

1 **A well oxygenated eastern tropical Pacific during the warm Miocene**

2

3 **Authors:** Anya V. Hess^{1*}, Alexandra Auderset^{2,5}, Yair Rosenthal^{1,3}, Kenneth G. Miller¹, Xiaoli
4 Zhou⁴, Daniel M. Sigman⁵, Alfredo Martínez-García²

5 **Affiliations:**

6 ¹Department of Earth and Planetary Sciences, Rutgers the State University of New Jersey; New
7 Brunswick, NJ, USA.

8 ²Climate Geochemistry Department, Max Planck Institute for Chemistry; Mainz, Germany.

9 ³Department of Marine and Coastal Sciences, Rutgers the State University of New Jersey; New
10 Brunswick, NJ, USA.

11 ⁴State Key Laboratory of Marine Geology, Tongji University; Shanghai, China.

12 ⁵Department of Geosciences, Princeton University; Princeton, NJ, USA.

13 * Email: anya.hess@rutgers.edu

14

15 **Summary**

16 The oxygen content of the oceans is susceptible to climate change, and has declined in
17 recent decades¹, with the largest effect in oxygen deficient zones (ODZs)², mid-depth ocean
18 regions with oxygen concentrations $<5 \mu\text{mol/kg}$ (ref. 3). Earth system model simulations of
19 climate warming predict that ODZs will expand until at least 2100. The response on timescales
20 of 100s–1000s of years, however, remains uncertain^{3–5}. Here, we investigate changes in the
21 response of ocean oxygenation during the warmer-than-present Miocene Climatic Optimum
22 (17.0–14.8 Ma). Our planktic foraminifera I/Ca and $\delta^{15}\text{N}$ data, paleoceanographic proxies
23 sensitive to ODZ extent and intensity, indicate that dissolved oxygen concentrations in the
24 eastern tropical Pacific exceeded 100 $\mu\text{mol/kg}$ during the Miocene Climatic Optimum. Paired
25 Mg/Ca-derived temperature data suggest that an oxygen deficient zone developed in response to
26 an increased west-to-east temperature gradient and shoaling of the eastern tropical Pacific
27 thermocline. Our records align with model simulations of data from recent decades to centuries
28 ^{6,7} that suggest weaker equatorial Pacific trade winds during warm periods may lead to decreased
29 equatorial upwelling, causing equatorial productivity to be less concentrated in the east. These
30 findings shed light on how warm climate states like during the Miocene Climatic Optimum may
31 affect ocean oxygenation. If the MCO is considered as a possible analogue to future warming,
32 our findings seem to support models suggesting that the recent deoxygenation trend and
33 expansion of the eastern tropical Pacific oxygen deficient zone may eventually reverse^{3,4}.

34

35 **Introduction**

36 Loss of ocean oxygen over the past 50 years, attributed to warming, has adversely
37 affected coastal environments and intensified oxygen deficient zones (ODZs), especially in the
38 eastern tropical Pacific (ETP)^{2,8}. ODZs are water masses characterized by low dissolved oxygen
39 concentrations (generally $<5 \mu\text{mol/kg}$) at ~ 200 –700 meters water depth. They form in regions
40 where upwelling high-nutrient waters fuel high biological productivity⁹. The remineralization of
41 sinking organic matter further drives down oxygen concentration in poorly ventilated
42 intermediate waters, forming the ODZ⁹. Earth system model simulations of atmospheric CO₂-

43 induced warming consistently predict that ODZs will expand until at least 2100 in response to
44 warming-induced decreased solubility. The response on timescales of 100s–1000s of years is
45 uncertain^{3–5}. Some models simulate that enhanced ventilation from the Southern Ocean and/or a
46 concomitant decrease in biological export production in the tropical ocean will reverse the recent
47 deoxygenation trend^{3,4}, whereas others predict persistent ODZ expansion⁵. Here we investigate
48 the response of the ETP ODZ (Fig. 1) to the Miocene Climatic Optimum (MCO; 17.0–14.8 Ma),
49 a potential analog for future warming when temperatures were warmer than today (e.g., bottom
50 water temperatures up to 9°C warmer than present)¹⁰, and compare it with the response during
51 subsequent cooling in the Mid-Miocene Climatic Transition (MMCT; 14.8–12.6 Ma).

52 In planktic foraminifera shells, we measured iodine-to-calcium ratios (I/Ca) and the
53 isotopes of shell-bound organic nitrogen (FB- $\delta^{15}\text{N}$ for “foraminifera-bound $\delta^{15}\text{N}$ ”),
54 paleoceanographic proxies sensitive to ODZ extent^{11,12}, and magnesium-to-calcium ratios
55 (Mg/Ca) as a proxy for temperature in Ocean Drilling Program Site 845 (9°34.950'N,
56 94°35.448'W), which underlies the core of the northern lobe of the ETP ODZ (Fig. 1). I/Ca is
57 sensitive to changes in ODZ intensity¹³. It relies on the fact that in suboxic conditions,
58 (generally ~2–10 $\mu\text{mol/kg}$ but perhaps up to 100 $\mu\text{mol/kg}$; refs. ^{13,14}), such as occur in ODZs,
59 iodate (IO_3^-) is reduced to iodide (I^-)¹⁵. Because iodine oxidation is relatively slow (months to
60 years), waters mixing upwards from the ODZ retain relatively low iodate concentrations despite
61 the high oxygen concentrations above the ODZ¹⁶. This is recorded by foraminifera living above
62 the ODZ as low I/Ca because their calcitic shells incorporate iodate but not iodide¹¹. FB- $\delta^{15}\text{N}$
63 has been used to detect past changes in denitrification^{17,18}, in which bacteria use nitrate (NO_3^-)
64 instead of oxygen (O_2) as the electron acceptor for the oxidation of organic matter; its occurrence
65 in the water column is largely restricted to the ODZs. Denitrification discriminates against ^{15}N ,
66 so its occurrence in the ODZs leaves the remaining nitrate pool with a high $^{15}\text{N}/^{14}\text{N}$ ratio (or
67 $\delta^{15}\text{N}$, where $(\delta^{15}\text{N} = ((^{15}\text{N}/^{14}\text{N})_{\text{sample}}/(^{15}\text{N}/^{14}\text{N})_{\text{atm N}_2} - 1)) \times 1,000\%$). When this high- $\delta^{15}\text{N}$ nitrate
68 is upwelled or mixed into surface waters, it is recorded in surface ocean plankton, including the
69 tissue and shell-bound organic matter of foraminifera^{12,19}, and the shell-bound $\delta^{15}\text{N}$ is preserved
70 over millions of years^{17,18}.

