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Thermo-mechanical finite element (FE)-based simulation technology has been used extensively for virtual pro-
totyping and to predict material degradation and thermal fatigue damage in electronics assembly materials.
However, from an end-user point of view, the deployment of such high-fidelity modelling is not straightforward

{;’i}i: bonds as it requires comprehensive device and material characterisation data that is not readily available through
Thermal fatigue technical datasheets and must be gathered using costly and time-consuming bespoke characterisation tests and
Damage access to metrology instruments. In addition to that, FE modelling requires access to advanced software and
Reliability specialised FE skill sets. Here, a novel physics-informed Machine Learning (ML) approach for developing

computationally fast metamodels for predicting fatigue damage and its spatial distribution at common failure
sites of power electronics components is developed, validated and demonstrated. The significance of this work is
in the attributes and the capabilities of the proposed modelling technology that enable the end-users of power
components to perform insightful model-based assessments of the thermal fatigue damage in the assembly
materials due to different application-specific, qualification and user-defined load conditions, removing current
requirements for comprehensive device characterisations and deploying complex finite element models. The
proposed methodology is demonstrated with two different metamodel structures, a regression decision tree and a
neural network, for the problem of predicting the thermal fatigue damage in wire bonds of insulated-gate bipolar
transistor (IGBT) power electronics modules (PEMs) exposed to passive temperature cycling loads. The results
confirmed that the proposed approach and the modelling technology could offer FE model substitution and the
capability to spatially map highly nonlinear three-dimensional spatial distributions of the damage parameter
over local sub-domains associated with material fatigue degradation and failure.

Machine Learning
Neural network
Physics-informed data

1. Introduction 2021; Rajaguru, Lu & Bailey, 2019; Dudek et al., 2020; Shishido et al.,

2019; Gabriel & Huitink, 2023; Ma, Wang & Blaabjerg, 2016), the

Assuring and assessing the reliability performance of power elec-
tronics modules (PEMs) deployed in different applications remains a key
challenge for the industry (Falck et al., 2018; Wang & Blaabjerg, 2021;
Yang et al., 2020; Gonzalez et al., 2016). Based on current packaging
architectures, power components are most susceptible to thermally
induced fatigue damage of their wire bonds and the die attachment
layer. While many studies contributed to the design-for-reliability and
reliability assessment modelling of PEMs (Li et al., 2023; Huang et al.,
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informed deployment of these modules in different applications remains
challenging for the end users. Driven by considerations for protecting
their Intellectual Property (IP), information and data on internal layout,
topology and geometric dimensions of power components and their bill
of materials are not included in manufacturers’ technical datasheets and
thus are not readily available. To evaluate or assure the required reli-
ability of PEMs under application-specific load conditions, the end-users
must engage in time-consuming and costly activities to characterise the
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component and to assess its reliability performance through simulation
and/or physical testing.

Finite element (FE) modelling, coupled with lifetime prediction
methodologies and models, offers a robust solution for this problem by
predicting damage metrics for the expected failure modes, for example,
the studies reported in Rajaguru, Lu and Bailey (2019), Dudek et al.
(2020), Shishido et al. (2019), Grams et al. (2014). Lifetime prediction
methodologies for PEM have also been extensively developed, with
much of the effort on establishing accurate models predicting the wire
bonds lifetime under accelerated active and passive temperature cycling
conditions that qualify the device for the respective application load.
Most commonly, lifetime models such as Cofin-Manson and Paris laws
require damage parameter values that are semi-empirically correlated to
the cycles to failure. A damage metric is often obtained with FE simu-
lation for the failure of wire bonds and solder interconnections in PEMs.
Such a lifetime modelling approach has been demonstrated extensively,
for example in the studies Rajaguru, Lu and Bailey (2019), Grams et al.
(2014), Busca et al. (2011). However, developing and using such
FE-based computational models to predict damage, and then lifetime,
are complex tasks requiring characterisation data, specialist skills,
computing hardware, and advanced simulation software tools unavai-
lable to many end-users.

One of the main limitations of most of the published modelling work
on thermal fatigue failure of wire bonds in power electronic modules is
the simplified assumptions for their material behaviour. Important
considerations such as temperature-dependent plastic and particularly
creep characteristics are often not included. The creep behaviour of wire
interconnects in power modules is rarely considered but test data sug-
gest it is an important element of the mechanistic response of aluminium
wires (Yang, Agyakwa & Johnson, 2014; Shishido et al., 2021). How-
ever, material constitutive equations of the inelastic behaviour of
aluminium wires, most used as interconnects in power components, are
rarely available. As a result, creep responses are commonly ignored in
FEA studies of power modules.

