tion metrology based on deep-learning analyses of diffraction 
patterns of topologically structured light scattered from objects. 
Here we show that variations in the diffraction patterns caused 
by positional changes of an object depend upon the spatial de-
rivatives of the magnitude and phase of the incident field, with 
the latter strongly enhanced around phase singularities. Despite 
lower intensity near the singularity, an orders-of-magnitude in-
crease in Fisher information contained in the diffraction patterns 
can be achieved when a nano-object is illuminated by light con-
taining phase singularities, rather than a plane wave. Our work 
provides a fundamental explanation and motivation for singular-
ity-based metrology with deeply subwavelength precision. 
 
Keywords: superoscillation; singularities; nanophotonics. 

1 Introduction 

In recent decades, progress in optical super-resolution micros-
copy and metrology has been driven by nonlinear and statistical 
techniques [1-11], structured illumination microscopy [12-14], and 
computational imaging techniques for retrieving phase from 
scattered light [15-21], often taking advantage of object sparsity 
[22-24]. The ability of neural networks to efficiently solve the in-
verse scattering problem has also been demonstrated [25], and 
superoscillatory (topologically structured) light fields have lately 
been applied to microscopy and optical metrological applications 
in a manner similar to computational imaging.  
The phenomenon of optical superoscillation was first introduced 
[26] in 2006 and experimentally identified shortly thereafter 
[27]. It describes rapid subwavelength spatial variations of inten-
sity and phase in complex electromagnetic fields formed by the 
interference of several coherent waves, and its discovery stimu-
lated a significant revision of the limits of classical electromag-
netism. In particular, the computational and experimental stud-
ies of the topological structure of superoscillatory fields in free 
space revealed arbitrarily small energy ‘hotspots’ and high local 
wavevectors, facilitated by the presence of phase singularities 
bordering regions of energy backflow (i.e. powerflow vortices) 
[28,29]. These can be orders of magnitude smaller than the 
wavelength, implying that their interaction with matter should 
vary on similarly short, subwavelength scales making their appli-
cation an intriguing prospect for metrology. 
Berry and Nye proposed a form of singularity-based metrology in 
the 1970s, suggesting that singularities (referred to then as ‘wave 
dislocations’) in radio pulses reflected by the rock bed of a glacier 
could be employed as subwavelength markers for echo-

sounding-based depth measurements [30,31]. More recently, di-
mensional and positional measurements with deeply subwave-
length resolution have been achieved via deep learning analysis 
of objects’ diffraction patterns [32-34]. With topologically struc-
tured illumination and ‘in-situ’ neural network training, such 
measurements can localize the average position of a nanowire 
with precision and accuracy down to ~100 pm using visible light 
[35-36], beating the diffraction limit of conventional optical in-
struments thousands of times over.  
In this work, we mathematically describe and numerically 
demonstrate that the scattering from an object located near a 
singularity in a topologically structured field has higher infor-
mation content than the scattered field from a plane wave, 
thereby enabling greater precision in measurements based upon 
its analysis (the limit of precision being inversely proportional to 
Fisher information). We show analytically that this advantage de-
rives from the presence of high phase gradients over short length 
scales in the incident field (i.e. in the vicinity of singularities), and 
demonstrate the principle computationally for an archetypal sin-
gle-slit diffraction configuration, whereby Fisher information in a 

scattered superoscillatory field is enhanced by ~250 (compared 
to a plane wave incident field) when a singularity is located within 
the slit. 

2 Theoretical Analysis 

We begin with the Rayleigh-Sommerfeld model of diffraction - a 
mathematical manifestation of the Huygens-Fresnel principle 
[37]. For simplicity in the present case, we reduce this to a two-
dimensional form, whereby the scattered field is expressed as a 
superposition of diverging circular waves radiating from a 1D ar-
ray of points describing the scattering object (along 𝑥 at 𝑧 =  0), 

𝑈(𝑥) ∝ 𝑖 ∫ 𝑈(𝑥′)
exp(𝑖2𝜋𝑟/𝜆)

𝑟
cos 𝜃 𝑑𝑥′ 

where 𝑈(𝑥′) and 𝑈(𝑥) denote the complex field of a 
monochromatic wave, with wavelength 𝜆, at the object and the 
detector respectively; which are separated by a distance ℎ in the 

propagation direction 𝑧, whereby  𝑟 = √(𝑥 − 𝑥′)2 + ℎ2, and θ =

arctan (
𝑥−𝑥′

ℎ
). 