71 Miocene Oxygenation History

72 We analyzed surface- and subsurface-dwelling foraminifera *Dentoglobigerina altispira*
73 and *Dentoglobigerina venezuelana*, respectively, from Site 845. Both species record relatively
74 high I/Ca values during the MCO (4.9±1.0 and 4.9±0.7 $\mu\text{mol/mol}$, respectively, during 15.1–16.0
75 Ma) followed by significantly lower values during MMCT cooling (1.8±0.4 and 1.4±0.4
76 $\mu\text{mol/mol}$, respectively, during 14.8–11.7 Ma) (Fig. 2a). Core top calibrations suggest that I/Ca
77 >~4 $\mu\text{mol/mol}$ characterizes areas where the minimum oxygen concentration in the water
78 column ($[\text{O}_2]_{\text{min}}$) exceeds 100 $\mu\text{mol/kg}$ ^{13,20}. In contrast, in the ETP, I/Ca_{subsurface} <1.5 $\mu\text{mol/mol}$
79 indicates local oxygen concentrations of <7 $\mu\text{mol/kg}$ ¹⁴. Based on the current I/Ca-[$\text{O}_2]_{\text{min}}$
80 calibration^{13,20}, our records suggest that the ETP ODZ was well oxygenated during the warm
81 MCO, with apparently >100 $\mu\text{mol/kg}$ oxygen, similar to the modern South Pacific subtropical
82 gyre where there is no ODZ, and subsequently decreased to <7 $\mu\text{mol/kg}$ during MMCT cooling
83 (Extended Data Fig. 3). The sharp transition from well oxygenated to poorly oxygenated
84 conditions spans ~250 ky recorded in 7.2 m of sediment core and is therefore not artificially
85 prolonged by sediment mixing.

86 In the modern ocean, in areas without a strong ODZ, iodate concentration is relatively
87 constant through the water column (~100 nM range) except for moderate depletions in the mixed

88 layer due to consumption by biological productivity ²¹. In the ETP, iodate concentration is
89 relatively constant in the upper thermocline and mixed layer (<20 nM range), with a strong
90 iodate chemocline in the lower thermocline (~200 nM shift over ~50 water depth) ²². The
91 similarity in I/Ca of the two species is consistent with the findings of Boscolo-Galazzo et al. (ref.
92 ²³) suggesting that *D. altispira* and *D. venezuelana* occupied a depth habitat within the upper 200
93 m of the water column in the ETP during the MCO and MMCT.

94 The FB- $\delta^{15}\text{N}$ records confirm the Middle Miocene deoxygenation trend and further
95 constrain its timing and magnitude. FB- $\delta^{15}\text{N}_{\text{venezuelana}}$ values at Site 845 are relatively low during
96 the MCO and rise by 3.1‰ from 14.7 to 12.6 Ma (Fig. 2b), suggesting little to no ETP water
97 column denitrification during the MCO and increasing denitrification beginning at 14.7 Ma. The
98 lag in FB- $\delta^{15}\text{N}$ rise after the I/Ca shift is consistent with the higher reduction potential of iodate
99 than nitrate ¹¹ (i.e., reduction of iodate at less than ~70 $\mu\text{mol/kg}$ O_2 and nitrate at less than ~5
100 $\mu\text{mol/kg}$) ¹³ and progressive deoxygenation of the ODZ. At Site 872, at the western edge of the
101 northern lobe of the ETP ODZ (Fig. 1), FB- $\delta^{15}\text{N}_{\text{altispira}}$ begins to rise at 13.6 Ma (Fig. 2) ¹⁸,
102 suggesting gradual expansion of ¹⁵N-enriched waters westward from the ODZ. The difference in
103 FB- $\delta^{15}\text{N}$ values between sites may involve the cores' locations relative to the ODZ (Fig. 1). In
104 any case, the values measured at both sites during the MCO are lower than expected in close
105 proximity to a denitrifying environment ^{12,24}. While the FB- $\delta^{15}\text{N}$ record from Site 872 shows
106 decreased denitrification during the MCO, suggesting more restricted geographical extent of the
107 Pacific ODZ ¹⁸, the new I/Ca and FB- $\delta^{15}\text{N}$ records suggest that the ETP ODZ was fully
108 oxygenated during the MCO. A full-scale ODZ with significant denitrification developed only
109 after the transition to a cooler climate.

110 Taken together, these data show that during the warm part of the Miocene (16.0–15.1
111 Ma) the ETP was well oxygenated. By 15.1 Ma, oxygen concentration had begun to fall and by
112 14.7 Ma reached levels conducive to denitrification. By 13.6 Ma, the signal of denitrification in
113 the ODZ increased to the point of strongly impacting nitrate $\delta^{15}\text{N}$ in the western tropical Pacific,
114 indicating a spatial extent more comparable to today.

115 Proposed Mechanism

116 The rapidity of changes recorded in the foraminifera I/Ca and $\delta^{15}\text{N}$ proxies suggest that
117 climate, rather than tectonics, was the primary driver of Miocene ODZ changes. The Central
118 American Seaway, connecting the ETP with the Caribbean, remained open to even deep-water
119 throughflow until the Late Miocene, with no MCO-MMCT-related changes ²⁵. The direct effect
120 of warmer MCO temperatures would have been to augment deoxygenation due to reduced
121 oxygen solubility ²⁶, which in itself would have tended to expand, not contract, the MCO ODZ.
122 Thus, we must turn to changes in ocean circulation and biological productivity to propose
123 explanations for ODZ contraction during the MCO. Models suggest two mechanisms that could
124 enhance ocean oxygenation in warmer climates: (i) increased deep-ocean ventilation from the
125 high-latitude oceans and/or (ii) decreased biological export production in the tropical Pacific ^{3–5},
126 which has been attributed to weaker tropical Pacific trade winds (i.e., Walker Circulation) under
127 warmer climates in the past ²⁷ and under anthropogenic global warming ²⁸. Although the two
128 mechanisms are not mutually exclusive, our Mg/Ca temperature reconstructions, measured
129 alongside I/Ca, provide evidence that the latter played a role during the MCO.

