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Abstract

Objective. This study investigated the potential of estimating various mental workload levels during
two different tasks using a commercial in-ear electroencephalography (EEG) system, the IDUN
‘Guardian’. Approach. Participants performed versions of two classical workload tasks: an n-back
task and a mental arithmetic task. Both in-ear and conventional EEG data were simultaneously
collected during these tasks. In an effort to facilitate a more comprehensive comparison, the
complexity of the tasks was intentionally increased beyond typical levels. Special emphasis was also
placed on understanding the significance of v band activity in workload estimations. Therefore,
each signal was analyzed across low frequency (1-35 Hz) and high frequency (1-100 Hz) ranges.

Additionally, surrogate in-ear EEG measures, derived from the conventional EEG recordings, were
extracted and examined. Main results. Workload estimation using in-ear EEG yielded statistically
significant performance levels, surpassing chance levels with 44.1% for four classes and 68.4% for
two classes in the n-back task and was better than a naive predictor for the mental arithmetic task.
Conventional EEG exhibited significantly higher performance compared to in-ear EEG, achieving
80.3% and 92.9% accuracy for the respective tasks, along with lower error rates than the naive
predictor. The developed surrogate measures achieved improved results, reaching accuracies of
57.5% and 85.5%, thus providing insights for enhancing future in-ear systems. Notably, most high
frequency range signals outperformed their low frequency counterparts in terms of accuracy
validating that high frequency v band features can improve workload estimation. Significance. The
application of EEG-based Brain—Computer Interfaces beyond laboratory settings is often hindered
by practical limitations. In-ear EEG systems offer a promising solution to this problem, potentially

enabling everyday use. This study evaluates the performance of a commercial in-ear headset and

provides guidelines for increased effectiveness.

1. Introduction

Electroencephalography-based ~ (EEG)  brain—
computer interfaces (BCIs) are a widely investigated
method for acquiring and interfacing brain signals
[1], with applications largely confined to laboratory
and medical settings. The limited use outside these
environments is attributed to the predominant focus
on direct BCI control paradigms [2] which often
feature non-intuitive human—computer-interaction,
coupled with the lack of practical commercial EEG
devices that do not require technical expertise for
operation, potentially awkward head mounts, or

© 2024 The Author(s). Published by IOP Publishing Ltd

electrode gel, for example [3]. BCIs can be classi-
fied into active, passive and reactive interfaces [2].
Active control is achieved by interpreting EEG sig-
nals associated with volitional mental imagery such
as imagined movements to directly control devices
such as computers, wheelchairs, or prosthetics [4].
Reactive BCIs translate EEG signals associated with
designated sensory stimuli, such as a grid of flashing
letters, to make selections corresponding to the stim-
uli, as seen in spellers [5-7]. However, both of these
methods often require extensive user training 8], rely
on sensory stimuli that may feel unnatural or intrus-
ive, and are not always reliable [9]. These issues can
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lead to user demotivation and limit the long-term use
of BCIs [10]. In contrast, implicit or passive BCI con-
trol, which involves passively monitoring the user’s
cognitive or affective state to influence some auxiliary
aspect, can offer a more natural interaction [11-13].

Passive BCIs can be designed to be less sensitive to
decoding errors, potentially making them less notice-
able and distracting to the user compared to direct
BCI control. Multiple affective states can be estim-
ated from EEG such as arousal [14, 15], valence [15,
16] and vigilance [17, 18]. One mental state that has
been extensively researched is mental workload [19—
26]. Previous studies largely utilized various combin-
ations of traditional EEG power spectral bands 8 (5—
7 Hz), a (8-12 Hz),  (13-30 Hz), v (>30 Hz) to
characterize mental workload. A meta-analysis of 24
studies concluded that the § band power, particularly
in the frontal region, is the most sensitive to changes
in mental workload, although « and 3 also show sig-
nificant changes [27]. It is also important to note
that the « band power is generally negatively correl-
ated compared to # and f3, but there also have been
reports of negative 8 correlation, which may be due
to the motor activity required by the tasks [28, 29].
Due to the limitations of scalp EEG, ~ activity has
been less frequently reported in cognitive workload
studies. However, some studies have shown increased
~ band activity with increased workload [30, 31]. It
remains unclear whether this increase is solely due to
brain activity or also due to increased muscle activity
or tension stemming from the frontalis and tempor-
alis muscles associated with changing workload [32].
Furthermore, it should be noted that these tendencies
are often only assessed on data averaged across mul-
tiple participants. The task-related brain activity can
vary substantially across users [24].

As with active and reactive BCIs, the setup of
passive BCIs involves the standard EEG cap, which
requires a tight fit, wet electrodes filled with electro-
lyte gel, and technical expertise to set up the system
[3]. Some progress has been made in the design of
dry electrodes that operate without conductive elec-
trode gel [33]. The downside is that dry electrodes
require additional pressure to maintain scalp contact
and are more susceptible to noise [34]. An altern-
ative approach for recording EEG signals that has
gained popularity in recent years [35] involves the
use of electrodes situated in and around the ear. The
reduced amount of dense hair in those areas elim-
inates the need for electrode gel. Since these devices
can be worn like headphones or in-ear plugs, they
are more user-friendly with increased comfort levels
that make long-term measurements more accept-
able and more inconspicuous to wear in public. This
design, however, also presents specific challenges that
must be addressed. The device must achieve a bal-
ance between practicality and reliability. It needs to be
lightweight and minimally obtrusive to the user, while
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still collecting sufficient data for accurate analysis.
Most study devices incorporate two electrodes in the
ear canal [36-39]. However, some studies have found
this configuration too limiting and have employed
additional electrodes placed either around the ear
[26, 40, 41] or by integrating multiple electrodes
within the earpieces [42]. These electrodes are typ-
ically dry, which introduces common challenges such
as susceptibility to noise [34] and the need for pres-
sure to maintain a good connection for positions
outside of the ear canal. Additionally, the varying
shapes of ear canals can pose problems for electrodes
inside the canal, leading some researchers to use
custom-made individualized earpiece electrodes [38,
42]. Furthermore, muscle movements around the
ear canal, such as those from the auricular muscles,
can potentially induce artifacts in the electrode
signals.

In the last decade, multiple research teams have
reproduced classical EEG paradigms such as event-
related potentials [40-42], arousal/valence prediction
[39], motor imagery [43], drowsiness prediction [37],
steady-state visual evoked potentials [36, 38] and
workload [26] using in- or around-ear electrodes. All
these studies either modified an existing EEG ampli-
fier or developed an original prototype device to be
used in or around the ear.

