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Abstract 

With the advancement of technology and the increasing use of wearable devices, information security have become 
a necessity. Although many biometrics authentication methods have been studied on these devices to ensure infor-
mation security, an activity-aware deep learning (DL) model that is compatible with different device types and uses 
only electrocardiogram signals has not been studied. Our objective is to investigate DL models that exclusively 
use ECG signals during several physical activities, facilitating their implementation on various devices. Through this 
research, we aim to contribute to the advancement of wearable devices for the purpose of biometric verification. 
In this context, this study investigates the application of adaptive techniques that rely on prior activity classification 
to potentially improve biometric performance using DL models. In this study, we compare three time-frequency rep-
resentations to generate images for activity classification using GoogleNet, ResNet50 and DenseNet201, and for bio-
metric verification using ResNet50 and DenseNet201. Despite employing various convolutional neural network (CNN) 
models, we could not achieve high accuracy in activity classification. Consequently, manually classified samples were 
used for activity-aware biometric verification. We also provide a detailed comparison of various DL parameters. We 
use a public dataset simultaneously collected from both medical and wearable devices to offer a cross-device com-
parison. The results demonstrate that our method can be applied to both wearable and medical devices for activity 
classification and biometric verification. Besides, although it is known that DL requires a large amount of training data, 
our model, which was created using a small amount of training data and a real-life biometric verification scenario, 
achieved comparable results to studies using a large amount of data. The model was achieved 0.16% to 30.48% better 
results when classified according to their physical activities.

Keywords  ECG biometrics, Activity classification, Biometric authentication, Wearable devices

1  Introduction
As technological advancements improve the growth 
and necessity of online transactions, the demand for 
biometric authentication models to protect against 
potential security breaches during these operations has 

concurrently increased. To increase security, biomet-
rics traits are used in addition to systems such as classi-
cal PINs and passwords. An electrocardiogram (ECG), a 
technique that records the heart’s electrical activity via 
electrodes attached to the human body, can discern the 
distinct cardiac rhythm inherent to each individual. This 
unique characteristic positions ECG as a candidate for 
biometric authentication systems [1, 2].

The biometric terms mentioned in this study are 
explained by ISO (the International Organization for 
Standardization) and IEC (the International Electro-
technical Commission) in ISO/IEC 2382-37:2022(E) 
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[3]. According to ISO/IEC 2382-37:2022(E) [3], authen-
tication is the process of proving the authenticity of an 
entity, though it should not be used interchangeably 
with biometric verification or identification, as “bio-
metric recognition” is the preferred term. Biometric 
identification involves searching a database to match 
biometric data with a specific individual, while biomet-
ric verification confirms a claimed identity by compar-
ing the provided biometric data with stored reference 
data.

According to 2018 data in the UK, 900,000 people 
were living with heart failure [4], while heart-related 
complaints were the second most common emergency 
calls in the USA in 2019 [5]. Cardiac health is exam-
ined with medical 12-lead ECG device measurement 
and this method is 70 years old [6]. Since medical 
devices are not designed for use in daily life, wearable 
technologies have begun to be used frequently. Many 
mobile health tracking applications have started to 
be used [7], along with the frequent use of wearable 
devices such as smartwatches [7] and chest bands [8]. 
This raised the issue of whether wearable technology 
provides as reliable results as medical devices [5]. In 
addition, given that ECG signals can be influenced by 
various physical activities and emotional states [9], it 
is essential to investigate the performance of wear-
able devices under different conditions. Therefore, 
the performance of medical and wearable devices is a 
frequently researched topic due to their different con-
figurations and intended uses [5, 9–11].

In order to create ECG-based applications and com-
pare devices, the characteristics of the ECG waveform 
must first be examined. Each heartbeat of a healthy per-
son has P, R and T peaks and Q and S troughs, and an 
example heartbeat is shown in Fig. 1.

While the distance between these peaks and troughs 
is generally consistent for healthy individuals, distorted 
peaks and unbalanced time intervals indicate an irregu-
lar and unhealthy heart rhythm [12]. The figure illustrates 
the three distinct phases of each cardiac cycle. The ini-
tial phase involves the depolarisation of the atria, which 
is represented by the P wave. The subsequent phase is 
ventricular depolarisation, which occurs by signals trans-
mitted to the Hiss-Purkinje systems and is denoted by 
the Q, R and S waves. The final phase contains ventricular 
repolarisation and is signified by the T wave. The cardiac 
cycle is constantly repeated, but its stability changes due 
to reasons such as physical activities, drug use or heart 
disease [12].

The performance of ECG-based biometric systems is 
adversely affected by environmental, biological or physi-
ological factors that affect ECG signals. These effects 
must be reduced in order for these systems to be con-
sistent under all conditions and to obtain reliable results. 
To reduce these effects, a biometric verification frame-
work is proposed that recommends activity classification 
before the biometric verification model and operating 
biometric verification models for each activity class. This 
study aims to explore deep learning (DL) models that 
exclusively utilise ECG signals across various physical 

Fig. 1  A single cardiac cycle and ECG signal with the representation of P, Q, R, S and T peaks
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activities, enabling their integration into diverse devices. 
Furthermore, it seeks to evaluate the activity-aware 
biometric verification framework, previously assessed 
using classical machine learning (ML) models [9], in 
comparison with DL models, thereby contributing to 
the advancement of wearable technologies in biometric 
verification.

In this framework, we classified activities prior to 
biometric verification. Each activity class is assessed 
in the biometric verification task separately. ResNet50, 
DenseNet201 and GoogleNet 2D convolutional neural 
networks (CNN) models were used for activity classifi-
cation and biometric verification. In these CNN models, 
spectrogram, Mel-spectrogram and scalogram images 
were tested using different window sizes. We experi-
mented with different CNN models for activity classifi-
cation but faced challenges in achieving high accuracy. 
Therefore, we resorted to using manually classified sam-
ples for activity-aware biometric verification. A medi-
cally approved device and a consumer-based device were 
compared using simultaneously collected ECG data. In 
addition to comparing detailed DL parameters and the 
verification framework, this study’s ability to obtain suc-
cessful results in short authentication times by taking 
into account the real-life scenario in biometric verifica-
tion models is our contribution to science.

A brief examination of the contributions of DL mod-
els in this study reveals the following: both devices out-
performed ML models [9] in biometric verification tasks 
within DL frameworks but demonstrated limited effec-
tiveness in activity classification. In activity classifica-
tion tasks, the Faros device achieved results comparable 
to classifiers such as Decision Trees (DT), support vec-
tor machines (SVM), and k-nearest neighbors (KNN) in 
ML studies [9]. However, the Hexoskin device achieved 
higher accuracy rates in activity classification within ML 
models [9].

2 � Related works
Related works of this study include the utilisation of ECG 
data for biometric verification and identification, the 
classification of physical activities and the exploration of 
activity-aware biometric systems via DL models.

2.1 � ECG biometric verification and identification
It has been observed that devices, enrollment times, data-
sets and applied DL parameters achieve different perfor-
mances in biometric authentication models and have 
been frequently researched in the literature. For instance, 
Li et  al. [13] compared biometric identification perfor-
mances with the cascaded CNN model using different 
datasets. The cascaded CNN model was created by using 
two CNN models for training: F-CNN (a 1 CNN model 

is called F-CNN because it is created for feature extrac-
tion) and M-CNN (a 1 CNN model is called M-CNN 
because it is created for matching in biometric identifi-
cation). Unlike our study, healthy and unhealthy subjects 
were used together in their study. R-peaks segments were 
used to feed the CNNs. They expressed that F-CNN is 
useful for multi-class classification. However, F-CNN can 
be easily affected by data variance. Even if they compared 
5 public datasets in their experiments, they utilised the 
same dataset separately to train models because using 
multiple or merged datasets could increase the variance. 
M-CNN was used with raw ECG signals. When they 
fed the M-CNN with R-peak segments, the results were 
worse than raw signals. F-CNN was used to learn fea-
tures and these features were used to feed M-CNN. The 
features of one current heartbeat and one template from 
F-CNN were combined to crerate input for M-CNN. 
M-CNN was performed for binary matching. In this way, 
they achieved higher identification accuracies (from 89.1 
to 93.1%). Although the datasets and CNN structures 
they used were different from ours, they tested data from 
1 to 20 heartbeats and found that the identification accu-
racy rate improved as the number of heartbeats used in 
the test increased. However, they determined that using 
3 heartbeats in the test was optimal when considering the 
time cost. This study enabled us to identify the optimal 
number of samples required for biometric verification.