130 Planktic foraminifera Mg/Ca-derived sea-surface temperatures (SSTs) show weak
131 gradients during the MCO zonally along the equatorial Pacific and meridionally from the
132 equatorial Pacific to the Southern Ocean, with these gradients strengthening during the MMCT

133 (Fig. 3a). West tropical Pacific SST was relatively stable over the study period, with $\sim 2^{\circ}\text{C}$
134 cooling at 13.8–13.3 Ma. In contrast, the Southern Ocean cooled by $\geq 6^{\circ}\text{C}$ from ~ 14.2 –11.7 Ma,
135 and the ETP cooled by $\sim 4^{\circ}\text{C}$ throughout the 16.5–11.5 Ma study interval. The equatorial Pacific
136 SST gradient increased between ~ 15.5 and 12 Ma, in step with global cooling (Fig. 3a).
137 Subsurface temperatures in the ETP cooled more than the surface and became more variable
138 starting at ~ 14.6 Ma (Fig. 3b), reflecting that in addition to global cooling there was concomitant
139 shoaling of the thermocline and increased upwelling during the MMCT, as suggested previously
140 on the basis of foraminiferal oxygen and carbon isotopes^{29,30}. More variability in $\delta^{18}\text{O}_{\text{venezuelana}}$
141 during the MMCT at nearby Site U1337 has been attributed to increased upwelling³⁰, consistent
142 with this interpretation. While we cannot rule out that *D. venezuelana* migrated to a deeper depth
143 habitat, the similar I/Ca values for both species throughout our record suggest it did not migrate
144 out of the depths with stable iodate concentrations (i.e., to below the upper thermocline²²).

145 In the modern ETP, fewer nutrients are introduced into the photic zone when the
146 upwelling is reduced (e.g., during El Niño events) due to a reduction in the upward water
147 transport. In addition, there is an accompanying deepening of the thermocline and therefore a
148 decrease in the capacity of the upward water transport to entrain nutrients from below the
149 thermocline water into the subsurface. These coupled changes reduce ETP biological
150 productivity and the flux of sinking organic matter, which in turn allows the ODZ to contract⁶.
151 A reduction in trade winds-driven upwelling, caused by the warmer climate, may explain the
152 contraction of the ETP ODZ during the MCO. An increase in ventilation of the high-latitude
153 sourced equatorial intermediate-depth water might have further contributed to the oxygenation of
154 the ODZ at that time.

155 The reduction in tropical temperature gradients and increased thermocline depth may
156 have been partly due to weakening of the trade winds and thus a deeper thermocline in the ETP
157 during the MCO, resulting in reduced nutrient supply to the surface. As a result, export
158 production was likely less focused in the ETP, leading to lower oxygen consumption in the
159 poorly ventilated thermocline waters of this region and thus contraction and possibly collapse of
160 the ODZ as suggested by our proxy records. During the MMCT, stronger equatorial trade winds
161 raised the ETP thermocline, allowing for greater upwelling and nutrient supply, which focused
162 remineralization and associated oxygen consumption in the ETP, leading to the formation of a
163 strong ODZ (Fig. 4).

164 The rise in FB- $\delta^{15}\text{N}$ during the MMCT was weaker at Site 845 than at Site 872, despite
165 the proximity of Site 845 to the ETP ODZ. Given the paleolocation of Site 845 (Fig. 1), an
166 enhancement of ETP upwelling after the MCO may have allowed for incomplete nutrient
167 consumption at the surface. Partial nutrient consumption, with its associated preference for ^{14}N
168³¹, may have lowered the $\delta^{15}\text{N}$ of plankton and foraminifera relative to the subsurface nitrate
169 pool, thus counteracting a portion of the $\delta^{15}\text{N}$ rise arising from the expansion of the ODZ and
170 thus explaining the smaller FB- $\delta^{15}\text{N}$ rise at Site 845 than at Site 872. This interpretation of the
171 FB- $\delta^{15}\text{N}$ records offers further preliminary support for ETP upwelling changes as the cause of
172 ODZ expansion after the MCO.

173 While investigations of Miocene ETP productivity have not identified a consistent
174 change in productivity from the MCO to the MMCT^{32,33}, the preservation of such a signal is
175 never assured. For example, barite particles used for reconstructing productivity can be reduced
176 to a soluble form and remobilized under suboxic conditions. Also, because remineralization of
177 sinking organic particles happens more quickly in warmer temperatures, relatively warm

178 temperatures during the Miocene may have caused less organic matter to reach the sediment²³.
179 We note that a high-resolution record from site U1338 shows prolonged (~150 ky) periods of
180 enhanced opal accumulation centered at ~14 and 13.8 Ma, coincident with the major cooling of
181 the MMCT. Increased benthic foraminifera accumulation rates after ~13.83 Ma also coincide
182 with the increased opal accumulation rates, offering further support to the hypothesized
183 increased export production during the global cooling step³⁴.

184 **Implications**

185 To the extent that we can use the MCO as an analog for a future warm world, the
186 oxygenation of the ETP at that time supports models arguing that recent deoxygenation trends
187 may reverse in the future, leading to weaker ODZs under global warming. A caveat in this
188 interpretation is that processes with long time scales that were involved in the MCO changes
189 might not be relevant to the coming century. Both upper ocean and deep ocean mechanisms have
190 been proposed for weakening the ETP ODZ under warmer climates¹⁸. Our data provide
191 preliminary evidence for one of the upper ocean mechanisms, specifically, a weakening of the
192 tropical Pacific trade winds during warming^{27,28}. This mechanism operates on interannual and
193 decadal time scales^{6,7}, suggesting that our findings of ODZ oxygenation during the MCO are
194 relevant for the coming decades and centuries of anthropogenic global warming. If so, then the
195 recent (1979–2014) strengthening of the ETP ODZ will give way to ODZ contraction as
196 anthropogenic global warming continues^{7,35}.

197

198 Data Availability Statement: All data generated during this study are available as source data
199 files for figures in which they appear and in the NOAA database ([data doi link](#)).

200

201 Competing Interest Statement: The authors declare no competing interests.

202 **Figure. 1.** Map showing areal distribution and intensity of the ETP ODZ. Oxygen concentrations
203 are reported from the depth of maximum depletion. Shown are the locations of Site 845 at the
204 heart of the northern lobe of the ETP ODZ and Site 872 at its westward extension. Made in
205 Ocean Data View³⁶ using GLODAP 2019^{37,38} data by DIVA gridding data points shown as gray
206 dots using 3:2 x:y grid cell size and excluding outliers.

207 **Brief title:** Map showing areal distribution and intensity of the ETP ODZ

208 **Figure 2.** Geochemical proxies relevant to Middle Miocene ETP oxygenation from sites 845
209 (eastern tropical Pacific; all solid lines, with or without filled circles) and 872 (western tropical
210 Pacific; dashed line and diamonds). Darkness indicate species. Data includes replicates. **(a)** I/Ca,
211 with average and ± 1 standard deviation for the 16.0–15.1 and 14.8–11.7 Ma intervals. **(b)** FB-
212 $\delta^{15}\text{N}$. Oxygen **(c)** and carbon **(d)** isotopes are included for reference, labeled with carbon maxima
213 (CM) events ³⁹ and Miocene maxima (Mi) ⁴⁰.