As an archetypal scattering object, we consider a narrow slit in 
an otherwise opaque screen, with edges located at 𝑥′ = 𝑎 ± 𝛿 
(i.e. a slit of width 2𝛿 centred at 𝑥′ = 𝑎). We assume that a 

complex field, 𝑈(𝑥′)  = 𝐴(𝑥′)𝑒𝑖𝜙(𝑥′), is normally incident on the 
screen and is transmitted only through the slit. Following an 
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integration by parts, we can write the scattered field, 𝑈(𝑥) at the 
detector as a sum of three contributions: 

𝑈(𝑥) = 𝑈1(𝑥) + 𝑈2(𝑥) + 𝑈3(𝑥) 

where 

𝑈1(𝑥) =  𝐴(𝑎 + 𝛿)𝑒𝑖𝜙(𝑎+𝛿) 𝜉(𝑥, 𝑎 + 𝛿)

−  𝐴(𝑎 − 𝛿)𝑒𝑖𝜙(𝑎−𝛿) 𝜉(𝑥, 𝑎 − 𝛿) 

𝑈2(𝑥) = − ∫
𝑑𝐴(𝑥′)

𝑑𝑥′
 𝑒𝑖𝜙(𝑥′)𝜉(𝑥, 𝑥′)𝑑𝑥′

𝑎+𝛿

𝑎−𝛿

 

𝑈3(𝑥) = −𝑖 ∫
𝑑𝜙(𝑥′)

𝑑𝑥′
𝐴(𝑥′) 𝑒𝑖𝜙(𝑥′)𝜉(𝑥, 𝑥′)𝑑𝑥′

𝑎+𝛿

𝑎−𝛿

 

and 

𝜉(𝑥, 𝑥′) ∝ 𝑖 ∫
exp(𝑖2𝜋𝑟/𝜆)

𝑟
cos 𝜃 𝑑𝑥′. 

Here, 𝑈1 is the only term present in the diffracted field from an 
incident plane wave, while 𝑈2 and 𝑈3 are respectively dependent 
on variations in the amplitude and phase of the incident field 
over the scattering object. The changes in these additional 
contributions to the scattered field for a structured incident field, 
arising from changes in the object plane, can become significant 
in comparison to the associated change in 𝑈1. Thus, the spatially 
fast-changing features of a structured incident field can cause 
changes in 𝑈2 and 𝑈3 to dominate the total change in the 
scattered field.  

3 Numerical Methods 

As a practically relevant example, following the methods 
described in Refs [38-40] and recent experimental work 
[32,35,36], we consider a superoscillatory field formed by the 
linear combination of two band-limited, prolate spheroidal wave 

functions (PSWFs): 𝑈(𝑥′) = [21.65𝑆2(𝑥′) + 𝑆3(𝑥′)]𝑊, with 𝑊 =
0.00021. While the two individual PSWFs are band-limited to 
|𝑘0| = ω/c, 𝑈(𝑥′) has a central peak focused beyond this limit 

(to a full-width at half-maximum of 0.3𝜆), flanked by a series of 
singularities (Fig. 1) where the phase changes abruptly but 
continuously over a distance ~𝜆/20.  
As detailed in Ref. [41], the phase and amplitude mask required 
to generate this superoscillatory field from a plane wave can be 

obtained by transforming the required object-plane field 𝑈(𝑥′) 
into a Fourier series (PSWFs being eigenfunctions of a finite, 
band-limited Fourier transform); backpropagating to the desired 
mask plane; and then executing an inverse Fourier transform. 
Here, we assume a mask plane at a distance 𝑑 = 30𝜆 from the 
object plane, under which condition the intensity at the peak of 
the superoscillatory field’s central hotspot 𝑈(𝑥′ )𝑈(𝑥′)∗ is 
approximately twice (2.06×) the intensity of the plane wave 
incident upon the mask, 𝑈0𝑈0

∗. 
As a target object, we consider a slit of width 2𝛿 = 𝜆/10 in an 
opaque film (Fig. 2). We assume that measurements are 
performed by analysing its scattering pattern in an imaging plane 
located at a distance ℎ = 4𝜆 from the slit. From a practical 
perspective, the image sensor (detector) does not have to be at 
the imaging plane: the scattered field at this point is formed of 
free-space propagating waves, so it can be transformed to the 
detector plane by a conventional lens at any magnification, 
without loss of resolution (as has been shown experimentally 
[35,42]). In what follows, we assume an imaging plane detection 

aperture at −
𝐿

2
< 𝑥 <

𝐿

2
, where 𝐿 = 12𝜆 (i.e. ≫ 𝛿, 𝑎). 

