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Abstract. Joint uncertainty is a subject of much interest in structural dynamics’ research, as joint 

behaviour potentially becomes more significant at higher frequencies. Therefore, an accurate 

determination of the scattering properties of uncertain joint elements for wave-based methods 

becomes more important on the subsequent prediction sensitivity. For this reason, this study 

examines the resulting scattering properties (reflection and transmission efficiencies) due to 

uncertain joints using a hybrid methodology. The scattering is calculated for a beam-to-beam 
joint via a combined hybrid Wave Finite Element and Finite Element (abbreviated as hybrid 

WFE) model, while Polynomial Chaos Expansion is utilized for the uncertainty modelling. It is 

assumed that the joint has a uniformly distributed uncertain thickness and loss factor. The results 

are compared to analytical transmission efficiencies and Monte Carlo simulations. The results 

show that the uncertainty in the joint does not become more evident as the frequency increases 

as expected, and the proposed methodology successfully models the joint uncertainty problem. 

1. Introduction 

The Finite Element (FE) method typically requires at least six elements per wavelength for an accurate 
dynamic analysis and hence the number of elements required in the FE analyses and the computational 

load (memory usage and time consumption) increases drastically with the frequency of interest. For that 

reason, alternative numerical methodologies must be utilized for high frequency predictions. For high 
frequency vibration, Statistical Energy Analysis (SEA) is a common method and can rapidly estimate 

the spatially averaged and frequency averaged response of the vibratory uncertain system [1]. However, 

success of this method also depends upon accurate determination of SEA parameters namely, coupling 
loss factor and power input. Coupling loss factor is a parameter that is related to the joint transmission 

efficiency.  

Wave Finite Element (WFE) might be utilized to determine scattering properties of the joint. When 

WFE was first introduced by Mace et al. [2], the wavenumber of different structural waveguides was of 
interest. Then, Duhamel et al. [3] and Waki et al. [4,5] calculated the forced vibration response using 

WFE for different individual structures. Renno and Mace [6,7] extended the application of WFE for the 

forced vibrations of jointed structures, the so-called hybrid WFE. In hybrid WFE, the joint is modelled 
differently, namely, analytically or numerically, and scattering properties of the joint are combined with 

the waves propagating in the waveguides to determine the forced response. In analytical modelling of 

the joint, the joint can be assumed to be rigid and it is applicable only for simple types of joints. For the 
high frequency vibrations or relatively complex joints, the model of the joint is constructed by FE and 
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a dynamic stiffness matrix of the joint is obtained after dynamic condensation between the nodes of 

interfacing with the waveguides. Then, the dynamic stiffness matrix is utilized together with continuity 

and equilibrium equations to determine the scattering properties of the joint. In the literature, there are 
studies on determining the transmission efficiencies of different structures by hybrid WFE [6–12]. Fan 

et al. [8] divided the periodic structure into three wave fields i.e., near field, periodic field and far field, 

and estimated the vibration energy transmission by modelling the near field with FE and other fields 
with WFE. Mitrou et al. [10] specifically focused on the joint orientation (L-type, lap and line joint) and 

modelled the wave transmission efficiencies when two-dimensional structures are connected to each 

other with different joint types using the WFE/FE approach. Recently, Aimakov et al. [12] determined 

the power scattering coefficients of laminated plate junctions by hybrid WFE.  
The studies referred to Refs. [6–12], deal with the deterministic joints. However, in NVH and 

engineering structures in general, the uncertainty may arise due to local attachments such as hydraulic 

pipes, cable harnesses, instrumentation, etc. Therefore, joint uncertainty must be taken into account. In 
the literature, there are limited number of studies considering WFE and uncertainty together [13–18]. 