AlDuwaile and Islam [14] also used R-peaks which 
were calculated from a 0.5-s window segment in their 
CNN biometric recognition system. P-peaks and R-peaks 
segments were used with continuous wavelet transfor-
mation (CWT) to create images. They compared Goog-
leNet, ResNet, EfficientNet and MobileNet with different 
ECG time windows which were selected from blindly and 
peak segmented images. One hundred subjects from PTB 
and 90 subjects from ECG-ID datasets were used in their 
study. In blind segmentation, the 2-s time window was 
selected as the best-performed window size with 98.14% 
identification accuracy rates using GoogleNet. In heart-
beat segmentation, 0.5-s time window (single heartbeat) 
heartbeat segmented data have higher identification 
accuracy than other cases. The lowest half total of EER 
(i.e. (false reject rate (FAR)+false accept rate (FAR))/2) 
was achieved by ResNet and GoogleNet however, they 
did not mention any imposter samples or real EERs. This 
study showed the effect of different window sizes on 
a few CNN models. Although it used different datasets 
than our study for biometric identification purposes, it 
influenced us to investigate different window segments 
and different CNN models.

Begum et al. [15] compared 4 distinct DenseNet CNN 
architectures with several training and testing sam-
ple sizes on 8 ECG datasets for biometric identification 
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purposes. These datasets include healthy and unhealthy 
subjects with a range of subject sizes. The structure of 4 
different CNN architectures were as follows: Architec-
ture #1 had 5 convolutional layers, 3 concatenation lay-
ers, and 3 filters in each convolutional layer. Architecture 
#2, with the same number of convolutional and concat-
enation layers but with 16 and 5 filters in each convolu-
tional layer. Architecture #3, which had 6 convolutional 
layers, 4 concatenation layers, and 10 filters in each con-
volutional layer. Lastly, Architecture #4, with 6 convolu-
tional layers, 5 concatenation layers, and 10 filters in each 
convolutional layer. The test prediction accuracies for 4 
different architectures were expressed in Table  1. This 
study influenced our research by highlighting the signifi-
cance of CNN parameters and identifying the optimal 
training and testing ratio.

Abd El-Rahiem and Hammad [39] used combined fea-
tures which were extracted from spectrogram images 
using VGG-16, VGG-19, AlexNet, ResNet50, ResNet101 
and GoogleNet CNNs. However, they used SVM and 
KNN classifiers for biometric authentication stages. In 
the MWM-HIT dataset, 10 s of data from each of the 
activities of sitting, standing, supine, exercise sitting and 
exercise standing were used. However, no research has 
been conducted on the effects of the activities. In addi-
tion, unbalanced genuine and imposter samples were 
used in authentication tasks. Using unbalanced genu-
ine and imposter samples in biometric authentication 
can cause the model to become biased, leading to inac-
curate results. The model might overfit to the major-
ity class, and it can distort performance metrics and 
increase security risks by failing to correctly identify 
imposters. Byeon et al. [16] used each R-peak’s scalogram 
images to feed AlexNet, GoogleNet and ResNet CNN 
structures. Although they compared different optimis-
ers, CNN models, mini-batch sizes and transfer learning 
parameters, the effect of the parameters on the perfor-
mance could not be observed because they used differ-
ent parameters in the biometric verification models. In 
addition, although the results are prominent, they do 
not reflect a realistic verification scenario because they 
were made using only 1 genuine subject and 60 imposter 
subjects (i.e. single-user authentication). In biometric 
verification, testing only one genuine subject is unreal-
istic or widely applicable. Instead, testing multiple sub-
jects separately and averaging the results for each subject 
makes the verification scenario more generally applica-
ble. Byeon and Kwak [40] used the single heartbeat spec-
trogram, log-spectrogram, Mel-spectrogram, scalogram 
and Mel frequency cepstrum coefficient (MFCC) to feed 
VGGNet19, ResNet101, DenseNet201 and Xception 
CNN models and compared their biometric identifica-
tion performances across different datasets. For instance, 

in the PTB-ECG dataset, the ResNet101 model outper-
formed the DenseNet201 model regarding test accuracy. 
However, the opposite was observed in the other dataset. 
Furthermore, the effectiveness of the image represen-
tations also varied across datasets. They found the best 
identification rates when they used Xception CNN and 
MFCC images. In the PTB-ECG dataset, the spectro-
gram was the most successful, followed by the scalogram 
and Mel-spectrogram. In contrast, in the other dataset, 
the scalogram was the most successful, followed by the 
spectrogram and Mel-spectrogram. Although the study 
[40] supports our study in these points, it differs from our 
studies in that it does not include activities and does not 
perform biometric verification.

Ciocoiu and Cleju [19] used UofT and CYBHi datasets, 
they used S-transform plots of a single beat, Gramian 
Angular Fields, Phase-Space Trajectories, and Recur-
rence plots to feed 10 different CNN models. ResNet50 
achieved the highest identification rates. In addition, they 
used their own 2-D CNN model for verification. They 
trained the model with 52 subjects (700 segments per 
subject) during the sitting activity from the UofT dataset 
and tested with 200 subjects (200 segments per subject) 
from the UofT dataset. During the training phase for 
the identification task, all image types were used to train 
the system. However, during verification tasks, only the 
S-Transform was utilised as it has shown better results 
compared to other methods. While there was no activity 
classification in their study, they referred to it as an open 
challenge.

In addition to these studies, other state-of-the-art stud-
ies in the literature are also shown in Table 1. These stud-
ies applied different methods for biometric verification 
and identification cases. Although a one-to-one com-
parison between the studies cannot be made because of 
the different methods they used, they inspired our work 
because they investigated different CNN models, DL 
parameters, different image types and template sizes. 
However, although these studies inspired us, the data-
set we used is not available in any research. In addition, 
even if they use data collected during different physical 
activities, the biometric verification framework we cre-
ated has not been studied in any of them. No previous 
study has compared DL parameters in biometric verifica-
tion performance after activity classification using the the 
Vollmer dataset (Simultaneous physiological measure-
ments with five devices at differ- ent cognitive and physi-
cal loads [41]).

2.2 � Activity classification and activity‑aware biometric 
models

Some studies have investigated activity recognition 
using mobile and wearable devices before biometric user 
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identification and verification [42–45]. These studies are 
shown in Table 2. However, in addition to ECG signals, 
most also use gyroscope or accelerometer data for activ-
ity classification. Although many studies have been con-
ducted using these sensors that indicate movement and 
speed in activity classification, classifying activity using 
only ECG signals is one of the challenging tasks. In addi-
tion, using less sensor data reduces computational cost 
and processing time. For instance, Liu et  al. [45] used 
ECG signals and accelerometer data that were collected 
from a wearable chest sensor. FIR low-pass and high-
pass filters were used to eliminate noisy components. 
Time-domain features, DC features and energy features 
were used to classify standing, sitting, lying, sitting, walk-
ing and coughing. Activity recognition results are a 2.4% 
detection error rate (DER) for standing, 0.0% DER for 
lying, 4.9% DER for sitting, 2.4% DER for coughing, 5.6% 
DER for sitting down and 3.2% DER for squatting down. 
The main difference between their study and ours is that 
they use accelerometer data to classify activities.

Butt et  al. [46] collected ECG signals from the wear-
able device to classify falling, daily activities and resting. 
They collected data from 8 subjects and compared initial 
learning rates, stochastic gradient descent with momen-
tum (SGDM) and RMSProp optimisers. They split data 
80%−10%−10% and 60%−20−20% for training, testing 
and validation, respectively. They stated that classifica-
tion accuracy rates generally increase as the initial learn-
ing rate becomes smaller, the RMSProp optimiser gives 
better results than SGDM and in the case of 80% train-
ing has higher accuracy rates than the 60% training case. 
In addition, AlexNet had better results than GoogleNet. 
This study inspired us because it aimed to classify activi-
ties using only ECG signals and employed scalogram 
images in DL models. However, the activities they exam-
ined and the methods they utilised differ from our study. 
Additionally, our research investigates spectrogram and 
Mel-spectrogram images.

Cosoli et  al. [47] used the chest-worn (Zephyr Bio-
Harness 3.0) device and smartwatch (Samsung Galaxy 
Watch3) performances for ECG-based activity classi-
fication. They classified resting, walking, slow running 
and running activities with several ML and DL methods. 
Although this study tested different ML models with HR-
based features, it only performs activity classification and 
does not perform biometric verification as in our study.

Kim et al. [44] used finger and limb electrodes to col-
lect ECG data from 104 subjects. They compared biomet-
ric verification performances during sitting, standing and 
exercise activities. They used stationary wavelet trans-
form (SWT) and infinite feature selection (Inf-FS) meth-
ods to create a feature vector. The SWT, discrete wavelet 
transform (DWT), short-time Fourier transform (STFT) 

and AC/LDA methods were used for biometric verifica-
tion. In addition, they addressed that sitting and stand-
ing activities have lower EERs than the exercise activity. 
Unlike our study, this research did not use activity clas-
sification. Instead, it used 125 heartbeats for enrollment 
and 125 heartbeats for testing in biometric verification. 
Since biometric verification needs to be quick in real-life 
scenarios, the time required for verification in the 125-
beat recording and test case is very long and unrealistic.