1.1. Contributions of this study

This study investigates the feasibility of a commercial
in-ear EEG system, the IDUN ‘Guardian’, to estim-
ate different mental workload levels during tasks.
In-ear EEG offers a potential solution to the afore-
mentioned challenges, providing a more streamlined
procedure that could enhance comfort and enable
everyday use. Participants performed versions of two
classical workload tasks, an n-back task and a men-
tal arithmetic task. Both in-ear and conventional EEG
data were simultaneously collected during these tasks.
In an effort to provide a more comprehensive com-
parison, the complexity of the tasks was intention-
ally increased beyond what is typically implemented.
Specifically, four levels of difficulty were implemen-
ted for the n-back task, rather than the typical 2-3
levels used in prior studies [20, 22, 26]. For the men-
tal arithmetic task, a regression-based approach was
employed where the difficulty of mathematical oper-
ations is based on its g-value [44]. The g-value is a
measure of task difficulty that considers the problem
size as well as the need for a carry-over operation and
has previously been utilized in EEG-based workload
prediction [45]. The impact of different workload
levels was analyzed for both tasks and the respective
performances of the in-ear EEG system and stand-
ard EEG systems were compared. Special focus was
placed on understanding the significance of v band
activity in workload estimations. Therefore, each sig-
nal was analyzed across low frequency (1-35 Hz) and
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high frequency (1-100 Hz) ranges. In order to address
some of the limitations of in-ear, a surrogate in-ear
EEG derived from the conventional EEG recordings
was devised and examined. These surrogates consist
of multiple channels, allowing them to overcome the
limited data generated by just two in-ear electrodes
and to apply more advanced denoising algorithms
that leverage the additional data. The study concludes
with recommendations for improving in-ear EEG sys-
tems based on the insights gained from these surrog-
ates, offering guidance for future enhancements and
their application in workload estimation.

2. Materials and methods

Participants were recruited from staff and students
of the University of Southampton and provided
written informed consent in accordance with the
University of Southampton’s ethical guidelines and
the Declaration of Helsinki. Ethical approval was
granted by the University’s ethics committee in March
2023 (ERGO Application ID: 81043). Each experi-
mental session lasted roughly two hours including
preparation time. 17 participants (12 Male, Mean Age
30.8 STD 6.5) enrolled in this study and each received
10 GBP in compensation.

Participants sat comfortably in front of an LCD
screen while connected to 26-electrode EEG, 2-
electrode electrocardiogram (ECG) and 4-electrode
electrooculogram (EOG) wusing BrainProducts’
‘actiChamp plus’ system. Additionally, participants
wore a 2-electrode wireless in-ear EEG system
‘Guardian’ by IDUN technologies and were recor-
ded by an ELP webcam model USBFHDO1M-SFV.
The ‘Guardian’ is a lightweight EEG headset that is
worn around the back of the head and measures elec-
trical brain activity using earbud electrodes. These
electrodes are dry and flexible to provide the neces-
sary skin contact in the ear canal. The ground elec-
trode is located at one of the earhooks. It connects
to the PC via Bluetooth. Figure 1 shows a schematic
image of the headset. The internal measurement unit
to acquire head acceleration data was not accessible
as the device was received during beta testing. EEG,
ECG, and EOG were sampled at 500 Hz, in-ear at
250 Hz, and the video at 30 Hz. All signals were syn-
chronized using LabStreamingLayer [46]. ECG and
video were not included in the present analysis since
the objective is to compare the performance of the
in-ear and conventional EEG signals for estimating
mental workload.

As part of the ‘ActiChamp’ system, ‘ActiCap’ slim
wet electrodes were placed at positions Fp1, F7, F3, Fz,
FT9, T7, C3, Cz, TP9, CP1, P7, P3, Pz, Ol, FP2, F4,
F8, FT10, C4, T8, CP2, TP10, CP2, P4, P8, O2 and
Oz according to the International 10-20 system [47].
Two EOG electrodes were placed above and below the
right eye to capture the vertical eye movement signal
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as well as two near the canthus of each eye for the
horizontal signal. Before inserting the in-ear earbud
electrodes, participants cleaned their ears and coated
the inside of their ears with saline solution using a cot-
ton swab to improve conductivity. Good signal qual-
ity was ensured for each participant by impedance
check and visual inspection for EEG and in-ear EEG.
For in-ear in particular the impedance values for all
our participants were checked to be below 300 k2.
One participant had to be excluded because the in-
ear EEG impedance was not stable. This decreased the
number of participants included in the present ana-
lysis to 16.

2.1. Experimental task

The experiment was divided into two experimental
blocks, (1) decision confidence and (2) mental work-
load, with two experimental tasks each. The order
of the blocks was alternated across participants. For
this study, only the outcome of the workload block is
reported. It consisted of two experimental tasks, the
n-back task and the mental arithmetic task.

The n-back task was performed in four difficulty
levels from 0 to 3-back. Each difficulty level con-
sisted of two blocks of 18 trials each. The first six
participants performed the experiment in order of
increasing difficulty levels while the rest completed
it in pseudo-randomized order of difficulty to exam-
ine the effect of trial order on performance. The
current n-back level was continuously displayed at
the top of the screen to help participants stay on
task. Stimuli were randomized sequences of numbers
from 0 to 9, presented in the center of the screen
for 2.5 s per trial. Each new trial was signaled by a
bell sound, providing additional auditory feedback.
During this time window, participants had to use
the mouse to identify a stimulus as a target or non-
target. A left click indicated a target and a right click
a non-target. Feedback was provided by displaying
the words ‘target’ or ‘nontarget’ on the screen based
on their response. If participants failed to respond
in time, ‘Timeout!” was displayed for 50 ms at the
end of the trial. For the 0-back condition, the num-
ber 0 was the target. Otherwise, a stimulus was a tar-
get if it appeared ‘n’ stimuli earlier in the sequence.
Sequences were generated so that there were exactly 5
targets in each block. The total number of trials was 18
(trials per block) x 2 (blocks per difficulty level) x 4
(difficulty level) = 144. Before starting the task, parti-
cipants were instructed to minimize head movements
to reduce movement-related artifacts. Additionally, a
practice run was conducted where participants had to
correctly identify all targets at each difficulty level to
ensure task compliance.