Henneberg et al. [17] modelled a globally uncertain metamaterial by the combined WFE and Polynomial 

Chaos Expansion (PCE). They modelled the uncertainty in a single cell by PCE then projected it into 

the whole structure by using the periodicity assumption in WFE to evaluate uncertainty of the bandgap 
and centre frequency of the bandgap. Kara and Ferguson [18] examined the uncertainty of a complex 

joint via combined hybrid WFE and PCE (shortly WFE-PCE) and calculated the forced vibration 

response of an L-type jointed beams up to 1000 Hz [18]. However, there is no study that considers 
scattering corresponding to uncertain joint properties. This study fills this gap. Here, the thickness and 

damping of a L-type joint is assumed to be uncertain and the resulting reflection and transmission 

efficiencies are calculated by WFE-PCE. In the analysis, hybrid WFE is utilized to determine scattering 
properties and PCE models the uncertainty of the joint. The uncertain parameters are assumed to have 

uniform distributions. The results are verified by running hybrid WFE computations together with 

Monte Carlo simulations. The results show that WFE-PCE can be an efficient alternative numerical 

method and the scattering uncertainty does not always increase with frequency for structures possessing 
local uncertainty. 

2. Scattering properties obtained using a hybrid Wave Finite Element (WFE) method 

In this section, the calculation of the scattering properties of a joint is briefly described. Note that, before 
starting to calculate the scattering properties, one needs to analyse the wavenumber and wavemodes of 

the jointed waveguides by employing classical WFE methodology. As the calculation of wavenumber 

and wavemodes of waveguides are well-reported in literature, it is not presented in this paper. One may 
refer to Ref. [2] for more information on the calculation of wavenumber and wavemodes.  

Assume that the wavenumber and the left and right wavemodes of the waveguide are denoted as 𝒌, 

𝚿 and 𝚽, respectively. In figure 1, a schematic is presented for two waveguides joined together. Each 

waveguide in figure 1 has its local coordinate system where their respective waveguide axis points 

towards the joint. The rotation matrix (𝐑𝒋) transforms the local coordinate system (xj,yj) to the global 

coordinate system (X,Y). The main aim in hybrid WFE is to correlate the wave amplitudes propagating 

on the joint i.e., a𝒋
− and a𝒋

+ in figure 1. In figure 1, the positive going waves are always incident on the 

joint. This relation may be constructed as follows: 

      − +=a s a ,   (1) 

where  

    1

2







 
=  
 

a
a

a
,   (2) 

and 𝒔𝒋𝒋 = 𝒓𝒋𝒋 and 𝒔𝒋𝒌 = 𝒕𝒋𝒌 for 𝑗 ≠ 𝑘. Here, 𝒔 is the scattering matrix, 𝒓 and 𝒕 denote the reflection and 

transmission coefficients, respectively. Superscript + and – denote the wave direction. For the structure 

shown in figure 1, it is assumed that the interface degree of freedoms of the joint are compatible with 
those of the WFE models. The mathematical model of the joint between interface nodes is obtained from 
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a FEM model after dynamic condensation under no excitation of the non-interface nodes (𝑭𝒏 = 𝟎) as 

follows: 

 

 

Figure 1. Waves propagating in two finite jointed waveguides and waves on the joint.  

 

  ii i i=D Q F  . (3) 

Here, 𝐐 and 𝐅 are the degree of freedoms and internal nodal forces in global coordinates. Subscript 

𝑖 represents the interface nodes. The continuity and equilibrium conditions of the joint is expressed as: 

  i =Q Rq  , (4) 

  i − =F Rf 0  , (5) 

respectively. Here, 𝑹 is the global rotation matrix which is formed by diagonally concatenating the 

rotation matrices (𝐑𝒋) of the individual waveguides, q and f are nodal displacement vector and nodal 

force vector. Using the relationship between the wave amplitudes, the displacement and force field, 

equations (4) and (5), one may obtain the scattering matrix as follows: 

  
1

f ii q f ii q

−
− − + +   = − − −   s RΦ D RΦ RΦ D RΦ , (6) 

where, the global wavemode matrices, 𝚽𝑞
±, 𝚽𝑓

±, 𝚿𝑞
± and 𝚿𝑓

± are obtained in a similar way as the global 

rotation matrix. Note that, subscript q and f denote the displacement and force field, respectively. 