214 **Brief title:** Geochemical proxies relevant to Middle Miocene ETP oxygenation from sites 845
215 and 872

216

217 **Figure 3.** Middle Miocene temperature. **(a)** Average sea-surface temperature (SST) anomalies
218 by region. Zonal and meridional SST gradients are the differences between curves. Smoothed
219 using 100 ky bins to match resolution at Site 845, presented relative to their 15–16 Ma averages.
220 See Extended Data Figure 6 for records at individual sites. **(b)** Surface and subsurface
221 temperatures in the ETP. Vertical temperature gradient between surface and subsurface species, a
222 measure of the thermocline depth, highlighted with gray shading. Data include replicates.

223 **Brief title:** Middle Miocene temperature
224

225 **Figure 4.** Conceptual model for (a) a strong ETP ODZ during MMCT cooling and (b) ETP
226 oxygenation during the warm MCO.

227 **Brief title:** Conceptual model

228 [Additional references from main figures: ^{41–44}]

229

230 **References**

231 1. Eyring, V. *et al.* Human influence on the climate system. In Climate change 2021: The
232 physical science basis. Contribution of Working Group I to the Sixth Assessment Report of

233 the Intergovernmental Panel on Climate Change. in *IPCC Sixth Assessment Report* (eds.

234 Masson-Delmotte, V. *et al.*) (Cambridge University Press, 2021).

235 2. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during
236 the past five decades. *Nature* **542**, 335–339 (2017).

237 3. Yamamoto, A. *et al.* Global deep ocean oxygenation by enhanced ventilation in the Southern
238 Ocean under long-term global warming. *Global Biogeochem. Cycles* **29**, 1801–1815 (2015).

239 4. Fu, W., Primeau, F., Keith Moore, J., Lindsay, K. & Randerson, J. T. Reversal of increasing
240 tropical ocean hypoxia trends with sustained climate warming. *Global Biogeochem. Cycles*
241 **32**, 551–564 (2018).

242 5. Frölicher, T. L. *et al.* Contrasting upper and deep ocean oxygen response to protracted global
243 warming. *Global Biogeochem. Cycles* **34**, (2020).

244 6. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean
245 hypoxia. *Science* **333**, 336–339 (2011).

246 7. Deutsch, C. *et al.* Centennial changes in North Pacific anoxia linked to tropical trade winds.
247 *Science* **345**, 665–668 (2014).

248 8. Stramma, L. & Schmidtko, S. Tropical deoxygenation sites revisited to investigate oxygen and
249 nutrient trends. *Ocean Sci.* **17**, 833–847 (2021).

250 9. Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical
251 Atlantic and Pacific oceans. *Progress in Oceanography* **77**, 331–350 (2008).

252 10. Steinthorsdottir, M., Jardine, P. E. & Rember, W. C. Near-future pCO₂ during the hot Miocene
253 Climatic Optimum. *Paleoceanogr Paleoclimatol* **36**, (2021).

254 11. Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonate as a
255 paleo-redox proxy during oceanic anoxic events. *Geology* **38**, 1107–1110 (2010).

256 12. Ren, H., Sigman, D. M., Thunell, R. C. & Prokopenko, M. G. Nitrogen isotopic composition of
257 planktonic foraminifera from the modern ocean and recent sediments. *Limnol. Oceanogr.*
258 **57**, 1011–1024 (2012).

259 13. Lu, W. *et al.* Refining the planktic foraminiferal I/Ca proxy: Results from the Southeast
260 Atlantic Ocean. *Geochimica et Cosmochimica Acta* **287**, 318–327 (2020).

261 14. Hardisty, D. S. *et al.* Limited iodate reduction in shipboard seawater incubations from the
262 Eastern Tropical North Pacific oxygen deficient zone. *Earth and Planetary Science Letters*
263 **554**, 116676 (2021).

264 15. Rue, E. L., Smith, G. J., Cutter, G. A. & Bruland, K. W. The response of trace element redox
265 couples to suboxic conditions in the water column. *Deep Sea Research Part I:*
266 *Oceanographic Research Papers* **44**, 113–134 (1997).

267 16. Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea
268 surface. *Environ. Sci.: Processes Impacts* **16**, 1841–1859 (2014).

269 17. Kast, E. R. *et al.* Nitrogen isotope evidence for expanded ocean suboxia in the early
270 Cenozoic. *Science* **364**, 386–389 (2019).

271 18. Auderset, A. *et al.* Enhanced ocean oxygenation during Cenozoic warm periods. *Nature* **609**,
272 77–82 (2022).

273 19. Smart, S. M. *et al.* Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-
274 proxy in the Sargasso Sea. *Geochimica et Cosmochimica Acta* **235**, 463–482 (2018).

275 20. Zhou, X., Hess, A. V., Bu, K., Sagawa, T. & Rosenthal, Y. Simultaneous determination of I/Ca
276 and other elemental ratios in foraminifera using sector field ICP-MS. *Geochemistry,*
277 *Geophysics, Geosystems* **23**, e2022GC010660 (2022).

278 21. Jickells, T. D., Boyd, S. S. & Knap, A. H. Iodine cycling in the Sargasso Sea and the Bermuda
279 inshore waters. *Marine Chemistry* **24**, 61–82 (1988).

280 22. Moriyasu, R., Evans, N., Bolster, K. M., Hardisty, D. S. & Moffett, J. W. The distribution and
281 redox speciation of iodine in the eastern tropical North Pacific Ocean. *Global*
282 *Biogeochemical Cycles* **34**, e2019GB006302 (2020).

283 23. Boscolo-Galazzo, F. *et al.* Temperature controls carbon cycling and biological evolution in the
284 ocean twilight zone. *Science* **371**, 1148–1152 (2021).

285 24. Sigman, D. M. *et al.* Coupled nitrogen and oxygen isotope measurements of nitrate along
286 the eastern North Pacific margin. *Global Biogeochemical Cycles* **19**, (2005).

287 25. O'Dea, A. *et al.* Formation of the Isthmus of Panama. *Sci. Adv.* **2**, 11 (2016).

288 26. Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: Better fitting equations. *Limnol.*
289 *Oceanogr.* **37**, 1307–1312 (1992).

290 27. Yan, Q. *et al.* Large shift of the Pacific Walker Circulation across the Cenozoic. *National*
291 *Science Review* **8**, nwaa101 (2021).