In this work, the authors address the above position, and the chal-
lenges related to that, by advancing their previous work for developing
fast, compact, and user-friendly damage prediction models using multi-
quadratic interpolation metamodels (Stoyanov, Tilford, Shen, & Hu,
2024) into machine learning (ML) modelling methodology. It takes
advantage of the combined deployment of accurate material models and
physics-informed damage data with a three-dimensional spatial location
label. The damage datasets are synthetically generated using
high-fidelity ~thermo-mechanical simulations. Unlike non-linear
response surface methodology-based studies (Tauscher et al., 2023;
Rajaguru, Stoyanov, Lu & Bailey, 2013; Ji et al., 2015) and relatively
complex numerical algorithms for model order reduction of full-scale
finite element models (Hassan et al., 2024), the proposed approach
features simplicity and improved accuracy. A novel attribute is associ-
ated with an enhanced level of fidelity that enables, thanks to the
deployment of machine learning, the prediction and visualisation of the
damage parameter spatial distribution at the local failure site of interest
in the power component. The proposed use of ML models protects the
manufacturer’s intellectual property because they do not require any
information about the packaging design, the internal component layout
and topology, and the bill of materials. At the same time, they can be
deployed by end-users of power devices with ease, to allow assessing the
damage under user-defined application loads and visualise the damage
distribution. This would allow for the informed deployment of power
electronics components across different applications through a better
understanding of their reliability performance under respective load
conditions.

2. Methodology

The proposed modelling methodology features several key attri-
butes. Firstly, this is the synthetic generation of physics-informed
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datasets for the predicted damage parameter using results from high-
fidelity non-linear finite element thermal-mechanical simulation.
These synthetic data are required to construct and validate the proposed
machine-learning model structures. Secondly, the complete automation
of the steps associated with the batch setup of the finite element models
and load cases, the simulation runs of these scenarios, and the processing
of the damage parameter predictions are also critical attributes of the
reported computational approach that are required to make it feasible
and practical from an implementation point of view.

First, a fully scripted high-fidelity parametric finite element model
generation and design-of-simulations based on several load-case setups
and analysis runs are carried out for the PEM structure of interest. The
models are designed to enable assessing the damage level at anticipated
failure sites in the power component (e.g. in wire bonds, solder
attachment layer, etc.) as a function of user-defined temperature cyclic
loads. The proposed methodology utilises a series of high-fidelity ana-
lyses in the thermal load design space which allow for generating
physics-informed synthetic data that embeds the relationship between
the load condition and the damage spatial distribution across the failure
site of interest. These labelled datasets are then deployed in the
regression machine learning of the selected model structures such as
those demonstrated in this work Neural Network and Decision Tree
models. The models are computationally fast metamodels that can
provide predictions not only for a single representative damage char-
acteristic value associated with the failure mode and failure site (e.g.
wire bond cracking and wire liftoff) but also a much more detailed and
insightful prediction for the spatial distribution of the damage param-
eter across the failure site. The latter is a very important and novel
attribute of the proposed modelling approach as it enables a robust
deployment of different lifetime models in the public domain that may
have different definitions of the required lifetime model input value of
the damage metric. Such damage metrics are often obtained through a
location-dependent or a spatial sub-domain-dependent calculation (e.g.
volume-weighted average) using the respective damage parameter
values in that spatial domain.

The methodology steps are visually outlined with the block diagram
given in Fig. 1 and involve the following:

e Component Characterisation Data. The power component of inter-
est is fully characterised in terms of internal structure, geometric
dimensions, bill of materials and material properties and their non-
linear behaviour. As we envisage the methodology to be used by
power electronics manufacturers, who can deliver ML models to end-
users without disclosing IP, the component characterisation data will
be typically readily available. A critical sub-step is the derivation or
deployment, if readily available, of accurate material constitutive
laws for the non-linear material behaviour of assembly materials.
Loading Conditions Data. The loading condition such as tempera-
ture cycling is parameterised. These load parameters are also NL
model input parameters. Other parameters can be considered
without any limitation.

FE Modelling and Automation of Analyses. A parametric finite
element model is developed using the characterisation data, and FE
simulation runs are scripted to allow the automation of all analyses
for a defined set of data points in the design space of the para-
meterised load. An automated run of the FE simulations is executed.
FE predictions for a defined damage parameter about a failure mode
and mechanisms of the power component become available.

e Physics-Informed Datasets. A spatial subdomain associated with the
failure site of interest is defined. Extracting the FE prediction/data of
interest from all analyses is scripted to enable the automation of this
step. For the defined failure site and its spatial domain, the associated
mesh element locations (centre coordinates) are gathered along the
respective FE predictions for the damage parameter.

Extended Datasets and Data Labelling. The physics-informed data-
sets are processed into the format of multi-variate data points
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Fig. 1. A workflow diagram of the proposed damage prediction modelling methodology conceptually visualised for the problem of thermal fatigue of wire bonds in
power components. Metamodelling based on physics-informed dataset generation and use, and Machine Learning model development.

(vectors), with the cyclic load parameters and the spatial location
coordinates being their components. The data points are labelled
with the associated damage value, as predicted by the FE simulation,
for the respective load and spatial location within the defined failure
site spatial domain.
ML Model Development. A subset of the data (training dataset) is
used to build a metamodel. Two model structures are suggested, a
Decision Tree and a Neural Network, both with excellent computa-
tional and predictive power characteristics. Implement 3D visual-
isation graphics of the metamodel results through a spatial domain
abstraction of the failure site.
e Metamodel Validation. Validation of the ML models is performed
using the balance of the data (the validation dataset), to assess model
predictive power & accuracy.