The mental arithmetic task consisted of the men-
tal addition of two positive integers ranging from
1 to 876, randomly selected based on the inten-
ded difficulty level. Each trial lasted 8.5 s. The
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Figure 1. The IDUN ‘Guardian’ in-ear EEG headset version 2.1.

equation representing the addition to be performed
was displayed in the middle of the screen during the
first 5 s. Afterward, the participant had 3.5 s to type in
the answer using the keyboard and confirm by press-
ing the ‘Enter’ key. A confirmed result would change
the font of the text to italics to give feedback to the
participant. Similarly to the n-back task, ‘“Timeout!’
was displayed for 50 ms at the end of the trial if a
participant failed to respond. The experimental setup
was inspired by [45]. The difficulty of the equation
was altered based on the g-value. This experimental
task was performed for eight difficulty levels, start-
ing from a g-value of 0.7 in uniform increments up
to 4.55. To sample additional difficulty levels, the g-
value of each trial was also randomly perturbed by
adjusting the g-value of the uniform increments by
=+0.3. A total of 18 trials were performed for each par-
ticipant and difficulty level, with the order of diffi-
culty level increasing for the first six participants and
pseudo-randomized for the rest. Similar to the n-back
task, this yields a total of 144 trials per participant: 18
(trials per difficulty level) x 8 (difficulty level). Both
experiments were designed so that each participant
had the exact same number of trials, therefore no tri-
als were excluded from further analysis to ensure bal-
anced datasets.

2.2. Data pre-processing and feature extraction

The pre-processing for both tasks was performed sim-
ilarly, the only difference was the trial window length.
To compare EEG and in-ear recordings, multiple
in-ear surrogates were created from different con-
ventional EEG configurations. The 1-channel in-ear
surrogate was created by using a bipolar derivation
between channels TP9 and TP10. This is the most
similar representation by using the conventional elec-
trodes closest to the ear with the same two-electrode

derivation as the in-ear. The 2-channel surrogate also
consisted of the electrodes TP9 and TP10 but both
channels were referenced to the mean of channels T7
and T8. This configuration simulates in-ear EEG with
an additional reference electrode. The 4-channel sur-
rogate consisted of the channels FT9, FT10, TP9, and
TP10 and was also referenced to the mean of T7 and
T9. This configuration simulates an additional pair of
channels around the ear. The conventional EEG chan-
nels were referenced to the average of the electrodes
located at TP9 and TP10, resulting in 24 total chan-
nels. EOG channels were derived by subtracting the
two vertical EOG electrodes as well as the horizontal
EOG electrodes, respectively.

The recorded signals were pre-processed in two
configurations: (1) filtered between 0.5 and 35 Hz and
down-sampled to 100 Hz and (2) filtered between 0.5
and 100 Hz and down-sampled to 200 Hz. The first is
used for direct comparison to literature as most stud-
ies have not used the v band activity, while the second
examines the potential of using higher frequencies for
the workload estimations. Additionally, a 50 Hz notch
filter was applied to all signals to suppress any power-
line artifacts.

Since EEG and in-ear signals were recorded
from different devices, precise synchrony had to be
ensured. Instead of relying on the native timestamps
from each device, we used the timestamps provided
by LSL. This approach revealed a minor discrepancy
in the native timestamps, which would amount to
a difference of approximately one second after an
hour of recording. To address this, we re-sampled
the down-sampled in-ear signal by interpolating it to
match the LSL timestamps of the conventional EEG at
100 Hz and 200 Hz, respectively. Afterwards, a cross-
correlation between the in-ear signal and the hori-
zontal EOG was performed using a =1 s bound. The
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in-ear signal was aligned to the other measures using
the maximum of this cross-correlation. The hori-
zontal EOG was used because it exhibits a disctinct
and robust response for aligning the in-ear and con-
ventional EEG recordings.

Eye movement artifacts were suppressed in the
resulting signals by creating a linear regression model
to predict vertical and horizontal EOG from each EEG
channel [48]. These predictions were then subtrac-
ted from the corresponding channels. For in-ear and
surrogate channels, this process was repeated using
only the horizontal EOG since the positions of the
electrodes made it unlikely to capture signals associ-
ated with vertical EOG. The removal of EOG signals
in EEG and in-ear was applied to isolate and exam-
ine brain activity relevant to the task. While EOG has
previously been used to estimate workload directly or
to support EEG [49], a supplemental analysis showed
that the combination of neural and ocular data into
a single channel did not significantly change the out-
comes of the present study. For the statistical analysis,
a Wilcoxon sign-rank test with Benjamini—-Hochberg
correction was performed to compare the processing
pipeline performance with and without the addition
of eye movement artifact suppression, while keeping
the remaining pipeline identical. This resulted in 20
tests for each pipeline with none indicating significant
differences between the two conditions as displayed
in table 4 in the appendix. A common average refer-
ence filter [50] was applied to conventional EEG and
the 4-channel surrogate to suppress spatial noise. This
process resulted in 10 different signals:

e Atlower frequency range of 0.5-35 Hz: in-ear EEG,
1-channel in-ear surrogate, 2-channel in-ear sur-
rogate, 4-channel in-ear surrogate, and conven-
tional EEG.

o At higher frequency range of 0.5-100 Hz: in-ear
EEG, 1-channel in-ear surrogate, 2-channel in-ear
surrogate, 4-channel in-ear surrogate, and conven-
tional EEG.

All signals were then divided into epochs based on
the task. For the n-back task, 2.5 s non-overlapping
epochs were used based on the trial duration. For the
mental arithmetic task, 5 s non-overlapping epochs
were used, which corresponded to the task present-
ation time to exclude any movement-related brain
activity generated by the keyboard input. The power
spectral density (PSD) of these epochs was then cal-
culated by using the median of a moving short-time
Fourier transform with 0.5 s overlap and a Hamming
window. The median was used instead of the mean
because it is less sensitive to potential extreme values
that could be acquired by the in-ear EEG since it is
more susceptible to motion artifacts due to its loca-
tion in the ear canal. For the lower frequency range,
frequencies from 1 to 35 Hz with 1 Hz resolution were
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utilized, yielding 35 features for each channel. For the
higher frequency range, frequencies from 1 to 100 Hz
with 1 Hz resolution were utilized, yielding 100 fea-
tures for each channel.