292 28. Vecchi, G. A. *et al.* Weakening of tropical Pacific atmospheric circulation due to
293 anthropogenic forcing. *Nature* **441**, 73–76 (2006).

294 29. Nathan, S. A. & Leckie, R. M. Early history of the Western Pacific Warm Pool during the
295 middle to late Miocene (~13.2–5.8 Ma): Role of sea-level change and implications for

296 equatorial circulation. *Palaeogeography, Palaeoclimatology, Palaeoecology* **274**, 140–159
297 (2009).

298 30. Tian, J., Ma, W., Lyle, M. W. & Shackford, J. K. Synchronous mid-Miocene upper and deep
299 oceanic $\delta^{13}\text{C}$ changes in the east equatorial Pacific linked to ocean cooling and ice sheet
300 expansion. *Earth and Planetary Science Letters* **406**, 72–80 (2014).

301 31. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface
302 ocean nitrate utilization. *Global Biogeochemical Cycles* **8**, 103–116 (1994).

303 32. Cortese, G., Gersonde, R., Hillenbrand, C.-D. & Kuhn, G. Opal sedimentation shifts in the
304 World Ocean over the last 15 Myr. *Earth and Planetary Science Letters* **224**, 509–527 (2004).

305 33. Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site
306 U1338: Burial, production, and diatom community. *Palaeogeography, Palaeoclimatology,*
307 *Palaeoecology* **433**, 106–128 (2015).

308 34. Kochhann, K. G. D., Holbourn, A., Kuhnt, W. & Xu, J. Eastern equatorial Pacific benthic
309 foraminiferal distribution and deep water temperature changes during the early to middle
310 Miocene. *Marine Micropaleontology* **133**, 28–39 (2017).

311 35. Wu, M. *et al.* A very likely weakening of Pacific Walker Circulation in constrained near-future
312 projections. *Nat Commun* **12**, 6502 (2021).

313 36. Schlitzer & Reiner. Ocean Data View. (2021).

314 37. Olsen, A. *et al.* The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally
315 consistent data product for the world ocean. *Earth System Science Data* **8**, 297–323 (2016).

316 38. Olsen, A. *et al.* GLODAPv2.2019 – an update of GLODAPv2. *Earth System Science Data* **11**,
317 1437–1461 (2019).

318 39. Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A. & Andersen, N. Orbitally-paced climate
319 evolution during the middle Miocene “Monterey” carbon-isotope excursion. *Earth and*
320 *Planetary Science Letters* **17** (2007).

321 40. Miller, K. G., Feigenson, M. D., Wright, J. D. & Clement, B. M. Miocene isotope reference
322 section, Deep Sea Drilling Project Site 608: An evaluation of isotope and biostratigraphic
323 resolution. *Paleoceanography* **6**, 33–52 (1991).

324 41. Sosdian, S. M. & Lear, C. H. Initiation of the Western Pacific Warm Pool at the Middle
325 Miocene Climate Transition? *Paleoceanography and Paleoclimatology* **35**, (2020).

326 42. Holbourn, A. *et al.* Does Antarctic glaciation force migration of the tropical rain belt?
327 *Geology* **38**, 783–786 (2010).

328 43. Sosdian, S. M., Babilia, T. L., Greenop, R., Foster, G. L. & Lear, C. H. Ocean carbon storage
329 across the middle Miocene: a new interpretation for the Monterey Event. *Nat Commun* **11**,
330 134 (2020).

331 44. Leutert, T. J., Auderset, A., Martínez-García, A., Modestou, S. & Meckler, A. N. Coupled
332 Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene. *Nat.*
333 *Geosci.* **13**, 634–639 (2020).

334

335 **Methods**

336 **Carbon and Oxygen Isotope Stratigraphy**

337 Carbon and oxygen isotopes ($\delta^{13}\text{C}$ and $\delta^{18}\text{O}$, respectively) were measured in benthic
338 foraminifera *Cibicidoides mundulus* sp. (4–6 foraminifera per sample from the 212–300 μm size
339 fraction) to better constrain the age–core depth relationship for Site 845 (Extended Data Figs. 1–
340 2). Foraminifera were sonicated in deionized water to remove fine particles (e.g.,
341 coccolithophores) then analyzed using the dual-inlet Optima IR-MS at Rutgers University. Long-
342 term 1-sigma precision for carbon and oxygen isotopes is 0.05‰ and 0.08‰, respectively.

343 **I/Ca and Mg/Ca**

344 I/Ca and Mg/Ca analyses were done on 11–20 monospecific specimens per sample from
345 the 300–355 μm size fraction. I/Ca was measured in surface- and subsurface-dwelling
346 foraminifera *Dentoglobigerina altispira* and *Dentoglobigerina venezuelana*, respectively, at Site
347 845. Foraminifera were gently crushed between glass plates to open the chambers. Chemical
348 cleaning and analysis procedures follow those outlined by Zhou, Hess et al.²⁰. The new method
349 allows for the simultaneous measurements of I/Ca and other paleoceanographic proxies,
350 including Mg/Ca. Zhou, Hess et al.²⁰ show that core-top I/Ca data generated with the new
351 method not only successfully differentiate oxygen-depleted from oxygen-enriched waters but
352 also produce comparable I/Ca data to those used in existing calibrations¹³ (Extended Data Fig.
353 3). Chemical cleaning procedures are those typical for trace element analysis^{45,46}. This involves
354 rinses with ultrapure water to remove fine particulates, rinses with methanol to remove clays,
355 reductive cleaning with ammonium hydroxide, citric acid/ammonia, and hydrazine to remove
356 metal oxides, oxidative cleaning with ammonium hydroxide and hydrogen peroxide to remove
357 organic matter, and a weak acid leach to remove authigenic carbonate. Values were corrected for
358 the effect of reductive cleaning using the equation $\text{I/Ca}_{\text{corrected}} = \text{I/Ca}_{\text{reductive}} * 1.3$ of Zhou, Hess et
359 al.²⁰.