3. Power component and thermo-mechanical finite element
model development

3.1. IGBT power electronic module and finite element model

The application that is used to showcase the outlined physics-
informed machine learning and damage prediction modelling

methodology described in Section 2 focuses on a conventional power
electronic module (PEM) and its thermal fatigue damage response under
temperature cycling loads. The investigated module features an
insulated-gate bipolar transistor (IGBT) power semiconductor device
and a typical wire bond-based packaging architecture. Fig. 2 shows a
schematic outline of a typical IGBT power module assembly. In this
package, the Si devices such as the IGBT power chip and diodes are

Bus bar

Bus bar

Silicone Gel
Solder

Diode Cu

[ AL,O, or AIN Substrate
\ L
ALSiC or Cu Baseplate

Fig. 2. A schematic outline of a typical power module package featuring an
IGBT power chip and wire bond interconnection technology.
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attached to a ceramic substrate that is mostly made of Alumina (Al,03)
or Aluminium Nitride (AIN). The substrate has double-sided copper
metallization, in the form of patterned layers with thickness typically
around 300 mm. The copper metallization artwork on the substrate is
formed through direct thermal bonding, hence the reference to the
metalized substrate as a direct bond copper (DBC) substrate. The as-
sembly of the chip and the DBC substrate is attached to the baseplate by
soldering. The baseplate, typically Cu or AlSiN, provides the structural
integrity for the entire package and acts as the interface with the cold
plate or heat sink which are common thermal management solutions for
power modules.

The PEM investigated in this study is illustrated in Fig. 3a which
shows the internal layout and the land topology of the package, in the
format of a rendered CAD drawing. The external plastic casing of the
module is not visualised to allow revealing the internal construction of
the assembly. Eight wires per IGBT chip are realised to carry out the
current, and each wire has a bond and a stitch to the Si chip, and a bond
at the other end to the copper trace pattern.

The finite element modelling deploys a 3D slice of the full module,
along the full length and through the full thickness of the package, so
that a single wire is fully represented in the modelled domain. Fig. 3b
details the 3D slice section as a CAD model and shows the finite element
mesh at the local level of the wire bond foot and heel at the chip side. In
addition, the materials that made the PEM are also annotated in this
figure. The solder material providing the interconnection between the Si
chip and the copper layer on the AIN substrate, and similarly between
the DBC substrate and the AlSiC baseplate, is SnAg alloy. The thickness
of the solder layers is 100 mm. In the FEA, the 96.5Sn3.5Ag solder is
modelled as visco-plastic with the Anand constitutive law and model
constants reported in Wang, Cheng, Becker and Wilde (2001), Cheng
et al. (2000). The power module uses thick aluminium wires with a
diameter of 375 m. Due to the symmetry plane, only half of the 3D slice
domain shown in Fig. 3b) is used for the FE model and simulations.
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3.2. Material modelling of aluminium wire

In this study, most attention was given to the accurate material
modelling of the Al wire. The reason is that the failure mode of interest
discussed in this study, and to which the modelling approach is tailored
as a demonstration, is the thermal fatigue cracking of the wire bond foot
at the interface with the Si chip. To predict the damage in the wire bond
locally at this location, the aluminium wire needs to be modelled
accurately in terms of its material properties, their temperature de-
pendency, but most importantly accounting for the plastic and creep
behaviour of the aluminium using respective material behaviour
constitutive laws. The material properties of the aluminium wire used in
the finite element analyses are sourced from Shishido et al. (2021);
ASME (2001) and are listed in Table 1.

Both the time-independent plasticity associated with kinematic
hardening and the Bauschinger effect and the primary time-dependent
creep behaviour of the aluminium wire are included. To achieve this,
temperature-dependent constitutive equations for plastic and creep
behaviour of an aluminium wire are derived using the isothermal tensile
test data reported in Shishido et al. (2021).

We considered the non-linear kinematic hardening rule to simulate
the plastic deformation of the aluminium wire which allows the
modelling of cyclic hardening and can capture the Bauschinger effect.
The nonlinear kinematic hardening model for aluminium which is
developed in this work is a rate-independent version of the kinematic
hardening model for the back-stress tensor a proposed by Chaboche
(1989), Chaboche (1991), and obtained by superimposing three

Table 1
Properties of aluminium used in the finite element model (Shishido et al., 2021;
ASME, 2001).