2.3. Workload prediction approaches

For the n-back task, a regularized linear discriminant
analysis classifier was chosen because of the expected
linear relationship between workload and PSD [27]
and the relatively low number of trials for EEG experi-
ments. The classification results are examined for pre-
dicting all four classes, as well as the binary prediction
of the extreme workload levels (0-back and 3-back).
A 5-fold cross validation with hyperparameter optim-
ization of the regularization parameter and the lin-
ear coefficient threshold was performed. These hyper-
parameters were especially important for classify-
ing EEG since they counteracted the large number
of feature dimensions for multi-channel prediction
approaches.

For the mental arithmetic task, ridge regression
was chosen to estimate the g-value directly. To give
a more intuitive representation the g-value was nor-
malized to a range of 0 and 1, respectively represent-
ing the easiest to the most difficult operation possible.
A 5-fold cross validation was used with optimization
of the regularization parameter, again to counteract
the large number of feature dimensions. As an addi-
tional measure of quality, the Pearson’s correlation
between estimated and the true value is reported.

The number of feature dimensions for both tasks
varied for each signal and frequency range. For the
low-frequency range, the number of feature dimen-
sions was 35 for in-ear and 1-channel in-ear surrog-
ate, 70 for the 2-channel surrogate, 140 for the 4-
channel surrogate and 840 for conventional EEG, for
the high frequency range it was 100 for in-ear and 1-
channel in-ear surrogate, 200 for the 2-channel sur-
rogate, 400 for the 4-channel surrogate and 2400 for
conventional EEG for each trial.

3. Results

The average participant task performance (correctly
identifying the target) for the n-back task was 97 +
2.34% for 0-back, 96 £ 4.82% for 1-back, 88 +-1.91%
for 2-back and 82 =4 3.86% for 3-back, while the aver-
age reaction time was 0.74 +0.13 s for 0-back, 0.8 +
0.1 s for 1-back, 1.31+0.11 s for 2-back and 1.36
0.13 s for 3-back. The average participant perform-
ance for the mental arithmetic task is reported in
figure 2. For low difficulty levels the average per-
formance is at nearly 100% and continually decreases
down to 10% at the highest levels. The reaction time
behaves opposite and increases from 1-1.5 s for low
difficulty to 3 s for high difficulty levels in average.
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Figure 2. Scatter plots with a fitted regression curves that show the average participant performance during the mental arithmetic
task with respect to the task difficulty level. The workload level here represents the g-value normalized to a range of 0%—100%.

To confirm that the trial order did not have any
significant impact on the results, a Wilcoxon rank-
sum statistical test with Benjamini—-Hochberg correc-
tion was performed, comparing the average reaction
time, accuracy, and all task performance results for
the two groups of participants. This resulted in 22
tests for each task with none indicating significant dif-
ferences between both groups as displayed in table 3
in the appendix.

The performance of the classifier to correctly
identify workload levels for the n-back task is illus-
trated in figure 3. The horizontal lines display the
chance level for 4 classes (25%) and 2 classes (50%),
respectively. The average, median and most of the
individual performances of all analysis conditions
were above chance level. Both low frequency in-ear
(mean 41.7%, median 36.5%) and 1-channel surrog-
ate (38.2%, 37.4%) demonstrated comparable per-
formance that improved with an expanded frequency
range, evidenced by the higher performance of high
frequency in-ear (44.4%, 42.4%) and 1-channel sur-
rogate (41%, 42%) compared to their low frequency
counterparts. Furthermore, increasing the number
of channels enhanced classification accuracy, partic-
ularly in the high frequency configuration. The 2-
channel low frequency surrogate (43.4%, 43.4%) per-
formed similarly to the high frequency 1-channel
surrogate, and the 4-channel low frequency surrog-
ate (48.3%, 49.6%) performed similarly to the 2-
channel high frequency surrogate (48.3%, 51.4%).
The high frequency 4-channel surrogate (57.7%,
58.7%) yielded the best performance among the sur-
rogates, nearly reaching the performance of conven-
tional low frequency EEG (62.8%, 66.3%). High fre-
quency EEG achieved the highest performance overall
(80.3%, 83%)).

For 2 classes, the results generally followed the
same trends. In-ear (67.7%, 67.7%) and 1-channel
surrogate (64.6%, 66.6%) again performed com-
parably. Increasing the frequency range improved
the performance of both in-ear (68.4%, 68.8%)
and 1-channel surrogate (69.8%, 73.6%). Similarly,

adding more channels improved the results for
the surrogates. 2-channel low frequency configur-
ation (72.4%, 70.1%) performed similarly to the
high frequency 1-channel surrogate and 4-channel
low frequency (75.5%, 75.1%) performed simil-
arly to the 2-channel high frequency surrogate
(77.1%, 79.8%). Notably, the only difference presen-
ted in the 4-channel high frequency configuration
(85.5%, 86.1%) which could outperform the low fre-
quency EEG (84.5%, 85.2%). High frequency range
EEG again resulted in the best overall performance
(92.9%, 94.5%).

A statistical evaluation of the approaches is
presented in table 1. A one-sided Wilcoxon signed-
rank test was used to compare the classification results
of chance levels, high frequency in-ear, and high fre-
quency 1-channel in-ear surrogate to all approaches.
A Benjamini-Hochberg correction was applied to
account for the multiple comparison problem. The p-
values in the table indicate that the differences in per-
formances of the approaches listed the left side of the
table to those listed on the top, based on a distribu-
tion with a positive median, i.e. the approaches on the
left of the table performed better. It is observed that
all approaches performed significantly better than
the chance level for four and two classes. For four
classes, EEG in both configurations and the 4-channel
high frequency surrogate was significantly better than
both high frequency in-ear and 1-channel surrogate.
However, the 4-channel low frequency surrogate was
significantly better than the 1-channel surrogate. For
the two-class problem, again EEG in both configura-
tions and the 4-channel high frequency show signific-
antly better results for both approaches.

The performance in the form of mean square
error (MSE) and Pearson’s correlation (converted to
a percentage) is shown in figure 4. The mean estim-
ate line at 8.2 shows the value for always predicting
the average performance and serves as a baseline for
comparison. Low frequency in-ear performs slightly
better than this baseline (mean 7.7, median 7.8) and
similarly to the 1-channel low frequency surrogate
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Figure 3. Box plots for the classification accuracy for the n-back task for different pre-processing pipelines and EEG signals. The
dotted line denotes the mean and the solid line denotes the median. The blue data shows the accuracy across all four classes, while
the red shows the binary accuracy for the extreme workload levels 0-back and 3-back. The scatter points represent the individual
performance of each of the 16 participants.