4 Fisher information analysis 

To quantify and compare the effectiveness of localization 
metrology with different incident fields, we adopt the Fisher 
information metric, which quantifies the amount of the 
information that an observable variable carries about an 
unknown parameter upon which the probability of the 
observable  depends [43]: A measurement that is well localized 
and which changes significantly in response to small changes in 
the unknown parameter, provides a high amount of information 
about that parameter. Fisher information links to achievable 
measurement precision through the Cramér-Rao lower bound – 

Fig. 2: Scattering of a topologically structured field by a slit in 
an opaque screen.  A plane wave 𝑈0 is incident upon a phase 
and amplitude mask, which generates a superoscillatory field 

𝑈(𝑥′) in the object plane 𝑥’, with a central hotspot located at 
𝑥′ = 0. A slit of width 2𝛿 is centred at 𝑥′ = 𝑎 in the object 
plane. The scattered intensity 𝐼(𝑥) = 𝑈(𝑥)𝑈(𝑥)∗ is measured 
in the imaging plane 𝑥, at a distance ℎ = 4𝜆 beyond the object 
plane, with the imaging plane section (−𝐿)/2 < 𝑥 < 𝐿/2 
being projected onto a detector. 

Fig. 1: Superoscillatory field profile. Intensity I(𝑥′) =

𝑈(𝑥′ )𝑈(𝑥′)∗ [solid line], and corresponding phase 𝜙(𝑥′) 

[dashed line] profiles, of the superoscillatory field 𝑈(𝑥′ ) =
[21.65𝑆2 (𝑥′ ) + 𝑆3 (𝑥′ )]𝑊 in the object plane (z = 0). (b) 
Maps of intensity and phase in the xz plane – phase singulari-
ties, at low intensity points in the former, are labelled with 
their topological charge values in the latter. 
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the reciprocal of Fisher information is a lower bound on the 
variance of the unknown parameter. For example, in microscopic 
methods based upon localization of fluorescent molecules, 
Fisher information is related to the point-spread-functions 
obtained during measurements and can be used as a tool for 
their optimization [44, 45]. In quantum metrology, Fisher 
information can be used to derive the fundamental limits 
applicable to parameter retrieval problems such as resolving 
incoherent point sources [46], time-varying waveform 
estimation [47], and quantum imaging [48], among others [49]. 
More recently, the Fisher information in classical optical 
scattering problems has been studied [50,51], and proposed as 
an optimization tool for scattering-based parameter estimation 
problems [52-54]. 
In the present case, we calculate the Fisher information by taking 
the scattered field – specifically the normalized distribution of 
the detected power (as a function of position 𝑥 on the detector) 
at the image plane, for a given slit position, 𝑎 – as a 
photodetection probability distribution function:   

𝑝(𝑥; 𝑎) =
𝑈(𝑥, 𝑎)𝑈(𝑥, 𝑎)∗

∫ 𝑈(𝑥, 𝑎)𝑈(𝑥, 𝑎)∗𝑑𝑥
+𝐿 2⁄

−𝐿 2⁄

 

From a measurement perspective, this density function and the 
relative rate of change in its log-likelihood function are 
important: The latter is known as the score function, and its 
weighted square, integrated over the detection range 𝐿, is the 
Fisher information, a figure of merit in the present case for how 
rapidly the profile of the scattered field changes in response to a 
change in the position 𝑎 of the slit: 

𝐹(𝑎) = ∫ [
𝜕

𝜕𝑎
ln 𝑝(𝑥; 𝑎)]

2

𝑝(𝑥; 𝑎)𝑑𝑥
+

𝐿
2

−
𝐿
2

 

This amounts to the information per photodetection; the total 
Fisher information content within the scattered field is obtained 
by scaling for the total power detected: 

𝐹𝑇𝑂𝑇(𝑎)~𝐹(𝑎) ∫ 𝑈(𝑥, 𝑎)𝑈(𝑥, 𝑎)∗𝑑𝑥
+

𝐿
2

−
𝐿
2

 

