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This thesis seeks to deepen our understanding and expand our knowledge of the
impacts of deep-learning techniques on human action recognition. It addresses the
challenges faced in human action recognition and proposes solutions focused on
enhancing feature extraction and optimizing model designs. This is accomplished
through the completion of three distinct yet closely interconnected chapters (i.e.,
papers). These chapters are: (i) Data Augmentation in Classification and Segmentation: A
Survey and New Strategies; (ii) TransNet: A Transfer Learning-Based Network for Human
Action Recognition; and (iii) RNNs, CNNSs, and Transformers in Human Action Recognition:
A Survey and a Hybrid Model.

The second chapter provides a survey of the existing data augmentation techniques in
computer vision tasks, including segmentation and classification. Data augmentation
is a well-established method in computer vision. It can be especially beneficial for
human action recognition (HAR) by enhancing feature extraction. This technique
addresses challenges such as limited datasets and class imbalance, resulting in more
robust feature extraction and reduced overfitting in neural networks. Studies have
demonstrated that data augmentation significantly enhances the accuracy and
generalizability of models in tasks like image classification and segmentation, which is
subsequently utilized in the task of HAR in the third chapter.

The third chapter addresses two significant challenges in HAR: feature extraction and
the complexity of HAR models. It introduces a straightforward, yet versatile and
effective end-to-end deep learning architecture, termed TransNet, as a solution to
these challenges. Extensive experimental results and comparisons with state-of-the-art
models demonstrate the superior performance of TransNet in terms of flexibility,
model complexity, transfer learning capability, training speed, and classification
accuracy. Additionally, this chapter introduces a novel strategy that utilizes
autoencoders to form the 2D component of TransNet, referred to as TransNet+.
TransNet+ enhances feature extraction by directing the model to extract specific
features based on our needs. TransNet+ leverages the encoder part of an autoencoder,
trained on computer vision tasks such as human semantic segmentation (HSS), to
perform HAR. The extensive experimental results and comparisons with leading
models further validate the superior performance of both TransNet and TransNet+ in
HAR.

The fourth chapter provides a comprehensive review of Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNSs), and Vision Transformers
(ViTs). It examines the progression from traditional methods to the latest
advancements in neural network architectures, offering a chronological and extensive
analysis of the existing literature on action recognition. The chapter proposes a novel
hybrid model that integrates the strengths of CNNs and ViTs. Additionally, it offers a
detailed performance comparison of the proposed hybrid model against existing
models, highlighting its efficacy in handling complex HAR tasks with improved



accuracy and efficiency. The chapter also discusses emerging trends and future
directions for HAR technologies.
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Chapter 1

Introduction and Background

1.1 Preamble

This PhD thesis explores the task of Human Action Recognition (HAR) concerning the
data used, obstacles encountered, modeling methods, optimization techniques, and
applications. It investigates the most significant challenges faced by HAR applications.
It seeks to find comprehensive and integrated solutions by connecting the challenges
and devising solutions that aim to address multiple issues simultaneously. To this
end, this thesis, through three interconnected chapters (i.e., previously papers), aims
to advance knowledge and understanding of chapters explore current techniques such
as data augmentation and transfer learning, as well as potential model designs that
can integrate these solutions for optimal performance. By thoroughly examining these
components, the research aims to offer a holistic view of the HAR domain, identifying
gaps in existing methodologies and proposing innovative approaches to enhance the
accuracy and efficiency of HAR systems. This comprehensive exploration is intended
to pave the way for more robust and adaptable HAR models.

The introduction chapter is organized as follows: Section 1.2 provides the research
motivation, with the research background discussed in Section 1.3. Section 1.4 details
the challenges of the research. The main questions are presented in Section 1.6, while
Section 1.7 describes the research objectives. Finally, section 1.8 summarizes each of

the three conducted studies.

1.2 Research Motivation

HAR is an increasingly vital area of research within the broader field of computer
vision and artificial intelligence. As the world becomes more interconnected and

technology-driven, the ability to accurately and efficiently recognize and interpret
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human actions from video or sensor data has numerous practical applications
Morshed et al. (2023). These range from enhancing security systems with advanced
surveillance capabilities, improving human-computer interaction and developing
assistive technologies for the elderly and disabled Kumar and Kumar (2024). The
significance of HAR lies in its potential to revolutionize how we interact with

technology, making systems more intuitive, responsive, and beneficial to society.

The growing interest in HAR is driven by its applications in various fields. For
instance, in healthcare, HAR can be used for remote patient monitoring, detecting
falls, and assessing rehabilitation progress Kumar et al. (2024). In the field of security,
HAR can enhance surveillance systems by automatically identifying suspicious
activities, reducing the need for constant human monitoring Diraco et al. (2023).
Furthermore, in entertainment and sports, HAR can be employed to analyze player
movements, enhancing both coaching strategies and viewer experiences Sharshar

et al. (2023). These diverse applications underscore the importance of developing
robust and reliable HAR system:s.

Moreover, a thesis focused on human action recognition can have a profound impact
beyond academia. In smart home environments, HAR can enhance user experiences
by making systems more adaptive to human needs and behaviors Diraco et al. (2023).
Furthermore, in the realm of robotics, HAR can enable more natural and effective
human-robot interactions, which is crucial for the development of autonomous
systems Kansal et al. (2023). Thus, the potential applications of HAR are vast and

varied.

Pursuing a PhD thesis in human action recognition presents a unique opportunity to
contribute to a rapidly evolving field with far-reaching implications. The complexity
of HAR, which involves understanding complex human movements and behaviors in
diverse and often unpredictable environments, provides a rich ground for innovative
research. By tackling challenges such as Feature extraction, difficulty of transfer
learning, temporal analysis, occlusion, varied action execution styles (i.e. Different
people perform the same action in unique ways, and actions can be influenced by
factors such as the environment, clothing, and lighting conditions.), and the
integration of multi-modal data, the research can push the boundaries of what is
currently possible in HAR Singh et al. (2021); Morshed et al. (2023); Pareek and
Thakkar (2021); Jegham et al. (2020); Ramanathan et al. (2014). A PhD research project
can focus on developing algorithms that can generalize well across these variations.
This might involve the use of deep learning techniques, which have shown great
promise in handling complex and high-dimensional data. By improving the
robustness of HAR systems, the research can make significant contributions to the
field.
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Finally, the insights gained from HAR research can contribute to the development of
safer and more efficient autonomous systems, such as self-driving cars and robotic
assistants. By enabling machines to understand and predict human actions, these
systems can operate more safely and effectively in dynamic environments. The
societal impact of such advancements is immense, as it can lead to reduced accidents
and improved quality of life. Therefore, a PhD thesis in human action recognition not
only advances scientific knowledge but also holds the promise of creating

technologies that improve the quality of life across various sectors.

1.3 Research Background

1.3.1 HAR

HAR is a rapidly evolving field that seeks to automate the recognition of human
activities from sensory inputs, such as videos or sensor data. The overarching goal is
to build systems capable of accurately identifying various human movements and
activities. With advancements in machine learning and artificial intelligence,
particularly deep learning, the ability to process and analyze large datasets of human
actions has significantly improved, leading to higher accuracy and efficiency. HAR
systems have become increasingly sophisticated, capable of handling diverse tasks
from detecting simple movements like walking to more complex actions involving

multiple actors or environments.

Section 1.3.2 focuses on categorizing HAR based on the type of data utilized. Various
data sources contribute to different applications of HAR. For instance, sensor-based
methods involve wearable sensors, commonly used in healthcare and fitness, to
monitor daily activities and track patient movement. On the other hand, vision-based
methods, which are increasingly popular, rely on RGB cameras and depth sensors to
capture video data for tasks like video surveillance or gaming. Emerging technologies,
such as radar- and WiFi-based recognition, are also gaining attention for their ability
to detect movement without relying on visual inputs, making them suitable for

privacy-sensitive environments.

In contrast, Section 1.3.3 discusses HAR based on the methods employed. The
methodologies employed in HAR can be broadly divided into two categories:
traditional hand-crafted feature methods and modern deep learning approaches.
Hand-crafted methods involve designing specific features, such as motion trajectories
or interest points, and were initially used in early HAR systems. However, as datasets
grew in size and complexity, deep learning-based methods emerged, providing the
ability to automatically learn complex patterns from large datasets without manual

feature engineering. Methods like CNNs, RNNs, and more recently, Transformers,
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have revolutionized HAR by improving accuracy and adaptability across diverse

applications.

These distinctions, based on data types and methodologies, set the stage for exploring
both the challenges and potential of HAR. Understanding these classifications is
critical as they directly influence the choice of algorithms, model design, and the
overall effectiveness of HAR systems.

1.3.2 HAR Based on Data Type

Human action recognition can be categorized into distinct approaches based on the
type of input data used, each offering unique capabilities and applications.
Video-based HAR uses RGB video sequences to capture spatial and temporal
dynamics of human actions, providing a rich representation of motion and
environmental context. Input data for this category consists of consecutive frames,
enabling detailed analysis of human actions. This approach is widely applied in video
surveillance, sports performance analysis, and gesture-based human-computer

interaction, where contextual information is essential.

Skeleton-based HAR models human actions by representing the human body as a set
of joint coordinates in 2D or 3D space. This abstraction focuses exclusively on
movement and posture, making it robust against variations in lighting and
background conditions. The input data consists of sequences of joint positions, often
captured using motion capture systems or pose estimation algorithms. Applications
for this method include gaming, virtual reality, healthcare monitoring, and fitness

tracking, where precise motion analysis is crucial.

RGB-D-based HAR enhances traditional video-based methods by integrating depth
information, enabling a 3D spatial understanding of human actions and their
environment. Depth data complements RGB images by providing structural details,
making this approach particularly effective in cluttered or low-light settings. Input
data consists of paired RGB frames and depth maps. This category is commonly used
in indoor activity monitoring, robotics for human-object interaction, and smart home

automation, where understanding spatial relationships is critical.

Inertial sensor-based HAR relies on motion data collected from wearable devices or
embedded sensors, such as accelerometers, gyroscopes, and magnetometers. These
sensors capture the intensity and direction of movement, with data stored as
time-series signals. Applications include fall detection in elderly care, fitness tracking,
and gesture-based control for smart devices. This lightweight and non-intrusive
approach is particularly useful in scenarios where visual data may not be feasible or

where privacy concerns are significant.
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Audio-based HAR identifies human actions through the analysis of distinctive sound
patterns produced by specific activities. Input data is provided as audio signals or
spectrograms. This method finds applications in sound-based event detection for
smart homes, sports action recognition (e.g., detecting referee whistles or ball hits),
and security systems for anomaly detection. Audio-based HAR offers an effective

alternative in situations where visual input is unavailable or impractical.

Multimodal HAR integrates multiple data types, such as RGB video, depth maps,
skeleton data, audio signals, and inertial sensor readings, to leverage complementary
information for enhanced recognition accuracy. Input data is stored in a combination
of formats, enabling a holistic representation of human actions by combining spatial,
temporal, and contextual data. This approach is suitable for advanced surveillance
systems, human-robot interaction, and healthcare monitoring. By integrating diverse
data sources, multimodal HAR overcomes the limitations of individual modalities,

ensuring robust and reliable performance across various applications.

This categorization highlights the diverse methodologies in HAR, each tailored to
specific input data formats and application domains. Together, these approaches form
a comprehensive framework for understanding and recognizing human actions in a

variety of contexts.
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HAR Based on Data

. Description: Uses RGB video sequences to capture spatial and temporal dynamics
Video-Based

Apps: Surveillance, sports performance analysis, and human-computer interaction

Description: Represents the human body as joint coordinates in 2D /3D space
Skeleton-Based

Apps: Gaming, virtual reality, healthcare monitoring, and fitness tracking

Description: Combines RGB video with depth data for 3D spatial understanding
RGB-D-Based

Apps: Indoor activity monitoring, robotics, and smart home systems

Description: Relies on motion data from wearable sensors like accelerometers
Inertial Sensor-Based
Apps: Fall detection, fitness tracking, and gesture-based IoT control

Description: Analyzes distinctive sound patterns linked to specific actions
Audio-Based

Apps: Sound-based detection, sports action recognition, and security systems

. Description: Integrates multiple data types for comprehensive recognition
Multimodal

Apps: Advanced surveillance, human-robot interaction, and healthcare monitoring

FIGURE 1.1: HAR based on data type.

1.3.3 HAR Based on Methods

HAR can be broadly classified into two main categories based on the methods used:
handcrafted feature-based methods and deep learning-based methods. Handcrafted
feature-based methods rely on engineered features to represent actions, utilizing
traditional image processing and computer vision techniques. Key techniques in this
category include spatio-temporal interest points (STIP) Willems et al. (2008); Laptev
(2005); Das Dawn and Shaikh (2016); Chakraborty et al. (2011), which detect
significant motion points in both spatial and temporal dimensions. Optical flow and
optical-flow-like features, such as histogram of optical flow (HOF) and motion
boundary histogram (MBH), Horn and Schunck (1981); Ilg et al. (2017); Zhu et al.
(2020b); Danafar and Gheissari (2007); Guo et al. (2010); Mahbub et al. (2011), which
measures the motion of objects by calculating pixel flow between consecutive frames.
Techniques like histogram of oriented gradients (HOG) Dalal and Triggs (2005);
Baumann (2013); Ohn-Bar and Trivedi (2013); Lu and Little (2006), capture the shape
and appearance of objects by counting occurrences of gradient orientation in localized

image portions. Dense and improved dense trajectories (IDT) techniques track the
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movement of key points or objects across consecutive frames to capture motion
dynamics Wang and Kl (2011); Wang and Schmid (2013). These methods were
foundational in early video surveillance, sports analysis, and motion detection

systems.

On the other hand, deep learning-based methods leverage neural networks to
automatically learn features from data, offering high accuracy and scalability with
large datasets LeCun et al. (2015); Chai et al. (2021). Prominent techniques in this
category include Two-Stream convolutional neural networks (Two-Stream CNNs),
which encompass multi-stream CNNs that can process various modalities, such as
RGB frames, optical flow, and other sensor data, separately and then combine the
results to recognize actions. Additionally, 3D convolutional neural networks (3D
CNNs) extract spatio-temporal features from video data. RNNs and long short-term
memory (LSTM) networks are used to capture temporal dependencies in sequential
data, modeling the sequence of actions over time. Furthermore, Transformers handle
long-range dependencies and interactions within the data using self-attention
mechanisms. Graph neural networks (GNNSs) are also employed to model the
relationships and interactions between different body parts by representing the
human body as a graph structure Yan et al. (2018); Shi et al. (2019). These methods are
widely applied in video action recognition, sports analytics, gesture recognition, and
large-scale video analysis, marking significant advancements in HAR technology Adel
et al. (2022); Saini and Maan (2020).

In this thesis, we will explore deep learning methods for human action recognition
due to their superior performance and adaptability compared to traditional
handcrafted methods. Deep learning approaches, particularly those using neural
networks, have demonstrated remarkable success in automatically learning complex
patterns and features from large-scale datasets without the need for manual feature
engineering. This ability to learn hierarchical representations from raw data allows
deep learning models to capture complex details of human actions, leading to higher
accuracy and robustness in various applications. Additionally, the scalability of deep
learning methods makes them suitable for processing extensive video data, which is
essential for modern HAR systems. By focusing on deep learning techniques, this
research aims to leverage the latest advancements in artificial intelligence to develop

more effective and efficient HAR solutions.



8 Chapter 1. Introduction and Background

HandCrafted
Two-stream CNN-based

RNN-based

i

3D CNN-based

FIGURE 1.2: Categorically-chronologically ordered HAR methods.

1.3.3.1 Two-stream CNN-based Methods

The fundamental concept behind Two-Stream CNN:Ss is to process spatial and
temporal data separately before combining them to make a final prediction. Typically,
one stream handles spatial information using RGB frames from a video, capturing the
appearance of objects and their locations. The other stream processes temporal
information, often using optical flow or motion vectors, to capture movement and
dynamics over time. Simonyan et al. Simonyan and Zisserman (2014a) introduced a
two-stream CNN model that integrates spatial and temporal flows. The spatial flow is
responsible for capturing appearance information, while the temporal flow focuses on
motion information. The classification scores from both flows are then fused using
either an averaging method or a support vector machine (SVM). Following this
foundational work, numerous approaches have been developed to enhance the
two-stream model Wang et al. (2015a,b, 2016); Feichtenhofer et al. (2016); Wang et al.
(2017); Peng et al. (2018).

Wang et al. (2015b) identified that many existing two-stream CNNs are relatively
shallow. Consequently, they designed deeper two-stream CNNs to achieve superior
recognition performance. Feichtenhofer et al. Feichtenhofer et al. (2016) explored
various fusion strategies and demonstrated that fusing the spatial and temporal flows
at the final convolutional layer is effective in reducing the number of parameters while
maintaining accuracy. To address the challenge of modeling long temporal structures,
Wang et al. (2016) introduced temporal segment networks (TSN). TSN employs a
sparse sampling scheme to represent temporal features, enabling the modeling of
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entire videos. Additionally, the authors proposed two supplementary input
modalities: RGB difference and warped optical flow, which enhance the learning
efficiency of the original two-stream network. Wang et al. (2015a) introduced
trajectory-pooled deep-convolutional descriptors (TDD), which integrate classical
improved dense trajectory (IDT) handcrafted features with two-stream deep learning
features. To further enhance spatiotemporal feature integration in two-stream
architecture, a novel spatiotemporal pyramid network (SPN) was proposed by Wang
et al. (2017), leveraging a pyramid structure to amplify feature interactions. Peng et al.
Peng et al. (2018) advanced this field with their two-stream collaborative learning with
spatial-temporal attention (TCLSTA) method, comprising a spatial-temporal attention
model and a static-motion collaborative model.

The integration of the spatial and temporal streams is a critical step in Two-Stream
CNN:s. Various fusion strategies have been proposed, including early fusion
(combining data before feature extraction), late fusion (combining after separate
feature extraction), and mid-level fusion (combining features at intermediate layers).
Late fusion is commonly used, where the outputs of both streams are concatenated or
averaged before being fed into a final classifier. This approach allows the model to
learn complementary features from both streams effectively Feichtenhofer et al. (2016);
Simonyan and Zisserman (2014a); Wang et al. (2016).

Training Two-Stream CNNs involves optimizing both streams simultaneously, which
can be challenging due to their different nature. Transfer learning is often employed,
using pre-trained networks on large-scale image and video datasets. Fine-tuning these
networks on HAR datasets helps in adapting the learned features to specific activities.
Additionally, techniques such as data augmentation, dropout, and batch
normalization are utilized to enhance generalization and prevent overfitting Wang

et al. (2015b).

However, Two-Stream CNNSs face several challenges. One significant issue is the
computational complexity and memory requirements due to the dual processing
streams, making real-time implementation difficult, especially on
resource-constrained devices. Additionally, the need for accurate computation of
handcrafted techniques used in the temporal stream, such as dense trajectories or
optical flow, can be a bottleneck, as errors in motion estimation directly affect the

temporal stream’s performance.

1.3.3.2 3D CNN-based Methods

3D CNNs have emerged as a powerful tool in HAR Tran et al. (2015); Carreira and
Zisserman (2017); Qiu et al. (2017); Tran et al. (2018); Feichtenhofer et al. (2019);
Zolfaghari et al. (2017) due to their ability to capture spatial and temporal features
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simultaneously. 3D CNNs extend the traditional 2D CNNs by adding an extra
dimension to the convolutional filters. This enables the network to process video data
by considering the temporal sequence of frames, thereby capturing motion and spatial
information concurrently. The 3D convolutional layers apply filters across the height,
width, and time dimensions, allowing for comprehensive feature extraction from

sequential data.

The general architecture of 3D CNNSs typically includes several layers of 3D
convolutions, pooling, and fully connected layers. The 3D convolutional layers extract
spatiotemporal features, while the pooling layers reduce the spatial and temporal
dimensions, helping to manage computational complexity and reduce overfitting. The
final fully connected layers, followed by softmax activation, are used for classification

tasks, such as recognizing specific human activities.

Compared to other HAR methods, such as 2D CNNs and RNNs, 3D CNNs provide a
more integrated approach to spatiotemporal feature extraction. While 2D CNNss focus
primarily on spatial features and RNNs on temporal sequences, 3D CNNs combine
these aspects, leading to more accurate and robust activity recognition. This makes
them particularly suitable for applications involving continuous video streams.

The C3D (Convolutional 3D) model, introduced by Tran et al. (2015), is a pioneering
approach in video analysis that uses 3D CNNSs to capture spatiotemporal features. 2D
CNNs benefit from pre-training on extensive image datasets like ImageNet Deng et al.
(2009) and Places205 Zhou et al. (2017a), which are significantly larger than any
available video datasets. A considerable amount of research has concentrated on
employing 2D CNN architectures that achieve higher accuracy and better

generalization, subsequently adapting them for video classification tasks.

Proposed by Carreira and Zisserman (2017), the I3D model extends the capabilities of
2D CNN:ss to handle video data by inflating 2D convolutions into 3D. The core idea
behind I3D is to leverage pre-trained 2D CNNSs, such as Inception-v1 Szegedy et al.
(2015), and inflate their 2D filters and pooling kernels into 3D. ResNet3D was
introduced by Hara et al. (2018) extends the 2D ResNet He et al. (2016) by replacing
2D convolutional filters with 3D kernels. This allows the network to process temporal
information in videos, leveraging the success of 2D CNNs on large-scale image

datasets like ImageNet for improved video analysis.

The kernel-level decomposition of 3D convolutions in P3D Qiu et al. (2017) and R2+1D
networks Tran et al. (2018) is proposed to effectively capture spatiotemporal features
while significantly reducing computational complexity. By splitting 3D convolutional
filters into separate spatial and temporal components, specifically a 2D convolutional
kernel for spatial dimensions (height and width) and a 1D convolutional kernel for the
temporal dimension (time), these networks can leverage the strengths of 3D

convolutions without the extensive computational and memory costs.
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Another approach to employing 3D CNNss is through the use of two or multiple
streams to enhance performance. The SlowFast network by Feichtenhofer et al. (2019)
which utilizes a two-stream 3D CNN architecture: the Fast pathway processes video
at a higher frame rate, capturing rapid movements and short-term dynamics, while
the Slow pathway operates at a lower frame rate, focusing on long-term temporal
dynamics. In a related development, Zolfaghari et al. (2017). employed a three-stream

3D CNN to integrate three crucial visual cues: pose, optical flow, and RGB frames.

Despite their advantages, 3D CNNSs face several challenges. One major issue is the
high computational cost and memory requirements due to the added temporal
dimension in the convolutional layers. This makes training and deploying 3D CNNs
on resource-constrained devices challenging. Additionally, training 3D CNNs
involves optimizing the network parameters to accurately predict activities from input
data. This requires a large dataset of labeled videos or sensor data representing
various activities Zhu et al.. The need for large annotated datasets for training can be a
significant barrier, as collecting and labeling video data is time-consuming and

labor-intensive.

1.3.3.3 RNN-based Methods

RNN s are designed to handle sequential data by maintaining a hidden state that
captures information from previous time steps. This ability to retain information over
time makes them ideal for tasks like HAR, where activities unfold over several frames
or time steps. Standard RNNs have limitations like vanishing gradients, but advanced
variants such as LSTM networks Hochreiter and Schmidhuber (1997) and gated
recurrent units (GRUs) address these issues effectively.

LSTM networks are a popular choice in HAR due to their ability to remember
long-term dependencies. An LSTM cell consists of gates that control the flow of
information, allowing the network to retain or forget information as needed
Hochreiter and Schmidhuber (1997). This is particularly useful in HAR, where
activities can vary in duration and complexity. LSTMs have been successfully applied
to recognize activities like walking, running, and complex gestures by processing
sequential sensor data Ordéfiez and Roggen (2016). GRUs, a simpler alternative to
LSTMs, also perform well in HAR. They merge the input and forget gates of LSTMs
into a single update gate, simplifying the architecture and reducing computational
complexity. Despite their simpler structure, GRUs have demonstrated comparable
performance to LSTMs in various HAR tasks, making them a viable option for
applications where computational efficiency is crucial Dua et al. (2021).

The temporal sequence information in video data, essential for HAR, makes RNNs
Sun et al. (2017); Ullah et al. (2017); He et al. (2021); Donahue et al. (2015); Ballas et al.
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(2015); Yue-Hei Ng et al. (2015) a highly suitable option. Research initiatives like
LRCN Donahue et al. (2015) and Beyond-Short-Snippets Yue-Hei Ng et al. (2015) have
pioneered the use of LSTM networks for action recognition in videos within a
two-stream network setting. In these frameworks, CNNs extract features from
individual video frames, which are then fed into LSTM networks. LRCN extracts
CNN features from a single frame and inputs them into an LSTM for the HAR task.
Beyond-Short-Snippets extends this approach by utilizing pre-trained 2D CNNss to

extract features, which are subsequently processed by a stacked LSTM framework.