One may calculate the efficiencies by using the scattering matrix elements. Considering a waveguide 

carrying an in-plane flexural and longitudinal waves, one may determine the reflection efficiency (Ω) 

and transmission efficiency (Τ) for beams excited by flexural waves as follows: 

   
2

BB r = , (7) 

  
2

BB t = , (8) 

  
21

12

L
BL BL

B

c
r

c
 = , (9) 

  
2

2

1

2
BL BLt


 = . (10) 

Here, r and t denote the reflection and transmission coefficients of flexural waves, subscript BL 

shows the property of mode conversion from bending wave to longitudinal wave, 𝑐𝐿𝑖 and 𝑐𝐵𝑖 are the 

bending and longitudinal wave speed for structure i, 𝛽2 = 𝑚1
′ 𝑐𝐵1 𝑚2

′ 𝑐𝐿2⁄ , 𝜅 = 𝑘2 𝑘1⁄  and 𝛾 =
𝐸2𝐼2𝜅

2 𝐸1𝐼1⁄  where 𝑚𝑖
′, 𝐸𝑖 and 𝐼𝑖 are the mass per unit length, Young’s modulus and area moment of 

inertia of the structure i. 
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3. Polynomial Chaos Expansion (PCE) 

According to the Polynomial Chaos Expansion (PCE), any uncertain variable (𝑋) can be represented by 

a truncated polynomial with constant deterministic coefficients (𝑥𝑗) as follows [19,20]:  

  ( ) ( ) ( )
0

N

j j

j

X x P  
=

   (11) 

Here, 𝜉𝑗  are uncertain parameters and 𝑃𝑗 is an orthogonal polynomial so that, 〈𝑃𝑖 ∙ 𝑃𝑗〉 = 𝛿𝑖𝑗〈𝑃𝑗
2〉 where 

〈∙〉 represents the mean value, 𝛿𝑖𝑗 is Kronecker delta and 𝜔 is the frequency in rad/s. The series 

summation is truncated at a finite number (N) which is the order of the polynomial for a single uncertain 
parameter. 

The unknown deterministic coefficients in equation (11) might be determined by the collocation 

point method. The method calculates the coefficients by using a set of collocation points of the uncertain 

parameter (𝛏 = {𝜉(1), 𝜉(2), ⋯ , 𝜉(𝑁𝐶𝑃)}
𝑇

) and the corresponding uncertain variable realizations (𝐗(𝜔) =

{𝑋(1)(𝜔), 𝑋(2)(𝜔),⋯ , 𝑋(𝑁𝐶𝑃)(𝜔)}
𝑇

). Note that, the number of collocation points (NCP) should be equal 

or greater than number of the finite terms (N+1). One may refer to Ref. [21] for further details of the 

collocation point method. In this paper, 𝜉 will be the uncertain parameter to describe uncertain physical 
property (e.g. joint thickness, etc.) whilst X is the resulting uncertain parameter (transmission or 

reflection efficiency) and the evaluation is performed frequency by frequency. 

4. Analytical and numerical results 

In this study, scattering properties of an uncertain right-angled joint that couples two beams are analysed 
by combined hybrid WFE and PCE, namely WFE-PCE. The beams are considered to be identical to 

each other with the following properties: 𝐸 = 70 GPa, 𝜌 = 2600 kg/m3, 𝐿 = 1 m, ℎ = 1 mm, 𝑏 = 10 

mm and 𝜂 = 0.005 where 𝑏, ℎ and 𝜂 are width, thickness and loss factor, respectively. The joint is 
initially assumed to have the same mechanical and physical properties of the beams for the deterministic 

parameters with a joint length of 5 cm. The analyses are carried out between 1-10000 Hz. For the 

structure considered, the wavelength of flexural waves coincides with the length of joint at 

approximately 3700 Hz whereas the longitudinal wavelength is always greater than the joint length  in 
the frequency range considered. Before going through the uncertain joint problem, the hybrid WFE 

method is verified with the analytical computations for the scattering properties. One may refer to Ref. 