Temperature (°C) -73 20 93 150 204 260
Elastic Modulus (GPa) 73.8 70.3 66.9 64.8 61.4 57.2
CTE (ppm/°C) 24.5

Poisson’s ratio (-) 0.345

Al

SnAg

3D Slice CAD of the
IGBT Power Module

Bill of Materials

Finite
Cu Element
Mesh

(b)

Fig. 3. (a) Topology outline of the power electronic module architecture, with a close view of the IGBT chip and wire bonds, and (b) 3D CAD slice model of the
device along the full length of the module, capturing a single wire, close view of the FE mesh density at the wire bond level, and annotation of the bill of materials.
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evolving kinematic back-stress tensors a;, i = 1,2, 3, as given in the
following equation:

3
a= Zai 0
i—1

The evolution of each back-stress in this material model is defined
with the kinematic hardening rule,

2 . -pl
di = §Cl‘€Pl — }’l—EP [¢4] (2)

. -pl . . .
where C; and y; are model material parameters, ¢ is the plastic strain

rate, and épl is the magnitude of the plastic strain rate. The temperature-
dependent Chaboche model material parameters C; and y; for
aluminium that were derived are detailed in Table 2. The plastic strain
vs stress curves given with this model, at three different temperatures,
are shown in Fig. 4a.

The creep behaviour of the tick aluminium wire follows the Norton-
Bailey type constitutive equation for transient creep derived by Shishido
et al. as part of their experimental and modelling study on tick
aluminium wire (Shishido et al., 2021). The form in which this consti-
tutive law has been reported was not suitable to be taken by most finite
element codes and therefore has been modified to the form of a creep
rate equation under the assumption of strain hardening under variable
stress. The strain hardening creep model that is deployed, and to which
the creep strain versus time data was fitted, is defined with the equation

¢ = Cro% (e)% 3

where & denotes the creep strain, ¢ is the creep strain rate, o is the
applied stress (in unit MPa), and C;, C, and Cs are material constants
related to creep deformation. In this constitutive model, the creep strain
rate dependency on the temperature is captured through the
temperature-dependent definitions of the creep constants, defined as

Cl = mAl/'"
2.076

C=" @
1
C=1-—
m

where both m and A are temperature-dependent material constants
(Shishido et al., 2021):

—1693

A(T)=7.695x10* e 1 (5

m(T) = 8.442 x 107%(T — 273.15)> — 1.824 x 1073(T — 273.15)
+0.4054 ®)

and T is the temperature in the unit of Kelvin. In the above expressions,

2.076
the constant C; has the unit of |MPa~ m sec™!|, and C, and Cs are

dimensionless. The creep strain vs stress curves for aluminium wire
obtained as a non-linear response under stress level of 20 MPa, at three

Table 2
Chaboche kinematic hardening model parameters (temperature dependent) for
Aluminium.

Temp 6o C 21 C2 72 Cs 73
“Q (MPa) (MPa) (MPa) (MPa)

20 19.94 8941 1615 891 123 340 9.9
120 20.99 7259 1655 686 126 254 10.2
220 13.16 4830 1655 448 125 164 10.2
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different temperatures, and based on the constitutive law in Eq. (3) are
given in Fig. 4b.

3.3. FE simulations and fatigue damage predictions

In line with the methodology, the runs of FE thermo-mechanical
simulations of the power module are implemented, in a fully auto-
mated manner, through ANSYS APDL scripting (ANSYS, 2023), where
different thermal cycle load profiles are evaluated with the different
simulation runs. A temperature cyclic load is defined with three pa-
rameters: (1) the low-temperature extreme of the cycle, Tpn, (2) the
temperature range AT of the cycle, and (3) the total duration of the
temperature cycle, t,.,. With this cycle-load parameterisation, the
assumption of having the same temperature ramp times and dwell times
in the cycle is made. This assumption is not a limitation, and separate
(unequal) ramp times/rates and/or dwell times can be added and used
to prescribe a less uniform temperature cycle load.

The FE model generation and load case setup in the parameterised
space of the load-defining parameters is fully scripted using the ANSYS
APDL command language and macro script functionality. This allows for
the complete automation of simulation runs with different temperature
cycle load parameters. For this problem, a single FEA transient simula-
tion of three consecutive temperature cycles with a given profile took
about 50-65 min, depending on the load cycle duration that was
simulated and the associated inelastic strain rates. It was carried out
using shared memory parallel with 16 processors of high-performance
computing run on Intel(R) Xeon(R) processor workstation at 2.20
GHz, with 10 cores and 20 logical processors.

Different failure modes are possible for a power electronics module.
From a reliability point of view, the failure of the wire bonds is of prime
concern. Typically, two thermal fatigue failure modes are observed —
cracking of the wire at the heel location and wire lift-off which is a result
of a crack of the wire at the foot interface with the contact pad, typically
on the chip side. Thermo-mechanical FE simulation results for inelastic
strain or inelastic strain energy density accumulated per temperature
cycle are most used as damage metrics of the assembly materials. In this
investigation, the deployment of material models for the tick aluminium
wire plastic and creep response to temperature cycling loads enabled the
predictions of inelastic (combined plastic and creep) strain range per
cycle, Ae", extracted from the 3rd simulated cycle of the transient
response that ensures a stabilised hysteresis loop. This parameter is a
characteristic indicator of the thermal fatigue damage induced in the
aluminium wire bonds under a given load profile. The distribution and
the magnitude of the A&™ in the spatial domain of the wire foot attached
to the chip can inform about the reliability performance and the severity
of damage and can also allow calculation of cycles to failure through the
deployment of a suitable lifetime model. The local spatial distribution of
the damage parameter is a critical requirement, to allow for the
deployment of different lifetime prediction methodologies where the
damage metric for the lifetime model may be formulated differently.
Commonly, the interfacial layer is used to calculate a volume weighted
average of the damage parameter which ensures a result that is mesh
independent. For this reason, the finite element mesh results are pro-
cessed and observed in the form of mesh element results as opposed to
the more conventional nodal results.