Table 1. This table shows the Benjamini—-Hochberg corrected p-values for one-sided sign ranked tests between chance/in-ear/1-channel
surrogate and all pipelines for the n-back task. A bold p-value indicates that the analysis conditions on the left resulted in a significantly

higher classification rate.

4 classes 2 classes
In-ear In-ear surr In-ear In-ear surr
Chance (25%) 1-100Hz 1chan 1-100 Hz  Chance (50%) 1-100 Hz 1 chan 1-100 Hz

In-ear 1-35 Hz 0.001 1 0.425 0.0036 0.8477 0.8202
In-ear 1-100 Hz 0.0011 0.2541 0.003 0.8202
In-ear surr
| chan 1-35 Hz 0.0011 1 1 0.0046 1 1
In-ear surr
1 chan 1-100 Hz 0.0013 0.9922 0.0018 0.4654
In-ear surr 0.001 0.8202 0.288 0.001 0.425 0.4694
2 chan 1-35 Hz
In-ear surr
2 chan 1-100 Hz 0.001 0.425 0.0522 0.0011 0.1519 0.0546
In-ear surr
4 chan 1-35 Hz 0.001 0.2048 0.0087 0.001 0.0773 0.1931
In-ear surr
4 chan 1-100 Hz 0.001 0.0169 0.001 0.001 0.0087 0.001
EEG 1-35 Hz 0.001 0.0034 0.0012 0.001 0.0117 0.0037
EEG 1-100 Hz 0.001 0.001 0.001 0.001 0.0012 0.001

(7.6,7.8). Adding more channels has a positive impact
on the surrogate results for 2 channels (6.8, 6.8) and
4 channels (6.3, 6.0). Increasing the frequency range
also positively affects the results of in-ear (7.4, 7), 1-
channel (7.1,7.2), 2-channel (6.3, 6.5), and 4-channel
surrogates (5.3, 5.4). Conventional EEG performs
best for low (3.9, 4.0) and high frequency bands (3.2,
3.4). For correlation, these results are nearly identical
but inverted. Low frequency in-ear gives reasonable
correlations (34.7%, 38%), similar to the 1-channel
surrogate (34.9%, 38%). These results improve with

7

more channels for the 2-channel surrogate (43%,
46.6%) and 4-channel surrogate (53.9%, 55.2%).
Adding higher frequencies has little effect, with each
configuration showing only a small increase com-
pared to the lower frequency range. Conventional
EEG again performs the best in the low (73.3%,
75.5%) and high frequency configurations (79.1%,
80.3%).

A statistical evaluation of the approaches is
presented in table 2. As with the n-back ana-
lysis, a one-sided Wilcoxon signed rank test with
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Figure 4. Box plots for the regression mean squared error and correlation between estimate and real difficulty level for the mental
arithmetic task for different pre-processing pipelines and EEG signals. The dotted line denotes the mean while the solid line shows
the median. The scatter points represent the individual performance of each of the 16 participants.

Table 2. This table shows the Benjamini—-Hochberg corrected p-values for one-sided sign-ranked tests between the in-ear/1-channel
surrogate and all the other conditions for the arithmetic task. A bold p-value indicates that the pipelines on the left resulted in a
significantly higher classification rate.

MSE Corr
In-ear In-ear surr In-ear In-ear surr
Mean estimate  1-100 Hz 1 chan 1-100 Hz  Mean estimate  1-100 Hz 1 chan 1-100 Hz

In-ear 1-35 Hz 0.1279 0.9098 1 0.0008 0.8892 0.987
In-ear 1-100 Hz 0.0538 0.9971 0.0008 0.865
In-ear surr
1 chan 1-35 Hz 0.1501 0.8137 1 0.0008 0.6251 0.9936
In-ear surr
1 chan 1-100 Hz 0.018 0.1602 0.0008 0.4065
In-ear surr
> chan 1-35 Hz 0.0046 0.1193 0.3532 0.0008 0.1858 0.3914
In-ear surr
2 chan 1-100 Hz 0.0008 0.023 0.0281 0.0008 0.0343 0.0588
In-ear surr
4 chan 1-35 Hz 0.008 0.0343 0.0281 0.0008 0.0121 0.004
In-ear surr
4 chan 1-100 Hz 0.0008 0.0052 0.0009 0.0008 0.0025 0.0008
EEG 1-35 Hz 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
EEG 1-100 Hz 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
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Benjamini—Hochberg correction was used to com-
pare the performance results of the mean estimate,
in-ear, and 1-channel in-ear surrogate to the other
approaches. For the mean estimate, a naive predictor
that always estimates the average participant perform-
ance was used. For correlation, the p-values in the
table indicate that the differences in performances
of the approaches on the left side of the table, and
mean estimate, in-ear, and the 1-channel surrogate
originate from a distribution with a positive median,
while for MSE the median is negative. For MSE, the
low frequency in-ear, 1-channel surrogate, and high
frequency in-ear did not perform significantly bet-
ter than the mean estimate. Even though, it should
be noted the p-value for the high frequency in-ear
was just outside of the significance level (0.0538). All
other approaches performed better. It can also be
seen that the 4-channel and EEG signals as well as
the 2-channel high frequency surrogate perform sig-
nificantly better than the high frequency in-ear and
1-channel surrogate. The results for correlation dif-
fer in two positions. Since the constant mean estim-
ate always results in zero correlation every estima-
tion approach performs significantly better and only
the 2-channel high frequency surrogate performs bet-
ter than high frequency in-ear. Conventional EEG in
both frequency configurations shows the overall low-
est p-values, followed by the 4-channel high frequency
surrogate.

Figures 5 and 6 show the grand average PSDs for
both tasks on the left. Low and high workload con-
ditions are presented with the shaded area indicat-
ing the standard deviation. The right side displays the
grand average differential PSDs between low and high
workload. Additionally, the subject individual differ-
ences are shown to highlight the variation between
subjects and between approaches. Both sides display
three different channels, conventional EEG channel
Pz, 1-channel surrogate and in-ear. For visualization,
the area above 90 Hz has been removed based on the
respective filter range.

For the n-back task, the low workload condition
was 0-back and the high workload condition was 3-
back. In figure 5, it can be seen that the high workload
conditions exhibit a lower « peak for regular EEG and
surrogate and also display greater power for higher
power starting around approximately 25 Hz for the
surrogate. The in-ear plot does not show clear spec-
tral differences but displays a greater standard devi-
ation compared to the other plots, indicating more
individualized spectral characteristics. These charac-
teristics are even clearer in the differential plots. The
alpha peak is visible in Pz and surrogate, while in-ear
displays the greatest variance across participants.