Ullah et al. (2017); He et al. (2021) employed bidirectional LSTM, which consists of two
separate LSTMs designed to learn both forward and backward temporal information
for HAR. Lattice-LSTM Sun et al. (2017) enhances the traditional LSTM by learning
independent hidden state transitions for memory cells at individual spatial locations,
allowing it to effectively model long-term and complex motions. Besides using LSTM,
some studies have explored HAR through GRU Ballas et al. (2015); Dwibedi et al.
(2018); Kim et al. (2018b); Shi et al. (2017); Zhu et al. (2020a). GRU, which features
fewer gates Cho et al. (2014) than LSTM, leads to a reduction in model parameters
while typically delivering similar performance for HAR. FASTER-GRU Zhu et al.
(2020a) developed a FAST-GRU to aggregate clip-level features from videos, reducing
the processing cost of redundant clips and thereby accelerating inference speed.

ShuttleNet Shi et al. (2017) is a biologically inspired deep network embedded within a
CNN-RNN framework, featuring a multilayer loop-connected GRU processor.
Furthermore, several studies have integrated attention mechanisms Girdhar and
Ramanan (2017); Meng et al. (2019); Li et al. (2018b) into LSTM-based frameworks to
enhance HAR.

Despite their strengths, RNN-based methods face challenges in HAR. One major issue
is the high computational cost associated with training and inference, which can limit
real-time applications. Additionally, RNNs can struggle with very long sequences due
to issues like gradient vanishing and exploding. Addressing these challenges often
requires architectural modifications and efficient training strategies. Recent research
has focused on improving RNN architectures and training techniques to enhance
HAR performance. Innovations such as attention mechanisms allow the network to
focus on relevant parts of the sequence, improving accuracy. Hybrid models that
combine RNNs with CNNs have also been explored, leveraging the strengths of both

architectures to capture spatial and temporal features.

1.3.3.4 Transformer-based Methods

Transformers, introduced by Vaswani et al. (2017), have revolutionized natural
language processing (NLP) by enabling models to understand context over long
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sequences of data. Recently, their application has extended to HAR, leveraging their
powerful ability to capture long-range dependencies and contextual information. This
development marks a significant advancement in HAR, where understanding

complex temporal patterns is crucial.

Transformers operate using a self-attention mechanism that allows them to weigh the
importance of different elements in a sequence. Unlike RNNs, which process
sequences step-by-step, transformers process entire sequences simultaneously. This
parallel processing capability, coupled with the ability to focus on relevant parts of the
input data, makes transformers highly effective for sequence modeling tasks.
Additionally, transformers do not suffer from the vanishing gradient problem that
affects RNNs, making them more stable and efficient for training on long sequences
Han et al. (2020).

The core architecture of a transformer consists of an encoder-decoder structure. The
encoder processes the input sequence, generating a set of continuous representations.
The decoder uses these representations to produce the output sequence. Each
component of the transformer (both encoder and decoder) comprises multiple layers
of self-attention and feed-forward neural networks, enabling the model to capture

complex dependencies within the data.

Vision Transformers (ViT) are a recent extension of transformers introduced by
Dosovitskiy et al. (2020), specifically designed for image and video analysis. ViT
primarily uses an encoder-only architecture, rather than the encoder-decoder structure
typical of transformers. Unlike traditional CNNs, ViT models split images into a
sequence of patches, treating them similarly to tokens in text processing. This
approach allows ViT to leverage the self-attention mechanism to capture relationships
within the visual data. In the context of HAR, ViT can be applied to video frames,
enabling the model to understand spatial and temporal patterns effectively. ViT
models have demonstrated strong performance in various visual tasks, making them a

promising direction for further advancements in HAR.

Applying transformers to RGB-based action recognition has yielded remarkably
superior performance Bertasius et al. (2021); Arnab et al. (2021). Bertasius et al. (2021)
expanded the Vision Transformer (ViT), originally designed for image classification
Dosovitskiy et al. (2020), to accommodate video data. They achieved this by
decomposing each video into a sequence of frame-level patches. Subsequently, they
introduced a divided attention mechanism that applies spatial and temporal attention
separately within each block of the model. Arnab et al. (2021) introduced ViViT which
treats video frames as sequences of image patches and processes them simultaneously,
leveraging the self-attention mechanism to capture both spatial and temporal

dependencies effectively. Yan et al. (2022) introduced MTV-H which employs separate
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streams of encoders to process different views of video inputs, utilizing lateral

connections to fuse information across these views.

Chen et al. (2021) introduced RegionViT which employs a two-stage attention
mechanism: regional attention and local attention. In the regional stage, it processes
image patches hierarchically to capture global context. The local stage refines detailed
features within each region. This approach allows RegionViT to leverage global
self-attention benefits while enhancing focus on important local features. Yang et al.
(2022b) presented the Recurring Vision Transformer (RViT) model which integrates a
two-layer transformer architecture optimized for video input, utilizing a series of
convolutional layers and self-attention mechanisms to capture both spatial and
temporal features. Unlike traditional models that handle each frame or segment
independently, RViT processes the entire video sequence holistically, allowing it to
capture long-range dependencies and complex temporal patterns essential for
accurate action recognition. Moreover, Xing et al. (2023) introduced SVFormer, a
semi-supervised video Transformer designed to utilize both labeled and unlabeled
data, effectively bridging the gap between supervised and unsupervised learning.
This model demonstrated notable advancements in action recognition tasks across
several standard HAR datasets, including Kinetics-400 and UCF101. Collectively,
these studies highlight the pivotal role of Vision Transformers in driving progress in
the field of HAR.

Ahmadabadi et al. (2023) introduces a knowledge distillation approach combining
CNN and Vision Transformer (ViT) models for improved human action recognition.
The study utilizes ConvNeXt as the teacher model to extract local features and various
ViT variants (e.g., PVT, Convit, MViT, Swin Transformer, and Twins) as student
models to capture global dependencies. Through distillation, the student models
achieved significant improvements in accuracy and mean average precision (mAP) on
the Stanford 40 dataset compared to regular training methods. This work highlights
the effectiveness of integrating local and global feature learning for advancing action

recognition tasks.

Moreover, Wang et al. (2024) proposes a novel model that integrates spatio-temporal
video features and skeleton joint data to enhance human action recognition. The
CMEF-Transformer utilizes directional attention for spatio-temporal modality and
cross-attention for skeleton joint modality to capture detailed motion information and
maintain the temporal order of actions. A multimodal collaborative recognition
strategy is employed to synergistically fuse features from both modalities, optimizing
overall performance. Experimental evaluations on benchmark datasets such as
NTU-RGB+D and Anubis demonstrate the model’s superior accuracy compared to
state-of-the-art methods, showcasing its effectiveness in cross-modal action
recognition tasks. Later, Dass et al. (2025) introduces ActNetFormer a hybrid

architecture combining Transformer and ResNet models for effective semi-supervised
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action recognition. This approach leverages the strengths of ResNet for extracting
local spatial features and Transformers for capturing global temporal dependencies,
enabling the model to perform well in scenarios with limited labeled data. The model
demonstrates superior performance on standard benchmarks by balancing the
trade-off between computational efficiency and accuracy, showcasing its potential for
scalable and effective video-based action recognition. This study highlights the
efficacy of integrating CNN and Transformer components in hybrid architectures to

address challenges in human action recognition.

1.4 Research Challenges

HAR presents a multifaceted array of challenges that can be broadly classified into
data-based and model-based categories, see Figure 1.3. Data-based challenges
primarily revolve around the nature and quality of the data available for training and
testing HAR systems. These include the inherent complexity and variability of human
actions, which can be performed in numerous ways depending on individual styles
and situational contexts. The issues of occlusions and viewpoint variability further
complicate data capture, as actions can be partially or fully obscured or viewed from
different angles. Additionally, background clutter introduces noise that can distract
from the primary actions being analyzed. Inter-class and intra-class variability, where
different actions may appear similar and the same action may appear differently when
performed by different individuals, adds to the challenge. Finally, the labor-intensive
process of data annotation and labeling requires significant expertise and attention to
detail, making it difficult to obtain large, accurately labeled datasets.

Model-based challenges, on the other hand, focus on the limitations and complexities
inherent in designing and implementing HAR models. Temporal dynamics are crucial,
as recognizing actions involves understanding the progression of movements over
time, which requires capturing and processing temporal dependencies accurately.
Real-time processing requirements impose additional constraints, as many HAR
applications necessitate quick and accurate responses. The integration of multimodal
data from various sensors can enhance recognition but also adds complexity to the
system. Scalability of models is another concern, as the system must remain efficient
and effective even as the diversity of actions and volume of data increase. Transfer
learning and domain adaptation are needed to ensure models trained in one
environment can generalize to others. Overfitting poses a risk, especially when
models are trained on limited or unbalanced datasets, leading to poor generalization
to unseen data. Feature extraction is crucial for capturing relevant aspects of actions,
requiring techniques that can effectively isolate important details from noise.
Meanwhile, model complexity must be carefully managed to avoid excessive

computational demands and ensure practical application without sacrificing accuracy.
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FIGURE 1.3: HAR challenges taxonomy.

1.4.1 Data-based Challenges
1.4.1.1 Complexity of Human Actions

Human actions involve a wide range of movements and interactions, which can be
subtle and complex. This complexity makes it difficult for HAR systems to accurately
capture and interpret the small differences of each action. For instance, distinguishing
between actions that involve similar motions but different contexts, such as waving
hello versus waving to catch someone’s attention, requires sophisticated data
representation and annotation Weinland et al. (2011); Zhang et al. (2019).

1.4.1.2 Variability in Execution

The way in which an action is performed can vary significantly between individuals
and contexts Chaquet et al. (2013). This variability can stem from differences in
physical attributes, personal styles, or cultural practices Turaga et al. (2008). HAR
systems must be able to generalize across these variations to accurately recognize
actions. For example, the same gesture can look different when performed by
individuals of different heights or with varying degrees of expressiveness, making it
challenging to develop a one-size-fits-all model Singh et al. (2021).
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1.4.1.3 Occlusions and Viewpoint Variability

Human actions are often partially or completely obscured by objects, other people, or
the performer’s own body parts Weinland et al. (2011). Additionally, actions can be
observed from various angles and distances, resulting in significant variability in the
captured data. Occlusions and changes in viewpoint can lead to incomplete or
misleading visual information, complicating the task of accurately recognizing the
intended action Jegham et al. (2020). For instance, a handshake might be partially
hidden by a tree or another person, making it difficult for the HAR system to detect
the action reliably Giannakos et al. (2021).

1.4.1.4 Background Clutter

Actions typically occur in complex environments with dynamic and often noisy
backgrounds. Background clutter introduces additional noise that can distract from
the primary action being analyzed Jegham et al. (2020). Isolating the action from these
backgrounds to ensure accurate recognition is a non-trivial task. For instance, in a
crowded street scene, identifying a person waving amidst numerous other activities

and moving objects presents a significant challenge for HAR systems.

1.4.1.5 Inter-class and Intra-class Variability

Different actions (inter-class) can sometimes appear similar, such as running versus
jogging, while the same action (intra-class) can appear different when performed by
different individuals or under different conditions Akila (2022); Jegham et al. (2020).
This variability makes distinguishing between actions and ensuring consistency in
recognition difficult. For example, walking can vary greatly depending on the
person’s speed, gait, and external conditions, making it challenging to create a model

that accurately captures all variations.

1.4.1.6 Data Annotation and Labelling

Annotating large datasets for action recognition is labor-intensive and
time-consuming Jegham et al. (2020). Accurate labeling requires expertise and careful
attention to detail, particularly for actions that are ambiguous or involve multiple
overlapping movements Kwon et al. (2019). The quality of annotations directly
impacts the performance of HAR models, and any errors or inconsistencies can lead to
significant degradation in model accuracy. For instance, mislabeling a complex action

sequence can mislead the training process, resulting in poor recognition performance.
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1.4.1.7 Transfer Learning Limitations Regarding Data

Transfer learning in HAR poses significant limitations when it comes to adapting
across diverse data environments. One of the key challenges is that data collected in
controlled environments—where lighting, camera angles, and participant actions are
carefully managed—differs substantially from the data encountered in real-world
settings Jegham et al. (2020). For instance, video footage in controlled lab
environments often consists of well-lit, high-resolution recordings, free from noise,
obstructions, or occlusions. When a model trained on this data is applied to less
controlled environments, such as surveillance footage with poor lighting, low
resolution, and unpredictable human behavior, its performance can degrade
significantly Kong and Fu (2022). This is because the model’s learned features and
patterns from the training data may not generalize well to new, more variable data,
particularly if the visual characteristics of actions are obscured by factors like
occlusion or poor image quality. Such discrepancies highlight the limitations of
transfer learning in HAR, as models may struggle to adapt to unforeseen variations in

the input data without significant re-training or domain adaptation techniques.

1.4.2 Model-based Challenges

These challenges represent the primary focus of investigation in this thesis, as they
encompass critical barriers to the advancement of human action recognition. By
addressing these issues, the research aims to propose innovative solutions that
improve the robustness, accuracy, and efficiency of action recognition models. This
study not only highlights the significance of overcoming these obstacles but also
underscores their interconnection with broader challenges in the field of artificial

intelligence and computer vision.

1.4.2.1 Temporal Dynamics

Human actions unfold over time, requiring the progression of movements to be
understood as a temporal sequence Vasileiou et al. (2021). Accurately capturing these
dynamics is critical for effective HAR, but this poses several challenges Jegham et al.
(2020). One key difficulty lies in handling variations in action duration and accounting
for the temporal dependencies between different movements. Without a clear
understanding of how actions evolve over time, HAR models may struggle to
distinguish between subtle differences in actions that may appear similar when
viewed statically. As a result, modeling the temporal structure of actions becomes vital

to ensuring the correct interpretation and recognition of dynamic human behaviors.
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For HAR models to distinguish between actions, such as differentiating between
sitting down and squatting, they must accurately capture the sequential movements
that define these actions Wang et al. (2022). This requires a deep understanding of the
temporal relationships between movement phases, allowing the model to recognize
the progression and subtle differences between similar actions Bobick and Davis
(1997). Successfully identifying these temporal patterns is crucial, as it enables HAR
systems to adapt to variations in timing and movement execution, ensuring that they

can recognize actions consistently and accurately over a wide range of scenarios.

1.4.2.2 Feature Extraction

Effective feature extraction is crucial for capturing the relevant aspects of human
actions while minimizing irrelevant information. Extracting meaningful features from
raw data requires sophisticated techniques that can isolate important details from
noise. For instance, identifying shape of the human body and tracking its movements
can provide valuable information for action recognition, but the process needs to be
accurate and efficient Hirota and Komuro (2021); Zhang et al. (2021b); Dhiman and
Vishwakarma (2020); El-Ghaish et al. (2018).

Shape vs Texture Features: CNNs have the tendency to classify images based on
texture rather than shape. Research indicates that CNNs are particularly sensitive to
texture features because the convolutional filters in the early layers capture local
patterns strongly indicative of texture. This tendency can result in misclassifications
when objects share similar textures but differ in shape Hermann et al. (2020); Geirhos
et al. (2018).

A CNN is designed to automatically and adaptively detect spatial features Yamashita
et al. (2018). However, it remains unclear which specific spatial feature the CNN uses
to detect objects (e.g., color, texture, or shape). The study in Geirhos et al. (2018)
conducted a quantitative experiment comparing the responses of CNNs and human
observers regarding the distinction between shape and texture cues in image
classification. The results showed that CNNs trained on ImageNet tend to prioritize
texture over shape, as shown in Figure 1.4. This behavior contrasts sharply with that
of humans. Conversely, several studies suggest that object shape representations are
more critical for action recognition tasks Hirota and Komuro (2021); Zhang et al.
(2021b); Dhiman and Vishwakarma (2020); El-Ghaish et al. (2018).

However, for HAR, shape features are crucial. Accurate HAR relies on understanding
the overall shape and form of the body and its movements. When models prioritize
texture over shape, it can hinder the accurate identification of actions, which depend

heavily on the body’s shape and movement dynamics. Therefore, enhancing CNNs to
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(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 173%  grey fox 264%  indri
8.2% black swan 3.3% Siamese cat 9.6%  black swan

FIGURE 1.4: Conflict between texture and shape features in CNNs trained on Ima-

geNet. Classification of a standard ResNet-50 of (a) a texture image (elephant skin:

only texture cues); (b) a normal image of a cat (with both shape and texture cues), and

(c) an image with a texture-shape cue conflict, generated by style transfer between the
first two images Geirhos et al. (2018)

better capture shape features is essential for improving HAR accuracy Zhang et al.
(2019); Kong and Fu (2022); Singh et al. (2021).

Synthetic Frames: In the field of HAR, the use of shape-specific synthetic images,
such as body part segmentation, and motion-specific synthetic images, like optical
flow, is crucial for improving the accuracy and robustness of action recognition
models. Shape-specific synthetic images enable the model to focus on the form and
structure of human bodies, capturing critical details about posture and movement
dynamics. For instance, segmenting body parts can help distinguish between similar
actions that differ slightly in the positioning of limbs, such as running versus walking.
This granular level of detail is essential for precise HAR, as it allows the model to
learn and recognize the intricate patterns of human movement Zhang et al. (2019);
Singh et al. (2021).

Shape-specific synthetic images are typically created using semantic segmentation
techniques, which involve partitioning an image into different regions corresponding
to various body parts. This process begins with labeling pixels in an image according
to the body part they represent, a task usually performed on a large set of training
images. These labeled images are then used to train deep learning models, such as
convolutional neural networks (CNNS), to recognize and segment different body parts
in new, unseen images. Advanced methods employ architectures like U-Net or Mask
R-CNN, which are particularly effective in capturing the fine details of body part
boundaries and ensuring accurate segmentation even in complex poses and
environments Zhang et al. (2019); Singh et al. (2021).

Motion-specific synthetic images, such as optical flow, provide additional context by
capturing the movement across frames in a video sequence. Optical flow represents

the motion of objects within the visual field, which is vital for understanding dynamic
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FIGURE 1.5: Artificially created human body part segmentation (synthetic images)
Huyghe et al. (2021).

actions. By analyzing these motion patterns, HAR models can better interpret actions
that involve complex sequences of movements, such as dancing or sports activities.
This temporal information complements the spatial data from body part
segmentation, creating a more comprehensive understanding of the action being
performed Kong and Fu (2022); Sun et al. (2022)

To address the issue of CNNs favoring texture over shape, many studies have
employed techniques such as human semantic segmentation and human body parts
segmentation. Additionally, end-to-end autoencoders have been used in action
recognition to tackle this specific challenge Huyghe et al. (2021); Tanigawa et al.
(2022); Zoltaghari et al. (2017), as illustrated in Figures 1.5 and 1.6. However, the use
of autoencoders comes with several disadvantages, including the complexity of
multiple modeling steps (see Figure 1.7), the substantial memory required to store
synthetic segmentation frames, and the extended training time due to the high
computational cost of first training the autoencoder network, then generating
synthetic segmentation images, followed by using an action recognition network for
classification. These constraints complicate the development of an efficient end-to-end
HAR model. Despite their advantages, creating these synthetic images during the
preprocessing phase of HAR poses significant challenges. One of the primary
difficulties is the computational cost associated with generating high-quality synthetic
images. Segmentation and optical flow algorithms require substantial processing
power and time, especially when dealing with large datasets. This computational
burden can become a bottleneck, delaying the overall processing pipeline and

potentially limiting the scalability of the HAR system Kong and Fu (2022).

1.4.2.3 Multimodal Data Integration

Incorporating data from multiple sensors, such as RGB cameras, depth sensors, and
motion capture systems, can enhance action recognition by providing complementary
information. However, effectively integrating and synchronizing these multimodal
inputs adds complexity to the system design and implementation. Yadav et al. (2021)

Each modality may have different characteristics and noise levels, requiring
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FIGURE 1.6: Artificially created human body part segmentation images (synthetic im-
ages) Zolfaghari et al. (2017).
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FIGURE 1.7: The standard application of autoencoders in HAR tasks. The technique

necessitates the use of the autoencoder twice (training and inference) and necessitates

a large amount of storage capacity for the synthetic images. Then, the model for action
recognition will be trained using the autoencoder-created segmentation images.
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sophisticated fusion techniques to leverage the strengths of each sensor while
mitigating their weaknesses Sun et al. (2022). For example, combining visual and

depth information can improve recognition accuracy in low-light conditions.

In HAR, integrating visual data with other modalities such as audio, depth, or sensor
data can enhance recognition accuracy. However, this integration introduces
additional challenges. Each modality has different data characteristics, sampling rates,
and noise levels, complicating the fusion process Ramanathan et al. (2014).
Developing methods that effectively combine these diverse data types while
preserving the unique advantages of each modality requires sophisticated modeling

and a deep understanding of multimodal data processing.

1.4.2.4 Models” Complexity

The complexity of the models used to process features must be carefully balanced to
ensure they are neither too simple nor overly complex. Complex models with
numerous parameters can capture intricate patterns but may be computationally
expensive and prone to overfitting Ying (2019). Conversely, simpler models may not
capture the necessary detail for accurate recognition Bejani and Ghatee (2021). Finding
the optimal level of complexity that maximizes accuracy while maintaining efficiency
is an ongoing challenge in HAR. For example, deep learning models, while powerful,
require significant computational resources and careful tuning to avoid unnecessary
complexity.

3D CNNs: Unlike 2D CNNs, which process individual frames independently, 3D
CNNs operate on sequences of frames, requiring more complex operations across the
spatial and temporal dimensions Tran et al. (2015). This increased complexity results
in higher computational costs and greater memory consumption Ji et al. (2012),
making it difficult to train and deploy 3D CNNs on standard hardware, let alone on
resource-constrained devices like mobile phones or embedded systems.

Training 3D CNNSs is a time-consuming process due to the extensive computational
requirements Carreira and Zisserman (2017). The need to process and learn from large
volumes of video data extends the training time significantly compared to 2D CNNs.
This prolonged training period can be a bottleneck in iterative development cycles,
where quick experimentation and model refinement are crucial Tran et al. (2018).
Additionally, longer training times increase the overall cost and complexity of
developing effective HAR systems.

RNNs: and their advanced variants like LSTM or GRU networks are inherently
complex due to their sequential processing nature Lipton (2015). This complexity

translates into substantial computational requirements and extended training times
Greff et al. (2016). Unlike CNNs, which can process data in parallel, RNNs must
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process each element of a sequence in order, leading to inefficiencies Bai et al. (2018).
Training deep RNNs or LSTMs over long sequences, such as those found in HAR
tasks, exacerbates this issue, requiring significant computational power and advanced

hardware to manage the extensive calculations.

One of the fundamental issues with RNNSs is the problem of vanishing and exploding
gradients. During back propagation through time (BPTT), gradients used to update
the network’s weights can become extremely small (vanish) or very large (explode)
Bengio et al. (1994). Vanishing gradients cause the network to learn very slowly, while
exploding gradients can cause instability and result in large weight updates Pascanu
(2013). Although LSTMs were designed to mitigate these problems through their
gated structure, they are not completely immune Hochreiter and Schmidhuber (1997).
The presence of long sequences in HAR exacerbates these issues, making it
challenging to train effective models that capture long-term dependencies.

Many applications of HAR, such as real-time monitoring and surveillance, require
low-latency processing Mohammadi (2018). The sequential nature of RNNs and
LSTMs poses a challenge for real-time applications because each time step must be
processed in order Ordéfiez and Roggen (2016). This sequential processing can
introduce latency, making it difficult to meet the real-time requirements of certain
HAR applications Agarwal and Alam (2020). Optimizing RNNs and LSTMs for
real-time performance involves reducing computational complexity and ensuring

efficient execution, which is non-trivial.

The complexity of RNNs and LSTMs also impacts their interpretability and
explainability. Understanding how these models make decisions is crucial, especially
in applications like healthcare and security, where transparency is important Adadi
and Berrada (2020). The “black-box” nature of these networks makes it challenging to
explain their predictions and gain insights into their decision-making process Chen
et al. (2020). Developing methods to visualize and interpret the internal workings of
RNNs and LSTMs, such as attention mechanisms and saliency maps, is essential to

enhance trust and reliability in HAR applications.

1.4.2.5 Overfitting

The development of effective HAR models is significantly hampered by the scarcity of
large, labeled datasets. Collecting and annotating video data for HAR is a
labor-intensive and costly process, requiring numerous video samples from diverse
environments and contexts to ensure robustness and generalization Kumar et al.
(2024). This lack of extensive datasets contrasts sharply with fields like image
classification, where large-scale datasets such as ImageNet provide a rich source of
labeled images for training. Furthermore, the complexity of 3D CNNs compounds
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these challenges. 3D CNNs, designed to capture spatiotemporal features, require
significantly large quantity of data, more computational resources and memory
compared to their 2D counterparts Shabanian et al. (2022). This increased complexity
makes training and deploying 3D CNNs more difficult, especially on
resource-constrained devices.