Fig. 5a shows an example of FE simulation predictions for the ther-
mal fatigue damage parameter in the wire bond foot domain next to the
chip, in the form of an inelastic strain range per cycle Ae™. Because of
the deployment of separate material models for the time-independent
plastic behaviour and the time-dependent creep of the aluminium
wire, it is also possible to observe and evaluate the individual contri-
butions of the plastic and creep strain ranges per cycle to the total in-
elastic strain range.

Fig. 5b shows the contours of the plastic strain range per cycle in the
Al wire and Fig. 5c is a similar plot of the creep-related strain, both
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Fig. 5. Example of FE simulation predictions for the load case Tpin = 0°C, AT180°C, t,. = 3600s. (a) Inelastic strain range per cycle (fatigue damage parameter),
Ae™, and its distribution in the Al wire bond foot (chip interface connection). The most critical site is the interfacial region where the crack formation is predicted.
(b) Plastic strain range per cycle, Ae”!, contour plots for the Al wire. (c) Creep strain range per cycle, A&, contour plots for the Al wire.

results are associated with the load case of T, = 0°C, AT = 180°C,
teye = 3600s. In this instance, creep deformation is the dominant
mechanism, with the plastic strain contribution to the inelastic strain
range being less than 10 %. Similarly, such small and in some cases even
negligible pure plastic response of the wire is found across all simulated
load scenarios. This is not surprising and is explained by the very small
strain rates of the passive temperature cycling load where the cycle
duration is very long, in the range of 2400-3600 s. These slow tem-
perature fluctuations favour creep and stress relaxation which result in
wire deformations and associated stresses typically not exceeding the
yield strength. It should be noted here that faster temperature cycles
such as in power cycling will reduce the creep deformation and plasticity
will feature strongly. This only emphasises the importance of choosing

relevant material models to cover all possible behaviours, so that the
response of an assembly material is accurately predicted. In the
remainder of the paper, only the inelastic strain range per cycle will be
used.

4. Physics-informed machine learning models of damage spatial
distribution

4.1. Datasets
The data required for model development using machine learning

algorithms are generated with the parameterised thermo-mechanical
three-dimensional finite element model detailed in Section 3, and the
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automated run of 55 load-case simulations. Each analysis is a simulation
of the PEM response to a particular passive temperature cyclic load
defined with the three temperature profile parameters Ty (°C),
AT (°C), and ty e (s). Thus, a temperature cyclic load condition for any
of the load-case simulations is defined by the triplet of the defined pa-
rameters and mathematically can be expressed as a three-dimensional
vector (Tmin, AT, teycke); »
Here, 45 of the load profiles are used to create the dataset of physics-
informed (through high fidelity non-linear FE simulation) fatigue dam-
age data for the failure site of interest — the wire bond foot — and about
the lift-off failure mode. This data is deployed to develop the machine
learning models through a supervised training process and therefore is
referred to as the training data following machine learning terminology.
The remaining 10 load cases are used only for validation of the devel-
oped Machine Learning models, by assessing their accuracy against the
respective FEA results which are taken as the ground truth.

The cycling load profiles used to generate the training dataset are
defined in a structured manner over a truncated design space for the
load so that the physical feasibility of the cycle definition is retained,
that is the cycle parameters are within the defined range limits. The
following parameter levels are deployed and visually detailed with the
plots in Fig. 6:

i = 1, m, where in this investigation m=>55.

e 5 levels (equally spaced) of T, in the range 0 °C to 144 °C.
e 5 levels of AT (equally spaced), in the range 36 °C to 180 °C.
e 3 levels of t,, defined as 2400s, 3000 s, and 3600s.

The remaining 10 load cases, detailed in Table 3, are not used in the
training of the ML models and are only deployed to validate the devel-
oped models.

The realisation of the ML model capability for mapping the spatial
damage distribution, as available in the case of finite element simula-
tions, is achieved through the following approach. The local spatial
domain of the failure site is selected first, in this instance this is the Al
wire foot, extended to the heel, at the interface with the chip. The three-
dimensional spatial domain is defined in geometric terms by the same FE
model mesh element topology. The damage parameter spatial location
values are associated with the FE mesh element centre locations for the
mesh elements in the defined spatial domain of the failure site (i.e. the
domain shown in Fig. 5a). Because the spatial domain is a full there-
dimensional domain of the wire bond foot, X, Y and Z Cartesian sys-
tem coordinates are deployed to define a spatial location.

