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Introduction
Remotely sensed data are most useful if calibrated to spectral reflectance of known features. One
simple method of calibration is regression of remote data on the reflectance of several ground
targets as measured in the field, the so called empirical line method (ELM). The ideal situation
would be one where a range of ground targets representing all the features of interest in the remote
image were available for ground measurements (Lawless et al., 1998). The identification of suitable
ground targets is constrained by several limitations, such as their size (to minimise edge effects),
their absolute reflectance (to represent spectral characteristics of the image) and their effective
spatial variability (to extract reflectance characteristics representative of the target). The size of a
ground target is dependent on the spatial resolution of the image that must be calibrated (Justice &
Townshend, 1981) and the number of observations needed to represent features in the image has
been suggested to depend upon the spatial resolution of the remotely sensed image (Justice &
Townshend, 1981) and on the spatial variability of the ground target (Harlan et al., 1979; Curran &
Williamson, 1986). Although ground targets used for calibration should be spectrally “bland” and
spatially uniform by definition (Clark et al., 1999), it is sometimes very difficult to find such places
available for calibrating remotely sensed images. When surfaces that apparently satisfy these
conditions are available in suitable size, their sampling needs to be designed to optimise
representation of the whole surface and available resources (e.g., effort and time).

Surfaces that look spatially uniform by eye may actually contain spatial variation, and this
spatial variation may depends on wavelength (Atkinson & Emery, 1999). Such variability can be
detected using geostatistics, which is concerned with issues such as spatial correlation and analyses
of spatial data. Geostatistical tools have been used in a variety of studies and the variogram has
been applied in remote sensing and ecology to design optimal sampling strategies for variables
sampled in space (Atkinson, 1991; Rossi et al., 1992) and time (Salvatori et al., 1999).

This study investigates the spatial variability of potentially suitable ground calibration
targets (GCT) using a geostatistical approach, which gives results that can be used to design optimal
sampling strategies for such surfaces. The targets were selected from an area where an Itres
Instruments Compact Airborne Spectral Imager (casi) with ground resolution of about 1.5 metres
was flown at the same time as ground data were acquired.

The variogram function
On average, observations close together in space are more likely to be similar than those that are
further apart, a phenomenon . Spatial continuity tools such as the variogram are used to infer the
spatial autocorrelation based on random function theory (Journel & Huijbregts, 1978). Let z(x)
represent the value of a variable at location x and let z (x  + h) represent the value of the same
variable at some h distance and direction (or lag) away. The semi-variance is a function describing
half of the expected squared differences between z(x) and z(x  + h). The semi-variogram (most
commonly just the variogram) function summarises the spatial continuity for all possible pairings of
data for all lag distances h as:
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where )(ˆ hγ indicates that these are experimental semi-variance values derived only for a
number of discrete distance classes and n(h) the number of pairs of points separated by a lag h.
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Mathematical models are fitted to experimental variograms to describe their behaviour.
The empirical distributions are described by three parameters (Fig.1):

•  The nugget variance C0. This is the y-intercept, usually non-zero, and can be
attributed to measurement errors and unresolved spatial variation;

• The range a. This is the lag at which statistical correlation between data is zero and
variability can be considered purely random. It represents the scale of variation of the data;

•  The sill C. This is the corresponding variance found for pairs separated by lags
greater than the range. It can be decomposed into two factors c0 and c1. The former is the nugget,
the latter can be considered as structured variation.
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Figure 1 – Variogram parameters

Commonly used models fitted to experimental variograms are described in Isaaks &
Srivastava (1989) and Cressie (1993).

Study site
Data were acquired in the field on surfaces within a disused airfield on Thorney Island, West
Sussex, UK. The site is characterised by areas of visually homogeneous surfaces such as asphalt
roads, concrete bases, grass fields and some buildings. The spatial structure of the whole area is
such that relatively large surfaces can be identified at a distance that can ensure the avoidance of
light scattering by vertical surfaces such as buildings and walls.