For the mental arithmetic task, the low work-
load condition is presented as the easiest block, and
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the high workload condition as the most difficult
block. The results, displayed in figure 6, are sim-
ilar to the n-back task. The increased o peak for
low workload is smaller but still visible. For fre-
quencies above 20 Hz, a difference can be seen
for the surrogate. The in-ear plot shows again a
greater standard deviation compared to the other
plots and shows generally a higher power corres-
ponding to higher workloads in this case. The dif-
ferential plots reinforce these assessments. The vari-
ance across participants is again the highest for in-ear
EEG.

In both figures it can be seen there is no general
behaviour for PSDs for different level of workload.
While the averaged PSDs on the left would indicate
for example a general increase in the a band for lower
levels of workload, the plots on the right show that
each participant has a unique behaviour confirming
previous results from literature [24]. Finally, it must
be noted that in-ear shows a distinct increase in power
around 25 Hz and 75 Hz.

The topographical maps in figure 7 show the per-
formance differences at the subject level. They dis-
play the percentage of participants where a two-sided
Wilcoxon sign rank test with Benjamini—Hochberg
correction showed significant performance differ-
ences for each channel/frequency band combination.
The frequency bands consist of 4, 6, «, 3, v, and high
<, while the values correspond to the average out of
all 1 Hz frequency bins in the respective band.

For the n-back task, it can be seen that for the
EEG channels, the o band in the central and pari-
etal regions and the v and high v bands in the cent-
ral and temporal regions show an increased number
of participants with significant changes. This is likely
due to the typical negative correlation of workload
with the o band [27] and the increased correlation
for higher frequency bands that are potentially caused
by muscle activity [32]. The surrogate shows gener-
ally an increased number of significant participants
in the higher frequency bands starting from the «
band. Compared to EEG and surrogate, the in-ear
EEG shows a greater number of participants with sig-
nificant differences in the § and 6 ranges and a com-
parable number in the other frequency bands to the
surrogate.

For the mental arithmetic task, it can be seen that
compared to the n-back task, there is no increased sig-
nificance around the a band for EEG. Instead, the
0 band shows more significance. For high frequen-
cies, EEG results are nearly identical to the n-back
task. The surrogate behaves nearly exactly the same as
with the n-back task, only significance in the o and 8
bands seems to be slightly reduced. The in-ear chan-
nel shows overall significance in all frequency bands,
slightly lower than in the n-back task but similar



J. Neural Eng. 21 (2024) 066022

Power Spectral Density

< Regular EEG Channel Pz
E:L’ 60 u low workload | |
5 il |—— high workload
o |
o
&40
I
3 20 == |
o

80

40 60
Frequency (Hz)

1-channel Surrogate In-ear

S

0560 r . |~ low workload | |

k= /| |=——high workload

=] I [

Q i

*

o

(o]

Dcz 20 [ ‘ ‘ ‘ I 1
0 20 40 60 80 100

Frequency (Hz)

< In-ear

2 N '

S 60 L \ /| |~ low workload

= h —— high workload

[#)]

ko] \

&40+

N

g

5 20 ‘ ‘ ‘ - ]
0 20 40 60 80 100

Frequency (Hz)

C Tremmel et al

Differences between low and high workload

Regular EEG Channel Pz

) —— Average ||
\s A Individual

Power 20*log10(pV)
o

20 40 60 80 100
Frequency (Hz)

< 10 1-¢I:hannel‘ Surrogate In-gar
= —— Average
\9 Individual
g
5 VAR AN
2
£ 10 T

0 20 40 60 80 100

Frequency (Hz)

< 20 ‘ In-ear‘ ,
= / . —— Average
S -
— VAP Individual
3 ey avw
g 0
~N
@
2
& -20 : ‘ ‘ ‘

0 20 40 60 80 100

Frequency (Hz)

Figure 5. Left: grand average and standard deviation PSD for the n-back task for regular EEG channel Pz, in-ear, and 1-channel
surrogate for low and high workload. Right: grand average PSD differences between low and high difficulty in average and
individually for each participant for regular EEG channel Pz, in-ear, and 1-channel surrogate.

or higher compared to EEG. The overall number of
significant frequency bands compared to the n-back
task.

Figure 8 shows topographical plots for both tasks
for the conventional EEG frequency bands. The plots
show the Pearson’s R and R? values for correlating the
PSDs with workload level for each task. Next to each
topographic plot, two circular markers indicate the
in-ear and surrogate values.

The R-values for the n-back task follow the typical
pattern of a negative correlation of a band PSDs with
increased workload. This also overlaps with some
channels in the 8 band. ¢ and 6 only show some
increased correlation in the frontal electrodes, poten-
tially stemming from facial movements or tension. /3,
-, and high ~ show high correlation for electrodes loc-
ated in the posterior areas. The in-ear channel stays
nearly constant across all frequency bands. The sur-
rogate channel shows negative correlation for o bands
and positive correlation for 3, ~y, and high ~. The R?

10

values show a slight increase for the « band and a
larger increase for v and high ~, especially in channels
located in the temporal regions. In contrast to the
R-values, in-ear shows increased R* for §, § and «
with a slightly lower increase in the higher frequen-
cies. The surrogate’s R? value increases with increas-
ing frequency.

For the mental arithmetic task, the topograph-
ical plots show the correlation between the PSDs
and the g-values. It exhibits similar patterns for high
frequency R and R? values for both EEG and sur-
rogate. There are differences in the low frequency
bands, notably a weaker negative correlation in the o
band and a negative correlation in the ¢ band, and
partly 6 band, compared to the n-back task. In-ear
shows a stronger positive correlation that increases in
higher frequencies. The surrogate performs similarly
but shows lower correlation in the d, # and « bands.
The behavior of in-ear and surrogate is similar for R*
values.



10P Publishing J. Neural Eng. 21 (2024) 066022

C Tremmel et al

Power Spectral Density

Frequency (Hz)

< Regular EEG Channel Pz ~

51’60 L u —low workload || g S

— I |[=high workload —

()] I 2 0

o o

& 40 Y 5

~N N -5t IR A

‘g § | |n\$\:?dgu2|

n? 20+ ‘ ‘ ‘ 1 n? -10 ¢ . | ‘ ‘ 1
0 20 40 60 80 100 0 20 40 60 80 100

Frequency (Hz) Frequency (Hz)
S:; 1-channel Surrogate In-ear 5; 10 1-channel Surrogate In-ear
= —— low workload = a
60r A

= , [ |=——high workload 2 .