The mesh topology of the foot has 486 mesh elements, and therefore
we define 486 spatial locations with coordinates (XJ-, Y, Z),j=12,...,
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486, that correspond to the geometric centres of these mesh elements.

The training dataset for building the ML models is now assembled as
a combination of the thermal load-cycle data points,
(Tmin, AT, teycte), , i=1,2,...,45) and the location datapoints, (X;,Y},
Zj), j =1,2,...,486, resulting in 21,870 data points. Each data point in
this extended dataset is a 6-dimensional vector
(T,m-,17 AT, tye, X, Y, Z),, k=1,2,...,21,870. The data set is normal-
ized over the range [0, (Falck et al., 2018)] as part of the ML develop-
ment procedure. Each of these points is labelled with the respective
damage value Ae™ at that location as obtained from the respective FE
analysis at the location-matching mesh element. The damage values are
also normalized over [0, (Falck et al., 2018)], based on the actual range
found with the training dataset. The same procedure is followed with the
load-cycle cases set aside to generate the datasets for ML model vali-
dation. The size of the validation dataset is 4860 data points.

4.2. Decision tree model development

Decision Tree (DT) regression is a highly effective Machine Learning
algorithm capable of handling and modelling non-linear relationships
and feature interactions in numerical datasets. It works by constructing
a tree-like model structure to predict continuous numerical outcomes.
Each pathway from the root to a leaf node corresponds to a specific
decision rule, providing clarity on how predictions are generated.
Instead of relying on a single regression equation, decision trees divide
the data into regions based on feature value thresholds, minimising an
error metric at each split. The data is divided into regions/nodes based
on measuring the variance and the standard deviation.

The variance within the nodes is the spread of the target variable
value within the node. A node with high variance represents that its
target variables are widely spread and might be beneficial to split
further. Alternatively, it is good to minimize the variance across the
nodes. The higher the variance the better the split. For the dataset in this
study, the decision trees produce excellent results because of the tight
bound characteristics of the within-node clusters, minimizing both the
variance and standard deviation without causing overfitting.

4.3. Neural network model development

The availability of labelled datasets also suits the development of
regression-type Neural Network predictive models. The training dataset
is used to train a regression Neural Network model structure with six
inputs (Tmin, AT, teycle, X, Y, Z), and a single output, Ae™. The MATLAB
scientific programming environment is used to realise the NN model
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Fig. 6. Temperature load-cycle cases analysed with FE simulations to produce the physics-informed training dataset for machine learning modelling. The pair
combinations of T, and AT shown on the left side of the figure are replicated at the three levels of the .. parameter, as illustrated on the right side, thus resulting

in a total of 45 load cases.
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Table 3
Definition of 10 temperature load-cycle cases used for ML model validation.

Power Electronic Devices and Components 10 (2025) 100079

Load Case Ref. Number, #

1 2 3 4 5 6 7 8 9 10
Load Trin (°C) 18 54 90 18 18 18 54 90 18 18
AT (°C) 72 72 72 144 108 72 72 72 144 108
Leycte (S) 2700 2700 2700 2700 2700 3300 3300 3300 3300 3300

development, by deploying a hyperparameter optimisation procedure
during the training process. A fully connected model structure with 3
hidden layers and size of (97, 193, 92), and with rectified linear unit
(ReLU) activation function for the fully connected layers of the neural
network model, were found to minimise the loss function most. The
actual minimisation of the mean squared error (MSE), i.e. the loss
function in the NN training process, was performed with the limited-
memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm
(L-BFGS) (Liu & Jorge Nocedal, 1989). The model structure also deploys
the standardized form of the predictor data, i.e. each numeric predictor
variable is centred and scaled by the corresponding variable mean and
standard deviation given by the dataset parameter’s values.

An important model parameter is the regularization strength of the
Neural Network. To identify the optimal value, the cross-validation loss
of the neural networks with the optimal layers structure is assessed with
different regularization strengths. The optimum value of the regulari-
zation strength to train the final model is selected as the value that
yielded the best-performing model. Here, 5-fold cross-validation is uti-
lised and the mean squared error (MSE) for neural network regression
models is used to inform on the best-performing model. The optimal
value of the regularization strength that yields the best model structure
is identified as 2.05E-06.

5. Results and discussions

The accuracy of the Neural Network and the Decision Tree models is
evaluated using the 4860 data points in the validation dataset. The
predictive power of both models is detailed in Fig. 7. These graphs show
the actual FEA values of the damage parameter plotted against the
predicted values obtained by the ML models. Both models are very
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accurate and have similar performance indicated by the R-squared score
values of about 99.8 %. The RSME values for both models are also listed
in the figure next to the respective model plots, with the Decision Tree
model showing marginally better performance.