Three surfaces where considered as GCTs: asphalt, concrete and grass. The asphalt surface
was represented by a straight road of 2,000 m of length and 50 m width; the concrete surface
consisted of blocks of slightly irregular size, where a total of 7 columns by 30 rows could be
identified, and between each block a thin line of bitumen may be present; the grass field was
homogeneously composed by monocotyledon species and data were acquired prior to the flowering
season.

Data collection
A pilot study was conducted on the concrete surface, where data were acquired both randomly and
systematically. The results of the pilot study showed that spatial structure existed (Salvatori, 1999)
and thus systematic sampling was more appropriate for such a surface. Following from the results
of the pilot study, systematic sampling was carried out on the asphalt, concrete and grass surfaces.

To check for any spatial pattern of variability three line-transects, one for each surface,
were selected and reflectance data were recorded at points separated by 1.5 metres. Transects were
placed at least 15 metres from the edges of the surfaces.

Reflectance data were recorded with a field portable spectro-radiometer (ASD Fieldspec
FRTM). The instrument records radiance over the visible to the short-wave infra-red regions of the
electromagnetic spectrum with a spectral sampling of 1.4 nm in the range between 350 to 2500 nm.
The instrument operates in single-beam mode and is controlled by a sub-notebook computer. An 8°
optic was mounted on a hand-held mast and the readings were standardised to a 99% reflective
SpectralonTM Panel.
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The field campaign was conducted on 6th October 1999 at near-noon time. Sky conditions
were clear with some thin cirruses, and sampling activities lasted for about three hours.

The data along the transects were acquired at 3.6 metres above the surface, obtaining a
field-of-view (FOV) with a diameter of 50 cm.

Data pre-processing
Data were processed to produce values of absolute reflectance for each sample. As the purpose of
the study was to define the optimal sampling strategy to calibrate casi data, only the region of the
electromagnetic spectrum corresponding to the wave bands of casi were considered for further
analysis.

Subsequently, the data were filtered to produce spectral bands corresponding to the 13
bands of the casi instrument. Filters were square bandpass so the relative spectral response is 1 in
all wavelengths between the start and end. The wavelength ranges for each band are reported in
table 1.

Band
No

1 2 3 4 5 6 7 8 9 10 11 12 13

nm
start

403.5 432.9 479.2 499.6 544.4 569.4 680.3 697.4 745.0 760.3 766.0 815.8 846.5

nm
end

422.2 453.6 500.0 520.5 565.4 680. 6 686.3 703.4 758.7 766.3 785.5 825.7 885.3

Table 1. – Wavelength ranges in casi bands.

Data processing
The mean and standard deviation of each band in the longitudinal transects were computed and
tested for heteroscedasticity (Sokal & Rohlf, 1995). The spatial variation of each series (where a
series is represented by the transect where reflectance was recorded on a specific band) was then
represented by the variogram function.

Variograms were computed using the Gstat software (Pebesma and Wesseling, 199?). Model
fitting was performed using a weighted least squares approach.

Results
The mean reflectance of the three surfaces is showed in figs. 2-4, where the data recorded are
represented for each surface.

 Fig. 2. - Mean reflectance for the
asphalt surface
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Fig. 4.- Mean reflectance for the
grass surface

The three series showed
higher values of variance at longer wavelengths and were significantly heteroscedastic (Fmax ranging
from 3.28, d.f. = 13, 98, to 216.1, d.f. = 13, 102, p always << 0.001).

The presence of heteroscedasticity suggested that standardising the data by their mean
would result in a drastic decrease of the between-series variance. Table 2 reports values of standard
deviation for the three series and the respective values when data were standardised.