Moreover, 3D CNNs are prone to overfitting, especially when trained on small
datasets Klaiber et al. (2021). Overfitting occurs when a model learns the noise and
details in the training data to the extent that it negatively impacts the model’s
performance on new, unseen data Ying (2019). This issue is particularly prevalent in
HAR due to the limited availability of extensive and diverse datasets Yu et al. (2020).
Overfitting can lead to poor generalization, where the model performs well on
training data but fails to accurately recognize activities in different settings or with
different individuals. To mitigate overfitting, techniques such as model complexity
reduction, transfer learning, regularization, dropout, and data augmentation are
employed Santos and Papa (2022), but these approaches can only partially address the
inherent challenges posed by the complexity and data requirements of 3D CNNs.

1.4.2.6 Transfer Learning Limitations Regarding Models’ Designs

3D CNNss offer significant benefits for HAR by effectively capturing spatiotemporal
features from video data, enabling the modeling of dynamic activities over time Ji
et al. (2012). Unlike 2D CNNs, which process individual frames independently, 3D
CNNs apply convolutions across both spatial and temporal dimensions, allowing
them to understand motion and temporal patterns crucial for accurate activity
recognition Tran et al. (2015).

HAR faces significant challenges due to the lack of large, labeled datasets compared to
the abundance available for image classification tasks. While datasets like ImageNet
provide millions of annotated images for training 2D CNNSs, the availability of
similarly extensive video datasets for training 3D CNNSs in HAR is limited Sargano

et al. (2017). Collecting and annotating video data is a labor-intensive and costly
process, making it difficult to compile the large datasets needed for robust 3D CNN
training. This scarcity hinders the development of highly accurate HAR models and
underscores the importance of transfer learning Hoelzemann and Van Laerhoven
(2020).

To overcome this limitation, researchers often leverage transfer learning from 2D
CNNs pre-trained on vast image classification datasets to 3D CNNSs tailored for HAR
Carreira and Zisserman (2017); Qiu et al. (2017); Tran et al. (2018); Abdullah et al.
(2020). By transferring the rich spatial features learned from extensive 2D image
datasets, these models can be fine-tuned to capture temporal dynamics in video data,
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thus compensating for the lack of large-scale video datasets. This approach not only
accelerates the training process but also enhances the model’s performance in
recognizing complex human activities, thereby bridging the gap between the
abundance of image data and the scarcity of annotated video data Ray et al. (2023).
While transfer learning from 2D CNNs to 3D CNNs holds promise, it presents several
challenges, particularly when transitioning from image classification to HAR. The
fundamental differences between handling static images and dynamic video

sequences complicate the transfer process.

Learning Temporal Dynamics: A primary challenge in transferring from 2D to 3D
CNNis is the necessity to capture temporal dynamics. 2D CNNs are designed to
process spatial features in static images, whereas 3D CNNs must also understand
motion and changes over time. Adapting spatial features to include temporal
information requires significant architectural modifications and additional training
Diba et al. (2017). Features learned by 2D CNNs on image classification tasks may not
transfer effectively to 3D CNNs for HAR. The pre-trained features are optimized for
spatial contexts and may lack the necessary temporal context, resulting in suboptimal
performance when applied to video data. Extensive fine-tuning or retraining is often

required to adapt these features for effective HAR Leong et al. (2020).

Architectural Modifications and Increased Computational Complexity: Adapting
the architecture of 2D CNNs to 3D CNN s involves significant changes, including the
modification of convolutional and pooling layers to accommodate the temporal
dimension Carreira and Zisserman (2017); Qiu et al. (2017); Tran et al. (2018). These
architectural changes must be carefully implemented to avoid degrading the model’s
performance. Additionally, the transition from 2D to 3D CNNs requires redesigning
other network components, such as normalization and activation layers, to handle the
increased complexity and data volume. This architectural overhaul often leads to a

significant increase in the number of parameters and computational demands.

Converting a 2D CNN into a 3D CNN increases the model’s computational load and
memory requirements substantially. The added temporal dimension necessitates more
parameters and complex operations, which can be computationally prohibitive Liu

et al. (2019); Kopuklu et al. (2019). Moreover, the increased computational complexity
affects not only the training phase but also the inference phase. Real-time applications,
such as surveillance systems or healthcare monitoring, require quick and efficient
processing of incoming data streams Li et al. (2024). The heavy computational load of
3D CNNs can result in latency issues, where the time taken to process and recognize
activities exceeds acceptable limits for real-time operation. This necessitates the
development of optimized algorithms and the use of hardware accelerators, such as
GPUs and TPUs, to meet the performance requirements. Techniques like model
compression, pruning, and efficient architectural designs are also being explored to
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mitigate these computational challenges and make 3D CNNs more viable for
widespread use in video recognition Sun et al. (2020).

1.5 Technical Background

This section provides a chronological and technical overview of three fundamental
types of neural networks: CNNs, RNNs, and Transformers. CNNs, introduced in the
late 1980s Fukushima (1980), revolutionized image processing by leveraging local
connectivity and shared weights to efficiently detect spatial hierarchies in data. As the
tield progressed, RNNs emerged in the 1990s, addressing the need for modeling
sequential data through their ability to maintain temporal dependencies across
sequences. The advent of Transformers in 2017 marked a paradigm shift by utilizing
self-attention mechanisms to capture global relationships in data more effectively,
thereby enhancing performance in a wide array of tasks beyond sequential data. This
background section will delve into the technical intricacies and evolutionary trajectory
of these architectures, highlighting their contributions and transitions in the realm of

deep learning.

1.5.1 CNNs

The evolution of CNNs has been remarkable since their introduction in the 1980s.
Originally, CNNs were designed to process static images, primarily focusing on
spatial recognition tasks such as object and pattern recognition. The initial idea was to
build layers of convolutional filters that would apply various operations to the image
to extract features like edges, textures, and shapes. This structure proved highly
effective for tasks like image classification, object detection, image segmentation and

more in computer vision.

The Neocognitron Fukushima (1980), developed by Kunihiko Fukushima, presented
an early example of neural networks incorporating convolutional operations for
image processing, setting the foundations for subsequent progress. Later, Yann LeCun
and collaborators introduced LeNet-5 LeCun et al. (1998), a key architecture designed
for handwritten digit recognition, showcasing the effectiveness of convolutional layers
in pattern recognition tasks. The progress of CNNs reached a turning point in the
mid-2010s with the introduction of models like AlexNet Krizhevsky et al. (2012),
showcasing their potential in image classification tasks. Alongside architectural
innovations, this milestone was achieved thanks to access to large datasets, notably,
ImageNet Deng et al. (2009), and computational improvements, including the rise of
graphics processing units (GPUs) for parallel computing. Large-scale datasets
provided the diversity and complexity necessary for training deep networks, while
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enhanced computational power accelerated the training of sophisticated CNN
architectures.

The architectural enhancements, large datasets, and increased computational
capabilities helped CNNss to be a cornerstone in deep learning methodologies,
extending their applications beyond image processing to various domains. Notable
architectures like VGGNet Simonyan and Zisserman (2014a), distinguished by its
uniform design and small convolutional filters, GoogLeNet Szegedy et al. (2015), with
its inception modules for capturing features at different scales efficiently, and ResNet
He et al. (2016), which introduced residual learning for training very deep networks,
have further enriched the landscape of CNNS.

1.5.1.1 Spatio-Temporal CNNs

As CNNss excelled in spatial tasks, researchers began exploring their potential in
handling temporal data, such as video and time-series analysis. The challenge was to
incorporate the dimension of time into the inherently spatial architecture of CNNs. To
address this task, spatio-temporal CNNs were developed. These networks extend
traditional CNN architectures by adding a temporal component to analyze dynamic
behaviors across time frames. Several approaches have been utilized and main types
are as follows.

3D convolution involves extending the 2D kernels to 3D, allowing the network to
perform convolution across both spatial and temporal dimensions. This approach is
directly applied to video data where the third dimension represents time Hara et al.
(2018); Tran et al. (2015). The two-stream CNNs involve running two parallel CNN
streams: one for spatial processing of individual frames and another for temporal
processing, usually of optical flow, which captures motion between frames Simonyan
and Zisserman (2014a); Feichtenhofer et al. (2016). RNNs with CNNs aim to combine
CNN:s for spatial processing with RNNSs like long short-term memory (LSTM) or
gated recurrent unit (GRU) to handle temporal dependencies. This hybrid model
leverages CNNs’ ability to extract spatial features and RNNs’ capacity to manage
temporal sequences effectively Yue-Hei Ng et al. (2015); Donahue et al. (2015).

1.5.2 From Vanilla RNN to Attention-Based Transformers

This section explores the evolution from RNNs to the Transformers, highlighting the
progression in handling time series and sequence data. Initially, RNNs were the go-to
deep learning technique for managing temporal tasks, effectively capturing sequential
dependencies. However, the development of Transformers marked a significant leap
forward, driven by a series of iterative improvements and optimizations that built
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upon the limitations of RNNs. Transformers, with their focus on NLP, introduced a
novel attention mechanism that allows for more efficient and scalable processing of
sequential data. By examining the foundational RNN techniques and the subsequent
enhancements leading to the Transformer architecture, this section elucidates the
transformative journey from traditional RNN models to the sophisticated

attention-based frameworks that now dominate the field.

We firstly establish common notations for RNN architectures including vanilla RNNSs,
LSTM and GRU to streamline discussions in subsequent sections. In these
architectures, each iteration involves a cell that sequentially processes an input
embedding x; € R™* and retains information from the previous sequence through the
hidden state h;_; € R using weight matrices W € R"*" and U € R"*". The
W-like matrices encompass all weights related to hidden-to-hidden connections,
while U-like matrices encompass all weight matrices related to input-to-hidden
connections. Additionally, bias terms are represented by b-like vectors. Each cell
produces a new hidden state h; € IR"" as its output. More details about symbols and

variables used in this section are given in Table 1.1.

1.5.2.1 Vanilla RNNs

Vanilla RNNs Rumelhart et al. (1985); Jordan (1986) lack the presence of a cell state,
relying solely on the hidden states as the primary means of memory retention within
the RNN framework. The hidden state h; is subsequently updated and propagated to
the subsequent cell, or alternatively, depending on the specific task at hand, it can be
employed to generate a prediction. Figure 1.8a illustrates the internal mechanisms of

an RNN and a mathematical description of it given as
h; = tanh(Wh;_1 + Ux; + b), (1.1)

where tanh is the activation function.

Vanilla RNNSs effectively incorporate short-term dependencies of temporal order and
past inputs in a meaningful manner. However, they are characterized by certain
limitations. Firstly, due to their intrinsic sequential nature, RNNs pose challenges in
parallelized computations Graves et al. (2013). Consequently, this limitation can
impose restrictions on the overall speed and scalability of the network. Secondly,
when processing lengthy sequences, the issue of exploding or vanishing gradients
may arise, thereby impeding the stable training of the network Bengio et al. (1994).
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Symbol \ Definition
x; € R™ | Input embedding at time ¢
h; € R™ | Hidden state at time ¢
W € R">*™" | Weight matrix for hidden-to-hidden connections
U € R"™*" | Weight matrix for input-to-hidden connections
b € R™ | Bias vector
iy € R™ | Output of the sigmoid activation function in the input gate in LSTM cell
o; € R™ | Output of the output gate in LSTM cell
¢; € R™ | Cell state at time f in LSTM cell
¢ € R™ | Candidate cell state at time f in LSTM cell
z¢ € R™ | Output of the update gate in GRU at time ¢
ry € R™ | Output of the reset gate in GRU at time ¢
h; € R™ | Candidate hidden state in GRU at time ¢
Wy € R™>" | Weight matrix for forget gate in LSTM cell
Us € R"*" | Weight matrix for forget gate input in LSTM cell
by € R™ | Bias for forget gate in LSTM cell
W; € R™*" | Weight matrix for input gate in LSTM cell
U; € R™>" | Weight matrix for input gate input in LSTM cell
b; € R™ | Bias for input gate in LSTM cell
W, € R"™>*" | Weight matrix for output gate in LSTM cell
U, € R™*" | Weight matrix for output gate input in LSTM cell
b, € R™ | Bias for output gate in LSTM cell
W € R™>" | Weight matrix for candidate cell state in GRU cell
U; € R"*" | Weight matrix for candidate cell state input in GRU cell
b € R™ | Bias for candidate cell state in GRU cell
W, € R™>*" | Weight matrix for update gate in GRU cell
U, € R"*" | Weight matrix for update gate input in GRU cell
b, € R™ | Bias for update gate in GRU cell
W, € R">*"™ | Weight matrix for reset gate in GRU cell
U, € R"*"™ | Weight matrix for reset gate input in GRU cell
b, € R™ | Bias for reset gate in GRU cell
W; € R™>™" | Weight matrix for candidate hidden state in GRU cell
Uj; € R ™ | Weight matrix for candidate hidden state input in GRU cell
b; € R™ | Bias for candidate hidden state in GRU cell
dr € N | Dimension of the keys
Q € R™*% | A set of query vectors
K € R"™*% | A set of key vectors
V € R™*4 | A set of value vectors
X € R4 | Input matrix (sequence of embeddings)
WH € R%* | Weight matrix for queries
WK € R4 | Weight matrix for keys
WY € R%*% | Weight matrix for values
A € R"*% | Attention output
Q; € R | Query matrix for the i-th attention head
K; € R™*% | Key matrix for the i-th attention head
V; € R™*% | Value matrix for the i-th attention head
WlQ € R%>4x | Weight matrix for queries in the i-th attention head
WK € R%>4 | Weight matrix for keys in the i-th attention head
W/ € R%*% | Weight matrix for values in the i-th attention head
A; € R"*% | Attention output for the i-th attention head

TABLE 1.1: List of mathematical symbols and variables in section 1.5.
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Hochreiter and Schmidhuber (1997) introduced the LSTM cell as a solution to address
the issue of long-term dependencies and to mitigate the challenge of

interdependencies among successive steps Hochreiter and Schmidhuber (1997). LSTM

architecture incorporates a distinct component known as the cell state ¢; € R™,

illustrated in Figure 1.8b. Analogous to a freeway, this cell state facilitates the smooth

flow of information, ensuring that it can readily traverse without undergoing

significant alterations.

Gers et al. (2000) made modifications to the initial LSTM architecture by incorporating

a forget gate within the cell structure. The mathematical expressions describing this

modified LSTM cell are derived from its inner connections. Hence, the LSTM cell can

be formally represented based on the depicted interconnections as follows.

¢ Forget gate decides what information should be thrown away or kept from the

cell state with the equation

fi=0(Wghi1+ Upx: + by),

(1.2)

where f, € R™ is the output of the forget gate and ¢ is the sigmoid activation

function.

¢ Input gate determines which new information is added to the cell state with two

activation functions defined as

it = 0(Wihi_1 + Ujx; + b;),

(1.3)

where i; € R is the output of the sigmoid activation function; and

G = tanh(Wght_l + Usx; + bg),

(1.4)

hy
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where ¢&; € R™ is known as candidate value. After obtaining i; and &, we can

update the cell state with
ct=f,0¢c1+itOF, (1.5)

where ¢;_1 € R is the previous cell state and © is the Hadamard operator.

¢ QOutput gate determines the next hidden state based on the cell state and output
gate’s activity

where o; € R is the output of the output gate. Finally the updated hidden
state,
h; = tanh(c¢) © oy (1.7)

is fed to the next iteration.

To enable selective information retention, LSTM employs three distinct gates. The first
gate, known as the forget gate, examines the previous hidden state h;_; and the
current input x;. It generates a vector f, containing values between 0 and 1,
determining the portion of information to discard from the previous cell state ¢;_;.
The second gate, referred to as the input gate, follows a similar process to the forget
gate. However, instead of discarding information, it utilizes the output i; to determine
the new information to be stored in the cell state based on a candidate cell state ¢;.
Lastly, the output gate employs the output o; to filter the updated cell state ¢;, thereby
transforming it into the new hidden state h;. The LSTM cell exhibits superior
performance in retaining both long-term and short-term memory compared to the
vanilla RNN cell. However, this advantage comes at the expense of increased
complexity.

1523 GRU

The LSTM cell surpasses the learning capability of the conventional recurrent cell, yet
the additional number of parameters escalates the computational load. Consequently,
to address this concern, Chung et al. (2014) introduced the GRU, see Figure 1.8c. GRU
demonstrates comparable performance to LSTM while offering a more
computationally efficient design with fewer weights. This is achieved by merging the
cell state and the hidden state into “reset state” resulting in a simplified architecture.
Furthermore, GRU combines the forget and input gates into an “update gate”,
contributing to a more streamlined computational process. For further elaboration,
GRU cell incorporates two essential gates. The first gate is the reset gate, which
examines the previous hidden state h;_; and the current input x;. It generates a vector
r containing values between 0 and 1, determining the extent to which past
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information in h;_; should be disregarded. The second gate is the update gate, which
governs the selection of information to either retain or discard when updating the new
hidden state h;, based on the value of ;.

Based on the depicted information in Figure 1.8c, the mathematical expressions

governing the behavior of the GRU cell can be expressed as follows.

¢ Update gate decides how much of the past information needs to be passed along
with

where z; € R™ is the output of the update gate. The output of the reset gate
r+ € R is obtained by

ry = c(W,hi—1 + Uyx; + by). (1.9)
A candidate activation for the subsequent step is
hy = tanh(W;,(re © hy_1) + Uz, + by) (1.10)

where i, € R":.

* The final activation is a blend of the previous hidden state and the candidate

activation, weighted by the update gate, i.e.,
h=z O+ (1—z) Ohiy (1.11)

where h; € R™ is the updated hidden state. This mechanism allows the GRU to

effectively retain or replace old information with new information.
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FIGURE 1.9: Types of RNN structures based on input-output pairs.

1.5.2.4 Types of RNNs

RNNs were created with an internal memory mechanism that allows them to store
and use information from previous outputs. This unique trait enables RNNs to retain

important contextual information over time, enabling reasoned decision-making
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based on past results. There are four types of popular RNN variants that each serve
different purposes across a variety of applications, see Figure 1.9. For simplicity, x;
and y; respectively represent the input and output withi =1,...,tin Figure 1.9.

The one-to-one is considered the simplest form of RNNs, where a single input
corresponds to a single output. It operates with fixed input and output sizes,
functioning similarly to a standard neural network. One-to-many represents a specific
category of RNNs that is characterized by its ability to produce multiple outputs
based on a single input provided to the model. This type of RNN is particularly useful
in applications like image captioning, where a fixed input size results in a series of
data outputs. Many-to-one RNNs merge a sequence of inputs into a single output
through a series of hidden layers that learn relevant features. An illustrative instance
of this RNN type is sentiment analysis, where the model analyzes a sequence of text
inputs and produces a single output indicating the sentiment expressed in the text.

Many-to-many RNNs are employed to generate a sequence of output data from a
sequence of input units. It can be categorized into two subcategories: equal size and
unequal size. In the equal size subcategory, the input and output layers have the same
size, see many-to-many architecture in Figure 1.9c. Several research efforts have
emerged to tackle the limitation of the fixed-size input-output sequences in machine
translation tasks, as they fail to adequately represent real-world requirements. The
unequal size subcategory can handle different sizes of inputs and outputs. A practical
application of the unequal size subcategory can be observed in machine translation. In
this scenario, the model generates a sequence of translated text outputs based on a
sequence of input sentences. Unequal size subcategory employs an encoder-decoder
architecture, where the encoder adopts the many-to-one architecture, and the decoder
adopts the one-to-many architecture. One notable contribution in this area was made
by Kalchbrenner and Blunsom (2013), who pioneered the approach of mapping the
entire input sentence to a vector. This work is related to the study conducted by Cho
et al. (2014), although the latter was specifically utilized to refine hypotheses
generated by a phrase-based system Sutskever et al. (2014). In this architecture, the
encoder component plays a crucial role in transforming the inputs into a singular
vector, commonly referred to as the context. This context vector, typically with a
length of 256, 512 or 1024, encapsulates all the pertinent information detected by the
encoder from the input sentence, which serves as the translation target, see Figure
1.10a. Subsequently, this vector is passed on to the decoder, which generates the
corresponding output sequence. It is important to note that both the encoder and
decoder components in this architecture are RNNs. Different from Figure 1.10a, Figure
1.10b gives the encoder-decoder architecture with attention which will be introduced

in the next section.
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FIGURE 1.10: Sequence-to-sequence RNN with and without the attention mechanism.
« is the attention weights vector

1.5.2.5 Attention

The evolution of attention mechanisms in neural networks represents a significant
advancement in the field of deep learning, particularly in tasks related to NLP and
machine translation. Initially introduced by Graves (2013), the concept of attention
mechanisms was designed to enhance the model’s ability to focus on specific parts of
the input sequence when generating an output, mimicking the human ability to
concentrate on particular aspects of a task. This foundational work laid the
groundwork for subsequent developments in attention mechanisms, providing a
mechanism for models to dynamically assign importance to different parts of the
input data.

Building on Graves’ initial concept, Bahdanau et al. (2014) introduced the additive
attention mechanism, which was specifically designed to improve machine
translation. This approach computes the attention weights through a feed-forward
neural network, allowing the model to consider the entire input sequence and
determine the relevance of each part when translating a segment. This additive form
of attention significantly improved the performance of sequence-to-sequence models
by enabling a more nuanced understanding and alignment between the input and
output sequences Sutskever et al. (2014). Following this, Luong et al. (2015) proposed
the multiplicative attention mechanism, also known as dot-product attention, which
simplifies the computation of attention weights by calculating the dot product
between the query and all keys. This method not only streamlined the attention
mechanism but also offered improvements in computational efficiency and
performance in various NLP tasks, marking a pivotal moment in the evolution of
attention mechanisms from their inception to more sophisticated and efficient

variants.

The central idea of the attention mechanism is to shift focus from the task of learning a

single vector representation for each sentence. Instead, it adopts a strategy of
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selectively attending to particular input vectors in the input sequence, guided by
assigned attention weights. This strategy enables the model to dynamically allocate its
attention resources to the most pertinent segments of the sequence, thereby improving
its capacity to process and comprehend the information more efficiently Brauwers and
Frasincar (2021).

One possible explanation for the improvement is that the attention layer created
memories associated with the context pattern rather than memories associated with
the input itself, relieving pressure on the RNN model structure’s weights and causing
the model memory to be devoted to remembering the input rather than the context
pattern Hu et al. (2018).
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FIGURE 1.11: Transformer architecture and its self-attention mechanism (adapted
from Vaswani et al. (2017)).

1.5.2.6 Self-Attention

To this point, attention mechanisms in sequence-transformation models have
primarily relied on complex RNNSs, featuring an encoder and a decoder, the most
successful models in language translation yet. However, Vaswani et al. (2017)
introduced a simple network architecture known as the Transformer, see Figure 1.11,
which exclusively utilized attention mechanism, eliminating the need for RNNs. They
introduced a novel attention mechanism called self-attention, which is also known as
KQV-attention (Key, Query, and Value). This attention mechanism subsequently
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gained prominence as a central component within the Transformer architecture. The
attention mechanism stands out due to its ability to provide Transformers with an
extensive long-term memory. In the Transformer model, it becomes possible to focus

on all previously generated tokens.

The embedding layer in a Transformer model is the initial stage where input tokens
are transformed into dense vectors, capturing semantic information about each
token’s meaning and context within the text. These embeddings serve as the
foundation for subsequent layers to process and understand the relationships between
words in the input sequence Dar et al. (2022).

Self-attention is a mechanism that allows an input sequence to process itself in a way
that each position in the sequence can attend to all positions within the same
sequence. This mechanism is a cornerstone of the Transformer architecture, which has
revolutionized NLP and beyond by enabling models to efficiently handle sequences of
data with complex dependencies. The purpose of self-attention is to compute a
representation of each element in a sequence by considering the entire sequence,
thereby capturing the contextual relationships between elements regardless of their
positional distance from each other. This ability to capture both local and global
dependencies makes self-attention particularly powerful for tasks such as machine
translation, text summarization, and sequence prediction, where understanding the
context and the relationship between words or elements in a sequence is crucial
Vaswani et al. (2017).

The mathematical formulation of self-attention involves several key steps. First, a set
of query vectors Q = XW¥, a set of key vectors K = XWX, and a set of value vectors
V = XWV are calculated through linear transformations of the input sequence, where
X is the input matrix representing embeddings of tokens in a sequence, and W<, WX,
and WY are weight matrices for queries, keys, and values, respectively. The attention
scores are then calculated by taking the dot product of the query vector with all key
vectors, followed by scaling the result by the inverse square root of the dimension of
the keys (say v/dy) to avoid overly large values. These scores are then passed through
a softmax function to obtain the attention weights, which represent the importance of
each element’s contribution to the output. Finally, the output say A is computed as a

weighted sum of the value vectors, i.e.,

QK"
Vi

This process allows the model to dynamically focus on different parts of the input

A(Q,K, V) = softmax( )V. (1.12)

sequence, enabling the extraction of rich contextual information from the sequence.
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1.5.2.7 Multi-Head-Attention

Multi-head attention is an extension of the self-attention mechanism designed to allow
the model to jointly attend the information from different representation subspaces at
different positions Vaswani et al. (2017). Instead of performing a single attention
function, it runs the attention mechanism multiple times in parallel. The outputs of
these independent attention computations are then concatenated and linearly
transformed into the expected dimension. The mathematical formulation of the
multi-head attention can be described in the following steps. First, for the i-th
self-attention head, find

Q, = XW?, K;,=XWK V,=xw/, (1.13)
1 1 1 1
and then compute
QK/
A;(Q;, K;, V;) = softmax VD Vi. (1.14)

The multi-head attention is obtained by concatenating all A;(Q;, K;, V;).