The model accuracy indicators suggest that both the DT and the NN
model have a very good predictive power, matching closely the actual
FEA predictions for the parameter of interest ( Ae"). The accuracy is
expected to improve further if the size of the training data is increased.
The damage parameter values, dominated by the creep response of the
aluminium wire, are dependent on and sensitive to the temperature
regime of the cycle and the time duration in a non-linear manner. More
importantly, the damage response A" values at different spatial lo-
cations defined by the mesh topology of the wire foot domain have very
different magnitudes, yet such highly non-linear spatial distribution is
accurately captured with the two investigated models. Even more, the
approach is scalable, particularly in expanding the number of spatial
locations for which the ML model is designed to provide predictions.
This offers some interesting opportunities for reasonably detailed and
informative mapping of physics-based parameter results in 3-dimen-
sional subdomains of a physical system.

As part of this methodology, the visualisation of the ML model results
is needed through mapping the predictions back onto the actual wire
foot spatial domain. To do that, the ML model needs to predict the Ae™
values for a set of data points that cover spatial locations of the domain
of interest, for a given load-cycle profile. With this data available, a
visual mapping using a suitable visualisation software tool can be real-
ised. In this work the visualisation of the ML results is done using Ansys
Workbench and an add-on extension tool — CSV Plot - for mapping
external results on a predefined mesh topology over a spatial domain.
CSV Plot is a post-processing tool, developed by EDR Medeso, that en-
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Fig. 7. ML model predicted values vs. ground truth FEA values of the inelastic strain range per cycle values Ae™ obtained for the validation dataset (4860 data
points). Each data point in the validation dataset represents a cyclic thermal load condition (Tmin, AT, Atcy) and a 3-dimensional (X,Y,Z) spatial location of the wire
bond foot spatial domain: (a) ML model of Neural Network and (b) ML model of Decision Tree.
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ables the creation of custom nodal or element contour plots from CSV
file (CSV, Tool). Therefore, the visualisation requires first to have the
wire foot local spatial domain topology and the corresponding mesh
elements developed or imported in the Ansys Workbench environment,
so that the absolute spatial position of the domain matches the one
assumed with the ML model training. The ML predictions are then
organised as a CSV file where each line contains a spatial point X, Y and
Z coordinates, and the visualised parameter value at that point ( A&™).
To demonstrate the deployment of the two ML models, we explicitly
run the Neural Network, and the Decision Tree models with the input
data that define two of the validation load cases, numbers #4 and #8 in
Table 3. The number of input data points for each case is given by the
number of spatial locations associated with the 3D visualisation mesh
topology of the wire bond foot. The data point parameters associated
with the temperature load definition remain the same as per the
respective validation case.
Fig. 8 demonstrates the FE, DT and NN model predictions for the
A€ at the failure site of interest, for the validation load case #4 (the
load-cycle profile, defined with Ty, =18°C, AT = 144°C and Aty = 3,
300 s). Here, the 3D visualisation mesh topology deploys the same FE
model mesh topology to allow for the direct compassion and bench-
marking of the spatial predictive capability of the ML models versus the
FE model results. This means that the spatial coordinate components of
the input vectors for the ML models use the X-Y-Z coordinates of the
mesh elements centres as in the FE model, within the defined wire bond
foot 3D domain. There is no restriction to utilising a different mesh to-
pology for the visualisation over the same geometric domain and to run
the ML models with these spatial locations to obtain the predictions for
damage. In Fig. 8(b), the contour plot of A&™ is the FE result obtained
from a non-linear transient finite element simulation undertaken using
ANSYS APDL (note: results taken into the ANSYS Workbench using CSV,
Tool for visualisation purposes only). All three plots use the same legend
scale to allow for the visual compassion of the results. The DT and the
NN modelling predictions match the FE contour plot scale bands almost
identically across all mesh element locations. The difference between
the peak value obtained with the Neural Network differs by 0.5 % when

‘Wire bond foot
and heel spatial
mesh domain for
visualisation of
ML model results
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compared with the FE model peak value prediction, and similarly, the
difference in the maximum value predicted with the Decision Tree and
the FE models is 0.9 %.

In Fig 9, a similar comparative analysis is detailed but this time using
the validation load case #8, which is given with the load-cycle profile
Tmin = 90°C, AT = 72°C and Atye = 2,700 s. These results, taken in the
context of the results in Fig. 8 for a different load case scenario, confirm
that changes in the temperature profile load do not affect notably the
spatial distribution of the damage parameter within the failure site
domain under investigation. This is not surprising, because the defor-
mation dynamics of the wire during temperature cycling is driven by the
same factors that are present with any load case, that is the global CTE
mismatch between the assembly materials (here particularly at the local
level between the Si chip and Al wire) and the overall PEM topology and
layout, as well as the given geometric dimensions of the internals. The
critical locations where crack would be anticipated to form first and
propagate are at the wire bond foot interface with the chip and the heel
locations. Failures at these locations are widely reported so these
modelling results agree and confirm that. The capability of the two ML
models to deliver predictions for the damage parameter with FE-
matching accuracy, including in terms of the highly non-linear spatial
distribution of the predictions, means that outputs from the ML models
can enable the calculation of damage values that lifetime models
required, thus supporting reliability predictions for the wire bond fail-
ure. For the load case detailed in Fig. 9, the NN and the DT model pre-
dictions of the maximum absolute value of Ae™ are also very accurate,
deviating only by 1.3 % and 0.3 % from the FE model prediction,
respectively.