Asphalt Concrete GrassCasi
band Raw Stand Raw Stand Raw Stand

1 0.76 0.08 2.22 0.18 0.35 0.17
2 0.78 0.09 2.52 0.17 0.39 0.17
3 0.84 0.09 2.89 0.17 0.48 0.18
4 0.87 0.09 3.09 0.16 0.56 0.17
5 0.94 0.09 3.56 0.15 0.97 0.14
6 1.04 0.09 4.14 0.15 0.84 0.22
7 1.07 0.09 4.19 0.15 0.86 0.22
8 1.10 0.09 4.23 0.15 1.37 0.15
9 1.18 0.09 4.35 0.14 4.45 0.13

10 1.25 0.09 4.45 0.14 4.73 0.13
11 1.23 0.09 4.40 0.14 4.82 0.13
12 1.28 0.09 4.38 0.13 4.99 0.12
13 1.38 0.09 4.36 0.13 5.19 0.12

Tab. 2.- Standard deviation for samples collected on asphalt, concrete and grass. For each surface the values resulting
from raw and standardised-by-the-mean (Stand) data are given.
Asphalt
Variograms were estimated for the 13 casi bands. When plotted, they showed that values of
variance increased with wavelength (fig. 5A). This would suggest that spatial variability is
dependent on wavelength. Nevertheless, when the variograms were computed from the standardised
data the effect of wavelength disappeared (fig. 5B).
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Fig. 3. - Mean reflectance for the
concrete surface
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Figure 5.- Experimental variograms for the asphalt surface. A) Variograms computed from raw data and B) from data
standardised by the mean.

In this situation, only one variogram could be computed from reflectance values recorded at
any wavelength within the range considered as spatial patterns affected all wavelengths similarly.
This spectral stability makes the asphalt surface a potentially suitable GCT (Lawless et al., 1998).
These results suggest that recording reflectance in a wavelength corresponding to one single band of
the casi would be enough to characterise the target spatial variability.

Mathematical models were fitted to the experimental variograms to define the three
variogram parameters that best represented the experimental data. The model fitted was the linear
plus sill model for all wavelengths. The parameters describing the amount of variability (i.e., nugget
and sill) assumed lower values for variograms produced by standardised data (fig. 6).

This is an expected result, as the overall variability was lowered by the standardisation
process. It is interesting to note that standardising the data does not affect the scale of spatial
variation, as the range assumed exactly the same values for the two series (fig. 6).
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Fig. 6.- Variogram parameters for the asphalt surface in the 13 casi bands. Filled and empty dots are relative to models
fitted to variograms from raw data and from standardised data, respectively.

Mean values of nugget and sill (from raw and standardised data, respectively) were 0.29
(±0.15 SD) and 0.002 (±0.0004 SD) and 0.80 (±0.26 SD) and 0.006 (±0.0002 SD), respectively.
The scale of variation showed that only subsequently recorded data were autocorrelated, as the sill
was reached at a distance in space < than 2 intervals (mean range =  2.95 metres). The wavelength
effect on the scale of variation seems to be irrelevant, being the SD = 0.06 metres.

Concrete
The variograms resulting from data collected on the concrete surface showed similar behaviour to
those relative to the asphalt target, but a more pronounced spatial structure was detected. As
previously detected for the asphalt surface, variance seems to increase with wavelength (fig. 7A).
This effect is considerably attenuated when the variograms are computed from data standardised by
the mean (fig. 7B).
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Figure 7.- Experimental variograms for the concrete surface. A) Variograms computed form raw data and B) from data
standardised by the mean.

Although some differences were still apparent after the data were standardised, the
wavelength-related variability can be ignored. The structured and a priori variances (i.e., those
represented by the sill and the nugget) and data collected on one single band can be considered to be
representative of the whole set of the casi bands since variability between the coefficients of the
fitted models is very low. The model fitted was the spherical and the coefficients obtained are
sketched in fig. 8.
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Fig. 8.- Variogram parameters for the concrete surface in the 13 casi bands. Filled and empty dots are relative to models
fitted to variograms from raw data and from standardised data, respectively.

The average values of nugget for raw and standardised data were 5.39 (±2.35 SD) and  0.008
(±0.002 SD), respectively, while the sill averaged 9.06 (±3.51 SD) and 0.014 (±0.002 SD).
Although the SD takes very low values for parameters describing models fitted to variograms
computed from standardised data, it is worth noticing that such values are of one order of
magnitude higher than those recorded for the analogous parameters in the asphalt surface.