360 Immediately before each run, the foraminifera were gradually dissolved in trace metal
361 clean 0.065N HNO₃ (OPTIMA®) and 100 μl of this solution was diluted with 300 μl trace metal
362 clean 0.5N HNO₃ to obtain a Ca concentration of 4±2 mmol/L. Samples were analyzed by
363 Finnigan MAT ElementXR Sector Field Inductively Coupled Plasma Mass Spectrometer (ICP-
364 MS) operated in low resolution ($m/\Delta m=300$) following the method outlined by Rosenthal et al.
365⁴⁷. Al/Ca, Ti/Ca, Mn/Ca and Fe/Ca were measured to monitor for sedimentary contamination.
366 Direct determination of elemental ratios from intensity ratios requires control of the sample Ca
367 concentration; in each run six standard solutions with identical elemental ratios but variable Ca
368 concentrations, which covered the range of Ca concentrations of the samples, were included.
369 These solutions allowed us to quantify and correct for the effects of variable Ca concentrations in
370 a sample solution on the accuracy of El/Ca measurement (so-called matrix effects) based on the
371 sample's Ca concentration. Matrix corrections were typically <5% for Mg/Ca and I/Ca.
372 Instrument precision was determined by repeated analysis of three consistency standards over the
373 course of this study. To reduce the iodine memory effect and improve washout efficiency,
374 anhydrous ammonia gas was injected into a high purity quartz cyclonic spray chamber
375 (Elemental Scientific, ESI), raising the pH of the injected sample (>9.14). The ammonia gas also
376 likely stabilized the iodate in the solution^{20,48}. The long-term precision of the consistency
377 standard is 0.36 $\mu\text{mol/mol}$ for I/Ca and 0.13 mmol/mol for Mg/Ca. Black bar in Figure 2a is the
378 average standard deviation of replicate sets from all runs. Replicates are sets of foraminifera
379 from the same sediment sample. Student's t-tests for the populations of data from 15.1–16.0 Ma
380 compared to those from 14.8–11.7 Ma show that the populations are statistically different, with
381 p-values of 4.7×10^{-8} ($n=12$ variance=1.0 for MCO and $n=16$ variance=0.16 for MMCT) and

382 2.2×10^{-6} ($n=7$ variance=0.52 for MCO and $n=24$ variance=0.078 for MMCT) for *D. altispira* and
383 *D. venezuelana*, respectively (one-sided two-sample t-tests assuming unequal variances).

384 Mg/Ca-derived temperatures were calculated using the equation

$$385 \text{Mg/Ca}_{\text{foraminifera}} = ((3.43/5.2) * 0.41) * 0.38 e^{0.09 * T},$$

386 where T is calcification temperature. This methodology is consistent with recent Mg/Ca studies
387 for the Miocene^{41,43,49}. This equation is based on the multi-species equation of Anand et al.⁵⁰:

$$388 \text{Mg/Ca}_{\text{foraminifera}}^{50} = 0.38 e^{0.09 T}.$$

389 Although no correction is applied for salinity and pH, it has been shown that temperature
390 estimates derived from the multi-species equation of Anand et al.⁵⁰ are consistent with estimates
391 using those corrections⁵¹. To adjust for different Mg/Ca in seawater (Mg/Ca_{sw}) during the
392 Miocene, we included a species-specific power term (H) from Evans and Müller⁵²:

$$393 (\text{Mg/Ca}_{\text{sw Miocene}} / \text{Mg/Ca}_{\text{sw modern}})^H$$

394 For consistency with recent studies using Mg/Ca during the Miocene^{43,49}, we used Miocene
395 Mg/Ca_{sw} of 3.43 from fluid inclusions and the species-specific constant H for *Globigerinoides*
396 *sacculifer* of 0.41. To generate the curves presented in figures, temperature data were smoothed
397 using a Savitzky–Golay filter with a third order polynomial and 100 ky time steps.

398 **Nitrogen Isotopes**
399 For each sample, 100–400 individual foraminifera from the species *D. venezuelana* were
400 picked from the 250–400 μm size fraction. 2.5–8.5 mg of foraminifer tests were gently crushed
401 and prepared for analysis, following the adjusted persulfate oxidation denitrifier method for FB-
402 $\delta^{15}\text{N}$ first described for planktic foraminifers by Ren et al.⁵³ and recently updated and described
403 in more detail in Auderset et al.¹⁸. The protocol involves treatment with Na-polyphosphate
404 solution (pH 8) to remove clays, reductive cleaning with dithionite-citric acid solution to remove
405 metal oxides, and oxidative cleaning with potassium persulfate/sodium hydroxide solution to
406 remove organic matter.

407 Next, 2–5 mg of cleaned shell fragments were weighed and dissolved in hydrochloric
408 acid to release organic matter for analysis. Subsequently, nitrogen was oxidized to nitrate by
409 adding basic potassium persulfate solution. Finally, 5 nmol nitrogen of nitrate in the sample
410 solution was converted to nitrous oxide using the denitrifier method, and its $\delta^{15}\text{N}$ was measured
411 by gas chromatography-isotope ratio mass spectrometry^{54–57}.

412 To quantify the precision and accuracy of the corrected isotope values, for the series of 26
413 samples, 3 different in-house (MPIC) foraminifer and coral laboratory standards were analyzed:
414 the coral standard from the taxon *Porites* (PO-1) with $\delta^{15}\text{N}$ of $6.2 \pm 0.3 \text{ ‰}$, a coral standard from
415 the taxon *Lophelia* with $\delta^{15}\text{N}$ of $10.01 \pm 0.4 \text{ ‰}$ ⁵⁸, and a mixed foraminifer standard (63–315 μm
416 size fraction) from the North Atlantic (MSM58-17-1) with $\delta^{15}\text{N}$ of 5.84 ‰ (uncertainty not yet
417 assessed). After calibration with international nitrate isotopic references IAEA-NO3 and USGS-
418 34 and correction for the oxidation blank, the analytical precision for PO-1 was $\pm 0.16 \text{ ‰}$, for
419 *Lophelia* $\pm 0.14 \text{ ‰}$ and for the foraminifer standard $\pm 0.4 \text{ ‰}$ (for each standard 1SD, $n=6$). The
420 oxidation blank per oxidized sample was typically between 0.2–0.5 nmol nitrogen. Because of
421 the limited number of foraminifera, it was not possible to measure replicate samples. The black
422 bar in Figure 2b is the standard deviation of the mixed foraminifer standard for each run,
423 averaged across runs.

424 **ODP Site 845**
425 Ocean Drilling Program Site 845 is closest to the center of the EEP ODZ and the only site
426 in the northern lobe of the ODZ, with sediments from the Middle Miocene. The age-depth model

429 for Site 845 is based on paleomagnetic reversals, biostratigraphy (nannofossils, diatoms,
430 foraminifera), and carbon isotopes (Extended Data Fig. 1). Carbon isotope stratigraphy is
431 correlated to the Holbourn et al. ⁵⁹ record from nearby Site U1338 (Extended Data Fig. 2).
432 Mapped paleo-locations of Site 845 are from Shipboard Scientific Party ⁶⁰; paleo-locations for
433 other sites are from ODSN Plate Tectonic Reconstruction Service
434 (<https://www.odsn.de/odsn/services/paleomap/paleomap.html>) (Fig. 1 and Extended Data Fig. 5).
435 Mi and CM events labeled in figures are from Miller et al. ⁶¹ and Holbourn et al. ³⁹, respectively.