The mean value of the relative error of the predicted maximum in-
elastic strain range per cycle Ae™ for the ten validation load cases in
Table 3 is 2.18 % for the Decision Tree model and 1.65 % for the Neural
Network model, and the standard deviations of the relative error are 2.2
% and 0.7 %, respectively.

The ability to achieve good model accuracy is important in the
context of the rationale for carrying out this investigation. From a
practical point of view, assessing the reliability performance of the PEM,
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Fig. 8. (a) The Al wire bond foot at the interface with Si chip spatial domain for model predictions of damage and associated mesh topology for visualisation given
with the mesh resolution set in the FE model. Damage parameter ( Ae™) prediction provided by (b) detailed non-linear finite element analysis, (c) Neural Network
model, and (d) Decision Tree model. Results are for the validation case #4 defined with temperature cycle load Ty, = 18°C, AT = 144°C and Aty = 3,300 s, and
spatial locations of data points given with mesh element centre coordinates (X,Y,Z) of 3D visualisation mesh topology.
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Fig. 9. (a) The Al wire bond foot at the interface with Si chip spatial domain for model predictions of damage and associated mesh topology for visualisation given
with the mesh resolution set in the FE model. Damage parameter ( Ae™) prediction provided by (b) detailed non-linear finite element analysis, (c) Neural Network
model, and (d) Decision Tree model. Results are for the validation case #8 defined with temperature cycle load Ty, = 90°C, AT = 72°C and At = 2700 s, and
spatial locations of data points given with mesh element centre coordinates (X,Y,Z) of 3D visualisation mesh topology.

e.g. wire bond failure, through model predictions of damage and/or
using conventional fatigue lifetime models (Coffin-Manson, Paris, etc.)
need only the results of the damage metric at the failure site only, not
across the entire structural domain. Yet, with the FE approach a full-
order FE model is needed of the entire structure to capture the mate-
rial interactions, all input data for the CAD model, material properties
and their constitutive laws for plasticity and/or creep, and a transient
simulation of the cyclic load, to allow ultimately for a subset of results
that are needed to become available for the damage/lifetime
predictions.

With the proposed approach, such output can be achieved with
acceptable accuracy, by providing suitable in size training data. A few
advantages can be pointed out. Once developed, the ML models allow
for design exploration in the load-cycle parameters. From a PEM end-
user point of view, this is predominantly the parametric space of the
thermal load definition, allowing them to assess the PEM reliability
performance under different load conditions as dictated by the different
applications for which these modules are intended. With the proposed
modelling technology, end-users can do such evaluation without the
need to fully characterise the PEM. Once constructed, the ML models can
be operated and used as real-time models — they provide predictions
instantaneously. In contrast, non-linear FE simulation run times can take
minutes or hours.

6. Conclusions

A novel modelling approach for ML-driven metamodel development
has been formulated and demonstrated for the problem of predicting the
thermal fatigue damage of electronics assembly materials. The compu-
tational framework extends current deployments of metamodels and
machine learning models from the application load domain to the spatial
physical domain. It has the potential to handle temporal predictions in a
similar manner. It takes advantage of the capability and robustness of
ML to model large datasets of highly non-linear data. The proposed
methodology has been successfully validated and demonstrated for a
case study on the thermal fatigue of wire bonds in power electronics
modules.
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The main attributes of the developed modelling approach and the
resulting metamodels that make this work novel can be summarised as
follows:

e Deployment of synthetically generated physics-informed physical
parameter data. This was achieved by high-fidelity finite-element
simulations used to predict accurately the thermal fatigue degrada-
tion and failure of electronics assembly materials. This was assured
by deploying very accurate and experimentally informed non-linear
material behaviour constitutive laws.

Proposed metamodels have accuracy similar to the FE models. They

allow for the spatial mapping and three-dimensional visualisation of

the distribution of the predicted damage parameter onto a local

(failure) site of the physical domain, in a similar fashion as FE

simulations.

e Deployment of highly non-linear machine learning regression met-
amodel structures and model parameters optimisation step to ensure
the optimal model performance in terms of prediction accuracy are
identified.

The advantage of the proposed modelling methodology is that no
data about the semiconductor package is required to run these models,
and the runtime of the analysis is only a fraction of the time that the FE
simulation takes. The proposed models can be generated by the elec-
tronics component manufacturer and provided to the end-users along
with the respective technical datasheet. The authors regard this as a
significant contribution because it allows for the component IP protec-
tion while enabling the end-users to assess the reliability performance of
the part under the loads and conditions of their application in a time and
cost-efficient manner. For the end-users this also removes the re-
quirements for deploying complex characterisation and physical tests,
and for specialised software tools and modelling skill sets.
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