The multi-head attention mechanism enables the model to capture different types of
information from different positions of the input sequence. By processing the
sequence through multiple attention “heads”, the model can focus on different aspects
of the sequence, such as syntactic and semantic features, simultaneously. This
capability enhances the model’s ability to understand and represent complex data,
making multi-head attention a powerful component of Transformer-based
architectures Devlin et al. (2019).

1.5.3 From Transformer to Vision Transformer

The journey from the inception of the Transformer model to the development of the
ViT marks a pivotal advancement in deep learning, showcasing the adaptability of
models initially designed for sequence data processing to the realm of image analysis.
This transition underscores a significant shift in approach, from conventional image

processing techniques to more sophisticated sequence-based methodologies.

Introduced by Vaswani et al. (2017) through the seminal paper “Attention Is All You
Need”, the Transformer model revolutionized NLP by leveraging self-attention
mechanisms. This innovation allowed for the processing of sequences of data without
the reliance on recurrent layers, facilitating unprecedented parallelization and
significantly reducing training times for large datasets. The Transformer’s success in
NLP sparked curiosity about its potential applicability across different types of data,

including images, setting the stage for a transformative adaptation.
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The adaptation of Transformers for image data pivoted on a novel concept: treating
images not as traditional 2D arrays of pixels but as sequences of smaller and discrete
image patches. This approach, however, faced computational challenges due to the
self-attention mechanism’s quadratic complexity with respect to input length. The
breakthrough came with the introduction of the ViT by Dosovitskiy et al. (2020),
which applied the Transformer architecture directly to images, see Figure 1.12. By
dividing an image into fixed-size patches and processing these patches as if they were
tokens in a text sequence, ViT was able to capture complex relationships between

different parts of an image using the Transformer’s encoder.

The operational mechanics of ViT begin with the division of an input image into
fixed-size patches, each of which is flattened and linearly transformed into a vector,
effectively converting the 2D image into a 1D sequence of embeddings. To account for
the lack of inherent positional awareness within the Transformer architecture,
positional embeddings are added to these patch embeddings, ensuring the model
retains spatial information. The sequence of embeddings is then processed through
the Transformer encoder, which consists of layers of multi-head self-attention and
feed-forward neural networks, allowing the model to dynamically weigh the

importance of each patch relative to others for a given task.

For tasks like image classification, the output from the Transformer encoder is passed
through a classification head, often utilizing a learnable “class token” appended to the
sequence of patch embeddings for this purpose. The model is trained on large
datasets using backpropagation and, during inference, processes images through

these steps to predict their classes.

The ViT not only demonstrates exceptional performance on image classification tasks,
often surpassing CNNs when trained on extensive datasets, but also highlights the
Transformer architecture’s capacity to capture the global context within images.
Despite its advantages, ViT’s reliance on substantial computational resources for
training and its need for large datasets to achieve optimal performance present
challenges. Nonetheless, the development of ViT signifies a significant milestone in
the application of sequence processing models to the field of computer vision, opening

new avenues for research and practical applications.
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FIGURE 1.12: The ViT architecture (adapted from Dosovitskiy et al. (2020)).

The original ViT, designed for static image processing, divides images into patches
and interprets these as sequences, leveraging the Transformer’s self-attention
mechanism to understand complex spatial relationships. Extending this model to
action recognition involves adapting it to analyze video frames sequentially to capture
both spatial and temporal relationships. Several works attempted to adapt ViT in
action recognition task using different methods as below.

Temporal dimension integration. The integration of the temporal dimension is a
fundamental step in adapting ViT for action recognition. Traditional ViT models
process images as a series of patches, treating them essentially as sequences for the
self-attention mechanism to analyze spatial relationships. By extending this concept to
include the temporal dimension, the models can now treat videos as sequences of
frame patches over time. This allows the models to capture the evolution of actions
across frames. The work by Bertasius et al. (2021) highlights the potential of
incorporating temporal information into Transformers, marking a significant

advancement in video analysis capabilities.

Spatio-temporal embeddings. To effectively capture the dynamics of actions within
videos, adapted ViT models generate spatio-temporal embeddings. This involves
extending the traditional positional embeddings used in ViTs to also include temporal
positions, thereby creating embeddings that account for both spatial and temporal
information within video sequences. The discussion by Arnab et al. (2021) on the
creation of these spatio-temporal embeddings showcases the method’s effectiveness in
enhancing the model’s understanding of action dynamics across both space and time.

Multi-head self-attention across time. The extension of self-attention mechanisms to
analyze relationships between patches not just within individual frames but also
across different frames is crucial for recognizing actions over time. This approach

enables the model to identify relevant features and changes across the video
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sequences, facilitating a deeper understanding of motion and the progression of
actions. The exploration by Bertasius et al. (2021) of this concept demonstrates how
Transformers can be effectively adapted to capture the temporal dynamics of actions,
a key aspect of video analysis.

1.6 Research Questions

* What is the impact of shape features on image classification and semantic
segmentation, and how can data augmentation be utilized to investigate this
effectiveness?

¢ What is known about the data augmentation techniques in image classification
and semantic segmentation, and what further research is needed?

¢ Can single modality-based (i.e. RGB modality) HAR model outperform multi
modality-based models?

¢ Does Image segmentation tends to segment based on texture or shape features?

¢ How to use image segmentation in shape-transfer learning instead of

texture-transfer learning?
¢ How to instruct the CNNs model to learn shape over texture features?

¢ How to create a HAR model that provide the transfer learning ability with being

accurate, less complex and fast learning?

e What is known about the attention-based architectures in HAR, and what
further research is needed?

¢ What is the impact of designing a HAR model that integrates the capabilities of
CNNs and ViTs?

1.7 Research Objectives

The aim of this research thesis is to support the academic community by advancing
the field of HAR through the development and evaluation of novel computational
methodologies. By leveraging advanced machine learning techniques and
state-of-the-art deep learning architectures, this study seeks to enhance the accuracy
and robustness of HAR systems. Specifically, the thesis focuses on addressing existing
challenges in the recognition such as overfitting, temporal analysis, feature extraction
and models” complexity. By systematically reviewing computer vision enhancing

techniques (e.g. data augmentation), analyzing deep learning architectures (e.g. 2D
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CNNs, 3D CNNs, RNNSs, transformers, Vits), investigating computer vision tasks (e.g.
image classification and semantic segmentation) and their application across various
images and videos datasets and scenarios, the research endeavors to provide
comprehensive insights into the most effective practices for training and deploying
HAR systems.

The First Objective: The research aims to review and compare data augmentation
techniques (i.e. traditional and deep learning techniques) utilized in computer vision
tasks, particularly focusing on image classification and semantic segmentation,

respectively.

The Second Objective: The research aims to utilize data augmentation techniques as
a methodological tool to examine the effectiveness of various visual features,
specifically texture and shape, on the performance of CNNs when employed in

computer vision tasks such as image classification and semantic segmentation.

The Third Objective: The research aims to employ the computer vision technique of
semantic segmentation as a task to facilitate the transfer learning of shape feature.
This approach instructs CNN models to prioritize learning shape features over texture

features.

The Fourth Objective: The research aims to develop models capable of directly
extracting shape features from RGB frames without the need for synthetic images of

human semantic segmentation.

The Fifth Objective: The research aims to develop a HAR model that combine the
advantages of two HAR common architectures (i.e. 2D CNN-RNN and 3D CNNs) and
simultaneously avoid their drawbacks.

The Sixth Objective: The research aims to systematically review various architectures
used for sequential data processing in HAR, starting from simple RNNs to advanced
Vision Transformers. This study aims to understand the evolution of these models,
identifying their inherent difficulties and specific applications within HAR. By
reviewing the applications, benefits, and difficulties of these architectures, this
exploration aims to provide comprehensive insights into the most effective sequential

data processing models for enhancing HAR systems.

To achieve the research objectives, three chapters (i.e., previously papers) have been
employed. Chapter 2 addresses the first and second objectives. Chapter 3 fulfills the
third, fourth, and fifth objectives. Lastly, Chapter 4 meets the sixth objective.
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1.8 Conducted Studies

1.8.1 The First Work

Chapter 2, aims to address the significant challenges posed by the requirement of
large datasets for training deep learning models, particularly CNNs. The study
provides a comprehensive survey of existing data augmentation techniques used in
computer vision tasks, such as image classification and segmentation. Additionally,
the Work offers a detailed taxonomy of data augmentation methods, categorizing
them based on their nature and application. The Work emphasize the importance of
data augmentation as a method to artificially expand and diversify training datasets,
thus mitigating issues related to data scarcity and overfitting, which are common

hurdles in developing robust and generalizable models.

Chapter 2 introduces a novel data augmentation strategy named random local
rotation (RLR). This technique involves randomly selecting circular regions within an
image and rotating them by random angles. The primary purpose of RLR is to distort
the shape features in the image while keeping the texture features intact. The goal is to
retain the core information of the image while enhancing its diversity without
introducing artifacts commonly associated with traditional rotation techniques, such
as black boundaries. The study details the implementation of RLR and compares its
performance with traditional data augmentation methods through extensive

experimental evaluations.

Thus, the first work endeavours to answer the following two main research questions:

¢ What is known about the data augmentation techniques in image classification

and semantic segmentation, and what further research is needed?

¢ What is the impact of shape features on image classification and semantic
segmentation, and how can data augmentation be utilized to investigate this

effectiveness?

Expected Results: Chapter 2 anticipates that the proposed RLR method will
outperform traditional data augmentation techniques in both image classification and
segmentation tasks. The expected results include a significant reduction in overfitting
and an improvement in model generalization. By introducing local variations while
maintaining the overall integrity of the image, specifically, preserving the texture
features RLR is expected to enhance the robustness of CNNs, making them more

effective in real-world applications where data variability is high.

This approach is designed to demonstrate the effectiveness of diversifying texture
features while also measuring the impact of shape feature distortion on computer
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vision tasks. Through a series of experiments, the study revealed that the shape
distortion introduced by RLR does not significantly affect, and may even enhance, the
accuracy of image classification tasks. This finding underscores the reliance of image
classification on texture features. Conversely, RLR has a noticeable negative impact on
semantic segmentation tasks, particularly those heavily dependent on shape

segmentation, such as human semantic segmentation.

Expected Contribution: This research contributes to the field of computer vision and
deep learning in several significant ways. Firstly, it offers a detailed survey of existing
data augmentation techniques, providing a valuable resource for researchers and
practitioners. The survey categorizes and evaluates different methods, highlighting
their strengths and weaknesses in various contexts, thereby aiding in the selection of

appropriate techniques for specific applications.

Secondly, the introduction of the RLR technique represents a novel contribution to
data augmentation strategies. By focusing on local transformations that distort shape
features while preserving texture features, the method addresses common issues
associated with global transformations, such as boundary artifacts, and improves the
diversity of training datasets without losing critical information. This approach not
only enhances model performance but also provides a new direction for future

research in data augmentation.

Furthermore, the experimental results and comparisons presented in Chapter 2 are
expected to establish RLR as a reliable and effective data augmentation technique. The
study anticipates demonstrating that image classification performance remains stable
or improves despite shape distortion, highlighting the critical role of texture features
in this task. Conversely, the research is expected to show that semantic segmentation
tasks, particularly those reliant on shape recognition, experience a decline in
performance with shape distortion. This finding will underscore the importance of
shape features in segmentation tasks and demonstrate the nuanced impact of data

augmentation techniques across different types of computer vision applications.

In summary, Chapter 2 is poised to make a substantial impact on the field by
providing a thorough survey of current practices, introducing a novel augmentation
technique, and offering empirical evidence of its benefits. The contributions are
expected to enhance the understanding and implementation of data augmentation in
deep learning, ultimately leading to more robust and generalizable models capable of

performing well in diverse and challenging real-world scenarios.

1.8.2 The Second Work

Chapter 3 introduces an innovative deep learning architecture designed to address the

complexities and limitations of current HAR models. HAR is a significant area of
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research in computer vision, with applications ranging from surveillance to
human-computer interaction. Traditional HAR models often struggle with complex
structures, lengthy training times, and the need for extensive datasets. TransNet aims
to simplify these models by decomposing the traditional 3D CNNs into more
manageable 2D and 1D CNN components. This decomposition allows the model to
efficiently extract spatial features with 2D-CNNs and temporal patterns with
1D-CNN:Ss. By leveraging the principles of transfer learning, TransNet is designed to
be compatible with any state-of-the-art pretrained 2D-CNN models, enhancing its
flexibility and efficiency.

Thus, Chapter 3 endeavours to answer the following five main research questions:

¢ Can single modality-based (i.e. RGB modality) HAR model outperform multi

modality-based models?
* Does Image segmentation tends to segment based on texture or shape features?

¢ How to use image segmentation in shape-transfer learning instead of

texture-transfer learning?
¢ How to instruct the CNNs model to learn shape over texture features?

¢ How to create a HAR model that provide the transfer learning ability with being

accurate, less complex and fast learning?

Expected Results: TransNet is anticipated to demonstrate superior performance
compared to existing HAR models in several key areas. Firstly, due to its simplified
architecture, TransNet is expected to significantly reduce training times while
maintaining high accuracy. The use of transfer learning is expected to enhance the
model’s ability to generalize from smaller datasets, addressing the common issue of
data scarcity in HAR. The experimental results are predicted to show that TransNet,
when integrated with pretrained models such as MobileNet or VGG16, will
outperform traditional models both in terms of classification accuracy and processing
speed. Additionally, the novel approach of using autoencoders in TransNet+ is
expected to further improve the model’s ability to capture relevant features for HAR,

particularly in tasks requiring detailed human shape recognition.

Through a series of rigorous experiments, the study aims to validate these
expectations. The performance of TransNet is evaluated on several benchmark
datasets, including KTH, UCF101, and HMDB51, which are standard in the field of
HAR. The datasets selected for evaluation—KTH, UCF101, and HMDB51—are
particularly challenging due to their relatively small sizes, making them ideal for
testing the validity of the transfer learning capability of the TransNet model. These
datasets provide a stringent testbed for assessing the model’s performance in
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real-world scenarios where data is limited. The results are anticipated to demonstrate
that TransNet not only matches but exceeds the performance of state-of-the-art HAR
models, particularly in terms of flexibility, model complexity, training speed, and

classification accuracy.

Expected Contributions: The contributions of Chapter 3 are multifaceted and
significant to the field of computer vision and HAR. Firstly, the introduction of
TransNet provides a new, efficient architecture that simplifies the complex structures
of existing HAR models. By decomposing 3D-CNNs into 2D and 1D components,
Chapter 3 offers a novel way to manage spatial and temporal features separately yet
effectively, leading to reduced computational complexity and faster training times.

Secondly, the utilization of transfer learning in TransNet is a substantial advancement.
By making the model compatible with pretrained 2D-CNNSs, TransNet leverages
existing advancements in other domains (i.e. image classification and human semantic
segmentation) of computer vision, thus enhancing the efficiency and effectiveness of
HAR tasks. This approach not only reduces the need for large training datasets but
also improves the generalization capabilities of the model, making it more robust in

diverse and real-world applications.

Furthermore, Chapter 3 introduces TransNet+, which incorporates autoencoders to
enhance the 2D component of the model. This strategy allows for the extraction of
specific features, such as human shapes, by pretraining the autoencoder on related
tasks like human semantic segmentation. This innovative use of autoencoders is
expected to significantly improve the model’s performance in recognizing human

actions, particularly in scenarios with complex backgrounds and occlusions.

Lastly, the extensive experimental validation provided in Chapter 3 is a key
contribution. By comparing TransNet with current state-of-the-art models across
multiple benchmark datasets, Chapter 3 not only demonstrates the superior
performance of the proposed architecture but also provides a comprehensive
evaluation framework for future research. The findings are expected to offer valuable
insights into the application of transfer learning and model decomposition in HAR,
paving the way for more efficient and effective models in this field.

In summary, Chapter 3 makes substantial contributions by presenting a simplified yet
powerful HAR model, leveraging transfer learning to enhance performance,
introducing innovative use of autoencoders, and providing thorough experimental
validation. These advancements are poised to significantly impact the development of
future HAR models, making them more accessible, efficient, and effective for a wide
range of applications.
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1.8.3 The Third Work

Chapter 4 provides a comprehensive survey of the existing methodologies in HAR,
focusing particularly on CNNs, RNNs, and ViTs. Chapter 4 explores the evolution of
these models, highlighting the emerging trend of attention-based architectures,
starting from simple RNNs and progressing to the sophisticated ViT architecture. By
tracing this evolution, Chapter 4 shed light on how these models have increasingly
improved the ability to capture both spatial and temporal dynamics in video data,
which is crucial for accurately recognizing human actions. Recognizing the growing
importance and effectiveness of hybrid models that integrate the strengths of different
neural network architectures, Chapter 4 proposes a novel hybrid model combining
CNN s and ViTs. This model seeks to leverage the spatial feature extraction capabilities
of CNNs and the global context awareness provided by ViTs, aiming to enhance the

performance and efficiency of HAR systems.

Thus, Chapter 4 endeavours to answer the following two main research questions:

¢ What is known about the attention-based architectures in HAR, and what

further research is needed?

¢ What is the impact of designing a HAR model that integrates the capabilities of
CNNs and ViTs?

Expected Results: Chapter 4 anticipates that the proposed hybrid model will
outperform traditional HAR models that rely solely on CNNs, RNNs, or ViTs. The
hybrid approach is expected to provide superior accuracy in action recognition tasks
by effectively capturing both local and global features within video sequences. The
inclusion of ViTs is anticipated to significantly improve the model’s ability to handle
long-range dependencies and complex temporal relationships, which are crucial in
accurately recognizing and categorizing human actions. The expected results from the
experiments include improved recognition accuracy on the KTH dataset,

demonstrating the model’s robustness across different scenarios.

Expected Contributions: Chapter 4 makes several key contributions to the field of
HAR. Firstly, it provides an exhaustive review of the current state-of-the-art models,
including CNNs, RNNs, and ViTs, and critically examines their evolution, strengths,
and limitations in the context of action recognition. This survey serves as a valuable
resource for researchers, offering a clear understanding of the progress and challenges

in HAR, and setting the stage for future advancements.

Secondly, the introduction of the hybrid CNN-ViT model represents a significant
innovation in HAR. By combining the complementary strengths of CNNs and ViTs,
the model offers a new approach to handling the complex spatial-temporal dynamics
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inherent in video data. This hybrid architecture not only enhances the interpretability
and robustness of HAR systems but also provides a scalable solution that can be
adapted to different tasks and datasets.

1.8.4 Publications

e Published

- Khaled Alomar, Halil Ibrahim Aysel, and Xiaohao Cai. Data augmentation
in classification and segmentation: A survey and new strategies. Journal of
Imaging, 9 (2):46, 2023.

- Khaled Alomar and Xiaohao Cai. Transnet: A transfer learning-based
network for human action recognition. In 2023 International Conference on
Machine Learning and Applications (ICMLA), pages 1825-1832. IEEE, 2023.

e Under Review /Revision

— Khaled Alomar, Halil Ibrahim Aysel and Xiaohao Cai. RNNs, CNNs and
Transformers in Human Action Recognition: A Survey and a Hybrid
Model. Under review in Artificial Intelligence Review.
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Chapter 2

Data Augmentation in Classification
and Segmentation: A Survey and
New Strategies

In the past decade, deep neural networks, particularly convolutional neural networks,
have revolutionised computer vision. However, all deep learning models may require
a large amount of data so as to achieve satisfying results. Unfortunately, the
availability of sufficient amounts of data for real-world problems is not always
possible, and it is well recognised that a paucity of data easily results in overfitting.
This issue may be addressed through several approaches, one of which is data
augmentation. In this chapter, we survey the existing data augmentation techniques in
computer vision tasks, including segmentation and classification, and suggest new
strategies. In particular, we introduce a way of implementing data augmentation by
using local information in images. We propose a parameter-free and easy to
implement strategy, the random local rotation strategy, which involves randomly
selecting the location and size of circular regions in the image and rotating them with
random angles. It can be used as an alternative to the traditional rotation strategy,
which generally suffers from irregular image boundaries. It can also complement
other techniques in data augmentation. Extensive experimental results and
comparisons demonstrated that the new strategy consistently outperformed its

traditional counterparts in, for example, image classification.

2.1 Introduction

Deep neural networks, like convolutional neural networks (CNNs), have been used in

computer vision with numerous research applications, such as action recognition
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Yudistira and Kurita (2017); Papakostas et al. (2016), object detection and

localisation Milyaev and Laptev (2017); Zhou et al. (2017b), face recognition Ranjan

et al. (2018), and image characterisation Druzhkov and Kustikova (2016). They have
achieved superior performance against conventional approaches in many challenging
computer vision tasks Rajnoha et al. (2018). Nevertheless, their shortcomings, such as
large-scale data requirements, long training time, overfitting, and performance slumps
upon data scarcity, may hinder their generalisation and effectiveness Zhong et al.
(2020); Joshi et al. (2019).

The fruitful results presented by the CNN models encourage researchers to pursue
higher accuracy models. These results are generally achieved by building more
complex architectures Shorten and Khoshgoftaar (2019). Note that model complexity
is often described by the number of trainable parameters. The more trainable
parameters a model has, the more complex it is. More specifically, model complexity
may also be defined in terms of the number of layers (i.e., non-linearity) and the
number of neurons (e.g., filters) in individual layers. On the other hand, in supervised
learning, data complexity can be determined according to the inter-class multiplicity
(i.e., different classes) in addition to the intra-class differences. In general, the complex
of the data and the model needed is proportional. If the training data is insufficient,
complex models may be susceptible to the issue of memorising the training data. It is
also well known that deep neural networks prevail partly because of the availability of
high volume data. The networks can easily memorise data points due to their complex
structure. However, the increasing complexity of the model architectures with
insufficient data could exacerbate the shortcomings of CNN models Zoph et al. (2020).
One of the most apparent issues when adopting complex CNN models is the
overfitting problem Brownlee (2018), which can be described as the performance
difference between the training and validation/test stages, where the model loses its
ability to generalise. Overfitting generally occurs when a model is either too complex
for the data or the data itself is insufficient Guo et al. (2018). Figure 2.1 shows an
example of the loss curve of an overfit model. Although the training accuracy and
validation accuracy improved concurrently during the early stages of training, they
diverged after a certain point, where the model started losing its generalisation

ability Brownlee (2018). Strategies like reducing the model complexity, applying
regularisation, and/or acquiring more extensive data volumes have been considered

to mitigate the overfitting issue in deep learning models, see Figure 2.2.
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FIGURE 2.1: An illustration of the training and validation loss curves. Training and

validation losses decrease simultaneously until the fitting point. After that, the valida-

tion loss begins to rise while the training loss is still decreasing, i.e., the so-called over-

fitting. Overfitting is associated with good performance on the training data but poor

generalisation to the validation/test data (cf. underfitting is associated with poor per-

formance on the training data and poor generalisation to the validation data) Brownlee
(2018).

Regularisation techniques are implemented at the model architectural level Wan et al.
(2013); Kang et al. (2017), such as dropout Srivastava et al. (2014), ridge regression (¢,
regularisation) Farebrother (1976), and Lasso regression (¢ regularisation) Ranstam
and Cook (2018). The main objective of these techniques is to reduce the complexity of
a neural network model during training, which is considered the main reason behind
overfitting, especially when the model is trained on small datasets. Other techniques,
like batch normalisation and transfer learning, may speed up the training process and
also have an impact on preventing overfitting Ioffe and Szegedy (2015); Pan and Yang
(2009). These techniques could be regarded as byproducts of the constant competition
in the pursuit of higher performance by innovating new complex deep neural
architectures, such as VGG-16 Simonyan and Zisserman (2014b), ResNet He et al.
(2016), Inception-V3 Szegedy et al. (2016) and DenseNet Huang et al. (2017). These
models, in fact, aim to achieve higher accuracy on large datasets like Imagenet Deng
et al. (2009), which has over 14 million images Deng et al. (2009). However, when
applying these models to small-scale applications with small datasets, they usually
suffer from poor generalisation and overfitting, indicating the necessity of developing

methods to reduce their complexity.

New data ‘

Higher | Requires | complex | Causes _ |Addressed by
accguracy et Overfitting More data 5
ata
| augmentation |
Addressed by
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| regularisation )

FIGURE 2.2: Diagram illustrating the overfitting problem and its well-known solu-
tions.
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Data augmentation methodology encompasses a broader range of techniques that
function at the data level, rather than at the model architectural level. It can help deep
learning models perform better by artificially creating different and diverse samples
with balanced classes for the training dataset. When the dataset is sufficient in terms
of quantity and quality, a deep learning model performs better and more accurately. In
other words, the training data must fulfil two requirements, i.e., adequate diversity
and size, both of which can be achieved by data augmentation Yang et al. (2022c).