For the biometric authentication task, Nawawi et  al. 
[48] used the Hexoskin wearable device to collect data 
during walking, standing and sitting. They extracted 
QRS-segmented fiducial features and used a quadratic-
SVM classifier. They compared different training and 
testing data sizes and reported that the optimum values 
were 80% training and 20% testing data. Although the 
numbers and EER rates of genuine and imposter sam-
ples are not specified, FAR and FRR rates are stated. If 
we consider the FAR and FRR rates when the training 
and test data are selected from the same activity, 20% 
FRR and 0.51% FAR in the standing activity, 12.22% FRR 
and 1.37% FAR in the sitting activity, and 3.64% FRR and 
0.93% FAR in the walking activity are observed. The fact 
that FAR and FRR ratios are quite different from each 
other shows that the numbers of genuine and imposter 
samples used are not equal and the reliability of the sys-
tem is low.

Wahabi et  al. [43] worked on posture classification 
before biometric verification. These postures are sitting, 
standing, resting and tripod/squat position. Data from 
52 subjects from the UofTDB dataset were used in their 
study. Biometric verification was performed using DWT 
feature extraction, AC/LDA method and SVM classifier. 
A mean of 1.50% EER was obtained when the same pos-
tures were used for testing and enrollment, while 8.24% 
EER was obtained in different posture situations. It dif-
fers from our study because it does not have the same 
amount of records for each activity, it only performs pos-
ture classification and it is not known with which labels 
the data is passed to biometric verification after posture 
classification (i.e. with only original posture labels or 
including wrongly classified posture labels). Moreover, 
in another study, Wahabi et  al. [42] added an exercise 
activity to the existing postures. In the study [42], DWT, 
Time-frequency content method, EigenPulse method 
and AC/LDA method were compared. It was stated that 
an average of 69 of 1020 subjects were used for each 
activity. The number of individuals involved in various 
activities during data collection varies. For instance, the 
number of subjects varied from 63 in supine and tripod 
postures to 1020 in the sitting position. For this reason, 
it was observed that there were not equal numbers of 
subjects or samples for each activity. This study stated 
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that static activities (such as standing, supine and sit-
ting) obtained lower EER and higher activity classifica-
tion accuracy rates results than dynamic activities (tripod 
and exercise). The studies [42, 43], form the basis of our 
proposed framework, using fingertip ECG data (mobile 
sensor) and comparing different methods. However, it 
differs from our studies because different time windows 
are used for each method, the number of samples and 
subjects used for each activity is different (i.e. due to uti-
lising 63 subjects were in the supine and tripod positions 
and 1020 subjects were in the sitting position, the activ-
ity classification might have learned more about the sit-
ting position, potentially biasing the results), and posture 
classification and biometric verification are examined 
separately. The number of subjects in activity classifi-
cation and biometric verification differs. While having 
many subjects makes the study more reliable, using dif-
ferent people for each part reduces its consistency and 
reliability.

Although these CNNs are used quite frequently in the 
literature [19, 40], they have many differences in terms of 
learning methods and structures. For instance, ResNet 
and DenseNet CNNs possess inherent limitations. In the 
case of ResNet, the shortcut connection among convolu-
tional blocks employed to stabilise training may also con-
strain its representational capacity. Conversely, DenseNet 
possesses a higher capacity due to its utilisation of multi-
layer feature concatenation [49]. However, this dense 
concatenation introduces the issue of increased memory 
and training time requirements [50]. In scenarios where 
computational resources are constrained, ResNet may be 
a more suitable choice than DenseNet due to its reduced 
memory and training time demands. DenseNet is uti-
lised to address the vanishing gradient problem, similar 
to ResNet [51]. In ResNet, certain layers may provide 
minimal or no information, whereas, in DenseNet, infor-
mation is preserved through its structure. ResNet layers 
have distinct weights and structures, whereas DenseNet 
contains cross-layer connections and a feed-forward 
approach [52]. This means that the results of each layer 
serve as inputs for subsequent layers [53]. DenseNet inte-
grates both preserved and new information, enabling it to 
differentiate between the two. It boasts a higher number 
of feature maps compared to other architectures. Fur-
thermore, DenseNet is effective in preventing over-fitting 
when working with small training sets.

CNN models are named according to the type of DL 
architecture and the number of blocks within the struc-
ture. For example, when we say ResNet50, we mean a 
ResNet CNN model with 50 residual layers. Accord-
ing to Lu et  al. [54], the accuracy rate increases as the 
number of layers increases, but the training time also 
becomes longer because the depth of the model increases 

according to the number of layers. A GoogleNet (aka 
Inception-V1) comprises 9 inception layers and is com-
monly employed to preserve fine details within images. 
The original GoogleNet CNN has 22 deep layers. The 
architecture aims to achieve high accuracy while mini-
mizing computational costs compared to previous CNN 
models [55]. The GoogleNet utilises filter sizes of 5 × 5, 
3 × 3, and 1 × 1 to partition images of varying resolu-
tions, thereby capturing more information from the 
image and addressing the issue of redundant information 
[55]. Therefore, GoogleNet, ResNet50 and DenseNet201 
CNNs were utilised and compared in our study to see the 
effects on the performances.

3 � Materials and methods
Our hardware experimental setup was run on an 
Intel(R) Core(TM) i5-6500 CPU and 16 GB RAM com-
puter using MATLAB 2022a. GoogleNet, ResNet50 and 
DenseNet201 CNN models with varying time window 
sizes (i.e 2 s, 4 s and 10 s), different time-frequency rep-
resentations, Adam (Adaptive Moment Estimation) [56], 
SGDM [57] optimisers and, 10 and 20 epoch sizes were 
used to explore DL parameters effects on activity classi-
fication. Since the amount of data we used in the train-
ing process was small, the number of epochs used was 
small. DL models are often trained using a combination 
of different datasets [40, 58] or data from various sensors 
[59]. This approach aims to increase the amount of train-
ing data and improve the model’s performance. How-
ever, in our study, we aimed to achieve better results on 
both medically approved and wearable devices by using 
a single dataset consisting solely of ECG signals. This 
approach allowed us to investigate the challenge of train-
ing DL models with a limited amount of data. The general 
pipeline of the proposed framework is shown in Fig. 2.

Our DL parameters were adjusted based on ECG stud-
ies in the literature [19, 28, 39, 40, 60]. For instance, 
Thompson et  al. [60] used ECG data collected from 70 
subjects in the CNN model with 50 epochs, but overfit-
ting was observed after 20 epochs. Since the number of 
subjects and samples in our study was less, 20 epochs 
and 10 epochs were used. In addition, a 60% Dropout 
layer was applied in the GoogleNet model and the results 
were observed so that the risk of overfitting was avoided. 
Byeon and Kwak [40] compared many DL parameters 
and stated that using an initial learning rate of 0.0001 
and a mini-batch size of 30 achieved optimum results. 
In addition, they used 20 and 5 epoch to train their sev-
eral DL models. Although the same configurations as 
Byeon and Kwak [40] study are not used, it is similar to 
our study because it trains many DL models with various 
time-frequency representations. For this reason, their 
model’s parameters was tried in our study and setting for 
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optimum parameters for our study. According to the per-
formances of different DL parameters in activity classifi-
cation, we tuned parameters for biometric verification as 
4 epochs, 0.0003 initial learning rate and 32 mini-batch 
size. While other parameters were kept constant for easy 
comparison of biometric verification and activity classifi-
cation results, the number of epochs was reduced to pre-
vent overfitting. We reduced the number of epochs to 4 
in the biometric verification case because we trained our 
own model for biometric verification, whereas we used 
pre-trained structures with the transfer learning method 
for activity classification. Given that the number of 
images used in biometric verification is even smaller after 
activity classification, we observed that using 10 epochs 
led to overfitting in our trained DL models.

We explored two sets of experiments on the biometric 
verification framework performances prior to and after 
activity classification. The data utilised in this study is the 
Vollmer dataset [61]. This section explains the dataset, 
models, and experiment protocols used in the study.

3.1 � Database
The Vollmer dataset [61],which is publicly available in 
Physionet [62], consists of data collected from 13 healthy 
subjects simultaneously using 5 different devices dur-
ing December 2017. The individual records range from 

29.18’ to 39.62’ [61].These devices include the clinically 
certified NeXus-10 MKII (8000 Hz) [63], eMotion Faros 
360° (1000 Hz) [64], SOMNOtouch NIBP (512 Hz) [65], 
as well as the consumer products Hexoskin Hx1 (256 
Hz) [66] and Polar RS800 Multi (1000 Hz) [8]. The Polar 
device is unable to measure raw ECG data. However, it 
can measure R-peaks, which are used as reference points. 
Vollmer’s study synchronised the positions of R-peaks 
measured by other devices with those measured by the 
Polar device [41]. This was done to ensure that all devices 
had a sampling frequency of 256 Hz and that all heart-
beat locations were the same. The synchronised signals 
were provided in PhysioNet [62] and we used the syn-
chronised signals.

Data was collected during four different tasks. These 
are resting, walking on a treadmill at a speed of 1.2 m/s, 
standing still, and uphill walking on the treadmill at the 
same speed with a 15% track inclination. Each task has at 
least 5 min of recordings separately.