Figure 3 shows that the Fisher information content of a scattered 
superoscillatory field depends strongly on the position of the 
scattering object within the incident field – in this case, most 
prominently on the position of the slit relative to the phase 
singularities (as opposed to the central intensity hotspot). Note 
that there is no dependence of Fisher information on slit position 
for an incident plane wave, because while the position of the 
diffraction pattern in the imaging plane shifts with the slit 
position in the object plane, its intensity profile is invariant. For 
the superoscillatory field, the Fisher information increases 
sharply, peaking at 𝑎 =  ±0.34𝜆, when either singularity A or B 
(on either side of the incident field’s central hotspot – see Fig. 1) 
is near the center of the slit. The double- or split-peak structure, 
shown in the Fig. 3a inset, is the result of a saddle point in the 
profile of the scattered field when the slit is perfectly centered 
on the singularity, whereby the scattered field is slightly less 
sensitive to changes in slit position than for off-center 
alignments. At the maxima, the intensity profile of the diffraction 
pattern changes rapidly as a function of 𝑎, yielding a 106-fold 
enhancement in Fisher information (Fig. 3a), as compared to the 
plane wave from which the superoscillatory field was generated. 
The fact that incident (and therefore scattered) intensity is 
exponentially lower in the vicinity of phase singularities, relative 
to the case of a plane wave, must be considered in this 
comparison: Fig. 3b demonstrates that using a topologically 
structured incident field – i.e. probing the target object with an 
incident field containing singularities – nonetheless provides 
significant advantage, with the total information content in the 
detected scattered field being enhanced by a factor of ~250, 
again as compared to the plane wave from which the 
superoscillatory field was generated. 
It is also important to account for the fact that measurements at 
low intensities near a singularity are more susceptible to noise. 
Within the framework of Fisher information, this can be 
considered as follows: Each scattered field measurement 
(photodetection event) provides information 𝐹(𝑎), while 
(detector) noise-related photodetection events provide zero 
information. Fisher information is additive, so the reduction of 
information due to the presence of noise is proportional simply 
to the ratio of scattered field to noise detection events. Thus, in 
terms of intensity: 

𝐹(𝑎, 𝐼𝑛𝑜𝑖𝑠𝑒) = ∫ [
𝑑

𝑑𝑎
ln(𝑝(𝑥; 𝑎))]

2

𝑝(𝑥; 𝑎)  
𝐼(𝑥; 𝑎)

𝐼(𝑥; 𝑎) + 𝐼𝑛𝑜𝑖𝑠𝑒

 𝑑𝑥

+
𝐿
2

−
𝐿
2

 

Fig. 3: Fisher information content of the field scattered by a 
subwavelength slit. (a) Fisher information per measurement 
and (b) total Fisher information as functions of slit position for: 
a superoscillatory incident field with amplitude 
[21.65𝑆2 (𝑥′ ) + 𝑆3 (𝑥′ )]𝑊 – shown as solid black lines; a plane 
wave incident field with an intensity equal to half that of the 
superoscillatory hotspot – shown as dashed red lines. The blue 
shaded bands denote the range of positions over which a 
singularity (A or B, as labelled in Fig. 1) is located within the slit. 

Fig. 4: Total Fisher information as a function of signal-to-noise 
ratio for a superoscillatory incident field (assuming the 
scattering to be optimally located at a singularity) [red line] 
and for a plane wave [blue line]. 



T. A. Grant, et al.: Localization with light singularities DE GRUYTER 

Figure 4 shows total Fisher information as a function of signal-to-
noise ratio (SNR). For consistent comparison, we assume the 
same plane wave intensity as used for generation of the 
superoscillatory field, and the same level of absolute noise in 
both cases. At high SNR (>1000), the advantage of the 
superoscillatory incident field is obvious:  Fisher information is 
orders of magnitude higher than for a plane wave. With 
decreasing SNR, the information content of the scattered field 
falls faster for the superoscillatory field, and its metrological 
advantage disappears at signal to noise ratios <50. 

5 Conclusion 

In summary, this study provides a fundamental explanation, and 
justification, for singularity-based metrology. We demonstrate 
that when probing a nanoscale object, a significant advantage 
can be gained from exploiting phase singularities in a 
topologically structured incident field, as compared to plane 
wave illumination. Despite the low intensity in the vicinity of 
singularities, and in the presence of detector noise, the Fisher 
information content of a nano-object’s scattering pattern can be 
orders of magnitude larger when it is illuminated with a 
topologically structured field with phase singularities, as opposed 
to a plane wave. We show analytically that this advantage – seen 
experimentally in the form of enhanced measurement precision 
and accuracy [35-36] – is derived from the strong dependence of 
scattered intensity profile on local intensity and phase gradients 
in the incident field at the object plane: small, deeply 
subwavelength changes in the position of a scattering object 
relative to a singularity, can lead to large changes in the scattered 
field. The method presented here provides a framework for 
optimization of the incident intensity and phase profile and 
object-to-imaging plane distance depending on the shape class 
and size range of objects. 
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