Data augmentation can be categorised based on the intended purpose of applying it
(i.e., increasing training dataset size and/or diversity), or it can be categorised based
on the problems. The following are examples of the latter: the random erasing
technique was proposed to address the occlusion problem Zhong et al. (2020); rotation
and flipping were supposed to partially resolve the viewpoint problem Divon and Tal
(2018); Ning et al. (2020); Massa et al. (2016); brightness was used to address the
change in lighting Liu et al. (2021); and cropping and zooming were used to address
the scaling and background issues. In particular, the most popular categorisation of
data augmentation divides it into deep learning-based data augmentation and
traditional data augmentation Shorten and Khoshgoftaar (2019), which is further
divided into geometric, photometric, and noise data augmentation, see Figure 2.3. For
reviews on the deep learning approaches for data augmentation, see e.g., Chlap et al.
(2021); Lindner et al. (2019).

Several studies evaluating the efficacy of data augmentation have utilised standard
academic image datasets to assess results. For example, MNIST, CIFAR-10, CIFAR-100
and ImageNet are four commonly used datasets Cubuk et al. (2020); Shorten and
Khoshgoftaar (2019); Shijie et al. (2017); Lee et al. (2019). Note that some of these
datasets, especially ImageNet, are considered “big data” Denton et al. (2021) and may
not require data augmentation techniques to further increase their size. To simulate
data scarcity challenges, many experiments testing data augmentation techniques
limit themselves to small subsets of the original large datasets Shijie et al. (2017). It is
worth emphasising that data augmentation techniques may also be used to improve

the data diversity, except for the data quantity.
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FIGURE 2.3: Data augmentation (DA) taxonomy.

This survey mainly focused on recent articles that used data augmentation techniques
in image classification and segmentation, regardless of the data augmentation
category, models, or datasets used in the studies. To the best of our knowledge, there
are few surveys in the fields of data augmentation in image classification and
segmentation. Another main contribution of this article is that we propose a new
geometric data augmentation technique, which can complement the current data
augmentation strategies. It is well known that traditional rotation is one of the most
commonly used geometric data augmentation techniques, see Figure 2.4. It, however,
has drawbacks; for example, the loss of a significant amount of pixel information
when rotating. It is noticeable that rotating a square-shaped image in a circular
trajectory produces black patches at the boundaries, which do not accurately reflect
the original data and may affect the final augmentation performance. Filling these
black patches with modified pixel values via the wrap, constant, reflection, and/or
nearest rotation techniques was a common solution to this issue (see Figure 2.5). In
this study, we suggest exploiting local information in images and propose conducting
rotation randomly and locally to address the limitations of the traditional rotation. We
named our method “random local rotation ” (RLR). RLR rotates an image’s internal
circular region by selecting random location, area and angle, which is easy to
implement. Rotation performed in a local manner avoids forming black regions near

image boundaries. Moreover, this method could also improve the data diversity.
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Extensive experiments demonstrated its superior performance compared to its

counterpart, i.e., the traditional rotation technique.

The remainder of this article is organised as follows. Sections 2.2 and 2.3 recall the
most common traditional data augmentation methods and the most common deep
learning-based data augmentation methods, respectively. Section 2.4 reviews some
recent research in image classification and segmentation utilising data augmentation
for performance enhancement. Sections 2.5 and 2.6 present our proposed data
augmentation method and the experimental results validating its promising
performance. We conclude our study in Section 2.7.

W B

Givenimage Rotated image

FIGURE 2.4: Traditional rotation. Left and right: the given image (from the CIFAR-10

dataset) and the rotated image with a randomly rotated angle. Black areas appear in

the corners of the rotated image and the corners in the given image are cut off in the
rotated image.

FIGURE 2.5: Data augmentation by different types of rotation techniques. The left

three figures in the first row show the “constant” technique, i.e., the traditional rotation

(TR), resulting in black areas around the boundary. The RNR technique is used in the

right three figures of the first row. The first three figures of the second row give the

results of filling up the black areas by using RRR, and the right three figures use RWR.
For each technique, three random angles were selected for rotation.

2.2 Traditional Data Augmentation Techniques

This section briefly recalls the most commonly used traditional data augmentation
approaches.



2.2. Traditional Data Augmentation Techniques 55

2.2.1 Geometric Transformations

Basic geometric operations. like flipping, cropping and random rotation, are still
sought-after techniques to augment data. They generally increase the data size to
improve data diversity, and are fairly easy to apply, see below for more detailed
description.

Flipping . The term flipping refers to the process of flipping images horizontally or
vertically or both, see Figure 2.6. The most commonly used flipping is horizonal
flipping, since it is more realistic. For example, a cat versus dog dataset may include
all the dog images heading to the left from the spectator view. Not surprisingly, the
trained model may suffer from misclassifying dogs heading to the right. The best way
to alleviate this problem is to collect more training images that include as many
different views as possible. When collecting more images is difficult, flipping may
directly solve this type of problem.

Flipping is one of the most intuitive strategies to increase data size or diversity.
However, it may be inappropriate when the data has unique properties. For example,
considering the concept of label safety, discussed in Shorten and Khoshgoftaar (2019),
asymmetric or direction sensitive data, such as letters or digit numbers, cannot use the

flipping strategy since it results in inaccurate labels, or even opposite labels.

Given image Horizontal Vertical Both

FIGURE 2.6: Data augmentation by flipping. Images from left to right represent
the given image, horizontally flipped image, vertically flipped image and the image
flipped horizontally and vertically, respectively.

Cropping. Cropping is a basic augmentation technique that randomly crops a part of
the given image and then resizes the cropped part back to a certain size. As training
data may include samples of different sizes, cropping images to a certain size is a
widely used step before training Lu et al. (2019); Shorten and Khoshgoftaar (2019).

It is worth mentioning that cropping may generate samples with incorrect labels. For
example, images containing more than one object, which are labelled according to the
object with dominant size, may experience a problem when using the cropping
technique. In such a case, it is possible to crop an area of the given image that has
more details of the accompanying object, rather than the dominant object, see
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Figure 2.7. The conventional strategy for training modern state-of-the-art architectures
is to crop patches as small as 8% of the given image and label them the same as the
given image Bagherinezhad et al. (2018). This frequently results in incorrect labelling

in the augmented data, as in the example shown in Figure 2.7.

Given image Cropped patch

FIGURE 2.7: Data augmentation by cropping. Left and right: the given image (from
ImageNet) labelled as “Dog” and the cropped patch. It is clear that the “Dog” is no
longer visible in the cropped patch.

Rotation. Rotation is a simple geometric data augmentation technique. The images
are rotated by a specified angle, and the newly created images are used alongside the
originals as training samples. The disadvantage of rotation is that it may result in
information loss at the image boundary, see Figure 2.4 and the first row in Figure 2.5.
There are several possible solutions, e.g., random nearest neighbor rotation (RNR),
random reflect rotation (RRR) and random wrap rotation (RWR), to fix the boundary
problem of the rotated images. In particular, the RNR technique repeats the nearest
pixel values to fill in the black areas, while the RRR technique employs a mirror-based
approach and the RWR technique uses the periodic boundary strategy to fill in the

gaps; see Figure 2.5 for an example.

These geometric data augmentation techniques have been shown to be highly
effective in improving diversity and increasing data quantity. For example, Masi et al.
(2016) used a fine-grained dataset of ten classes to test a variety of geometric
augmentation methods for the task of aircraft classification. Cropping, rotating,
rescaling, polygon occlusion, and a combination of these techniques were all tested.
The cropping technique combined with occlusion achieved the highest improvement,
i.e., increasing the task performance by 9% against the benchmark result. Their study,

however, did not examine photometric data augmentation strategies (see below).

2.2.2 Photometric Transformations

A different type of traditional transformation is to change pixels’ values rather than
their positions. This approach includes different techniques, such as changing

brightness, contrast, and/or colours.
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FIGURE 2.8: Data augmentation by colour jittering. (a—d) represent the given image,
and the augmented images by manipulating the colour saturation, brightness and con-
trast, respectively.

Typically, a digital image is encoded as a tensor of three dimensions, i.e., height x
width x colour channels. The difference between different colour representation
schemes lies in the channel part of the tensor. For example, the RGB colour
representation scheme uses a combination of three colour channels (i.e., red, green and
blue) to represent individual pixels. Manipulating these individual colour channels is
a very basic technique in colour augmentation Shorten and Khoshgoftaar (2019). For
example, an image can be swiftly transformed into its representation in one colour

channel if the others are set to black.

In addition to the RGB colour space, there are many other colour spaces. For example,
the HSL colour representation scheme combines hue, saturation and lightness to
represent individual pixels Ibraheem et al. (2012). A hue is a single pigment that has
no tint or shade. Saturation refers to colour intensity and lightness refers to how light
a colour is. HSL is user-friendly since it is convenient to see how a particular colour
appears using different values for these three attributes. Please refer to e.g., Ibraheem
et al. (2012); Cai et al. (2017) for different colour spaces. Transferring from one colour

space to another can be a useful technique for data augmentation.

Colour jittering is a photometric data augmentation technique that employs either
random colour manipulation Wu et al. (2015a) or predetermined colour
adjustments Sharif Razavian et al. (2014), such as randomly changing the brightness,

contrast or colour properties of an image, see Figure 2.8.

Traditional photometric techniques in augmenting data may have limitations, e.g.,
high memory and computation requirements. In addition, they may result in crucial
image information loss, particularly when the feature is a colorimetric feature capable
of differentiating different dataset categories Khalifa et al. (2021).

2.2.3 Kernel / Filter

Kernel plays an important role in deep learning. It can extract certain features from
given images as a filter by sliding a window across the images. CNN models can learn
features from images by automatically updating their kernel values according to the
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back-propagation process. Similarly, kernels with distinct values can also be used to
conduct data augmentation and generate specific images containing specific
features Shorten and Khoshgoftaar (2019).

In computer vision, filters can be used for edge detection (e.g., using the

Sobel Kanopoulos et al. (1988) or Canny (1986) filters), sharpening (e.g., using
high-contrast vertical or horizontal edge filters), and blurring (e.g., using the Gaussian
filter). In particular, edge enhancement that improves object edges within images can
be used for data augmentation. It is hypothesised that using training images with
augmented edges could improve CNN performance, since the learned kernels in CNN
could detect objects” shapes more easily Taylor and Nitschke (2018). Analogously,
blurring images can also be utilised for data augmentation and could make models
more resistant to blur or noise. Figure 2.9 shows an example of using different

kernels/filers to augment images.

Using filters for data augmentation is a relatively unexplored field, even though the
idea is straightforward. Its application in areas, such as action recognition, could be
advantageous. For instance, edge detection filters may aid in recognising the human
shape, thereby enabling the inference of its action. Motion blur may be used to
augment data so as to improve models’ resistance to blurring in action

recognition Guo and Lai (2014); Wu et al. (2014).

[

(A) Given im- (B) Canny fil- (C) Sobel fil- (D) Gaussian
age ter ter filter

FIGURE 2.9: Data augmentation by using kernels/filters.

2.2.4 Noise Transformations

Noise is commonly defined as a random variation in brightness or colour
information Ravishankar et al. (2017). It is frequently caused by technical limitations
of the image capture sensor or poor environmental conditions. Unfortunately, these
issues are often unavoidable in actual situations, making image noise a prevalent

problem to address.

Noise in data may appear to be a problem for neural networks in particular.
Real-world data is rarely perfect Nazaré et al. (2017). When neural networks are

evaluated on real-world data, noise can impair their accuracy and cause them to
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perform poorly in generalisation. At the very least, the data used to test deep learning
models may not be as clean as the data used to train them. This may account for why
deep neural network models frequently perform poorly in tests. Their robustness
could be improved by augmenting data with different types of noise. Gaussian, salt
and pepper, and speckle noise are three well-known forms of noise that can be used to

augment image data Boonprong et al. (2018), e.g., see Figure 2.10.

Gaussian noise is statistical noise with a probability density function equal to the
normal distribution. The distribution of Gaussian noise is uniform throughout the
signal Boyat and Joshi (2015). Since it is additive noise, the pixels in a noisy image are
made up of the sum of their original pixel values plus random Gaussian noise values.
It is also independent at each pixel, and independent of the signal magnitude.
Salt-and-pepper noise is also known as “spike noise” or “impulsive noise”. It causes
white and black pixels to appear at random points in the image. This type of noise is
mainly created by data transfer errors Chen et al. (2009). Speckle noise is
multiplicative. It is generated by multiplying random values with different image
pixels Boyat and Joshi (2015). These different types of noise described above are
generally dispersed over the image level. When they are used to augment data, deep

learning models could be resistant to data that contains certain types of noise.

(A) Given image (B) Salt and Pepper (C) Speckle

FIGURE 2.10: Data augmentation by using noise transformation.

2.2.5 Random Erasing

Random erasing Zhong et al. (2020) is a data augmentation technique which does not
attempt to change individual image pixel values in general. Instead, it replaces the
values of the pixels within a random size rectangle in an image by a random value, see
Figure 2.11 for example. We could regard random erasing as a kind of noise technique
focusing on local areas rather than individual pixels. It intends to make the model
resistant to occlusion of objects in images (e.g., the datasets CIFAR-10, CIFAR-100, and
ImageNet) and, thus, to reduce the possibility of overfitting. It enhances the data
diversity holistically without increasing the data size, which is different from the other

aforementioned data augmentation methods.

Since the random erasing technique selects a rectangular area (i.e., occlusion region)

randomly, it may entirely erase the object information to be classified in the image.
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Therefore, it may not be recommended in categorising sensitive data which cannot
withstand the deletion of a randomly generated local area in images, such as the cases
of categorising licence plate numbers and letters.

FIGURE 2.11: Data augmentation by the random erasing technique. The first and

second rows represent the given images (from CIFAR-10) and the images after random
erasing, respectively.
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2.3 Deep Learning-Based Data Augmentation Techniques

This section briefly recalls the most commonly used deep learning-based data
augmentation approaches.

2.3.1 Texture Transfer

Texture transfer Efros and Freeman (2001) aims to generate textures from source
images while maintaining control over the semantic content of the source images. It
allows the generation of new images with given textures, while preserving the
original images’ visual characteristics, such as contours, shading, lines, strokes and
areas. The study in Geirhos et al. (2018) demonstrated that CNNs are biased towards
objects’ texture rather than shape, indicating that employing texture transfer may
make a model more texture resistant.

The majority of traditional texture transfer methods resample textures into each
particular content image Gatys et al. (2016). For example, image quilting Efros and
Freeman (2001) creates a new image by stitching together small patches of other
images. The work in Hertzmann et al. (2001) developed an image analogue technique,
using pixel resampling to transfer textures from one image to another Mikotajczyk
and Grochowski (2018). The newly generated images could be added into the training
dataset to enlarge the data size and enhance its diversity.
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2.3.2 Adversarial Training

Adversarial examples, also known as machine illusion, have attracted considerable
attention in the deep learning community. Adversarial examples can also be seen as
members of the noise injection data augmentation family. By injecting a systematic
noise into a given image, the CNN model outputs a completely different prediction,
even though the human eye cannot detect the difference, see Figure 2.12. For example,
the work in Su et al. (2019) created adversarial examples by changing a single pixel
per image. Adversarial training is where these examples are added to the training set
to make the model robust against attacks. As adversarial examples can detect weak
points in a trained model, this way of augmenting data can be seen as an effective data

augmentation approach.

Panda with 57.7% Added noise Gibbon with 99.3%

FIGURE 2.12: An adversarial example taken from Goodfellow et al. (2014b). Even

though the given image and the image after adversarial noise added look exactly the

same to the human eye, the noise fools the model successfully, i.e., the model labels
the two images as different classes.

2.3.3 Generative Adversarial Networks for Data Augmentation

Inspired by adversarial examples, the generative adversarial network (GAN),
proposed in Goodfellow et al. (2014a), has been widely used for data augmentation.
Synthetic images created by GANs, which even humans find difficult to distinguish
from the real images, help models significantly increase their robustness. GAN
consists of two networks, i.e., a generator, which creates new images, and a
discriminator, which tries to detect if the generated images are real or fake. For the
variants of GANSs, please refer to e.g., DCGAN Radford et al. (2015), progressively
growing GANs Karras et al. (2017) and CycleGANs Zhu et al. (2018).

2.4 Data Augmentation in Image Classification and

Segmentation

Data augmentations performed using traditional transformation techniques is still the

most popular among academics, due to their simplicity Antoniou et al. (2017); Shorten
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and Khoshgoftaar (2019). Often, traditional and deep learning-based augmentation
approaches are used either separately or in tandem. Image classification and image
segmentation are two common, yet important, research areas in computer vision,
which typically use data augmentation approaches. In this section, we discuss recent
research, mostly within the past five years, in these two areas that leverage data

augmentation for performance enhancement.

2.4.1 Data Augmentation on Image Classification

Lots of works have used data augmentation in image classification tasks, and their
results vary, depending on aspects such as, models, data and applications. See Table

2.1 for a brief survey in this respect.

TABLE 2.1: Survey of data augmentation techniques in recent image classification

works.
Papers Dataset Aug. Techniques Model Task Findings
Shijie et al. =~ CIFAR10; GAN/WGAN, AlexNet Image clas- Four methods (ie,
(2017) ImageNet flipping, cropping, sification cropping, flipping,
(10 cate-  shifting, PCA jitter- WGAN, and rotation)
gories) ing, colour jittering, perform generally
noise, rotation. better than other aug-
mentation methods,
and some appropriate
combination meth-
ods are slightly more
effective than the indi-
viduals.
Perez and A small Neural augmenta- SmallNet Image clas- GANs do not perform
Wang subset of tion, CycleGAN, sification better than traditional
(2017) ImageNet; GANs, cropping, techniques.
MNIST rotating, and flip-
ping
Hussain Digital Flipping, cropping, VGG-16 Medical im-  The flipping and Gaus-
et al. (2017) Database noise, Gaussian ages classi- sian filter techniques are
for Screen- filters, principal fication better than noise trans-
ing Mam- component analysis formation.
mography (PCA)
(DDSM)
Pawara Folio, Rotation, blur, con-  AlexNet; Plant image CNN models trained
etal. (2017)  AgrilPlant,  trast, scaling, illu- GoogleNet classifica- from scratch benefit
and the  mination, and pro- tion significantly from data
Swedish jective transforma- augmentation.
Leaf tion
datasets
Inoue ILSVRC2012; SamplePairing, GoogLeNet Image clas- Developed a new tech-
(2018) CIFAR-10 flipping, distorting, sification nique known as Sam-
noise, and cropping plePairing.

Continued on next page...
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TABLE 2.1: (continued)

Papers Dataset Aug. Techniques Model Task Findings
Li et al. Indian Pixel-block pair, PBP-CNN  Hyperspectral A threefold increase in
(2018a) Pines and flipping, rotation, imagery sample size is often suf-
Salinas and noise classifica- ficient to reach the up-
datasets tion per bound.
Frid-Adar Liver Translation, rota- Customised Medicalim- Combining traditional
etal. (2018)  lesions tion, scaling, flip- small age classifi- data augmentation with
dataset ping and shearing, CNN ar- cation GAN-based synthetic
and  GAN-based chitecture images improves small
synthetic images datasets.
Pham et al.  Skin lesion Geometric augmen- InceptionV4 Skin cancer  Skin cancer and medical
(2018) dataset tation and colour image clas- image classifiers could
(ISBI Chal- augmentation sification benefit from data aug-
lenge) mentation.
Motlagh Tissue Random resizing, ResNet50  Breast can- Traditional data aug-
etal. (2018)  Micro Ar- rotating, cropping, cer image mentation techniques
ray; Breast and flipping classifica- are adequate for obtain-
Cancer tion ing distinct samples of
Histopatho- various types of cancer.
logical
Images
(BreaKHis)
Zheng et al.  Caltech 101; Neural style trans- VGG16 Image clas- Neural style transfer
(2019) Caltech 256 fer, rotation, and sification can be utilised as a
flipping deep-learning data aug-
mentation technique.
Ismael et al.  Braintumor Horizontal and  ResNet MRI image The effectiveness of tra-
(2020) dataset vertical flips, ro- classifica- ditional augmentation
tating, shifting, tion (Brain methods varied among
zooming, shearing, Cancer) classes.
and brightness
alteration
Gour et al. BreaKHis Stain normalisation,  ResHist Breast The model perfor-
(2020) dataset image patch gen- model cancer mance for classifying
eration, and affine histopatho-  histopathology images
transformation logical is better with data aug-
image clas- mentation than with
sification pre-trained networks.
Nanni et al.  Virus, a Kernel filters, ResNet50 Image clas- Introduced the discrete
(2021) bark, a  colour space trans- sification wavelet transform and
portrait, forms,  geometric the constant-Q Gabor
and a LIGO transformations, transform as two new
glitches and random erasing methods for data aug-
datasets mentation.
Anwar and Customised Flipping, crop-  EfficientNet ECG im- In the experiment with
Zakir (2021)  image ping, contrast and B3 ages classi- images of ECG sig-
based ECG Gamma distortion fication nal, traditional data
signals augmentation did

not improve the per-
formance of neural

networks.

Continued on next page...
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TABLE 2.1: (continued)
Papers Dataset Aug. Techniques Model Task Findings
Kandel and MURA Horizontal flip, ver-  VGG19; X-ray Augmentation was
Castelli dataset tical flip, rotation, ResNet50; images found to significantly
(2021) and zooming Incep- classifica- enhance classification
tionV3; tion performance.
Xception;
DenseNet121
Bird et al. Public Conditional Gener- VGGI16 Fruit qual- CGANs improved
(2022) lemon im- ative Adversarial ity classifi- classification accuracy
age dataset Networks (CGANSs) cation from 83.77% to 88.75%.
(2690 im-  for synthetic image Model  pruning re-
ages) generation duced model size by
50% while maintaining
81.16% accuracy.
Goceri Multiple Traditional aug- CNN Classification GAN-based augmenta-
(2023) datasets mentations (ro-  archi- and  seg- tions yielded improved
across tation, flipping,  tectures mentation performance for rare
imaging scaling) and GAN-  (varied) of diseases image datasets, with
modalities based augmenta- (brain  tu- effectiveness  varying
(MRI, CT, tions mors, lung based on modality and
mammog- nodules, task.
raphy, fun- breast le-
doscopy) sions, eye
conditions)
Naveed Various Image mixing and  WideResNet- Image Image mixing and
et al. (2024) datasets deleting methods:  28-10, classifica- deleting improve gen-
(CIFAR-10, Cut and Delete, Cut  ResNet- tion, object eralization, robustness,
CIFAR-100, and Mix, Mix and 50, Pyra- detec- and calibration while
ImageNet) Up midNet tion, fine- addressing overfitting
grained and data scarcity chal-
recognition  lenges.
Farhanetal. Four Oriented Combina- PRCnet Brain tumor ~OCMRI improved
(2025) brain MRI  tion MRI (OCMRI): classifica- classification accuracy:
datasets: combining images tion Dataset A (85.19%
Dataset with  MSE-guided — 92.7%), Dataset B
A (3264  thresholds (90.12% —  95.37%),
images), Dataset C (94.77% —
Dataset 96.51%), Dataset D (90%
B (4292 — 98%).
slices),
Dataset
C (3064
images),
Dataset D
(253 im-
ages)

In 2017, the work in Perez and Wang (2017) suggested that deep learning-based

augmentation methods, like GANs, do not perform significantly better than

traditional techniques, but consume nearly three times more computational cost.

Moreover, in Perez and Wang (2017), a model called “SmallNet” was trained using
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traditional augmentation techniques and style transfer with CycleGAN Zhu et al.
(2017). It was observed that combining deep learning-based methods with traditional
techniques could achieve better results. Hussain et al. (2017) evaluated various
augmentation strategies on a medical image dataset using VGG-16. They
demonstrated that the flipping and Gaussian filter augmentation techniques yielded
superior outcomes compared to the other ones, particularly when adding noise, which
gave the lowest accuracy. Pawara et al. (2017) applied data augmentation techniques,
such as rotation, blur, contrast, scaling, illumination, projective transformation, and
multiple combinations of these techniques to enhance plant image classification
performance. In this challenge, pre-trained and untrained AlexNet and GoogleNet
models were used. It was observed that CNN models trained from scratch benefited
significantly from data augmentation, whereas pre-trained CNN models did not. In
addition, it was discovered that combinations of data augmentation techniques like
rotation and varied illuminations could contribute most for CNN models trained from

scratch in achieving excellent performance.