436 Preservation of foraminifera is generally moderate to poor throughout the study interval
437 ⁶². Qualitative microscope analysis shows fluctuations in planktic/benthic ratio likely resulting
438 from dissolution of planktic foraminifera at intervals throughout the section. However, there is
439 no overall change in preservation coincident with the geochemical changes noted at 15.1–14.7
440 Ma and no systematic change in preservation throughout the study interval (Extended Data Fig.
441 4). In this section, we compare data from two species with different preservation potential at Site
442 845 and we compare our data from Site 845 with data from nearby Sites U1337/U1338, where
443 foraminifera are well preserved.

444 I/Ca of foraminifera is robust to diagenetic alteration ⁶³. It has been suggested that, if
445 anything, I/Ca ratios might be lowered if significant secondary calcite is precipitated in oxygen-
446 depleted pore waters ^{63,64}. *D. altispira* have a higher surface-area/shell-volume ratio (lower
447 weight for tests from the same size fraction) than do *D. venezuelana*. Their values are therefore
448 more susceptible to diagenetic alteration due to encrustation ^{65,66}. That I/Ca_{*altispira*} and
449 I/Ca_{*venezuelana*} show the same pattern and that *D. altispira*, which lived in more oxygenated waters
450 further above the ODZ, has consistently higher I/Ca values than *D. venezuelana* for samples with
451 data from both species further supports our interpretation of I/Ca values as primary.

452 The intracrystalline organic matter of foraminifera is well preserved. It has been shown
453 that the nitrogen content and nitrogen isotopic composition are not affected by oxidative
454 degradation, fossil dissolution, or thermal alteration, making FB- $\delta^{15}\text{N}$ a proxy insensitive to
455 diagenesis ⁶⁷. The relatively small variation in nitrogen content over millions of years observed
456 in previous studies ^{17,18} and the lack of correlation between nitrogen content and FB- $\delta^{15}\text{N}$ in Site
457 845 samples further strengthens the assumption that selective degradation of ^{14}N can be excluded
458 as a potential secondary influence on the nitrogen isotopic composition.

459

460

461 **Extended Data Figure 1.** Age-depth correlation for Site 845 Hole A. Size and shape of red
462 boxes for carbon isotope correlation points indicate uncertainty. Oxygen and carbon isotopes are
463 from *Cibicidoides mundulus* sp. measured at this site.

464 **Brief Title:** Age-depth correlation for Site 845.

465 **Extended Data Figure 2.** Correlation of carbon isotope curves between **(a)** Site U1338 and **(b)**
466 Site 845. Site U1338 data from Holbourn et al.⁵⁹. Correlation points labeled 1–4; horizontal bars
467 indicate uncertainty, which is also shown as box sizes in Extended Data Figure 1.

468 **Brief Title:** Correlation of carbon isotope curves between Site U1338 and Site 845.

469 **Extended Data Figure 3.** Calibration of I/Ca and minimum water column oxygen concentration,
470 i.e. oxygen concentration at depth of maximum depletion ($[O_2]_{\min}$). Boxes indicate the $\pm 1\text{SD}$
471 range of I/Ca values for the Miocene Climatic Optimum (MCO) and Mid-Miocene Climatic
472 Transition (MMCT) at Site 845 (Fig. 2a) and their interpreted $[O_2]_{\min}$ from this plot, in the case
473 of the MCO, and from deductions in Hardisty et al.¹⁴ and nitrogen isotopes, in the case of the
474 MMCT. Shading for $[O_2]_{\min}$ matches that in Figure 1. Modified from Zhou, Hess et al.²⁰.

475 **Brief Title:** Calibration of I/Ca and minimum water column oxygen concentration.

476 **Extended Data Figure 4.** Scanning electron microscope images of planktic foraminifera from
477 Site 845 showing outside, inside, and cross-sectional views. Note similar quality of preservation
478 (moderate to poor) throughout the study interval. Scale bars are 50 μ m.

479 **Brief Title:** Scanning electron microscope images of planktic foraminifera from Site 845.

480 **Extended Data Figure 5.** Map showing location of sites used in regional sea-surface
481 temperature compilation. Basemap is modern sea surface temperature from NOAA⁶⁸. Site 845
482 paleo-locations from Pisias et al. ⁶⁹, other paleo-locations from ODSN Plate Tectonic
483 Reconstruction Service.

484 **Brief Title:** Map showing location of sites used in regional sea-surface temperature compilation.

485 **Extended Data Figure 6.** Data used to construct Figure 3a. Sea-surface temperature by region
486 relative to their averages from 16–15 Ma, smoothed using 100 ky bins. Inverted triangles
487 indicate age control points, colored by site. To compare Mg/Ca data from different foraminifer
488 species, some without modern equivalents and therefore lacking species-specific temperature
489 calibrations, we calculate temperatures using the same multi-species equation at all sites (see
490 Methodology). Temperatures derived from TEX₈₆ data are only available for one site and so are
491 presented using the original authors' calibrations ⁴⁴. In constructing Figure 3A, for site with
492 TEX₈₆ data, those temperatures are used rather than Mg/Ca-derived temperatures and in this
493 figure Mg/Ca-derived temperatures are dashed. (a) West Pacific warm pool. (b) Eastern tropical
494 Pacific. (c) Southern Ocean.

495 **Brief Title:** Sea-surface temperature by region.

496 Source Data attached as separate Excel files
497
498 [Additional references from Extended Data Figures and their associated Source Data: ^{42,69–74}]
499
500
501 **Methods References**
502 45. Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for
503 the last 215,000 years: changes in deep ocean circulation and chemical inventories. *Earth*
504 and *Planetary Science Letters* **76**, 135–150 (1985).
505 46. Rosenthal, Y., Boyle, E. A. & Labeyrie, L. Last Glacial Maximum paleochemistry and
506 deepwater circulation in the Southern Ocean: Evidence from foraminiferal cadmium.
507 *Paleoceanography* **12**, 787–796 (1997).
508 47. Rosenthal, Y., Field, M. P. & Sherrell, R. M. Precise determination of element/calcium ratios
509 in calcareous samples using sector field inductively coupled plasma mass spectrometry.
510 *Analytical chemistry* **71**, 3248–3253 (1999).
511 48. Winkelbauer, H. *et al.* Foraminifera iodine to calcium ratios: Approach and cleaning.
512 *Geochem Geophys Geosyst* **22**, (2021).
513 49. Fox, L. R., Wade, B. S., Holbourn, A., Leng, M. J. & Bhatia, R. Temperature gradients across
514 the Pacific Ocean during the Middle Miocene. *Paleoceanogr Paleoclimatol* **36**, (2021).
515 50. Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic
516 foraminifera from a sediment trap time series: Calibration of Mg/Ca thermometry in
517 planktonic foraminifera. *Paleoceanography* **18**, 28-1 28-15 (2003).
518 51. Rosenthal, Y., Bova, S. & Zhou, X. A user guide for choosing planktic foraminiferal Mg/Ca-
519 temperature calibrations. *Paleoceanography and Paleoclimatology* **37**, 17 (2022).