This study compared the medically approved (CE class 
IIa and FDA 510 k certificates) Faros device and the wear-
able Hexoskin device. The sensors in the Faros [64] device 
consist of three attachable patches on the right chest, 
left chest and right abdomen. The Hexoskin [66] device 
is a smart shirt with textile sensors. Sensor locations are 
upper right and upper left abdomens and bottom left 

Fig. 2  The general pipeline of the proposed framework
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abdomen. The Faros and Hexoskin devices were selected 
for their comparable performance in the ML model [9], 
which outperformed other devices. In addition, there is 
no other study in which the Vollmer dataset is evaluated 
with DL models in terms of the proposed biometric veri-
fication framework.

3.2 � Pre‑processing
In the Vollmer dataset, the data collected for each subject 
is not equal. In our study, a total of 20 min of data, 5 min 
for each activity per person, was selected using the pro-
vided data labels. The sampling rate of each device was 
lowered from 256 Hz to 200 Hz to simplify the computa-
tion of P, Q, R, S and T points and the process of filter-
ing and smoothing signals. Unfiltered and filtered signal 
sample from Subject #1 from the Faros device are shown 
in Fig. 3.

The Vollmer dataset contains wearable devices and 
attachable patches for ECG signal recordings. How-
ever, during activities, noises produced by muscles 
other than the heart and friction can be seen in the 
signal. Even though the signals provided by Vollmer 
et  al. [41] are pre-processed using a trimmed moving 
average filter and Z-score normalisation, it has been 

observed that these filters are insufficient to remove 
the noise from the signal. To address this issue, a third-
order Butterworth band-pass filter with 0.5 Hz low 
cut-off frequency and 45 Hz high cut-off frequency, 
along with a mean filter, were used to remove noise 
and provide signal smoothing. The differences between 
signals from the same subject and across subjects are 
shown in Fig. 4. The Fig. 4 illustrates two distinct sam-
ples obtained from the same subject at top, whereas the 
samples collected from different subjects within the 
same time period are shown at the bottom.

In comparison to classical ML models, DL models 
can produce more accurate results in a shorter time 
window. Shorter-time window sizes have been fre-
quently investigated in the literature [14, 19]. Based on 
previous studies, the data were divided into 2-s, 4-s and 
10-s time windows with a 1-s stride between each win-
dow in our study. This stride is meant to prevent over-
fitting and to make clear the separation between each 
heartbeat. In a realistic biometric verification scenario, 
the sample period taken from the subject and used for 
authentication should be short. For this reason, obtain-
ing a low error rate even when shorter time windows 
are used indicates that the verification model is reliable.

Fig. 3  A sample unfiltered and filtered signal of Subject#1 from the Faros device
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3.3 � Time‑frequency representations
The proposed study is the first to compare activity clas-
sification and biometric verification performances using 
different time windows and different time-frequency 
representations with different CNN structures and their 
parameters.

Scalogram, spectrogram and Mel-spectogram images 
were chosen for our study because in the literature 
[40], different DL models were trained with 20 epochs 
and 5 epochs using these images and achieved success-
ful results. Time-frequency representations used in our 
study are explained in this section and they are shown in 
Fig. 5.

3.3.1 � Spectrogram
A spectrogram is a visual representation of the spec-
trum of frequencies in a signal (e.g. sounds or ECG 
signals) as they vary with time [67]. In the spectrogram 
representation, the x-axis shows the time, the y-axis is 

the frequency, and the z-axis shows the energy of each 
frequency for a given specific time. The representation 
of energy is often shown with a different colour or sur-
face in a 2D plot.

STFT of the input signals were calculated and the 
magnitude of the square of the STFT was used in this 
study to create spectrograms. The basic expression 
of the spectrogram is shown in Eq. (1) where S is the 
spectrogram, s is the signal, w is the filtering window, t 
represents a time axis, f represents a frequency axis and 
Fws

(

t, f
)

 is the STFT [68].

Each window (2 s, 4 s or 10 s) from the pre-processed 
matrix is used to create a spectrogram image using a 
spectrogram toolbox in MATLAB. In the spectrograms, 
the interval where the signal changes more is shown in 
brighter colours (yellow), while the interval where the 
signal changes less is shown in darker colours (blue/

(1)S
w
s (t, f) = F

w
s (t, f)

2

Fig. 4  The differences between signals from the same subject and across subjects



Page 13 of 26Bıçakcı Yeşilkaya and Guest ﻿EURASIP Journal on Information Security          (2025) 2025:7 	

navy blue) [69]. Figure 5a is the sample representation 
of a spectrogram image.

3.3.2 � Scalogram
A scalogram is a visual representation of a wavelet trans-
form with time, scale, and coefficient axes, unlike the 
spectrogram, which is a visual representation of the spec-
trum of a time-varying signal. A scalogram is computed 
by obtaining the absolute value of the CWT of the sig-
nals [70]. A scalogram can be expressed as time and fre-
quency functions. It is better suited than the spectrogram 
for signals that have multiple scales of features. In other 
words, these signals have slowly varying events that are 
interrupted by sudden changes such as ECG, earthquakes 
and audio signals. The mathematical expression of the 
CWT is shown in Eq. (2) [71].

In Eq. (2), ψ(t) is known as the mother wavelet, while 
the parameters (i.e. shifting and scaling) derived from 
it are known as the daughter wavelet. f(t) represents a 
function, a represents the scaling factor, b represents 
the shifting factor and R represents Real Numbers [71]. 
New parameters were adjusted as the sampling fre-
quency was 256 Hz and the voices per octave were 12 
to obtain more precise scalogram images in a CWT fil-
ter bank [72]. Figure 5b is the sample representation of 
a scalogram image.

(2)
CWT (a, b) =

1
√
a

∫ +∞

−∞
f (t) ∗ ψ

(

t − b

a

)

dt

a ∈ R+ − {0}, b ∈ R

Fig. 5  A sample 4-s time windowed image of Subject #1 from the Hexoskin device. a spectrogram, (b) scalogram, (c) Mel-spectrogram
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3.3.3 � Mel‑spectrogram
A Mel-spectrogram is a spectrogram transferred to the 
Mel-scale. A Mel-scale which is widely used in voice 
analysis accentuates the low-band frequency in voice and 
eliminates the high-band frequency noise [40]. The math-
ematical formula of the Mel-scale is shown in Eq. (3) [40, 
73]. In this equation, f represents the frequency (Hz) and 
m represents the Mel-scale.

ECG involves substantial information which is com-
monly used in ECG applications at the low-band fre-
quency [40, 74]. For this reason, the Mel-spectrogram is 
investigated with other time-frequency representations 
in our experiments.

The melSpectrogram toolbox in MATLAB was used to 
obtain the Mel-spectrogram [75]. A Mel-spectrogram 
was generated by applying a frequency domain filter bank 
to ECG signals windowed over time. This filter bank con-
tains many band-pass filters. The centre frequency of the 
filter is in Hz and the time instants for each window are 
in seconds. The colour intensity represents the amplitude 
of a frequency at a certain point in time in terms of dB.

Figure  5c shows a Mel-spectrogram sample image 
with a 3D representation and its 90° view from above at 
the 256 Hz sampling frequency. Each window from the 
pre-processed matrix is used to create Mel-spectrogram 
images with 256 Hz sampling frequency. Navy blue bands 
(non-informative parts) appear in Mel-spectrogram 
images created from windows of a pre-processed matrix, 
regardless of the sampling frequency. The main reason 
for choosing a 2D image instead of a 3D image, which 
contains more information, is to be able to examine the 
image in time and frequency axes, as in scalogram and 
spectrogram images. It also reduces the time spent on 
CNN model training. When applying the Fourier trans-
form (FT) in the transition from the time domain to the 
frequency domain, half the maximum frequency (f = 
Fs/2) should be applied [76]. Still, when this is applied, 
only a single stripe appears (at approximately 30 Hz). As 
‘f ’ increases, the size and weight of the filters in the Mel-
filter bank will change and more stripes will be visible as 
the size of the Mel-scale will increase, but the resolution 
of the image will decrease. Since the single stripe image 
contains insufficient information for the DL model, the 
sampling frequency was increased.

3.4 � Classification models
This study explored the performance of different CNN 
models, any DL hyperparameters such as epoch sizes, 
time window sizes, optimisers, several enrollment sam-
ples and time-frequency representations for two different 

(3)m = 2595 log10

(

1+
f

700

)

ECG recorders. This study examines two distinct veri-
fication processes: one that incorporates activity clas-
sification in biometric verification, and another that 
conducts biometric verification directly without catego-
rising activities beforehand. GoogleNet, ResNet50 and 
DenseNet201 CNN models,which are pre-trained with 
the ImageNet dataset [77], were used for activity classi-
fication with transfer learning method. After examining 
the performance of different parameters, the ResNet50 
and DenseNet201 models, which achieved successful 
results in activity classification, were selected and their 
parameters were tuned for biometric verification.