In 2018, Inoue (2018) developed a new technique, known as SamplePairing, in which a
new sample was synthesised from one image by overlaying another image randomly
selected from the training data, i.e., taking an average of two images. Li et al. (2018a)
found that traditional data augmentation techniques were not cumulative, and that a
threefold increase in sample size was often sufficient to reach the upper bound. In
addition, the PBP technique proposed by the authors significantly increased the
number of samples, and was proved to be effective for hyperspectral imagery
classification. Frid-Adar et al. (2018) classified liver lesions using a small customised
CNN architecture. In order to accommodate small datasets and input sizes, they
suggested that CNN designs should often contain fewer convolutional layers. By
combining traditional data augmentation techniques with GAN-based synthetic
images, more accurate results from a small dataset were obtained. Pham et al. (2018)
discussed how to solve the challenges of skin lesion classification and limited data in
medical images by applying image data augmentation techniques, such as geometric
augmentation and colour augmentation. The effects of a different number of
augmented samples were evaluated on the performance of different classifiers, and it
was concluded that the performance of skin cancer classifiers and medical image
classifiers could be improved by utilising data augmentation. Motlagh et al. (2018)
classified several forms of cancer using 6402 tissue microarrays (TMAs) as training
samples and utilising transfer learning and deep neural networks. Data augmentation
techniques, such as random scaling, rotation, cropping, and flipping, were used to
obtain sufficiently different samples, and the results showed that 99.8 percent of the
four cancer types, including breast, bladder, lung and lymphoma, were correctly

classified using the ResNet50 pre-trained model.

In 2019, Zheng et al. (2019) assessed the efficacy of neural style transfer using VGG16
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on the Caltech 101 and Caltech 256 datasets, and the results demonstrated a
two-percent gain in accuracy. Recent research has demonstrated that neural style
transfer algorithms can apply the artistic style of one image to another image without
altering the latter’s high-level semantic content, showing that neural style transfer can

be used for data augmentation to add more variation to the training dataset.

In 2020, Ismael et al. (2020) employed data augmentation to solve the problem of
insufficient training data and imbalanced classes in the MRI image classification task
for brain cancer. Various augmentation techniques, including horizontal and vertical
flipping, rotating, shifting, zooming, shearing and brightness alteration, were utilised.
They observed that each augmentation technique had different effects on the
performance of distinct classes. For instance, manipulation of brightness yielded 96
percent accuracy for class one, whereas the rotation technique yielded 98 percent
accuracy for the same class. For class two, these two techniques achieved a score of 99
percent with brightness and 98 percent with rotation. By combining all of the
previously mentioned augmentation techniques, they were able to attain 99 percent
overall accuracy, i.e., 4 percent improvement against the results obtained without data
augmentation. Additionally, Gour et al. (2020) developed ResHist, a 152-layer CNN
based on residual learning, for breast cancer histopathological image classification. A
data augmentation strategy was devised, based on stain normalisation, image patch
generation and affine transformation, to improve the model performance.
Experimental results demonstrated that with the help of data augmentation the model
performance for classifying histopathology images was better than the pre-trained
networks, including AlexNet, VGG16, VGG19, GoogleNet, Inception-v3, ResNet50
and ResNet152.

In 2021, Kandel and Castelli (2021) examined the impact of test time augmentation
(TTA) on X-ray images for bone fracture detection using the MURA dataset. It was
observed that TTA could dramatically improve classification performance, especially
for models with a low score, by comparing the performance of nine different
augmentation techniques with five state-of-the-art CNN models. Nanni et al. (2021)
investigated the performance of over ten different kinds of data augmentation
techniques, including kernel filters, colour space transforms, geometric
transformations, random erasing/cutting and image mixing, and proposed two
approaches: the discrete wavelet transform and the constant-Q Gbor transform. Using
the aforementioned data augmentation techniques, the performance of several
ResNet50 networks was evaluated on four benchmark image datasets (i.e., a virus
dataset, a bark dataset, a portrait dataset, and a LIGO glitches dataset), representing
diverse problems and different scales, indicating the efficacy of data augmentation
techniques in enhancing model performance. In addition, the work in Anwar and
Zakir (2021) investigated the impact of augmenting ECG images for COVID-19 and
cardiac disease classification using deep learning. They argued that traditional data
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augmentation did not improve the performance of neural networks in their

experiments with ECG signal images.

2.4.2 Data Augmentation on Image Segmentation

Image segmentation is also an important field in computer vision. It involves
grouping an image into different parts where each part may share certain features and
characteristics. It has a close relationship to image classification. For example, image
segmentation, in some sense, could be achieved by classifying individual pixels in an
image into different groups. A great deal of emphasis has been placed on data
augmentation in order to achieve better segmentation results, particularly when
working with small training datasets. For practical semantic segmentation
applications, collecting and annotating sufficient training data for deep neural
networks is notoriously difficult. Therefore, data augmentation techniques are of great
importance. We, below, survey a number of studies that have involved data
augmentation in image segmentation tasks. See Table 2.2 for a summary of relevant

literature.

In 2018, the work in Benson et al. (2018) used an encoder—decoder structure, adapted
from an hourglass network, prevalent in the field of human-pose estimation Newell

et al. (2016), in order to classify and segment brain tumours in MRI scans for the BraTS
2018 challenge Menze and Jakab (2015); Bakas et al. (2017b); Simpson et al. (2019);
Bakas et al. (2018). Two data augmentation techniques were utilised: vertical flipping,
which matches up to the naturally symmetrical shape of the brain, and random
intensity variation, used because the intensity between MRI scans varies significantly.
The network was trained with, and without, data augmentation. It was discovered
that data augmentation appeared to provide a small increase in accuracy for the Dice
coefficient and a significant improvement in Hausdorff accuracy.

TABLE 2.2: Survey of data augmentation techniques in recent image segmentation

works.
Papers Dataset Aug. Techniques Model Task Findings
Benson BraTS 2018 Vertical flipping ~ Hourglass Brain tumor  Data augmentation meth-
et al. (2018) and random  Net- segmenta- ods appear to have a dif-
intensity varia- work Newell tion ferent impact on the Dice
tion. et al. (2016) coefficient and Hausdorff

accuracy.

Continued on next page
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TABLE 2.2: (Continued)
Papers Dataset Aug. Techniques Model Task Findings
Casado- ISBI chal- Automated im- U-Net ar- Semantic Introduced an approach
Garcia et al.  lenge Arganda- age augmenta- chitecture segmenta- that enables researchers
(2019) Carrerasetal.  tion tool. with  four tion to use image augmenta-
(2015) different tion techniques automati-
models cally to the challenges of
object classification, local-
isation, detection, seman-
tic segmentation, and in-
stance segmentation.
Ma et al. Sheep seg- Colour trans- DeepLabv3+ Semantic A combination of aug-
(2019) mentation formation, Chen et al. segmenta- mentation methods could
dataset (SSG)  flipping, crop- (2018) tion achieve the best perfor-
ping, projection mance, while excessive
transformation, augmentation could de-
local copy, and grade the performance.
JPEG compres-
sion.
Qiao et al. Cattle seg- Random image Bonnet Mil- Semantic The proposed method
(2020) mentation cropping and ioto and segmenta- of randomly cropping
dataset patching. Stachniss tion and patching images to
(2019) increase the number of
training images improves
segmentation perfor-
mance.
Khryashchev Planet, and Random chro- U-Net Semantic The application of ran-
and Lari- the Resurs matic distor- with  the segmenta- dom chromatic distortion
onov (2020)  datasets tion, rotation, ResNet34 tion in HSV colour format im-
and shifting. as encoder proves the robustness of
deep learning algorithms
for images with noise,
such as small clouds and
glare from reflective sur-
faces.
Chen and Tongue im- Cropping, rota- U-Net with Semantic Geometric  transforma-
Jung (2020)  age dataset tion, flipping, 15 differ- segmenta- tions can achieve higher
and colour ent CNN tion performance than colour
transforma- models as transformations, and
tions. encoders segmentation  accuracy
can be increased by 5
to 20% compared to no
augmentation.
Qin et al. Kidney Tu- An automatic An end- Medical Conventional augmenta-
(2020) mour dataset  deep reinforce- to-end image seg- tiontechniques (e.g., rota-
ment learning augmen- mentation tion, cropping, etc.) are
based augmen- tation seg- random and sometimes
tation method mentation damaging to the image
architecture segmentation task.

Continued on next page
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TABLE 2.2: (Continued)

Papers Dataset Aug. Techniques Model Task Findings
Cirillo et al. ~ BraTS2020 Flipping, rota- 3D U- 3D brain Conventional data aug-
(2021) Dataset tion, scaling, Net Ron- tumor seg- mentation significantly
brightness ad- neberger mentation improves the validation
justment, and etal. (2015) performance of brain
elastic deforma- tumour segmentation.
tion.
Su et al. Narrabri Random image Bonnet Semantic The RICAP technique in-
(2021) and Bonn  cropping and segmenta- creases the mean accu-
datasets patching  (RI- tion racy and mean intersec-
CAP) method. tion over union (IOU) of
the CNNs with the tradi-
tional data augmentation.
Zhang et al. PASCAL Object-level MobileNet Semantic ObjectAug can easily be
(2021a) VOC 2012; augmentation based segmenta- integrated with existing
Cityscapes; method. DeepLab tion image-level augmen-
CRAG V3+ tation  techniques to
dataset further improve the seg-
mentation performance.
ObjectAug supports
category-aware augmen-
tation that gives objects
in each category a variety
of options.
Mallios and ~ VoxTox Bur- GAN-based RS-FCN Rectum Demonstrated the viabil-
Cai (2021) net et al. synthetic im- segmenta- ity of producing synthetic
(2017) ages. tion data and subsequently in-
corporating it into the
training samples in or-
der to get satisfactory out-
comes.
Chen et al. Two public AdvChain: ad- U-Net- Cardiacand  AdvChain significantly
(2022) MRI datasets: ~ versarial photo- based seg- prostate improved segmentation
cardiac and metric and ge- mentation MRI  seg- accuracy in low-data and
prostate im-  ometric chained networks mentation semi-supervised settings,
ages transformations outperforming  existing
methods like RandAug-
ment.
Zhang et al.  Four CarveMix: nnU-Net Brain lesion = CarveMix improves seg-
(2023) datasets: AT- lesion-aware segmen- mentation performance
LAS (chronic ROI  carving tation with Dice coefficients
stroke), in- and mixing, (chronic outperforming other
house acute harmonization, stroke, augmentation methods,
ischemic and mass effect ischemic especially under limited
stroke, in- modeling stroke, training data conditions.
house whole tumors,
brain tumor, multiple
MSSEG (mul- sclerosis)

tiple sclerosis
lesions)

Continued on next page
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TABLE 2.2: (Continued)

Papers Dataset Aug. Techniques Model Task Findings
He et al. Three Statistical 3DALttU- Segmentation Achieved superior seg-
(2024) datasets: deformation- Net with of organs- mentation performance,
Head and based aug-  coarse-to- at-risk improving DSC by 1.56%
Neck (HNC, mentation fine seg- (OARs) in and reducing 95% HD
HNPETCT, with inter- and mentation CT scans on average compared to
140 CT  intra-patient framework state-of-the-art methods.
scans), deformations
SegTHOR (60
CT scans),
Pancreas-CT
(BTCV, 50 CT
scans)
Sun et al. Five datasets: HSMix: UNet, Medical Improved Dice simi-
(2025) ISIC 2017  Superpixel- TransUnet,  image seg- larity coefficients (e.g.,
(skin le- based CutMix DeepLabv3+, mentation ISIC: 80.92% — 83.50%,
sions), GlaS (hard) and HiFormer, BraTS2018: 77.33% —
(glands), Mixup (soft) UNeXt 7897%) and reduced
MoNuSeg Hausdorff distances with
(nuclei), minimal computational
Synapse (or- overhead.
gans in CT),
BraTS2018
(brain tumors
in MRI)

In 2019, Casado-Garcia et al. (2019) presented a versatile method which was

implemented in the open-source package CLoDSA, dedicated to classification,

semantic segmentation, instance segmentation, localisation and detection. Three

different datasets were used to demonstrate the benefits of applying data

augmentation. Ma et al. (2019) created the SSG dataset, i.e., a small-scale and

open-source sheep segmentation dataset containing hundreds of images. To find the

best technique for this small semantic segmentation dataset, they evaluated seven

data augmentation methods, including colour transformation, flipping, cropping,

projection transformation, local copy, a proposed technique named ”“JPEG

compression” and their combinations. Experimental results showed that the

combination of compression, cropping and local shift could achieve the best

augmentation performance for their AI-Ranch application. However, they also found

that excessive augmentation could degrade performance.

In 2020, Qiao et al. (2020) introduced a data augmentation technique where images

were randomly cropped into distinct regions and then patched together to form a new

one. Experimental results on their acquired cattle dataset showed that this data

augmentation technique, together with an open-source semantic segmentation CNN

architecture, “Bonnet” Milioto and Stachniss (2019), achieved 99.5 percent mean

accuracy and 97.3 percent mean intersection of unions. In Khryashchev and Larionov
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(2020), an U-Net neural network with the ResNet34 encoder was used for automated
wildfire detection on high-resolution aerial photos using two small satellite RGB
image datasets. To overcome the small data size challenge, data augmentation
techniques, such as rotation, shifting and random chromatic distortion in HSV colour
format, were used to increase the robustness of the deep learning algorithm for noisy
images, such as small clouds and glare from reflective surfaces. The experimental
results showed that data augmentation methods led to better results on test datasets
for all metrics used in the experiments. Qin et al. (2020) argued that the data generated
by conventional augmentation techniques (e.g., rotation, cropping, etc.) was random
and sometimes detrimental to the image segmentation process. In light of this, an
automatic learning-based data augmentation technique was developed for CT kidney

tumor segmentation.

The work in Chen and Jung (2020) focused on automatic tongue segmentation using
15 different pre-trained network models (such as VGG, ResNet, ResNext, DenseNet,
EfficientNet, inceptionV3, SE-ResNet, inception, ResNetV2, etc.). They utilised
multiple label-preserving transformations to increase the size and diversity of the
training dataset. Their findings indicated that geometric transformations could
achieve greater performance than colour transformations, and that the segmentation

accuracy could be improved by 5 to 20 percent compared to no augmentation.

In 2021, the work in Zhang et al. (2021a) proposed a data augmentation technique,
named ObjectAug, for image segmentation. The ObjectAug technique operates at the
object level by first decoupling the image into individual objects and the background
using semantic labelling and, then, each object is individually augmented using
conventional augmentation techniques (e.g., scaling, shifting and rotation), followed
by image inpainting, which is utilised to further restore the pixel artefacts introduced
by object augmentation. The final step is integrating the augmented objects and
background into an augmented image. Extensive experiments on both normal and
medical image datasets demonstrated that the ObjectAug technique outperformed
conventional augmentation techniques and improved segmentation performance.
Cirillo et al. (2021) examined how augmentation techniques, such as flipping, rotation,
scaling, brightness adjustment and elastic deformation, affected the learning process
when training a standard 3D U-Net Ronneberger et al. (2015) on the BraTS

dataset Menze et al. (2014); Bakas et al. (2017b,a). In multiple cases, their findings
indicated that data augmentation significantly improved validation performance.
They presumed that the reason why data augmentation had not been thoroughly
investigated for brain tumour segmentation was because the BraTS training set was
quite large and several works Lyksborg et al. (2015); Havaei et al. (2017) suggested

that data augmentation would not be of much assistance.

Mallios and Cai (2021) investigated image-guided radiation therapy Delaney et al.
(2005); Burnet et al. (2017), which is one of the most prevalent methods for treating
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numerous types of cancer. Their study included the development of deep learning
approaches for segmenting the organs-at-risk in CT images during radiation therapy.
It was observed that the scarcity of annotated data, stemming from the difficulty and
time consuming nature of manual annotation in this area, hindered research
development for medical applications. In order to compensate for the shortage of
labelled real-world data required to train very deep models, like FCN

architecture Long et al. (2015), cGAN Mirza and Osindero (2014) was used to generate
synthetic images. The experimental results illustrated the superior performance of the
proposed segmentation methods for the rectum under the help of deep learning-based
data augmentation. In Su et al. (2021), a framework for augmenting data for semantic
segmentation, based on the random image cropping and patching (RICAP) method,
was presented. Experiments on two datasets using Bonnet architecture Milioto and
Stachniss (2019) showed that the developed framework improved segmentation

performance in terms of accuracy and mean intersection over union.

2.5 Proposed Strategy for Data Augmentation

In this section, we propose a new data augmentation technique, belonging to the
traditional data augmentation category. It was inspired by techniques focusing on

local areas in images, e.g., the random erasing technique.

Let D be the training dataset. Let Cy ,,, be a circular area in an image I € D, with

centre location (x,y) and radius r. Let 6 € [0, 27| be an angle for rotation.

The main procedure of the proposed augmentation technique is given below. Firstly,
VI € D, we select a circular area C,,,,, within image I, with a randomly generated
centre (x,y) and radius r. Then, the image content within the circular area C, ,, is
rotated with a randomly generated angle 6 € [0,27], while the image content outside
the circular area Cy,y, is kept, and we call this newly generated image I. Finally, image
I is used to augment the original training dateset D. Here we suggest two ways. The
first one is to use the generated image I to replace the original image I € D. This way
does not change the size of the dataset D, but may change the data diversity. The
other way is to add image I into the dataset D, which increases the dataset size and
enhances the data diversity. We call the above technique random local rotation (RLR),
see Figure 2.13 for the diagram showing the conducting of the RLR data augmentation
strategy and Algorithm 1 for the summary of RLR.
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FIGURE 2.13: The proposed random local rotation data augmentation strategy. Sym-
bol ® represents pointwise multiplication.

Algorithm 1 Random Local Rotation

e e
WL N = o

R N L R A

Input: The training dataset D
Output: The augmented training dataset D
Create a subset say D' CD by randomly selecting N images from D
Create an empty set say D*
for VI € D' do
Randomly generate centre (x,y) and radius r within image I
Form a circular area Cy,,» within image I with centre (x, y) and radius r
Randomly generate angle 6 € [0, 277]
Form image I by rotating the area within Cy,,, in image I with angle 6
Add I into D*

: end for
: Way 1: D <~ D*UD\ D’
: WayZ:ﬁ(—D*UD

A special case of RLR uses the largest possible circular rotation area in the image

centre, see Figure 2.14. In the rest of this article, we call this special case random centre

rotation (RCR). RCR could be applied as a direct replacement of the traditional

rotation technique for data augmentation.

An obvious advantage of RLR against the traditional rotation is that it avoids the

black boundary caused by traditional rotation, as shown in Figure 2.4. Moreover, the

local area information distortion brought by RLR could improve the data diversity,

without removing much information from the given images, like other augmentation
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techniques, e.g., image cropping, random erasing, etc. Detailed validation of RLR is
presented in the next section.

~1@]

(a) Givenimage (b) Rotation mask (c) Rotated image

FIGURE 2.14: Random local rotation data augmentation technique using the largest
possible circular rotation area in the image centre.

2.6 Experiments

To validate the proposed RLR agumentation technique, we employed three
state-of-the-art CNN models, i.e., ResNet50 He et al. (2016), MobileNet Howard et al.
(2017) and InceptionV3 Szegedy et al. (2016), which were all trained from scratch. We
conducted experiments in both classification and segmentation tasks and mainly
compared with the traditional rotation technique (shortened to TR) with randomly
selected rotation angles. The quantitative results reported below with standard

deviation were obtained by repeating the experiments five times.

2.6.1 Classification Experiment

The CIFAR-10 dataset was selected for conducting experiments regarding the
classification task. It contained 60,000 coloured images, where every image was of size
32 x 32, A total of 50,000 images were for training and 10,000 images were for testing.
CIFAR-10 consisted of ten classes, each with 6000 images. To simulate the scenario of
data scarcity, we reduced the original training data size to 2%, 4% and 6%, forming
three subsets with numbers of samples of 1000, 2000 and 3000, respectively, and used
the original test set for testing.

For each subset, three extra copies were created by the TR, RCR and RLR data
augmentation techniques. Each augmented copy was twice as large as its
corresponding original subset. The data balance between the classes was also taken
into consideration when constructing these subsets. Additionally, the image resolution
was adjusted to fit the default input shape of each CNN model used in the
experiments, i.e., 299 x 299 for InceptionV3, and 244 x 244 for MobileNet and
ResNet50. According to the constructed datasets, each model was subjected to a total
of 12 tests, (i.e., number of subsets x number of techniques).
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For fair comparison, same hyperparameters were kept for each model. Models were
trained for 50 epochs with the Adam optimiser and categorical cross entropy loss
function. Test accuracy was selected as the monitoring metric. The Spyder platform

was utilised to train and evaluate the models.

2.6.1.1 Classification Results

Table 2.3 gives the classification accuracy of the CNN models (i.e., ResNet50,
MobileNet and InceptionV3) with the TR, RCR and RLR data augmentation
techniques on the three subsets, including the comparison with the baseline results

(i.e., the ones obtained on the subsets without using data augmentation).

The results in Table 2.3 show that our proposed data augmentation technique RLR
constantly achieved the best classification accuracy with all the three CNN models on
all the subsets, indicating its excellent performance. In contrast, the traditional
rotation technique did not improve performance, and, in many cases, degraded the
results, compared with the baseline results. This might be because of the
aforementioned limitations of the traditional rotation technique, i.e., the black and
irregular boundary it introduces. As for the performance of the RCR technique, its
results were slightly better than the TR results and were comparable to the baseline
results. This was what we expected, since RCR is quite similar to TR. Yet, the images
generated by RCR did not suffer from the black and irregular boundaries, and,
therefore, performed slightly better than TR.

For further performance evaluation, we also reported the comparison of the RLR
method with the mostly used traditional data augmentation techniques, see Table 2.4.
The smallest subset of CIFAR-10 (i.e., the one with 1000 samples) was employed with
data augmentation techniques, including RLR, RNR, RWR, RRR, flipping, shifting,
zooming, and brightness. The results in Table 2.4 show that, generally, data
augmentation techniques could indeed enhance the performance of different models.
It again demonstrated the great performance of the proposed RLR method; for
example, RLR achieved the best accuracy when the ResNet model was used. The
results in Table 2.4 also show that the performance of the augmentation techniques

might differ for different models, which is worth investigating further in the future.



Chapter 2. Data Augmentation in Classification and Segmentation: A Survey and
New Strategies

76

TABLE 2.3: Classification accuracy comparison between the TR, RCR and RLR data
augmentation techniques. CNN models, i.e., MobileNet, ResNet and InceptionV3,
with the data augmentation techniques, were applied on three different CIFAR-10
subsets, with numbers of samples of 1000, 2000 and 3000, respectively. The results

indicated the superior performance of the proposed RLR technique.

Model Subset Baseline RLR TR RCR
1000 41.694+0.29 4224 +044 4057 +£0.22 39.51+0.52
MobileNet 2000 50.624+0.43 51.76 056 48.77+051 50.6+0.64
3000 56.9540.62 60.96+054 55.30+0.82 58.18+0.66
1000 39.734+0.64 41.47+039 3811+0.52 38.28+0.51
ResNet 2000 50.164+0.49 51.06+054 4795+0.84 48.84+0.59
3000 53.784+0.49 56.15+0.76 53.38+0.56 53.31+0.56
1000 42.654+0.63 45.41+055 43.32+047 43.154+0.58
InceptionV3 2,000 54.63+£045 55.71+048 54.85+0.57 53.78+0.28
3000 61.244+0.37 6245+086 59.72+042 60.18+0.66

TABLE 2.4: Classification accuracy comparison between RLR and other common data

augmentation techniques. CNN models, i.e., MobileNet, ResNet and InceptionV3,

with the data augmentation techniques, were applied on the smallest subset of CIFAR-
10 (i.e., the one with 1000 samples).

Model Baseline RLR RNR Flip Shift Zoom Bright RWR RRR
MobileNet 41.89 42.28 41.37 4252 4583 4575 4784 4553 45.10
ResNet 3940  41.70 40.07 40.18 4157 4019 39.06 4122 41.18
InceptionV3 ~ 42.85  45.61 44.84 4586 43.03 4581 46.11 46.67 4541
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Given image Heatmaps by TR Heatmaps by RLR

FIGURE 2.15: Data augmentation techniques evaluation by saliency map. Column 1:
given images; columns 2 and 3: two types of saliency maps for TR; columns 4 and 5:
two types of saliency maps for RLR. In particular, for the two types of saliency maps
evaluating each data augmentation technique, the first saliency map highlights the
activated area in the given image, and the second highlights the activated area using
the content of the given image. The CNNs used for the test images in the first and
second rows are MobileNet and ResNet50, respectively. The saliency maps created for
the models, which were trained with the dataset augmented with RLR, clearly focus on
the wider part of the object while for the other cases where augmentation is achieved
with TR, the models focus on a smaller area of the object. The models trained with
RLR output more reliable results, together with the wider focus on the target object
shown in the above saliency maps, demonstrating the superior performance of RLR
compared to TR.

2.6.1.2 Qualitative Comparison via Saliency Maps

To further evaluate the effectiveness of the proposed RLR technique against the
traditional rotation, we employed GradCAM Selvaraju et al. (2017), one of the
well-known methods illustrating the decision made by CNNS, to show the saliency
maps regarding the TR and RLR techniques.