520 52. Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: Nonlinear
521 correction for secular change in seawater Mg/Ca: Deep-time Mg/Ca thermometry.
522 *Paleoceanography* **27**, (2012).

523 53. Ren, H. *et al.* Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age
524 Atlantic Ocean. *Science* **323**, 244–248 (2009).

525 54. Sigman, D. M. *et al.* A bacterial method for the nitrogen isotopic analysis of nitrate in
526 seawater and freshwater. *Anal. Chem.* **73**, 4145–4153 (2001).

527 55. Casciotti, K. L., Sigman, D. M., Hastings, M. G. & Bo, J. K. Measurement of the oxygen
528 isotopic composition of nitrate in seawater and freshwater using the denitrifier method. **74**,
529 4905–4912 (2002).

530 56. McIlvin, M. R. & Casciotti, K. L. Technical updates to the bacterial method for nitrate isotopic
531 analyses. *Anal. Chem.* **83**, 1850–1856 (2011).

532 57. Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to
533 instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method.
534 *Rapid Communications in Mass Spectrometry* **30**, 1365–1383 (2016).

535 58. Leichliter, J. N. *et al.* Nitrogen isotopes in tooth enamel record diet and trophic level
536 enrichment: Results from a controlled feeding experiment. *Chemical Geology* **563**, 120047
537 (2021).

538 59. Holbourn, A. *et al.* Middle Miocene climate cooling linked to intensification of eastern
539 equatorial Pacific upwelling. *Geology* **42**, 19–22 (2014).

540 60. Shipboard Scientific Party. Site 845. in *Proceedings of the Ocean Drilling Program, Initial*
541 *Reports* vol. 138 189–263 (1992).

542 61. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene
543 oxygen isotopes, eustasy, and margin erosion. *J. Geophys. Res.* **96**, 6829–6848 (1991).

544 62. Vincent, E. & Toumarkine, M. Data report: Miocene planktonic foraminifers from the
545 eastern equatorial Pacific. in *Proceedings of the Ocean Drilling Program, 138 Scientific*
546 *Results* (eds. Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A. & van Andel, T. H.)
547 vol. 138 895–907 (Ocean Drilling Program, 1995).

548 63. Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E. & Lu, Z. I/Ca evidence for upper
549 ocean deoxygenation during the PETM. *Paleoceanography* **29**, 964–975 (2014).

550 64. Hardisty, D. S. *et al.* Perspectives on Proterozoic surface ocean redox from iodine contents in
551 ancient and recent carbonate. *Earth and Planetary Science Letters* **463**, 159–170 (2017).

552 65. van Raden, U. J., Groeneveld, J., Raitzsch, M. & Kucera, M. Mg/Ca in the planktonic
553 foraminifera *Globorotalia inflata* and *Globigerinoides bulloides* from Western
554 Mediterranean plankton tow and core top samples. *Marine Micropaleontology* **78**, 101–112
555 (2011).

556 66. Stainbank, S. *et al.* Assessing the impact of diagenesis on foraminiferal geochemistry from a
557 low latitude, shallow-water drift deposit. *Earth and Planetary Science Letters* **545**, 116390
558 (2020).

559 67. Martinez-Garcia, A. *et al.* Laboratory assessment of the impact of chemical oxidation,
560 mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound
561 organic matter. *Geochemistry, Geophysics, Geosystems* (2022)
562 doi:10.1002/essoar.10510728.1.

563 68. National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite
564 Data and Information Service. Geo-polar blended 5 km SST analysis for the full globe.
565 (2021).

566 69. Pisias, N. G., Mayer, L. A. & Mix, A. C. Paleoceanography of the eastern equatorial Pacific
567 during the Neogene: Synthesis of Leg 138 drilling results. in *Proceedings of the Ocean
568 Drilling Program, 138 Scientific Results* (eds. Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-
569 Julson, A. & van Andel, T. H.) vol. 138 5–21 (Ocean Drilling Program, 1995).

570 70. Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene Southern Ocean cooling and
571 Antarctic cryosphere expansion. *Science* **305**, 1766–1770 (2004).

572 71. *Geologic Time Scale 2020*. vol. 2 (Elsevier BV, 2020).

573 72. Barron, J. A. Planktonic marine diatom record of the past 18 My: Appearances and
574 extinctions in the Pacific and Southern Oceans. *Diatom Research* **18**, 203–224 (2003).

575 73. Shevenell, A. E. & Kennett, J. P. Paleoceanographic change during the Middle Miocene
576 climate revolution: An Antarctic stable isotope perspective. in *Geophysical Monograph
577 Series* (eds. Exon, N. F., Kennett, J. P. & Malone, M. J.) vol. 151 235–251 (American
578 Geophysical Union, 2004).

579 74. Shipboard Scientific Party. Site 1171. in *Proceedings of the Ocean Drilling Program, Initial
580 Reports* (ed. Scroggs, J. M.) vol. 189 176 (2001).

581 **End Notes**

582 **Acknowledgments:** We thank Drs. James Wright and Richard Mortlock for providing carbon
583 and oxygen isotope analysis, Dr. Kaixuan Bu for help with trace element analysis, Björn
584 Taphorn for his help with sample preparation for nitrogen isotope analysis, and Dr. Kevin
585 Wyman for help with scanning electron microscope images. We thank Dr. Flavia Boscolo-
586 Galazzo and two anonymous reviewers, whose comments improved the manuscript.

587 **Author Contributions:** AVH, YR, KGM, and AA conceived the study. AVH and YR composed
588 the manuscript, with contributions from AA, DS, and AMG. Geochemical analysis was done by
589 AVH (trace elements) and AA (nitrogen isotopes). YR and XZ supervised the trace elemental
590 analysis and interpretation. AMG and DS supervised the nitrogen isotope analysis and
591 interpretation. All authors reviewed the manuscript.

592

593 Correspondence and requests for materials should be addressed to AVH or YR.

594 Reprints and permissions information is available at www.nature.com/reprints.