To ensure our model’s independence from specific 
datasets and its applicability to other datasets, we uti-
lised pre-trained CNN models for activity classification. 
For the biometric verification model, we trained it from 
scratch using data from 11 subjects collected with the 
Faros device. Using biometric identification data to train 
a DL model and use the model in biometric verification, 
which is a commonly used technique in the literature 
[78, 79], may not be sufficient alone for high confidence 
and reliability in the case of a small dataset. A larger and 
more diverse data set may improve generalisation and 
robustness. However, evaluating the model with metrics 
like FAR, FRR, EER, and accuracy rates provides insights 
tested on diverse data and periodically re-evaluated is 
crucial for maintaining its reliability and trustworthiness. 
For th into performance. Low FAR, FRR, and EER, along 
with high accuracy, indicate a reliable model. In addi-
tion, ensuring the model isis reason, this model was then 
validated and tested with data from the Hexoskin device, 
achieving high success rates across different devices. The 
used CNN models and their parameters will be consid-
ered in detail in the following section.

4 � Experiments and results
In biometric verification tasks, time windows of 2 s, 4 
s and 10 s were examined for scalogram, spectrogram 
and Mel-spectrogram images. The number of genuine 
samples used in our study is 1, 3 and 5 in the enrollment 
stage. If we express these samples as enrollment time, the 
minimum is 2 s (1 sample ×  2-s time window) and the 
maximum is 50 s.

In the activity classification task, 72% of the images 
obtained were used in training, 8% in validation and 20% 
in testing. Results are divided into three subsections: 
direct biometric verification across activities, the overall 
accuracy of activity classification and biometric verifica-
tion following activity classification.

4.1 � ECG biometric verification across all activities
The data from each device has been individually exam-
ined. In each device, data were split into three parts: 
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training, validation and testing. For training and vali-
dation data, the data of 11 subjects were selected. 
Selected subjects’ data were split into 80% for training 
and 20% for validation randomly. The remaining unseen 
2 subjects were used for testing. Table 3 describes the 
number of images in 2, 4 and 10-s time windows uti-
lised for training, validation and testing for both CNN 
structures.

In the process of training a CNN, two critical hyper-
parameters that can influence both the training pro-
cess and the ultimate performance of the model are the 
mini-batch size and the initial learning rate [80]. To 
find optimal parameters some trials were made using 
similar studies [40, 80] in our ResNet50 model. After 
these trials, the most suitable parameters were deter-
mined with the mini-batch size set to 32, the maximum 
epochs of 4, the initial learning rate of 0.0003, and the 
execution environment set to CPU. GPUs are often pre-
ferred in large-scale DL models because of their faster 
processing capacity [53], but CPUs are less costly and 
accessible in small-scale projects. In addition, CPU 

use is more common in mobile devices and gives bet-
ter results [81]. For these reasons, CPU was preferred 
in our study.

The ResNet50 CNN model created and used for train-
ing and biometric verification in this study is shown in 
Fig. 6 [82, 83]. The output size at each stage is indicated 
as “ n× n ” after each block. The output of each stage 
is used as the input of the next stage. The model was 
trained to perform biometric identification, with Out-
put1 representing the biometric identification accuracy 
rate. In all cases, training and validation accuracy rates 
were higher than 90% (i.e. minimum 90%). For this rea-
son, the number of epochs has not been increased to 
avoid over-fitting.

Figure  7 illustrates the details of the DenseNet201 
CNN model used for training and biometric verifica-
tion. Certain structures have been abbreviated and rep-
resented with coloured blocks. An “Output 1” shows the 
accuracy of the training, while “Output 2” represents the 
result of the biometric verification in terms of EERs.

4.1.1 � General procedures of training and validation
The 11 subjects allocated for training and validation 
trained the CNN model as if it were the identification 
task, while the 2 unseen subjects were used for biometric 
verification. To increase the reliability of the model, we 
used different subject pairs as unseen subjects in each 
testing stage. Unseen subject pairs were selected as P1-
P2, P6-P7, P8-P9 and P11-P12. The system is retrained 

Table 3  The number of images in training, validation and testing 
sets for direct biometric verification

2 sec 4 sec 10 sec

# of images in training 4994 2992 1342

# of images in validation 1254 748 330

# of images in testing 682 408 182

Fig. 6  Used ResNet50 model in biometric verification



Page 16 of 26Bıçakcı Yeşilkaya and Guest ﻿EURASIP Journal on Information Security          (2025) 2025:7 

for each pair of subjects, as the samples from the remain-
ing 11 subjects will vary for each pair of unseen subjects.

To increase reliability, cross-validation is another tech-
nique in DL for evaluating model generalisation, tuning 
hyperparameters, understanding the bias-variance trade-
off, ensuring robustness, and maximising data utilisation 
[84]. It involves splitting the dataset into multiple folds to 
provide a reliable performance estimate, select optimal 
hyperparameters, and ensure the model’s performance 
is not dependent on a specific train-test split. This tech-
nique helps to make the most of the available data and 
improve the overall effectiveness of the model. In this 
study, k-fold cross-validation (k = 5) was used in the Sc4 
biometric verification scenario. When the P6-P7 pair 
was utilised as unseen subjects, the standard deviation 
of the validation accuracy rates was 0.0212, compared to 
0.0216 for other pairs. To reduce computational-costs, 
subsequent experiments were conducted using randomly 
separated training, test, and validation sets instead of 
cross-validation. The Flatten, FC1 (fully connected (FC)) 
and layer normalisation layers are used to produce tem-
plates for biometric verification. To enable the system to 
function as a classification problem during the training 
phase, the FC2, Softmax and Output1 (classification out-
put) layers were added. In testing, genuine images from 
one unseen subject, alongside another imposter subject 
were used. Each selected image was used to create the 

verification embedding. The genuine and imposter sam-
ples were balanced and randomly selected. Due to the 
challenges associated with determining an appropriate 
training and testing ratio, we have elected to utilise 1, 3 
and 5 genuine samples for each time window condition.

After the validation was completed, we saved this 
trained model, which is called directed acyclic graph net-
work (DAGNetwork) [85, 86], as an embedded model 
and tested this model with the data of unseen subjects. 
This DAGNetwork is subsequently saved and the final 
three layers are removed. As depicted in Figs. 6 and 7, the 
design enables output from the “Layer norm” layer. This 
design is saved as a second DAGNetwork for testing. It is 
used for making predictions on testing data via the “pre-
dict” toolbox in MATLAB R2022a. In this manner, our 
embedded model is successfully constructed. The embed-
ded model is subjected to a verification task wherein its 
performance is evaluated on previously unseen subjects. 
For each subject, a predetermined number (N= 1, 3 or 5) 
of images are utilised for enrollment and subsequently 
input into the trained model to generate a user template. 
Templates for each subject are calculated by the average 
of the embeddings which were obtained from N genuine 
samples from the same subjects. This relationship can 
be mathematically represented as depicted in Eq. (4). In 
this formula, (Xi)s represents ith enrollment image of the 
selected subject s. M symbolises the created embedding 

Fig. 7  Used DenseNet201 model in biometric verification
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model while Ts is the template for the selected subject 
[87].

The number of N samples for templates is randomly 
selected from each person’s embeddings. Subsequent to 
this procedure, imposter samples and genuine samples 
from both the same subject class and different classes 
within the testing set are introduced to the model. The 
Euclidean distances between the verification embeddings 
and the user templates are then computed. If the distance 
is below a predetermined threshold, the verification 
response is deemed positive; otherwise, it is negative. The 
threshold is determined by evaluating the FAR and FRR 
and selecting the threshold that minimises the combined 
error. Alternatively, it maximises the AUC in the corre-
sponding ROC.

Mean EERs are shown for different numbers of genu-
ine samples and three image representations in Table 4. 
Sc2, Sc4 and Sc10 are scalogram images that were created 
from 2-s, 4-s and 10-s time windows. Sp2, Sp4 and Sp10 
are spectrogram images and Mel2, Mel4 and Mel10 rep-
resent Mel-spectrogram images with the same time win-
dows. 1, 3 and 5 are genuine samples used in enrollment.

A general trend was observed in which the EER 
decreased with an increase in the number of genuine 
samples. Furthermore, in ResNet50, the biometric veri-
fication performance of the Faros medical device out-
performs that of the consumer-based Hexoskin device. 
However, in DenseNet201, the opposite is observed. The 
Hexoskin device, being wearable, may be more sensitive 
to body movements and natural signal variations. This 
sensitivity could result in ECG signals that are better 

(4)Ts =
1

N

N
∑

i=1

M((Xi)s)

suited to the DenseNet201 model. The close fit and abil-
ity to track the body might help Hexoskin capture specific 
signal features that DenseNet201 can effectively leverage. 
DenseNet201’s dense connectivity between layers may 
aid in learning complex, variable patterns in the data.

Scalogram images generally yielded the lowest EERs, 
while Mel-spectrograms obtained the highest EERs. In 
the DenseNet201 case, although Mel-spectrograms gen-
erally exhibited the highest EERs, their performance was 
comparable to other representations within a 2-s time 
window for both devices. An increase in the time win-
dow length (from 2 to 10 s) for spectrogram and Mel-
spectrogram images resulted in lower EERs, whereas the 
minimum EERs for scalogram images were obtained with 
a 4-s time window. It is expected that a longer enrollment 
time will give a lower error rate, but the best results in 
the Sc4 case indicate that the information from the Sc10 
case causes errors in the DL model or that the Sc4 pic-
tures present more distinctive features.