Figure 2.15 shows the saliency maps of the TR and RLR techniques on images
randomly selected from the test datasets. The truck image (first row in Figure 2.15)
was classified as truck with 94% (here the percentage was the probability produced by
the Softmax activation function in the CNN architectures) via MobileNet model
trained with the TR augmentation technique, and nearly 100% with the proposed RLR
technique. The bird image (second row in Figure 2.15) was classified as bird with 95%
via ResNet50 model trained with the TR augmentation technique, and nearly 100%
with the proposed RLR technique. The saliency maps shown in Figure 2.15 for the TR
and RLR techniques indicated that the proposed RLR technique was, indeed, more
effective in terms of assisting the CNN architectures to make decisions based on more

reasonable areas within the test images.
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2.6.2 Segmentation Experiment

Two publicly available datasets were selected for conducting experiments regarding
the segmentation task. The first dataset was the Supervisely Person supervise.ly
(2018), which contained 5711 images and 6884 high-quality annotated human
instances for human semantic segmentation, see e.g., Figure 2.16. The second dataset
was the Nuclei images dataset Hamilton (2018), which contained 670 microscopic
images with their corresponding segmentation masks, see e.g., Figure 2.17. Each
augmented copy was twice as large as its corresponding original dataset. Then, each
dataset copy was divided into training (90% of the data) and validation (10% of the
data) subsets. Note that, in this experiment, we also considered the concept of
equivariance. Equivariance implies that the output changes in proportion to the input.
The concept of equivariance is important in segmentation, where the location of the
object and the location of the segmented object shift proportionally, e.g., see Figures
2.16 and 2.17. In contrast, invariance refers to a change in the location of an object
while the output remains unchanged, which is considered in Section 2.6.1 for the

classification task.

RNR

FIGURE 2.16: Samples of the Supervisely Person dataset by applying the RLR, TR,
RCR, RRR, RWR and RNR augmentation techniques. Rows one and two are the aug-
mented samples with their corresponding human body segmentation, respectively.

RWR

Given image TR RCR

FIGURE 2.17: Samples of the Nuclei images dataset by applying the RLR, TR, RCR,
RRR, RWR and RNR augmentation techniques. Rows one and two are the augmented
samples with their corresponding segmentation, respectively.
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Two autoencoders were used to conduct the semantic segmentation task. These two
autoencoders were constructed based on two models (i.e., MobileNet and VGG16),
each with a customised decoder, see Table 2.5 for the detailed architectures. Each
autoencoder was subjected to a total of seven tests. They were trained for 200 epochs

with the Adam optimiser and binary cross entropy loss function.
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TABLE 2.5: The architectures of the decoders of the MobileNet-based and VGG16-
based auto-encoders. Conv2D and Conv2DT represent the 2D convolutional layer

and the transposed 2D convolutional layer, respectively.

MobileNet Decoder ‘ VGG16 Decoder
Layer Kernel  Filters Activation Layer Kernel Filters Activation
Size  Number Function Size  Number Function
Conv2DT  (3,3) 1024 Relu ‘ Conv2DT  (3,3) 1024 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 1024 Relu ‘ Conv2D (3,3) 1024 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2DT (3,3) 512 Relu ‘ Conv2DT  (3,3) 512 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 512 Relu ‘ Conv2D (3,3) 512 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2DT (3,3) 256 Relu ‘ Conv2DT  (3,3) 256 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 256 Relu ‘ Conv2D 3,3) 256 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2DT (3,3) 128 Relu ‘ Conv2DT  (3,3) 128 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 128 Relu ‘ Conv2D (3,3) 128 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2DT  (3,3) 64 Relu ‘ Conv2DT  (3,3) 64 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 64 Relu ‘ Conv2D (3,3) 64 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2DT  (3,3) 32 Relu ‘ Conv2DT  (3,3) 32 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 32 Relu ‘ Conv2D (2,2) 32 Relu
Batch Normalisation ‘ Batch Normalisation
Conv2D (3,3) 1 Sigmoid ‘ Conv2D (3,3) 1 Sigmoid
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Segmentation Results

Table 2.6 gives the segmentation accuracy of the autoencoders (i.e., MobileNet-based,
and VGG16-based) with the TR, RCR, RLR, RNR, RWR and RRR data augmentation
techniques on the Supervisely Person dataset, including the comparison with the
baseline results (i.e., the one obtained on the original samples without using data
augmentation). In contrast to the classification results, the results in Table 2.6 show
that all the augmentation techniques tested did not improve the segmentation
performance. This might imply that using rotation alone to augment data might not
be a good method for the segmentation task, particularly if the shape feature was the
most important one in the dataset, as in the Supervisely Person dataset. For further
investigation into the influence of different features on the performance of the
augmentation techniques, we conducted an experiment using the Nuclei images
dataset Hamilton (2018).

Differing from the results obtained in Table 2.6 on the Supervisely Person dataset, the
results in Table 2.7 on the Nuclei images dataset demonstrated that the rotation
augmentation methods could improve the segmentation performance. This
performance gain might be due to the fact that the augmentation techniques did not
degrade the image qualities much in the Nuclei dataset, since the shape feature was
not that critical, compared to the Supervisely Person dataset. In the Nuclei Images
dataset, colours and textures are likely to be more essential than the shape features. In
particular, the segmentation results in Table 2.7 on the Nuclei dataset showed that
RLR achieved the best performance among the rotation augmentation methods. This
might be due to the information preservation ability that RLR provided, whereas RRR,
RWR and RNR either lost parts of the information in the image’s periphery or

repeated some parts of the image, see Figure 2.18.

FENNN

Given image RLR
FIGURE 2.18: The effect of different rotation methods on the rotated image. The RRR
and RWR expanded the central region (i.e., the black stripe) by repeating parts of it.
RNR resulted in the loss of image content at the image’s periphery and the creation of
artificial pixel values to fill the gap. In contrast, RLR manipulated the content of the
image while preserving the information around the image’s periphery well.

2.6.3 Discussion

The vast majority of researchers combine many data augmentation techniques to

obtain a final result. This makes it difficult to acquire an accurate evaluation for these
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TABLE 2.6: Segmentation accuracy comparison between different data augmentation

techniques (i.e., TR, RCR, RLR, RNR, RWR, and RRR). MobileNet-based and VGG16-

based autoencoders were applied on the Supervisely Person dataset. The results indi-

cated that using rotation solely to augment data might not be a good for the segmen-
tation task in this case.

Model Baseline RLR TR RCR RNR RWR RRR
MobileNet 75.13 £0.25 72.12£0.21 73.75+£0.15 72.72+£0.18 71.12+0.17 71.27 £0.10 71.09 £0.12
VGG16 7542 +0.16 72.56+0.19 73.16 £0.22 72.66 +0.24 71.31+0.08 71.22+0.14 71.06 £0.15

TABLE 2.7: Segmentation accuracy comparison between different data augmentation

techniques (i.e., TR, RCR, RLR, RNR, RWR, and RRR). MobileNet-based and VGG16-

based autoencoders were applied on the Nuclei images dataset. The results indicated

that using rotation to augment data could enhance the segmentation performance in
this case.

Model Baseline RLR TR RCR RNR RWR RRR
MobileNet 94.25+0.05 97.6+0.08 9537 £0.11 94.50£0.28 9528 £0.19 95.24+0.14 9543 +0.13
VGG16 94.244+0.12 97.81£0.09 95.36+0.21 94.74+0.17 95.08 £0.18 9491 £0.15 95.32 +:0.16

techniques individually. In this study, we chose the random rotation technique and
examined it in more detail, along with its impact on two significant tasks (i.e.,
classification and segmentation), in order to make a contribution to the data
augmentation regime in general. Segmentation and classification are two distinct
tasks. The notion that both rely on the same features to attain their desired outcomes
may not be accurate. Our results in the previous section showed that the rotation
augmentation techniques could enhance methods’ performance for the classification
task, but not the segmentation task. It was observed that the segmentation task
naturally relied on shape features Bajcsy et al. (1990). Geirhos et al. (2018) conducted a
quantitative experiment demonstrating that CNNs trained with ImageNet had a
strong inclination to classify texture over shape. This feature distinction might account
for the disparity between classification and segmentation results when the rotation
augmentation techniques were applied. In particular, in the segmentation experiment,
the RLR method distorted the shape of the human body the most, yielding a slightly
poorer result than that of the TR method, which did not distort the shape of the
human body. The distortion of the shape feature might explain the deterioration of the
segmentation results when applying the rotation augmentation techniques. In
contrast, for the classification task, the rotation augmentation techniques altered the
object shape but not the overall texture, which benefited the performance

enhancement for the classification task.

2.7 Conclusions

In this Chapter, we explored the role of data augmentation techniques in improving
feature extraction for classification and segmentation tasks. One of the key findings

was that using data augmentation techniques that distort shape features negatively
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impacts segmentation tasks, unlike classification tasks. This finding highlights the
critical role of human segmentation in the overall research, as segmentation relies
heavily on preserving object shape information. To exploit this finding, an idea of
integrating semantic segmentation with another strategy, such as transfer learning,
needs to be explored. The importance of transfer learning in enhancing model
performance is particularly evident in scenarios where labeled data is scarce or when
domain adaptation is required. Transfer learning enables models to leverage prior
knowledge from large-scale datasets, leading to improved generalizability and
robustness in downstream tasks. This is especially beneficial in HAR, where data

variability and complexity pose significant challenges to effective model training.

Given that segmentation models inherently focus on shape-based features, an
interesting direction to explore is whether transfer learning from human segmentation
tasks can improve HAR performance. Since shape features are vital for segmentation
and also play a significant role in action recognition, leveraging pre-trained
segmentation models for HAR may provide a more structured and informative
feature representation. Building on these insights, Chapter 3 introduces TransNet, a
novel HAR architecture that integrates transfer learning from human segmentation
models. By utilizing autoencoders trained on segmentation tasks, TransNet aims to
refine feature extraction for HAR, enhancing both efficiency and classification
accuracy. This chapter investigates how segmentation-driven transfer learning can
enhance HAR, bridging the gap between semantic segmentation and action
recognition through a structured learning approach.
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Chapter 3

TransNet: A Transfer
Learning-Based Network for
Human Action Recognition

Human action recognition (HAR) is a high-level and significant research area in
computer vision due to its ubiquitous applications. The main limitations of the current
HAR models are their complex structures and lengthy training time. In this chapter,
we propose a simple yet versatile and effective end-to-end deep learning architecture,
coined as TransNet, for HAR. TransNet decomposes the complex 3D-CNNss into 2D-
and 1D-CNNs, where the 2D- and 1D-CNN components extract spatial features and
temporal patterns in videos, respectively. Benefiting from its concise architecture,
TransNet is ideally compatible with any pretrained state-of-the-art 2D-CNN models in
other fields, being transferred to serve the HAR task. In other words, it naturally
leverages the power and success of transfer learning for HAR, bringing huge
advantages in terms of efficiency and effectiveness. Extensive experimental results
and the comparison with the state-of-the-art models demonstrate the superior
performance of the proposed TransNet in HAR in terms of flexibility, model
complexity, training speed and classification accuracy.

3.1 Introduction

The computer vision community has studied video analysis for decades, including
action recognition Tran et al. (2015) and activity understanding Kitani et al. (2012).
Human action recognition (HAR) analyses and detects actions from unknown video
sequences. Due to the rising demand for automated behaviour interpretation, HAR
has gained dramatic attention from academics and industry and is crucial for many

applications Paul and Singh (2014).
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Action

prediction

FIGURE 3.1: TransNet architecture for HAR. The given video frames are input into
the time-distributed layer, which employs a 2D-CNN model (e.g., MobileNet, Mo-
bileNetV2, VGG16, or VGG19) several times based on the number of video frames,
allowing the architecture to analyse multiple frames without expanding in size. Then
the spatial features corresponding to the individual input frames are generated, which
are subsequently analysed by the 1D-CNN layers, extracting the spatio-temporal fea-
tures. The SoftMax layer finally classifies the action according to the spatio-temporal
pattern.

Good action recognition requires extracting spatial features from the sequenced
frames (images) of a video and then establishing the temporal correlation (i.e.,
temporal features) between these spatial features. Thus, action recognition models
analyse two types of features, establish their relationship, and classify complex
patterns. This makes these models vulnerable to a number of significant challenges,
including i) the limited ability to transfer learning exploiting advanced models from
other fields in computer vision, ii) the need for large volumes of data due to the model
complexity, iii) the need for accurate temporal analysis of spatial features, and iv) the
overlap of moving object data with cluttered background data Jegham et al. (2020).

The improvement process across generations of these models is inconsistent
Simonyan and Zisserman (2014a). This results in a wide range of works that may face
difficulty of transferring learning ability between generations, especially when these
models are constructed differently and/or developed in different fields for extracting

specific spatial features in HAR.

Temporal modeling presents a big challenge in action recognition. To address this,
researchers often employ 3D-CNN models, which excel at interpreting
spatio-temporal characteristics but suffer from much larger size compared to 2D-CNN
models Yang et al. (2019). Moreover, optimising 3D networks becomes difficult when
dealing with insufficient data Kong et al. (2021), since training a 3D convolutional
filter necessitates a substantial dataset encompassing diverse video content and action
categories Hu et al. (2021). Unlike recurrent neural networks (RNNs) that emphasise
temporal patterns Narang et al. (2017), 3D networks analyse videos as 3D images,
potentially compromising the sequential analysis of temporal data. Both 3D-CNNs
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FIGURE 3.2: An illustration of TransNet+ for HAR. TransNet+ inherits the architecture
of TransNet. It uses the autoencoder’s encoder to form the TransNet’s 2D component.

and RNNSs are challenged by the increased model size and lengthy training time
Stamoulakatos et al. (2021).

The presence of cluttered backgrounds presents another challenge in HAR. Indoor
environments with static and constant backgrounds are typically assumed to yield
high performance for HAR models, whereas performance could significantly diminish
in outdoor contexts Liu et al. (2015); Wu et al. (2011). Cluttered backgrounds introduce
interruptions and background noise, encoding problematic information in the
extraction of global features and leading to a notable decline in performance. To
address this challenge, a practical approach is to design models that focus on the
human object rather than the background. Scholarly literature consistently indicates
that incorporating multiple input modalities, including optical flow and body part
segmentation, shows promise in enhancing HAR performance. This conclusion is
substantiated by a range of survey studies conducted in the field of action recognition,
providing robust evidence for the effectiveness of leveraging diverse input modalities
Beddiar et al. (2020); Kong and Fu (2022); Sun et al. (2022).

However, there are several issues with these types of models, including their various
modelling steps, preprocessing stages, lengthy training time, and significant demands
on resources such as memory and processing power. These models are also difficult to
implement in real-world applications.

In this chapter, we propose an end-to-end deep learning architecture called TransNet
for HAR, see Figure 3.1. Rather than using complex 3D-CNNs, TransNet consists of
2D- and 1D-CNNs that extract spatial features and temporal patterns in videos,
respectively. TransNet offers the following multiple benefits: i) a single network
stream using only RGB frames; ii) transfer learning ability and flexibility because of its
compatibility with any pretrained state-of-the-art 2D-CNN models for spatial feature
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FIGURE 3.3: Data samples. First row: samples of UCF101 actions (left) and HMDB51
actions (right); second row: samples of the supervisely person dataset (left) and a
frame sequence of the action class “walking” from the KTH dataset (right).

extraction; iii) a customisable and simpler architecture compared to existing 3D-CNN
and RNN models; and iv) fast learning speed and state-of-the-art performance in
HAR. These benefits allow TransNet to leverage the power and success of transfer
learning for HAR, bringing huge advantages in terms of efficiency and effectiveness.

An additional contribution in this chapter is that we introduce the strategy of utilising
autoencoders to form the TransNet’s 2D component, i.e., named TransNet+, see

Figure 3.2. TransNet+ employs the encoder part of the autoencoder trained on
computer vision tasks like human semantic segmentation (HSS) to conduct HAR.
Extensive experimental results and the comparison with the state-of-the-art models

demonstrate the superior performance of the proposed TransNet/TransNet+ in HAR.

3.2 Related Work

3.21 HAR with Background Subtraction

Most research on HAR focuses on human detection and motion tracking Jaouedi et al.
(2020). Background subtraction has been suggested in a number of methods and
proven to be viable for HAR. For example, a background updating model based on a
dynamic optimisation threshold method was developed in Zhang and Liang (2010) to
detect more complete features of the moving object. The work in Kim et al. (2018a)
introduced a basic framework for detecting and recognising moving objects in
outdoor CCTV video data using background subtraction and CNNs. Jaouedi et al.
(2020) employed a Gaussian mixture model and Kalman filter Liu et al. (2007)

techniques to detect human motion by subtracting the background.

3.2.2 HAR with Multimodality

Since video comprehension requires motion information, researchers have integrated

several input modalities in addition to RGB frames to capture the correlation between
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frames in an effort to enhance model performance.

Optical Flow: Optical flow Horn (1981), which effectively describes object or scene
motion flow, is one of the earliest attempts to capture temporal patterns in videos. In
comparison to RGB images, optical flow may successfully remove the static
background from scenes, resulting in a simpler learning problem than using RGB
images as input Diamantas and Alexis (2020); Wang et al. (2018b). Simonyan and
Zisserman (2014a) began the trend of using multiple input modalities, including
optical flow, with CNNs. However, when compared to the latest deep learning
techniques, optical flow has a number of disadvantages, including being
computationally complex and highly noise-sensitive Bovik (2009); Li and Wang (1998),

which make its use in real-time applications less feasible.

Semantic Segmentation: Semantic segmentation is a technique that may be used to
separate either the entire body or particular body parts from the background Minaee
et al. (2021). It is a pixel-wise labelling of a 2D image, offering spatial features
describing the shape of the object of interest Ulku and Akagtindiiz (2022). Zolfaghari
et al. (2017) presented a chained multi-stream model that pre-computes and integrates
appearance, optical flow, and human body part segmentation to achieve better action
recognition and localisation. Benitez-Garcia et al. (2021) offered an alternative to the
costly optical flow estimates used in multimodal hand gesture recognition methods. It
was built using RGB frames and hand segmentation masks, with better results

achieved.

Although semantic segmentation approaches have shown promising outcomes in
action recognition, the majority of them are computationally demanding. In fact,
real-world action recognition methods involving semantic segmentation of video

content are still in their infancy phase Zhang et al. (2019).

In sum, most of the aforementioned research focused on creating synthetic images that
reflect different input modalities and then analysing them using action recognition
models. Pre-computing multiple input modalities such as optical flow, body part
segmentation, and semantic segmentation can be computationally and
storage-intensive, making them unsuitable for large-scale training and real-time
deployment. Since research in the subject of semantic segmentation may still be in its
early stage, one of the objectives of this study is to enhance its potential in HAR.

3.2.3 3D-CNNs Decomposition

Video can be conceptually simplified by viewing it as a 3D tensor with two spatial
dimensions and one time dimension. As a result, 3D-CNNs are adopted to model the
spatial and temporal data in video as a processing unit Yao et al. (2019); Ji et al. (2012);
Kalfaoglu et al. (2020). Ji et al. (2012) proposed the pioneer work in the application of
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3D-CNN:s in action recognition. Although the model’s performance is encouraging,
the network’s depth is insufficient to demonstrate its potential. Tran et al. (2015)
extended the work in Ji et al. (2012) to a 3D network with more depth, called C3D.
C3D adopts the modular architecture, which can be viewed as a 3D version of the
VGG16 network.

It is worth noting that training a sufficiently deep 3D-CNN from scratch will result in
much higher computational cost and memory requirements compared to 2D-CNNs.
Furthermore, 3D networks are complex and difficult to optimise Kong et al. (2021);
therefore, a big dataset with diverse video data and activity categories is required to
train a 3D-CNN effectively. In addition, it is not straightforward for 3D-CNNs to
transfer learning from state-of-the-art pretrained 2D-CNN models since kernel shapes
are completely different. Carreira and Zisserman (2017) proposed 13D, a 3D-CNN
architecture that circumvents the dilemma that 3D-CNNs must be trained from
scratch. A strategy was employed to transform the weights of pretrained 2D models,
e.g. on ImageNet, to their 3D counterparts. To understand this intuitively, they
repeated the weights of the trained 2D kernels along the time dimension of the 3D
kernels. Although I3D was successful in overcoming the challenge of spatial
transfer-learning, its 3D kernels require enormous quantities of action recognition
datasets to capture temporal features. Moreover, the way that I3D stretches 2D-CNN
models into 3D-CNNs remains computationally expensive.

P3D by Qiu et al. (2017) and R2+1D by Tran et al. (2018) investigate the concept of
decomposing the 3D CNN’s kernels into 2D and 1D kernels. They differ in their
arrangement of the two factorised operations and their formulation of each residual
block. This kind of approach to 3D network decomposition acts at the kernel level.
The notion of kernel-level factorisation restricts the ability to switch models (e.g.,
ResNet50 and VGG16) based on implementation requirements and hinders transfer

learning from the current state-of-the-art models.

3.3 Proposed TransNet

In this section, we first present our motivations and then introduce the proposed

TransNet and its variants.

3.3.1 Preliminary

Video data analysis in deep learning commonly involves two types of approaches:
2D-CNN-RNN Yang et al. (2020); Fan et al. (2016); Abdullah et al. (2020); Rangasamy
et al. (2020) and 3D-CNN Diba et al. (2016); Hegde et al. (2018); Hou et al. (2019). The
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CNN-RNN approach comprises a spatial component based on 2D-CNN and a
temporal component based on RNN, offering customisation in the 2D-CNN part.
However, it often requires longer training time due to the complexity of RNN
compared to CNN Prokhorov et al. (2002). On the other hand, 3D-CNN is faster and
simpler to implement but struggles with convergence and generalisation when
dealing with limited datasets Wang et al. (2020). Alternatively, the implementation of
1D-CNN in temporal data analysis holds promise for developing more accurate and
efficient models Martin et al. (2021); Liu et al. (2021).

The other main motivation is transfer learning, applying well-designed and
well-trained models learnt from one task (i.e., the source task, generally with large
data available) to another (i.e., the target task, generally with limited data available)
for performance enhancement Zhang et al. (2017b). The underlying essential
assumption is that the source and target tasks are sufficiently similar Zhang et al.
(2017b); Taylor and Stone (2009). In the data scarcity scenario, models may be prone to
overfitting, and data augmentation may not be enough to resolve the issue Zhang

et al. (2021d). Therefore, transfer learning could play a key role in this regard.

Since HAR requires 3D data analysis, obtaining an optimised model requires training
on a large amount of data compared to 2D data Habibie et al. (2019); Hu et al. (2021).
This calls for the use of transfer learning, e.g., pre-training state-of-the-art models first
to classify 2D images using large datasets such as ImageNet. However, it is important
to study and verify the assumption that the HAR task shares sufficient similarities
with the image classification task. Previous research in Geirhos et al. (2018) has shown
disparities between CNNs trained on ImageNet and human observers in terms of
shape and texture cues, with CNNss exhibiting a strong preference for texture over
shape. Similar findings have been reported in other studies, such as Baker et al. (2018);
Brendel and Bethge (2019). Additionally, several studies suggest that object shape
representations hold greater importance in action recognition tasks Hirota and
Komuro (2021); Zhang et al. (2021b); Dhiman and Vishwakarma (2020); El-Ghaish

et al. (2018).

3.3.2 Methodology

TransNet: We propose to construct a paradigm of utilising the synergy of 2D- and
1D-CNNs, see Figure 3.1 for the end-to-end TransNet architecture. TransNet provides
flexibility to the 2D-CNN component in terms of model customisability (i.e., using
different state-of-the-art 2D-CNN models) and transferability (i.e., involving transfer
learning); moreover, it benefits from the 1D-CNN component supporting the
development of faster and less complex action recognition models.
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TransNet includes the time-distributed layer wrapping the 2D-CNN model. In
particular, the 2D component is customisable, and any sought-after 2D-CNN models
(e.g., MobileNet, MobileNetV2, VGG16 or VGG19) can be utilised. The
time-distributed layer is followed by three 1D convolutional layers for
spatio-temporal analysis. In detail, the first one’s kernels process the feature map
vectors over (1 — 1) steps, where each kernel has a size of 2, capturing the correlations
between a frame and its neighbour, and 7 is the number of frames in a video clip; the
second one’s kernels have a size of (n — 1), analysing all feature vectors in one step to
capture the whole temporal pattern of the frame-sequence; and the third one uses the
SoftMax function for the final classification, followed by the flatten layer. More details

are given below.

We first define the symbols used for semantic segmentation. Let X represent the input
image, and z = py(X) € R’ be the output vector (i.e., latent representation) of the
encoder function pg (e.g. MobileNet or VGG16) with parameters 6. The decoder
function is defined analogously. The formed autoencoder can then be trained with the

ground truth images.

Let X' be a collection of n frames X = {X'}"_,, which is fed into the 2D component
(spatial component) of the TransNet architecture in Figure 3.1. The trained encoder py
is then used n times to process X frame by frame and create a set of n spatial feature
vectors Z = {2}, where z! = py(X"). Let {w/", wi? }]K:1 be a set of weights, where
wi'!, wi? € RE. The first of the three 1D layers (i.e., the temporal component) processes
every two adjacent spatial vectors of Z, i.e., {zi, zit1 }, to generate the corresponding
spatio-temporal feature vectors h = (hﬁ,- . ,th) eRK,i=1,...,n—1, where

L i+1

ZZZI ]k 1+1+b]) ]-_1 K,

=1k=i

b{f are the biases and f is the activation function (i.e., Relu f(x) = max(0, x) is used
here). Let {iuf'l, w2, ﬁ)j'”_l}f:l be another set of weights, with

w'* € RK,k =1,...,n — 1. The second 1D layer processes the set of spatio-temporal
vectors {hi}?:_ll to generate a single spatio-temporal vector v = (vq,--- ,vc) € RE,
where

K e k
Z Wl 46y, j=1,...,C,
1=1 k=1

and b/ are the biases. Finally, the Softmax layer is used on v to classify action classes.