(@] Il o /

ie] 0o ,

o = SR

. I ——

5 5 Average

2 ] = Individual

o ‘ ‘ ‘ . o , ‘ ‘ :

o a -10
0 20 40 60 80 100 0 20 40 60 80 100

Frequency (Hz) Frequency (Hz)

~ ‘In-‘ear‘ ‘ < 10 ‘ In-ear‘

0360 ‘;“‘\ —Iqw workload 5:'/

~ —high workload —

o o

s} S 0 s 1

o~ ~N / \//\,— WA A Y, \ 'Jk/ A A

g 8 4o/ N —— Average ||

220+ ] S \//«/V“/‘”‘W Individual
0 20 40 60 80 100 0 20 40 60 80 100

Differences between low and high workload

Regular EEG Channel Pz

Frequency (Hz)

Figure 6. Left: grand average and standard deviation PSD for the mental arithmetic task for regular EEG channel Pz, in-ear and
1-channel surrogate for low and high workload. Right: grand average PSD differences between low and high difficulty in average
and individually for each participant for regular EEG channel Pz, in-ear, and 1-channel surrogate.
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4. Discussion

4.1. In-ear EEG

The findings of this study demonstrate the feasib-
ility of estimating multiple workload levels with an
accuracy exceeding chance level using a commercial

in-ear EEG headset, the IDUN ‘Guardian’. This is par-
ticularly noteworthy given that it extends beyond the
simple binary classification problems that are typic-
ally examined in this domain [26].

Using the traditional n-back task, we found
that in-ear EEG can be used to correctly classify
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workload with 44.4% accuracy for four classes
and with 68.4% for two classes, significantly bet-
ter than chance level, as depicted in figure 3. A
more complex regression-based workload prediction
approach using a mental arithmetic task per-
formed slightly better compared to a naive estim-
ator that only predicts the mean performance
as shown in figure 4. This improvement was
just outside the range of statistical significance
(p = 0.0538).

However, minor modifications to the in-ear EEG
could potentially enhance its performance. Therefore,
we developed surrogate in-ear measures based on
EEG electrodes located around the ear. Three differ-
ent surrogates were created with different numbers of
channels. The in-ear headset acquires a single bipolar
channel. The 1-channel surrogate was designed to
function in the same way as the in-ear using a bipolar
derivation of the closest electrodes to the ear and
serves as a baseline comparison to validate the sur-
rogates’ performance. The 2-channel surrogate was
designed to simulate an additional reference electrode
and the 4-channel surrogate simulated the addition of
two more electrodes around the ear.

We also compared the conventional EEG fre-
quency range from 1-35 Hz to a larger frequency
range of 1-100 Hz including the y band for workload
estimation, since there has been evidence [30, 31] that
~ band features can improve the classification results.
Our findings in figures 3, 4, tables 1 and 2 also sup-
port this notion. Nearly all approaches perform bet-
ter in high frequency configuration compared to low
frequency. Comparing in-ear with their surrogates in
both frequency ranges shows nearly identical results,

a statistical comparison between high frequency in-
ear and surrogate also shows that they perform nearly
equivalently. Adding more channels further improves
the surrogate, so that the 4-channel high frequency
in-ear surrogate significantly outperforms in-ear and
1-channel surrogates in every measure and configur-
ation examined. Even the 2-channel high frequency
surrogate can outperform all in-ear results in the
math task. The in-ear headset is designed with two
earbud electrodes and a ground electrode positioned
where the headset rests on the ear. Based on the
improved results of our surrogate in-ear EEG meas-
ures we propose the following design modifications:

e 2-channel surrogate: This could be realized by
simply adding a reference electrode at the ear
opposite of the ground electrode.

e 4-channel surrogate: This would necessitate the
addition of two more electrodes, which could be
integrated in a similar manner as inducers in bone
conduction headsets. These are situated near the
ear, require pressure to properly transmit the vibra-
tion signal, and need a location that is not covered
by hair.

Incorporating more than a single bipolar channel also
offers the advantage of increased spatial information
for further enhancing processing. This includes spa-
tial filters [50] like the common average reference
used in this study, or blind source separation methods
[51] such as independent component analysis. These
methods enhance the signal quality and improve the
interpretability of the EEG data. While there are no

12
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results for four class classification and regression-
based problems, our classification accuracy of 68.4%
for the two class problems of the n-back task for in-
ear EEG and 77.1%-79.1% for the 2-channel surrog-
ates is comparable to previous research [26]. The key
advantage of our used and proposed systems, how-
ever, is that all functionality is integrated into a single
device. It does not required an expensive biomedical
amplifier that needs placement on the head for a phys-
ical connection to the electrodes, nor does it demand
any tape or adhesives to secure the electrodes in
place [26].

Upon examination of the grand average PSDs
depicted in figures 5 and 6, it can be seen that the
in-ear and surrogate exhibit slightly different beha-
vior. While the surrogate shows approximately sim-
ilar plots for both tasks, the in-ear plots differen-
tiate. For the n-back task, the curves are nearly
identical. For the mental arithmetic task, the high
workload condition produces higher PSDs starting
from around 5 Hz. One reason for this difference
could be the large standard deviation of in-ear that is
several times larger than for the surrogate. Since the
individual participant responses are varied, they can
easily influence these grand averages. This could be
due to muscle artifacts, tension, or the differences in
the electrode types used. Furthermore, there is a dis-
tinct peak in power around 25 Hz and 75 Hz. Due
to the in-ear electrodes’ higher impedance, they are
more susceptible to artifacts than the wet electrodes
compared to conventional EEG [52]. The noise in
the in-ear signal could be caused by a subharmonic
power line artifact or an interaction with the con-
ventional EEG system. The surrogate exhibits a sim-
ilar increase in PSDs for increased workload, start-
ing at 20 Hz. Notably, the negative correlation with
workload around the « peak, which is present in the
surrogate spectrum, is entirely absent in the in-ear
spectrum.