4.2 � Activity classification
After the images were separated for training, verifica-
tion and testing with the rates specified in Sect.  4, DL 
parameters were adjusted in accordance with the biomet-
ric verification model. However, since it will be classified 
in a 4-class activity classification, the number of epochs 
was increased and the effects of optimisers on the clas-
sification were examined. Table  5 describes the num-
ber of images in 2, 4 and 10-s time windows utilised for 
training, validation and testing for all CNN structures in 
activity classification.

The training process was optimised by adjusting vari-
ous parameters. The initial learning rate, set at 0.0003, 
determined the initial step size towards the negative 
gradient of the loss function. The mini-batch size, set at 

Table 4  Mean EERs (%) are shown for different numbers of genuine samples and three image representations

ResNet50 DenseNet201

Devices Faros Hexoskin Faros Hexoskin

# of genuine 
samples

1 3 5 1 3 5 1 3 5 1 3 5

Image types

Sc2 37.57% 33.28% 32.95% 41.48% 36.45% 34.46% 36.55% 33.58% 34.20% 35.78% 31.12% 30.79%

Sc4 15.93% 13.42% 11.15% 34.01% 12.19% 11.21% 22.98% 16.85% 12.81% 22.49% 10.60% 8.88%
Sc10 22.39% 19.78% 18.96% 22.53% 20.47% 19.09% 22.25% 20.74% 20.88% 20.47% 19.92% 18.13%

Sp2 38.09% 38.53% 37.35% 39.11% 33.28% 34.64% 39.48% 38.56% 37.35% 38.78% 36.58% 35.30%

Sp4 34.97% 30.64% 28.62% 35.97% 30.64% 28.62% 40.81% 36.52% 36.21% 33.95% 29.29% 27.76%

Sp10 27.06% 26.83% 26.96% 24.39% 20.95% 21.23% 26.65% 26.79% 26.24% 19.58% 19.03% 18.20%

Mel2 38.71% 37.68% 38.67% 38.34% 39.22% 39.48% 36.44% 36.58% 38.16% 39.26% 38.93% 41.06%

Mel4 39.64% 37.99% 37.75% 35.50% 34.27% 35.68% 38.97% 35.60% 35.78% 38.56% 37.21% 35.62%

Mel10 32.83% 32.69% 30.08% 28.10% 28.79% 27.55% 33.10% 35.16% 34.34% 29.17% 28.90% 26.85%
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32, specified the subset of the training set used in each 
iteration. The maximum number of epochs, assigned at 
either 10 or 20, determined the maximum number of full 
passes of the training algorithm over the entire training 
set. Selecting an appropriate number of epochs is crucial; 
too few can result in under-fitting while too many can 
lead to over-fitting. Additionally, two optimisers, Adam 
and SGDM, were compared. These optimisers serve to 
update the network’s weights during training to minimize 
the loss function, with the selection of optimizer having 
a significant impact on model performance [88]. Early-
stopping techniques can be used to automatically deter-
mine the number of epochs and prevent overfitting [89]. 
However, they may not be useful due to the risk of stop-
ping too early and being sensitive to the validation set 
[89]. In our study, the manual method was used because 
the validation set was small and the hyperparameters had 
to be similar to those of other cases.

In MATLAB, the GoogleNet, ResNet50 and 
DenseNet201 CNNs, which have been pre-trained on 

the ImageNet dataset to classify 1000 classes, are avail-
able to users. In this experiment, rather than training 
the models from scratch, pre-existing models, pre-
trained on the extensive ImageNet dataset, were uti-
lised. In Fig. 8, the layers indicated in colour have been 
incorporated for the purpose of 4-class classifications 
in all CNN models. The remaining layers are in the 
original GoogleNet, ResNet50 and DenseNet201 archi-
tectures. Figure 8 illustrates the fundamental structure 
of GoogleNet (a), ResNet50 (b) and DenseNet201 (c) 
CNN models in activity classification.

In GoogleNet, to prevent overfitting, it was necessary 
to include a dropout layer. An FC layer was adjusted to 
classify 4 activity classes. The Output layer indicates the 
activity classification of the evaluated time-frequency 
representation images. A mean accuracy rate obtained 
from the GoogleNet, ResNet50 and DenseNet201 CNN 
models for activity classification is shown in Table  6. 
The highest accuracy rates for each device are denoted 
in bold.

According to GoogleNet results, the model which 
was used with Hexoskin data had higher accuracy rates 
for spectrogram images while the model with the Faros 
data had better performance for scalogram and Mel-
spectrogram images. Limiting training epochs to 20 
shows minimal improvement in accuracy beyond this 
point. Both optimisation algorithms perform similarly 
when applied to the GoogleNet CNN. Faros device per-
forms better with SGDM while Hexoskin performs bet-
ter with Adam optimiser.

Table 5  The number of images in training, validation and testing 
sets for activity classification

2 sec 4 sec 10 sec

# of images in training 5316 3184 1426

# of images in validation 592 352 157

# of images in testing 1476 884 396

Fig. 8  CNN models in activity classification
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ResNet50 results show the Faros device had bet-
ter classification outcomes than the Hexoskin device. 
Models with 20 epochs and SGDM optimisers in 10-s 
time windows were more successful than those with 10 
epochs and Adam optimisers. It is unclear if one opti-
miser is better than the other. Using scalogram images 
with 10 Adam produced better accuracy rates, espe-
cially with the Faros device. The maximum accuracy 
rate was achieved with the 10 Adam scenario using 
scalogram images with a 4-s time window.

DenseNet201 accuracy rates show that the Faros 
device had higher accuracy rates than the Hexoskin 
device. The Faros device performed best with 20 Adam 
for scalogram and spectrogram images, and 20 SGDM 
for Mel-spectrogram images. The Hexoskin device did 
not show a clear difference between 10 and 20 epochs 
or between the optimizers.

4.3 � Activity‑aware biometric verification
As a general framework, we aimed to classify activities 
and create biometric verification models for each activ-
ity in DL models. We classified activities using different 
CNN models, but could not achieve high accuracy rates 
in activity classification through DL models. There could 
be several factors contributing to this, such as the inad-
equate training of the system and the images selected not 
being distinct enough for the activities.

In DL models, utilising biometric verification with the 
newly assigned class label, regardless of whether the sam-
ples are classified incorrectly or correctly, leads to more 
errors and an unrealistic scenario. This is because of the 
insufficient accuracy rates obtained from DL models in 
activity classification and the negative impact of exces-
sive errors in activity classes on our ability to analyse 
the influence of each activity on biometric verification. 

Table 6  Accuracy rates (%) in activity classification across four individual activities

FAROS HEXOSKIN

10 ADAM 20 ADAM 10 SGDM 20 SGDM 10 ADAM 20 ADAM 10 SGDM 20 SGDM

GoogleNet Sc2 61.80% 68.50% 63.08% 65.04% 59.01% 63.55% 58.74% 62.53%

Sc4 56.79% 69.57% 60.52% 70.81% 60.29% 61.88% 59.73% 56.79%

Sc10 41.41% 53.28% 52.27% 54.04% 49.50% 50.76% 46.21% 56.31%

Sp2 50.34% 53.93% 48.58% 51.90% 50.41% 50.75% 49.66% 48.85%

Sp4 50.34% 49.55% 50.57% 53.62% 53.17% 54.19% 52.49% 55.20%
Sp10 41.16% 49.24% 46.72% 42.68% 50.51% 53.54% 45.20% 40.91%

Mel2 25.00% 52.58% 46.95% 50.81% 25.00% 25.00% 37.20% 49.73%
Mel4 41.52% 50.23% 47.62% 44.57% 25.00% 25.00% 41.29% 46.15%