[22] for the analytical formulations. The length of the finite element utilized in WFE is 0.005 m whereas 
the joint is modelled by 10 elements. The analyses are verified as shown in figure 2. 

 

Figure 2. Reflection and transmission efficiencies for a deterministic right-angled joint. 

 

As may be inferred from figure 2, the scattering properties are consistent with each methodology 
considered. Some negligible deviations for the bending to bending wave reflection and transmission 

between the analytical and numerical results are observed as the frequency increases. This is due to fact 

that the hybrid WFE evaluates the results for a damped joint, whereas it is not the case for the analytical 
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calculation. It must be mentioned that the transmission from bending to longitudinal wave power 

increases with increasing frequency as expected. 

After verification of the results, the uncertainty analysis is carried out by WFE-PCE. The joint is 
assumed to have uniformly distributed thickness between 0.95 mm and 1.05 mm, i.e., U(0.95,1.05) mm 

and loss factor 0.00475 and 0.00525, i.e., U(0.00475,0.00525), where the upper and lower bounds of the 

uncertain parameters lay between 5% of their mean. Typically, one would expect manufacturing 
tolerances to be no greater than this range, but applying this range should be a more significant 

assessment of the possible fitting and the greater range and variation of the scattering properties. It must 

be noted that, these uncertain parameters are assumed to be uncorrelated.  

The parameters of the PCE are selected as N=2 for each uncertain parameter and 𝜉𝜂  and 𝜉ℎ  are both 

assumed to be represented by Legendre polynomials uniformly distributed between -1 and 1. The reason 

for selecting such a lower order polynomial is that there is no significant increase/decrease in the 

response parameters (i.e., no resonance behaviour in the frequency response functions) as inferred from 

figure 2). One may refer to Ref. [23] for more detailed information on the choice, consequences and 
general preference for selecting the polynomial order. The vector that contains the orthogonal 

polynomial terms is 𝑃𝑖 = {1 𝜉𝑖 1.5𝜉𝑖
2 − 0.5} where i is ℎ for uncertain thickness and 𝜂 for uncertain 

loss factor. In regard to these parameters, the resulting transmission or reflection efficiency of interest 
at a frequency is expressed as follows: 

  ( ) ( ) ( )
2 2

0 0

,jt jt h

j t

X x P    
= =

 ,  (12) 

where 𝑃𝑗𝑡  is the element of the vector 𝑃 which is calculated by 𝑃ℎ ⊗𝑃𝜂 and ⊗ is the Kronecker product. 

The scattering efficiencies obtained by hybrid WFE are verified with a combination of the hybrid 

WFE and Monte Carlo Simulations (MCS). For MCS, 50 samples of each uncertain parameter are 

created therefore 502 = 2500 simulations are performed for the verification. The mean and the ratio of 
standard deviation to the mean of the efficiencies for the uncertain joint considered are presented in 

figures 3-5, respectively. To observe the effect of the uncertain loss factor, the mean and the ratio of 

standard deviation to the mean of the sum of the efficiencies are presented in figures 6-7. 

 

Figure 3. The mean of the uncertain reflection efficiency (grey: WFE-MCS samples, green: 

mean of Ω𝐵𝐵  obtained by WFE-MCS, black: mean of Ω𝐵𝐵  obtained by WFE-PCE, blue: 

mean of Ω𝐵𝐿  obtained by WFE-MCS and red: mean of Ω𝐵𝐿  obtained by WFE-PCE). 
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Figure 4. The mean of the uncertain transmission efficiency (grey: WFE-MCS samples, 

green: mean of T𝐵𝐵  obtained by WFE-MCS, black: mean of T𝐵𝐵  obtained by WFE-PCE, 

blue: mean of T𝐵𝐿  obtained by WFE-MCS and red: mean of T𝐵𝐿  obtained by WFE-PCE). 