The scale of spatial variability averaged 26.04 m (±0.82 SD). This high value of range may
be explained with the structural composition of the concrete surface, made up of blocks of about 6 x
6 m of size. The presence of blocks composed of slightly different material resulted in an irregular
sequence of brighter and darker blocks that may affect the spatial variability of reflectance. The
range seems to be affected by the wavelength factor, showing a relatively high SD. However, the
scale of variation between wavelengths is smaller than the spatial resolution of the casi image, thus
it can be assumed to be irrelevant. The structure of the concrete surface, with many minor
inclusions and the presence of a line of bitumen, sometimes also associated with small amount of
vegetative material, in between the blocks, certainly contributes to such a result.

Grass
Data were acquired on a grass field that was homogeneous at species level and not affected by
anthropogenic activities such as mowing. The grass height was about 25 cm.

The variograms resulting from the reflectance recorded on the grass field showed a
characteristic difference in behaviour related to two regions of the EM spectrum. Casi bands 1 to 8
assumed very low values of variance while the remaining 5 showed much higher structured
variance (fig. 9A).
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Figure 9.- Experimental variograms for the grass field. A) Variograms computed form raw data and B) from data
standardised by the mean.

The separation of the casi bands into two groups coincides with two regions of the EM
spectrum separated by the near-IR region. This region is known as the red-edge. A similar
behaviour of variograms computed from reflectance recorded on transects over vegetated surfaces
has been reported by Atkinson & Emery (1999), who described the presence of a “fundamental
difference between spatial variation in the visible and near-infrared wavelengths” for heathland in
southern England, UK. In such a situation, standardising the data by their sample mean does not
make things clearer. On the contrary, it obscures patterns that are clearly visible from variograms of
raw data (fig. 9B). For this target it is evident that ground data must be recorded at least in two
wavelengths, belonging to the two regions of the EM spectrum; visible and near-IR.

The models fitted to the experimental variograms confirmed the existence of such two
regions (Fig. 10).
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Fig. 10.- Variogram parameters for the grass field in the 13 casi bands. Upper series is relative to raw data, while lower
one is relative to standardised data.

It is interesting to note that variogram coefficients obtained from standardised data enhanced
the detectability of different spatial scales of variation through the range, while tended to decrease
the differences in structural variation and nugget. Nevertheless, in the graphs of the latter two
parameters, the behaviour of reflectance recorded at wavelengths corresponding to the red-edge (see
fig. 4) is underlined by the exceptionally high values of variance assumed by casi bands 6 and 7.

Average nugget, sill and range for bands 1 to 8 were 0.40 (±0.41 SD), 0.15 (±0.11 SD) and
12.9 metres (±1.63 SD), respectively. For bands 9 to 13 the three parameters assumed average
values of 19.09 (±2.48 SD), 5.98 (±1.40 SD) and 118.5 (± 8.51 SD).

Conclusions
Calibration of remotely sensed images to surface reflectance is inherently simple in concept, yet is
complex in practice because of the many effects that need to be taken into account (Clark et al.,
1999). In this study we showed how the variogram can be helpful in detecting both the amount of
variation and the scale of variation of potentially suitable GCTs. The variogram coefficients as
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estimated by model fitting can then be used to design the sampling methodology and effort. The
range gives an idea of the minimum distance required for data not to be autocorrelated.

The variogram function can be used in optimising sampling design for estimating the kriging
variance that may be acceptable for a given survey (Burgess et al., 1981; Atkinson & Emery, 1999;
McBratney et al., 1981).

We highlighted an aspect that may be underestimated when considering potentially suitable
GCTs that look spatially homogeneous to the eye. Targets that look spatially homogeneous may in
fact exhibit marked spatial variation. This spatial structure has implications for how such calibration
targets should be sampled in field. Importantly, it is unlikely that a single observation will be
sufficient to represent such variability. Further, where this spatial variation is wavelength dependent
(e.g., for the grass field) more than one sampling strategy may need to be developed. The design of
optimal strategies into which to sample such targets will be the subject of future research.
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