Mel10 33.59% 25.00% 44.70% 51.01% 25.00% 25.00% 33.33% 41.67%

ResNet50 Sc2 65.58% 67.28% 66.13% 65.31% 61.25% 64.91% 65.18% 61.31%

Sc4 68.55% 67.20% 61.20% 64.48% 62.56% 62.33% 64.03% 64.14%

Sc10 55.05% 44.70% 53.03% 51.26% 58.08% 56.31% 57.32% 60.35%

Sp2 55.01% 55.96% 52.29% 52.78% 51.42% 54.74% 50.07% 49.53%

Sp4 58.60% 61.43% 56.90% 57.47% 54.64% 51.58% 51.70% 52.83%

Sp10 48.49% 53.28% 49.75% 53.28% 46.97% 47.48% 49.24% 54.29%

Mel2 59.35% 57.59% 57.32% 58.33% 59.76% 58.13% 53.39% 53.05%

Mel4 56.90% 56.34% 60.52% 61.09% 57.35% 58.26% 50.68% 59.62%

Mel10 56.06% 45.96% 55.81% 59.60% 49.50% 47.73% 51.26% 50.00%

DenseNet201 Sc2 68.29% 69.85% 68.16% 65.31% 64.43% 64.23% 65.79% 65.11%

Sc4 65.16% 69.34% 65.84% 63.69% 65.05% 62.44% 65.16% 63.91%

Sc10 55.30% 50.25% 49.75% 54.29% 53.79% 59.34% 57.07% 58.84%

Sp2 56.57% 60.43% 52.98% 55.83% 54.07% 55.69% 51.36% 54.00%

Sp4 53.62% 57.47% 54.30% 54.64% 55.66% 54.64% 52.49% 53.51%

Sp10 47.73% 58.08% 51.52% 54.55% 47.73% 53.54% 49.24% 53.03%

Mel2 60.84% 59.15% 60.37% 62.13% 56.98% 56.44% 55.42% 56.64%

Mel4 63.01% 61.09% 58.60% 65.50% 54.07% 53.28% 57.69% 58.24%
Mel10 47.98% 50.76% 57.58% 58.33% 46.21% 43.94% 51.01% 55.30%
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Therefore, we manually divided time-frequency repre-
sentations into real activity classes and used ResNet50 
and DenseNet201 CNN models for biometric verifica-
tion. Since this study is a follow-up phase of Sect. 4.1, all 
hyperparameters and procedures (see Figs. 6 and 7) were 
identical in CNN models. Table  7 includes information 
on the number of images used for training, validation and 
testing per activity in 2, 4 and 10 s time windows for both 
CNN structures.

This study is important to see if using activity clas-
sification can improve the direct biometric verifica-
tion model from Sect.  4.1. Moreover, the study aims to 
investigate the impact of different activities on biometric 
verification. Table  7 shows a decrease in the number of 
training images as the time window size increases. How-
ever, the number of heartbeats in the images increases 
correspondingly. As the enrollment time increases, the 
number of images in the training set of the DL model 
decreases, which affects the EERs. Whether these are 

sufficient for biometric verification can be evaluated by 
examining the EERs. Since testing the model for only one 
user would be insufficient to evaluate the reliability of the 
model, we tested the model for the same pairs of subjects 
as described in Sect. 4.1.

Table 8 shows the EERs of the two devices tested using 
the ResNet50 CNN model while Table 9 shows the EERs 
of the DenseNet201 model for each activity.

For both CNN models, when analysing the effective-
ness of time-frequency representations, it was found that 
the scalogram had the lowest EERs, followed by the spec-
trogram in the second place, and the Mel-spectrogram in 
the last place. The optimal results for scalogram images 
are achieved with 4-s time windows, followed by 10-s 
time windows, and then 2-s time windows. Furthermore, 
cases containing 3 and 5 genuine samples generally out-
performed 1 sample cases while containing similar EER 
results. For both devices, activities that involved less 
movement (i.e. resting and standing) generally achieved 
more successful results than those that involved more 
movement (i.e. walking and uphill walking). The 10-s 
time windows for Mel-spectrogram and spectrogram 
images yield the lowest EERs, followed by the 4-s time 
windows and then the 2-s time windows cases. EER 
results alone are not sufficient to evaluate the reliability 
of the biometric model. It is also necessary to mention 
the rates of samples that the model incorrectly accepts 
(FAR) or incorrectly rejects (FRR). In a reliable model, 

Table 7  The number of images in training, validation and testing 
sets for each activity [61]

2 s 4 s 10 s

# of images in training 1254 748 330

# of images in validation 308 187 88

# of images in testing 170 102 46

Table 8  Biometric verification performances of ResNet50 CNN model in terms of EER for each activity

Activities Resting Walking Standing Uphill walking

Devices # of genuine 
samples

1 3 5 1 3 5 1 3 5 1 3 5

Image types

Faros Sc2 19.12% 17.21% 20.00% 28.97% 28.38% 28.38% 28.38% 21.76% 22.50% 23.38% 30.59% 30.59%

Sc4 6.99% 7.23% 6.25% 5.88% 4.17% 4.17% 7.60% 5.88% 6.13% 11.52% 11.03% 9.80%
Sc10 12.62% 10.45% 10.99% 16.97% 13.71% 13.71% 13.17% 12.62% 10.99% 20.77% 19.27% 18.60%

Sp2 24.56% 23.53% 25.15% 31.91% 31.62% 29.12% 30.15% 26.47% 26.03% 34.12% 32.94% 33.53%

Sp4 28.43% 28.92% 26.72% 26.72% 23.53% 24.75% 30.15% 27.94% 28.43% 37.44% 34.07% 33.64%

Sp10 17.51% 16.97% 16.43% 19.14% 12.62% 10.45% 15.34% 14.80% 14.80% 25.67% 22.60% 22.60%
Mel2 28.53% 30.74% 29.26% 36.03% 37.21% 37.06% 32.35% 33.38% 34.41% 35.15% 35.88% 36.91%

Mel4 27.70% 26.72% 28.43% 29.17% 29.17% 30.15% 35.29% 33.82% 35.05% 33.82% 34.31% 36.27%

Mel10 19.57% 18.48% 18.48% 21.27% 16.85% 15.84% 23.91% 23.37% 23.91% 32.07% 29.35% 29.35%
Hexoskin Sc2 25.44% 21.56% 21.98% 26.08% 26.55% 24.20% 26.55% 24.79% 22.86% 25.64% 24.35% 22.22%

Sc4 0.98% 0.98% 0.74% 4.29% 4.04% 3.80% 0.61% 0.61% 0.49% 8.24% 6.72% 7.43%

Sc10 15.83% 13.12% 12.03% 16.38% 9.86% 15.97% 14.13% 12.50% 9.24% 22.28% 22.28% 18.34%

Sp2 30.82% 26.90% 26.47% 33.51% 31.35% 30.96% 33.09% 31.32% 31.03% 38.25% 36.40% 35.76%

Sp4 25.74% 23.53% 21.57% 17.40% 16.42% 16.24% 22.79% 21.65% 19.54% 29.06% 26.65% 25.61%

Sp10 12.62% 10.99% 8.82% 16.43% 12.62% 10.99% 11.75% 9.29% 8.27% 23.71% 21.54% 19.99%
Mel2 38.28% 36.47% 35.44% 37.65% 36.62% 36.47% 37.35% 36.32% 35.44% 39.44% 37.65% 37.80%

Mel4 31.35% 31.63% 31.37% 30.92% 31.67% 32.51% 34.88% 33.57% 33.29% 33.08% 34.18% 34.81%

Mel10 25.54% 23.91% 23.12% 23.71% 21.47% 21.74% 23.37% 21.20% 20.11% 28.00% 25.66% 25.72%
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these ratios are generally expected to be close to each 
other.

In Table 8, when we examined the Sc4 standing activity 
case, where the lowest EER was 0.49%, the mean FAR was 
measured as 0.49% and the FRR was 0%. When we com-
pare the results obtained from the activity-aware model 
with the EERs from Sect. 4.1, we can see that the EERs 
for all activities in the activity-aware model are generally 
lower than they were in Sect. 4.1. The number of train-
ing and validation images in Sect.  4.1 is higher than in 
the activity-aware model. Even in that case, the proposed 
framework shows better performance than direct biom-
etric verification. Although Hexoskin and Faros devices 
achieved very close results in the activity-aware model, as 
in Sects. 4.1 and 4.2, it was observed that the Faros device 
was slightly more successful in general performance than 
the Hexoskin device in the ResNet50 model.

In Table  9, for the Faros device, the lowest EER 
results were obtained from the walking activity for 
all image types, unlike other models. However, as a 
general trend, the most successful activity is the rest-
ing activity. In addition, 1 sample cases (i.e. minimum 
genuine sample size in enrollment) for the same device 
have also achieved very successful results. As a gen-
eral idea, using more samples yields lower EER results. 
However, the sample used in the recording is randomly 
selected and very successful results can be obtained 

in the 1 sample case since its discrimination might be 
higher among other images. For the Hexoskin device, 
it appears that the results are consistent with other 
devices and the Resnet50 model overall. The best per-
formance on this device was obtained in Sc4 stand-
ing activity cases. It achieved 0.49% EER results for all 
genuine sample sizes (i.e. 1, 3 and 5). In addition, 0.49% 
FAR and 0% FRR were obtained in all cases. In this con-
text, it has shown better performance than all other 
devices and models. When presenting both the best 
and worst outcomes, we observed the following results 
during the training of the DenseNet201 model, which 
we recommend for the Hexoskin device, using Mel2 
images. The model achieved a validation accuracy rate 
of 97.40%. However, in the P11-P12 and 1 genuine sam-
ple case, the results were less favorable, with an EER of 
46.47%, a FAR of 71.77%, and a FRR of 20%.