  

Figure 5. The ratio of standard deviation to the mean of the a) uncertain reflection and b) uncertain 
transmission efficiencies (green: results of bending to bending wave by WFE-MCS, black: results of 

bending to bending wave by WFE-PCE, blue: results of bending to longitudinal wave by WFE-MCS, 

red: results of bending to longitudinal wave by WFE-PCE). 
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Figure 6. The mean of the total uncertain transmission and reflection efficiencies (grey: 

WFE-MCS samples, blue: mean obtained by WFE-MCS and red: mean obtained by WFE-

PCE). 

 

Figure 7. The ratio of standard deviation to the 

mean of the sum of the efficiencies.  

 

It is clearly observed in figures 3-5 that, the results obtained by WFE-MCS and WFE-PCE are consistent 
with each other. The simulation time is 21 s for WFE-PCE whereas approximately 3400 s is required to 

obtain the results by WFE-MCS with the same computer. Therefore, one may state that WFE-PCE is an 

efficient and accurate alternative method for analysing the structures possessing joint uncertainty. Apart 
from the conclusions about the methodology proposed, one may infer the following results for the 

structure considered. The local uncertainty in the joint is more effective on the scattering properties 

between the bending to longitudinal wave transmission or reflection rather than efficiencies related to 
bending to bending waves. Also, the uncertainty in the resulting efficiencies is not always more effective 

with higher frequency. However, normalised standard deviations with respect to the mean does not have 

a steady behaviour as may be inferred from figures 3 and 4. The reason of this behaviour is having a 

step at the joint due to uncertainty of the joint. Th step at the joint affects the wave scattering properties 
and non-monotonic behaviour with respect to frequency is obtained. It should be noted that, this non-

monotonic behaviour would not be observed if a shorter joint were analysed in the study. Selecting a 

long joint (the joint has a length of 5 cm in both perpendicular directions in the plane of the analysis) 
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yields shifting the natural frequencies and corresponding modes of the joint to lower frequencies and 

hence they become observable in the frequency range considered. Also, for the joint considered with 

free-free boundary conditions, there are six nonzero elastic modes in the frequency range up to 10 kHz.  
Figures 6-7 show the effect of the uncertain loss factor of the joint. For a joint without damping, the 

summed total of the efficiencies must be equal to one. The results indicate that the uncertainty is 

gradually more effective on dissipating power with the increasing frequency as expected. However, 
there are also variations on the value of the normalised standard deviation. 

5. Conclusions 

In this study, the scattering properties of an uncertain right-angled joint connecting two isotropic beams 

was considered. The loss factor and the thickness of the joint are uncertain and assumed to be uniformly 
distributed and independent. The structure is analysed by hybrid Wave Finite Element (WFE) whereas 

the uncertainty is evaluated by two different methods for comparison, i.e., Monte Carlo Simulation 

(MCS) and Polynomial Chaos Expansion (PCE). The results show that the combined hybrid WFE and 
PCE (namely WFE-PCE) is an effective method compared to combined hybrid WFE and MCS (WFE-

MCS) in terms of computational time and accuracy. On the other hand, it is observed that the local 

uncertainty on the joint is more effective on the scattering properties between the bending to longitudinal 

wave transmission or reflection rather than bending to bending wave scattering. It is also inferred that 
the normalised standard deviation of the efficiencies does not always increase with increasing frequency, 

whereas that for the total efficiency does increase. Therefore, the local uncertainty problems must be 

specifically analysed for the structures being considered and for the frequency range of interest. 
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