The topographical maps in figure 7 provide an
alternative representation of workload effects, show-
casing the relative count of participants that exhibited
significant differences in PSD across varying work-
load levels. In-ear EEG again differentiates between
both tasks. For the n-back task, a greater number
of participants exhibit significance in the lower fre-
quency bands (1-10 Hz) compared to the higher
frequency bands. Conversely, for the mental arith-
metic task, the frequency bands (30-100 Hz) display
a larger number of significant subjects. The surrog-
ate also exhibits a slight task-based differentiation.
The results of the mental arithmetic task mirror the
in-ear EEG’s behavior, where higher frequencies (40—
100 Hz) demonstrate greater significance compared
to lower frequencies. However, for the n-back task,
the surrogate only occasionally presents a substantial
number of participants with significance in the higher
frequency range (20-100 Hz).
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The correlation coefficients R and R? of the PSDs
associated with workload, as depicted in figure 8,
present a comparable narrative. The surrogate exhib-
its similar behavior across both tasks and measures,
with a low correlation in lower frequencies and a high
correlation in higher frequencies. The only substan-
tial difference across both tasks is the negative correl-
ation around the « peak for the n-back task. However,
the in-ear EEG again displays considerable differences
between the two tasks. The correlation for the n-back
task remains constantly neutral, while it is overall pos-
itive for the mental arithmetic tasks. Furthermore,
while the squared correlation initiates at a high value
atlow frequencies and diminishes for the n-back task,
it remains relatively constant for the mental arith-
metic tasks. In summary, the in-ear EEG demon-
strates a more individualized response to increased
workload, yielding divergent results depending on the
task and the user, thereby resulting in a higher vari-
ance of responses.

4.2, Conventional EEG

Workload estimation for conventional EEG has been
researched extensively and our classification results
with 92.9% for the 2-class and 80.3% for the 4-class n-
back tasks are slightly higher but comparable to prior
work [20, 22-26]. Features in the v band are often
excluded due to the ambiguity of their origin, whether
from brain or muscle activity [32]. However, even in
the low frequency range from 1-35 Hz, our approach
results in 84.5% for 2 classes and 62.8% for 4 classes
for the n-back task. For the mental arithmetic task,
while our experimental settings differ from those in
the literature, it is still possible to compare the correla-
tion coefficient between estimation and real difficulty
to previous research. With 73.3% for low frequency
EEG and 79.1% for high frequency EEG, it is also in
a similar range [45]. The grand average PSDs depic-
ted in figures 5 and 6 exhibit characteristics consistent
with existing literature [20, 23, 26].

The topographical maps of statistically significant
differences in EEG channel location and frequency
bands presented in figure 7 also show a similar spa-
tial distribution as found in prior literature [26].
Finally, the topographical plots for the correlation
between workload level and PSD of the n-back task,
as illustrated in figure 8 further reinforce these res-
ults, demonstrating a negative correlation in the « fre-
quency range and an increased correlation in the ~y
ranges similar to existing literature [25]. However, we
were unable to replicate the topographical plots for
the mental arithmetic task. Spiiler et al [45] repor-
ted increased R? values predominantly in the « range,
with little squared correlation in other frequency
bands. This behavior mirrors that of R* for the n-
back task in our results. For the mental arithmetic
task, we observed an increased squared correlation for
0 bands and frequencies of 8 and higher which is a
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common behavior in workload tasks [25]. Our res-
ults also indicate an atypical negative correlation of
low frequencies to increased workload, which could
potentially be attributed to participants completing
easier calculations quickly and subsequently making
subconscious movements.

4.3. Real-world implementation and future work

Our analysis of conventional EEG data aligns closely
with established literature, affirming the validity of
our experimental setup and supporting the feasibil-
ity of assessing various levels of workload using in-
ear EEG. Additionally, our experimental design of the
mental math task strengthens the confidence of work-
load estimations. This is achieved through enhanced
granularity resulting from its pseudo-randomized
eight difficulty levels but also due to the introduc-
tion of the added randomized noise within each dif-
ficulty block. This approach ensured that features are
not dependent on specific trials or blocks, but accur-
ately represent workload levels. A BCI should have
a minimum binary classification accuracy between
65%—-70% for users to feel in control [53]. With a
classification rate of 67.7% for the 2-class problem,
in-ear falls into that range. It is also important to
highlight that this stated accuracy range was determ-
ined for active BCIs where users expect immediate
feedback. Since workload estimation is usually used
passively, longer windows than the 2.5 s used in the
study can be utilized to further increase the perform-
ance. However, for the widespread adoption of such
devices, further research is crucial. Challenges emerge
when these devices are used in less controlled envir-
onments, leading to increased artifacts from move-
ments, muscle tension, or electromagnetic radiation,
complicating workload identification. Developing
improved noise reduction techniques [54, 55], poten-
tially leveraging the integrated accelerometer unit
in many headsets, becomes essential. Enhancing the
electrode design to reduce sensitivity to noise would
also be beneficial. The complexity of workload assess-
ment is also compounded by the introduction of
more diverse and intricate tasks, each evoking dis-
tinct user responses as shown in our results above.
Moreover, the necessity for task and user-specific
training data presents an additional obstacle. Most
machine learning algorithms require retraining for
each user and task, a time-intensive process. While
transfer learning techniques [56, 57] across tasks
and subjects are becoming more common, they have
yet to match the performance of subject-specific
methods. Exploring meta-learning strategies, where
machine learning algorithms utilize pre-recorded
data [57, 58] to streamline the training process,
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offers a promising avenue until further advancements
in transfer learning are realized.The insights gained
from our investigations using the n-back task and
mental arithmetic task, along with the development
of surrogate in-ear measures, underscore the need for
continuous research to address these challenges and
optimize the performance of in-ear EEG devices.

5. Conclusions

In conclusion, our study successfully demonstrates
the feasibility of estimating multiple workload levels
in two distinct tasks through in-ear EEG recordings
using one of the first commercial available headsets,
the IDUN ‘Guardian’ Utilizing frequency EEG bands
spanning from 1-100 Hz led to classification above
chance levels for the n-back task and a lower regres-
sion error than a naive mean performance predictor
for the mental arithmetic task. The in-ear system
did not perform as well as traditional EEG, primar-
ily due to the limited number of channels. However,
when comparing the in-ear results to a bipolar deriv-
ation of traditional EEG, the performance was sim-
ilar. Therefore, we introduced in-ear surrogates based
on traditional EEG electrode locations around the
ear, offering guidance on how to enhance these res-
ults to attain performance levels closer to EEG. Our
findings emphasize the substantial variability of in-
ear EEG recordings among participants, underscor-
ing the importance of individually training machine
learning algorithms. In-ear EEG emerges as a prom-
ising candidate for expanding EEG-based brain mon-
itoring and interfacing applications into everyday life,
providing valuable insights into the user’s mental
state.
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