When comparing the Resnet50 and DenseNet201 mod-
els in terms of their results, it is typically observed that 
the DenseNet201 model yields lower EER results across 
all cases. Considering the best performances, the Faros 
device achieved 4.17% EER in the ResNet50 model and 
4.29% EER in the DenseNet201 model in the Sc4 walking 
case, while the Hexoskin device achieved 0.49% EER in 
both models in the Sc4 standing case. From this observa-
tion, it can be concluded that the DenseNet201 model is 
more effective when used with the Hexoskin device while 

Table 9  Biometric verification performances of DenseNet201 CNN model in terms of EER for each activity

Activities Resting Walking Standing Uphill walking

Devices # of genuine 
samples

1 3 5 1 3 5 1 3 5 1 3 5

Image types

Faros Sc2 20.44% 19.26% 19.56% 27.65% 28.38% 27.21% 21.18% 23.53% 23.53% 29.56% 31.91% 30.44%

Sc4 8.21% 7.72% 6.74% 5.39% 5.15% 4.29% 4.41% 5.15% 4.66% 11.03% 12.50% 10.78%
Sc10 11.96% 10.33% 9.24% 17.39% 14.67% 13.59% 15.76% 13.17% 12.08% 18.06% 20.23% 19.14%

Sp2 25.15% 26.32% 24.41% 33.97% 35.15% 32.50% 31.88% 28.38% 27.65% 36.03% 35.74% 35.44%

Sp4 23.28% 23.04% 25.49% 23.28% 26.23% 25.74% 25.98% 29.17% 26.72% 35.42% 29.72% 28.92%

Sp10 18.60% 18.06% 16.43% 19.69% 12.08% 10.45% 17.51% 18.60% 16.43% 25.12% 24.58% 25.67%

Mel2 29.41% 30.29% 30.00% 36.18% 36.40% 37.35% 33.53% 33.97% 32.65% 34.56% 35.44% 35.44%

Mel4 31.62% 31.62% 32.84% 30.64% 31.86% 29.90% 35.05% 35.54% 35.76% 34.56% 35.05% 35.54%

Mel10 20.11% 18.48% 20.11% 17.39% 18.48% 21.74% 24.46% 22.28% 21.74% 27.72% 30.98% 29.35%

Hexoskin Sc2 19.12% 15.59% 15.59% 27.65% 25.59% 22.50% 20.00% 17.79% 17.21% 24.56% 24.41% 22.79%

Sc4 1.96% 2.94% 2.94% 3.19% 2.21% 2.45% 0.49% 0.49% 0.49% 5.64% 6.62% 6.86%

Sc10 13.05% 11.41% 10.87% 10.06% 9.51% 8.42% 9.51% 8.42% 6.79% 19.57% 17.93% 17.96%

Sp2 29.71% 26.18% 25.74% 28.09% 28.09% 25.59% 27.94% 28.68% 28.98% 31.91% 30.59% 31.18%

Sp4 22.79% 22.79% 20.10% 16.91% 14.46% 14.71% 20.34% 20.10% 18.63% 27.66% 28.74% 27.65%

Sp10 8.82% 8.27% 7.73% 8.82% 6.64% 6.10% 7.73% 7.19% 5.56% 21.86% 20.23% 20.77%

Mel2 35.59% 35.59% 35.91% 35.88% 35.74% 36.03% 38.82% 35.59% 36.62% 39.01% 38.24% 38.97%

Mel4 32.11% 30.64% 32.35% 31.13% 29.90% 30.15% 36.61% 35.88% 33.18% 38.24% 36.98% 35.48%

Mel10 22.83% 23.91% 22.83% 20.83% 20.92% 19.57% 21.74% 20.11% 18.48% 24.73% 22.60% 20.99%
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both CNN models obtained similar results for the Faros 
device.

Table 10 compares results from direct biometric verifi-
cation and activity-aware models. To obtain Table 10, the 
mean of the EERs obtained for each activity in Tables 8 
and 9 was calculated, and the EERs from Table  4 were 
subtracted from this value (i.e. mean (Table 8 or Table 
9) - Table 4). When comparing Table  3 and Table  7, it 
becomes evident that the activity-aware biometric veri-
fication case utilied less training data. This is due to the 
fact that samples were divided based on their activities 
and analysed separately within the biometric verification 
model. Table  10 highlights the differences between the 
two cases and shows that the proposed biometric verifi-
cation framework achieves better results.

5 � Discussion
After examining ResNet50 and DenseNet201 CNN mod-
els, which are known to be highly effective DL studies, 
we tested various parameters. Activity-aware verification 
consistently achieved more successful results than direct 
biometric verification in both cases. Our study enables us 
to easily interpret the improvement in the performance 
of both medical and wearable devices.

The difference between activity-aware biometric verifi-
cation and direct verification is most significant in spec-
trogram and scalogram images when using minimum 
sample cases (which are 2-s time windows and 1 genu-
ine sample cases). However, the difference decreases as 
the number of genuine samples or the time window size 
increases. This indicates that the proposed biometric ver-
ification framework is suitable for real-life applications, 
particularly for short enrollment times. However, when 
analysing Mel-spectrogram images, it was found that the 
difference between activity-aware and direct biometric 
verification EERs is highest when using 5 genuine sam-
ple cases and 10-s time windows. This is due to the fact 
that Mel-spectrogram images contain less information 
compared to other image types. With an increase in time 
window size, more information can be obtained from the 
image, resulting in better results in activity-aware models 
during analysis.

It has been observed that EERs generally decrease 
as the enrollment time used in biometric verification 
increases. However, the best performances were obtained 
from Sc4 cases. Our results demonstrate competitive 
outcomes in biometric verification in terms of EERs 
when compared to the results obtained from using the 
Deep-ECG [78], CNN+LSTM [90], EfficientNetB5 [91] 
and ECGXtractor [35] CNN models. In addition, these 
studies did not utilise short enrollment times. Obtaining 
low EERs even in short enrollment periods is vital for the 
real-life applicability of the proposed model. For example, 

if the proposed model is considered to be used on a 
smartwatch, the smartwatch can collect ECG data dur-
ing the time it is worn and categorise this data according 
to activities. If ECG signals classified by activity are to be 
used for biometric verification (e.g. in the cases of wak-
ing the device from the sleep state or getting permission 
to access private data), it is important to investigate short 
enrollment times so that this process can be done quickly 
and with less error.

When we examine the activity classification, although 
the highest classification rate is achieved with the Goog-
leNet CNN model, when the mean performances are 
examined, DenseNet201 is seen as the most successful 
and GoogleNet as the most unsuccessful model. Goog-
leNet CNN model contains fewer learning layers than 
the other two models. The primary reasons for the lower 
accuracy rates in GoogLeNet are the limited amount of 
training data and the insufficient number of learning 
layers used for a classification task involving 4 activity 
classes.

When we examined the parameters in activity clas-
sification, 10 epochs yielded satisfactory results, while 
the 20 epochs cases were generally more successful. The 
SGDM optimiser produced higher results for the Hexo-
skin device, whereas the Adam optimiser achieved higher 
accuracy rates for the Faros device. In the DenseNet201 
model, the highest accuracy rate was obtained from 2-s 
time windows, followed by 4-s time windows and 10-s 
time windows. However, in the ResNet50 and GoogleNet 
models, the order was 4 s, 2 s and 10 s time windows. For 
all the CNN models used, the highest measured accuracy 
rate was obtained from the Sc4 case in the Faros device. 
Within the general biometric verification framework, 
we recommend using a 4-s time window and scalogram 
images for both devices. While both DenseNet201 and 
ResNet50 CNN models are suitable, it has been observed 
that the DenseNet201 model performs more successfully 
in wearable devices.

The images of the time-frequency representations 
show the heartbeat, which varies in quantities depend-
ing on the time window. For instance, in the 2-s time 
window cases, there is an average of 2 heartbeats, while 
in the 10-s time window cases, there is an average of 
10 heartbeats. This shows us that more images are 
obtained in the 2-s case. Therefore, 10-s time windowed 
images have fewer training images, although they con-
tain more heartbeat in each image. In the results, the 
lowest accuracy rates were generally obtained from 
images with 10-s time window cases. This shows that 
the number of images in the training set for activity 
classification is insufficient for the 10-s time window 
cases. In addition, the high accuracy rates of the 4-s 
time windows indicate that both the number of images 
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used in training and the presence of more heartbeat 
(i.e. more information) in the images are important 
for the activity recognition model. Despite yielding 
lower results than our ML models [9] utilising the same 
dataset, our findings provide valuable insights into the 
comparative effectiveness of various time-frequency 
representations, time windows, epoch numbers, opti-
misers, and CNN models. Our study represents the 
first application of the Vollmer dataset [41] to activity 
classification.

For future research, training deep learning models 
from scratch for activity classification might improve 
accuracy. This is because using the ImageNet dataset 
with transfer learning did not yield successful results 
with time-frequency representations. Additionally, the 
created model can be tested using different devices 
with more activities and emotional states.

6 � Conclusions
To conclude, the findings of this study suggest that the 
integration of ECG biometrics and activity classification 
based on ECG signals could potentially enhance authen-
tication methods. The performance of wearable devices 
in this context was found to be comparable to that of 
medical devices. The development and application of this 
system in wearable technology like smartwatches could 
increase device authentication security and reduce the 
influence of daily activities on the authentication system.
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