TransNet+. Except for using a sought-after 2D-CNN for TransNet’s 2D component,
below we present a way of leveraging transfer learning for it. To do so, we construct
an autoencoder where TransNet’s 2D component serves as its encoder. The
autoencoder is then trained on a specific computer vision task such as HSS to extract
specific features such as human shape, e.g., see the left of the second row in Figure 3.3.
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TABLE 3.1: TransNet’s model complexity. The last column gives the total number of

parameters for each setting. The 2D component column reflects the model size of the

time-distributed layer, which is invariant against the number of frames in the input

video clip. The two values in the 1D component column show the number of kernels

in the first and second 1D-CNN layers, respectively. In our experiments, we equipped
TransNet with MobileNetV1 and 64 filters.

2D model | 2D component 1D component Total

MobileNetV1 | e f DI amon
MobileNetV2 166?2797{ét% 16248; ;66 166,238()2§,377668
VGGI6 | (Tosis e 1794604
VGGI9 | D5br b6 23056200

After training, the encoder’s parameters become saturated with weights that are
capable of describing the features of the required task, such as HAR, see Figure 3.2. In
this way, the features like object shape that TransNet’s 2D component needs to learn
can be predetermined by training the autoencoder. We name this way of executing
TransNet as TransNet+.

Note that autoencoders have been used in action recognition challenges e.g.
Zolfaghari et al. (2017). However, there are a number of disadvantages in their use of
autoencoders, including the multiplicity of modelling steps, the need for a large
amount of memory, and the lengthy training time due to the high computational cost

of training the autoencoder network and action recognition network.

In contrast, TransNet+ is a huge step further in contributing to the development of an
end-to-end HAR model with potential in real-time implementation, since it simplifies
the process by just integrating the trained encoder rather than the entire autoencoder
in TransNet, with the premise that the trained encoder carries weights capable of

describing important features (see Figure 3.2).

On the whole, the traditional method of using autoencoders in HAR differs from
TransNet+ in that the traditional method uses the entire autoencoder and its output as
the next stage’s input, whereas TransNet+ just employs the trained encoder of the

autoencoder for spatial feature extraction.

Model Complexity: The proposed TransNet model is customisable, and thus its size
varies depending on the 2D-CNN model being used in the spatial component. In
particular, it is quite cost-effective since it uses a time-distributed layer, allowing the
2D-CNN to be used repeatedly without expanding in size. Table 3.1 gives the number
of parameters regarding different choices of the 2D-CNN models.
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TABLE 3.2: Results of TransNet with different backbones and different pretraining
strategies on the KTH dataset.

TransNet backbone | Pre-training Acc.
None 94.35 £0.33
MobileNet ImageNet  100.00 & 0.00
HSS 100.00 = 0.00
None 88.31 =0.54
MobileNetV2 ImageNet  95.86 +0.41
HSS 96.40 + 0.34
None 90.12 £0.38
VGG16 ImageNet  96.254-0.43
HSS 98.01 +0.48
None 80.06 &= 0.72
VGG19 ImageNet  88.26 +0.51
HSS 94.39 1+ 0.26

3.4 Data

In our study, we use two primary groups of benchmark datasets. The first consists of
ImageNet and the supervisely person dataset used for transfer learning, while the
second consists of the KTH, HMDB51 and UCF101 datasets used for method
evaluation (with a split ratio of 80% and 20% for training and test, respectively); see
below Figure 3.3 for a brief description and for some samples from these datasets.

3.4.1 Transfer Leaning Datasets

ImageNet: ImageNet Deng et al. (2009) is a famous database consisting of 14,197,122
images with 1000 categories. Since 2010, it has been used in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC).

Supervisely Person Dataset: This dataset supervise.ly (2018) is publicly available for
human semantic segmentation, containing 5,711 images and 6,884 high-quality
annotated human instances. It is available for use in academic research with the

purpose of training machines to segment human bodies.

3.4.2 Human Action Recognition Datasets

KTH: In 2004, the Royal Institute of Technology introduced KTH, a non-trivial and
publicly available dataset for action recognition Schuldt et al. (2004). It is one of the
most standard datasets, including six actions (i.e., walking, jogging, running, boxing,
hand-waving, and hand-clapping). Twenty-five different people did each activity,
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allowing for variation in performance; moreover, the setting was systematically
changed for each actor’s action, i.e., outdoors, outdoors with scale variation, outdoors
with varied clothing, and indoors. KTH includes 2,391 sequences. All sequences were

captured using a stationary camera with 25 fps over homogeneous backgrounds.

UCF101: In 2012, UCF101 was introduced as a follow-up to the earlier UCF50 dataset.
It is a realistic (not staged by actors) HAR dataset, containing 13,320 YouTube videos
representing 101 human actions. It provides a high level of diversity in terms of object
appearance, significant variations in camera viewpoint, object scale, illumination
conditions, a cluttered background, etc. These video clips are, in total, over 27 hours in
duration. All videos have a fixed frame rate of 25 fps at a resolution of 320 x 240
Soomro et al. (2012).

HMDB51: HMDB51 was released in 2011 as a realistic HAR dataset. It was primarily
gathered from movies, with a small portion coming from public sources such as
YouTube and Google videos. It comprises 6,849 videos organised into 51 action
categories, each with at least 101 videos Kuehne et al. (2011).

3.5 Experimental Results

3.5.1 Settings

Our model is built using Python 3.6 with the deep learning library Keras, the image
processing library OpenCV, matplotlib, and the scikit-learn library. A computer with
an Intel Core i7 processor, an NVidia RTX 2070, and 64GB of RAM is used for training
and test.

Four CNN models with small sizes (i.e., MobileNet, MobileNetV2, VGG16, and
VGG19) are selected as the backbones of TransNet/TransNet+, with parameter
numbers of 3,228,864, 2,258,984, 14,714,688, and 20,024,388 (without the classification
layers), respectively.

TransNet with each different backbone is implemented in three different ways: i)
untrained; ii) being trained on ImageNet; and iii) being trained on HSS using the
supervisely person datasetas as encoders. Note that the last way is described in
TransNet+. For ease of reference, we drop the ‘+” sign in the following. The number of
200 epochs is used to train all autoencoders, with a batch size of 24. The models are
tirst trained and evaluated on the KTH dataset. Then the one with the best
performance is selected to be evaluated on all the datasets, and compared with the
current state-of-the-art HAR models. Each video clip consists of a sequence of 12
frames, and the input modality is RGB with a size of 224 x 224 x 3.
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TABLE 3.3: Results comparison between TransNet and the state-of-the-art methods on
the KTH dataset. TransNet model is pretrained in ImageNet.

Method | Model | Venue Acc.

Grushin et al. (2013) LSTM IJCNN 13 90.70
Shu et al. (2014) Spiking neural networks (SNN) IJCNN "14 92.30
Geng and Song (2016) 2D-CNN ICCSAE 15 92.49
Veeriah et al. (2015) LSTM ICCV 15 93.96
Zhang et al. (2017a) Hybrid feature approach ISMEMS "17 95.00
Arunnehru et al. (2018) 3D-CNN RoSMa 18 94.90
Abdelbaky and Aly (2020) PCA-based filters ITCE "20 87.52
Jaouedi et al. (2020) Gated recurrent neural network KSUCT journal 20  96.30
Sahoo et al. (2020) Deep Bidirectional LSTM with 2D-CNN TETCI 20 97.67
Ramya and Rajeswari (2021) Feed-Forward Neural Networks MTA journal 21 91.40
Lee et al. (2021) ConvLSTMs with 3D-CNN CVE 21 89.40
Basha et al. (2022) 3D-CNN with LSTM MTA journal 22 96.53
Picco et al. (2023) HOG with PCA NN journal 23 90.83

Ye and Bilodeau (2023) 2D-CNN CVE 23 90.90
TransNet 3D-CNN - 100.00

TABLE 3.4: Results comparison between TransNet and the state-of-the-art methods on
the UCF101 dataset.

Model ‘ Pre-training Backbone Venue Acc.
DeepVideo Karpathy et al. (2014) ImageNet AlexNet CVPR14 6540
Two-stream Simonyan and Zisserman (2014a) | ImageNet CNN-M NeurIPS 14 88.00
LRCN Zhu et al. (2020b) ImageNet CNN-M CVPR’15 8230
C3D Tran et al. (2015) ImageNet VGG16-like ICCv’15  82.30
Fusion Feichtenhofer et al. (2016) ImageNet VGGl16 CVPR’16 9250
TSN Zhu et al. (2020b) ImageNet BN-Inception ECCV’16  94.00
13D Carreira and Zisserman (2017) ImageNet BN-Inception-like CVPR "17 95.60
Kinetics400
P3D Zhu et al. (2020b) SportslIM ResNet50-like ICCv’17  88.60
ResNet3D Zhu et al. (2020b) Kinetics400  ResNeXt101-like CVPR’18 9450
HAR-Depth Sahoo et al. (2020) - BiLSTM+AlexNet  TETCI'20 9297
MemDPC Zhu et al. (2020b) Kinetics400 R-2D3D ECCV20  86.10
TEA Li et al. (2020c) Imagenet ResNet50-like CVPR20  96.90
CVRL Zhu et al. (2020b) Kinetics600 R3D-50 CVPR"21 9340
TDN Wang et al. (2021a) I?“etlcs‘mo ResNet CVE'21 9740
mageNet
Multi-Domain Omi et al. (2022) - MDL IEICE 22 94.82
MEST Zhang (2022) Imagenet 2D-CNN Sensors 22 96.80
STA-TSN Yang et al. (2022a) Imagenet ResNet-LSTM ~ PloS One 22 92.80
FSAN Chen et al. (2023) Imagenet 2D-CNN Sensors ‘23 95.68
TransNet ImageNet MobileNet V1 - 98.32

3.5.2 Results and Discussion

In a nutshell, we conduct experiments below with three main objectives: i)
determining whether or not the proposed TransNet architecture can offer a reliable
mechanism by leveraging transfer learning; ii) evaluating if the HSS-trained TransNet
provides superior spatio-temporal characteristics for HAR than the ImageNet-trained
TransNet; and iii) validating if the performance of the TransNet architecture can
achieve state-of-the-art performance in comparison to current state-of-the-art methods
in HAR.

Initially, we subject TransNet to an evaluation using the KTH dataset, which serves as
a suitable choice due to its primary emphasis on human action detection while
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TABLE 3.5: Results comparison between TransNet and the state-of-the-art methods on
the HMDB51 dataset.

Model ‘ Pre-training Backbone Venue Acc.
C3D Tran et al. (2015) ImageNet VGG16-like ICCV'15  56.80
CBT Zhu et al. (2020b) ImageNet S3D arXiv '19 44.60
DPC Zhu et al. (2020b) Kinetics400 R-2D3D ICCVW 19  35.70
SpeedNet Kinetics400 S3D-G CVPR’20  48.80
MemDPC Zhu et al. (2020b) Kinetics400 R-2D3D ECCV 20  54.50
CoCLR Zhu et al. (2020b) Kinetics400 S3D NeurIPS '20  54.60
HAR-Depth Sahoo et al. (2020) - BiLSTM+AlexNet  TETCI'20 69.74
STA-TSN Kwon et al. (2020) Imagenet ResNet50-like ECCV 20 7740
TEA Li et al. (2020c) Imagenet ResNet50-like CVPR20 73.30
TDN Wang et al. (2021a) Iime“cs‘wo ResNet CVF21 7630
mageNet
Multi-Domain Omi et al. (2022) - MDL IEICE 22 71.57
MEST Zhang (2022) Imagenet 2D-CNN Sensors 22 73.40
STA-TSN Yang et al. (2022a) Imagenet ResNet-LSTM ~ PloS One 22 68.60
FSAN Chen et al. (2023) Imagenet 2D-CNN Sensors 23 72.60
TransNet ImageNet MobileNet V1 - 97.93

excluding the presence of additional objects in the background, in contrast to the
UCF101 and HMDB51 datasets. The purpose of this evaluation is to validate the
viability of employing HSS as a means of pretraining to improve the performance of

the model in similar tasks.

The results presented in Table 3.2 demonstrate the superior performance of the
TransNet model which was trained using HSS in comparison to its untrained and
ImageNet-trained counterparts. Specifically, the untrained MobileNet, MobileNetV2,
VGG16, and VGG19-based TransNet models achieved an average accuracy of 88.21%,
and the ImageNet-trained models achieved an average accuracy of 95.09%. In
contrast, the HSS-trained TransNet models achieved an average accuracy of 97.20%,
indicating a significant improvement of ~ 8.99% and ~ 2.11% over the untrained and
ImageNet-trained models, respectively. These findings underscore the effectiveness of
the pretraining strategy employing autoencoders in enhancing the performance of the
TransNet model. Additionally, the findings show the significance of incorporating
transfer learning as a means of enhancing performance, thereby bestowing a
substantial advantage to the 2D-1D-CNN architecture and enabling us to leverage

transfer learning within the 2D-CNN component.

Tables 3.3, 3.4 and 3.5 present the quantitative comparisons between TransNet and the
current state-of-the-art methods being applied to the HAR datasets, i.e., KTH, UCF101
and HMDB51. In these comparisons, a MobileNet-based TransNet pretrained on
ImageNet is used. The findings demonstrate the exceptional performance achieved by
the proposed TransNet, surpassing the existing state-of-the-art results by a
considerable margin. Additionally, these findings solidify the 2D-1D-CNN
architecture as a highly effective approach for HAR.
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3.6 Conclusion

The development and evaluation of TransNet have demonstrated the effectiveness of
transfer learning and autoencoder-based feature extraction in enhancing HAR
performance. By leveraging pre-trained models from segmentation tasks, TransNet
successfully refined feature extraction, leading to improved classification accuracy
and model generalization. This approach not only mitigated the limitations posed by
data scarcity but also emphasized the importance of leveraging prior knowledge to
enhance HAR systems. However, despite these advancements, several fundamental
questions remain regarding the optimal architectural choices for HAR models.

The evolving landscape of deep learning presents a diverse range of architectures,
each with distinct advantages and limitations. Convolutional Neural Networks
(CNN’s) excel in extracting spatial features from images, making them highly effective
for capturing local patterns in action recognition. RNNs, particularly LSTM networks,
have demonstrated strong capabilities in modeling temporal dependencies, allowing
HAR models to capture sequential motion patterns. More recently, ViTs have emerged
as a powerful alternative, leveraging self-attention mechanisms to model long-range
dependencies with greater flexibility and efficiency. Given these developments, it
becomes crucial to systematically examine how each of these architectures contributes
to HAR and whether hybrid models can further enhance recognition capabilities.

In the next chapter 4, we conduct an extensive survey of CNN, RNN, and
Transformer-based HAR models, tracing their evolution and analyzing their
comparative strengths and weaknesses. Building on these insights, we propose a
hybrid CNN-ViT architecture that integrates the spatial feature extraction capabilities
of CNNs with the global self-attention mechanisms of ViTs. This hybrid approach
aims to address the limitations of individual models while enhancing the overall
robustness and efficiency of HAR systems. Through this investigation, Chapter 4
seeks to bridge the gap between existing methodologies and future directions in deep
learning-based HAR.
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Chapter 4

CNNs, RNNs and Transformers in
Human Action Recognition: A
Survey and a Hybrid Model

Human action recognition encompasses the task of monitoring human activities
across various domains, including but not limited to medical, educational,
entertainment, visual surveillance, video retrieval, and the identification of anomalous
activities. Over the past decade, the field of HAR has witnessed substantial progress
by leveraging CNNs and RNN s to effectively extract and comprehend intricate
information, thereby enhancing the overall performance of HAR systems. Recently,
the domain of computer vision has witnessed the emergence of ViTs as a potent
solution. The efficacy of Transformer architecture has been validated beyond the
confines of image analysis, extending their applicability to diverse video-related tasks.
Notably, within this landscape, the research community has shown keen interest in
HAR, acknowledging its manifold utility and widespread adoption across various
domains. This article aims to present an encompassing survey that focuses on CNNs
and the evolution of RNNs to ViTs given their importance in the domain of HAR. By
conducting a thorough examination of existing literature and exploring emerging
trends, this study undertakes a critical analysis and synthesis of the accumulated
knowledge in this field. Additionally, it investigates the ongoing efforts to develop
hybrid approaches. Following this direction, this article presents a novel hybrid model
that seeks to integrate the inherent strengths of CNNs and ViTs.

4.1 Introduction

Human action recognition (HAR) focuses on the classification of the specific actions
exhibited within a given video. On the other hand, action detection and segmentation
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focus on the precise localization or extraction of individual instances of actions from
video content Ulhagq et al. (2022). The capacity of deep learning models to effectively
capture the spatial and temporal complexities inherent in video representations plays

a vital role in the recognition and understanding of actions.

Over the preceding decade, a considerable amount of research has been dedicated to
the thorough investigation of action recognition, resulting in an extensive collection of
review articles and survey papers addressing the topic Pareek and Thakkar (2021);
Sun et al. (2022); Kong and Fu (2022). However, it is worth noting that a predominant
focus of these scholarly works has been placed on the examination and evaluation of
CNNs and traditional machine learning models within the realm of action recognition.

The advent of Transformer architecture Vaswani et al. (2017) has sparked a paradigm
shift in deep learning. By employing a multi-head self-attention layer, the Transformer
model computes sequence representations by effectively aligning words within the
sequence with other words in the same sequence Ulhagq et al. (2022). This approach
outperforms traditional convolutional and recursive operations in terms of
representation quality while utilizing fewer computational resources. As a
consequence, the Transformer architecture diverges from conventional convolutional
and recursive methods, favoring a more focused utilization of multiple processing
nodes. The incorporation of multi-head attention allows the Transformer model to
collectively learn a range of representations from diverse perspectives through the
collaboration of multiple attention layers. Inspired by Transformers, many natural
language processing (NLP) tasks have achieved remarkable performance, reaching
human-level capabilities, as exemplified by models such as GPT Brown et al. (2020)
and BERT Devlin et al. (2018).

The remarkable achievements of Transformers in handling sequential data,
particularly in the domain of NLP, have prompted the exploration and advancement
of Vision Transformer (ViT) Dosovitskiy et al. (2020) (a special Transformer for
computer vision tasks). ViTs have demonstrated comparable or even superior
performance compared to CNNs in the context of image recognition tasks, especially
when operating on vast datasets such as ImageNet Han et al. (2022); Lin et al. (2022);
Khan et al. (2022). This observation signifies a noteworthy shift in the field, wherein
ViTs possess the potential to supplant the established dominance of CNNs in
computer vision, mirroring the displacement witnessed in the case of recurrent neural
networks (RNNs) Ulhagq et al. (2022). The achievements of Transformer models have
engendered considerable scholarly interest within the computer vision research
community, prompting rigorous exploration of their efficacy in pure computer vision
tasks.

The natural progression in the advancement of ViTs has led to the logical exploration

of video recognition tasks. Unlike image recognition, video recognition focuses on the
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complex challenge of identifying and understanding events within video sequences,
including the recognition of human actions. Consequently, there is a compelling need
for a recent review that comprehensively examines the state-of-the-art research
including ViTs and hybrid models in addition to CNNs and RNNs for HAR. Such a
review would serve as a crucial guiding resource to shape the future research
directions with Transformer and CNN-Transformer hybrid architectures beside CNN5s
which previously were seen as unique and influential models for HAR. The main

contributions of this chapter is as follows.

¢ We present a thorough review of the CNNs, RNNs and ViTs. This review
examines the evolution from traditional methods to the latest advancements in

neural network architectures.
* We present an extensive examination of existing literature related to HAR.

* We propose a novel hybrid model integrating the strengths of CNNs and ViTs.
In addition, we provide a detailed performance comparison of the proposed
hybrid model against existing models. The analysis highlights the model’s
efficacy in handling complex HAR tasks with improved accuracy and efficiency.

¢ We also discuss emerging trends and the future direction of HAR technologies,
emphasizing the importance of hybrid models in enhancing the interpretability
and robustness of HAR systems.

These contributions enrich the understanding of the current state and future prospects
of HAR, proposing innovative approaches and highlighting the importance of
integrating different neural network architectures to advance the field.

The chapter is structured as follows. Section 1.5 delves into the background, covering
foundational concepts and technologies crucial to HAR, including CNNs, RNNs and
ViTs, highlighting the chronological evolution of HAR deep learning technologies.
Section 4.2 thoroughly reviews related HAR works with a brief discussion. A novel
hybrid model combining CNNs and ViTs is proposed in Section 4.3, including the
details of the experimental setup and the results. Finally, Section 4.4 concludes the
chapter.

4.2 Literature Review

This section briefly recalls the most commonly used deep learning-based HAR
approaches.
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4.2.1 CNN-Based Approaches in HAR

This section recalls the most prominent CNN-based approaches in HAR based on the
model type (i.e., the two-stream CNN, 3D CNN, and RNNs with CNNs), organized
chronologically.

Deep learning was still in its early stages in 2012, and CNNs or RNNs had not yet
gained significant popularity in the field of HAR. The focus was primarily on
traditional machine learning approaches, such as support vector machines Cortes and
Vapnik (1995), and handcrafted features, such as histogram of oriented gradients
Dalal and Triggs (2005) and histogram of optical flow Barron et al. (1994). A few

studies did, nevertheless, start looking into neural networks for action recognition.

In 2014, the use of CNNs in action recognition was at a pivotal stage, marking a shift
from hand-crafted feature-based methods to deep learning approaches. The key
points of the use of CNNs in action recognition at that period of time are the
following. (I) Emergence of deep learning: deep learning, particularly CNNs, had started
to dominate image classification tasks, thanks to their ability to learn feature
representations directly from raw pixel data. This success in static images paved the
way for applying CNNss to video data for action recognition. (II) Challenges in video
data: unlike 2D images, videos incorporate a third dimension which represents the
temporal patterns, making action recognition more complex. CNNs had to be adapted
to not only recognize spatial patterns but also capture motion information over time
dimension. (III) Datasets and benchmarks: the adoption of large-scale video datasets like
UCF-101 Soomro et al. (2012) and HMDB-51 Kuehne et al. (2011) became more
common. These datasets provided diverse sets of actions and were large enough to
train deep networks. The performance on these benchmarks has been becoming a key
measure of progress for action recognition models. (IV) Transfer learning: due to the
computational expense of training CNNs from scratch and the relatively smaller size
of video datasets compared to image datasets, transfer learning became a popular
strategy. Networks pre-trained on large image datasets like ImageNet Deng et al.
(2009) were fine-tuned on video frames for action recognition tasks. (V) Computational
constraints: despite the promise of CNNs, computational constraints were a significant
challenge. Training deep networks required significant GPU power, and processing
video data with CNNs was resource-intensive. This limited the complexity of the
models that could be trained and the size of the datasets that could be used.

4.2.1.1 Two-Stream CNNs

Simonyan and Zisserman (2014a) presented an innovative approach to recognize
actions in video sequences by using a two-stream CNN architecture. This approach
divides the task into two distinct problems: recognizing spatial features from single
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frames and capturing temporal features across frames. The spatial stream CNN
processes static visual information, while the temporal stream CNN handles motion
by analyzing optical flow. The model was tested on benchmark datasets like UCF-101
and HMDB-51, where it achieved state-of-the-art results, showcasing the effectiveness
of this two-stream method. The novelty of this work lies in the separation of motion
and appearance features, which allows for more specialized networks that can better
capture the complexities of video-based action recognition. The success of this model
has made a significant impact on the field, influencing many future research directions
in video understanding. Consequently, numerous methods have been proposed to
enhance the the two-stream model Wang et al. (2015b); Feichtenhofer et al. (2016);
Wang et al. (2016); Peng et al. (2018); Wang et al. (2017).

In 2016, building on the the two-stream CNN, Feichtenhofer et al. (2016) focused on
improving the two-stream CNN by exploring various fusion strategies for combining
spatial and temporal streams, resulting in better performance on the UCF-101 and
HMDB-51 datasets. By enhancing fusion techniques, this work addressed the
limitations of the initial two-stream model, leading to more effective integration of
spatial and temporal information. Wang et al. (2016) introduced temporal segment
networks (TSN). This work aimed to capture long-range temporal structures for action
recognition, achieving significant improvements on the UCF-101 and HMDB-51
datasets by dividing videos into segments for comprehensive analysis. The
introduction of TSN extended the temporal analysis capabilities of the two-stream
CNN, enabling the capture of long-range dependencies.

In 2017, derived from the two-stream CNN, Cosmin Duta et al. (2017) proposed a
three-stream method by using spatio-temporal vectors, with locally max-pooled
features to enhance performance. Tested on the UCF-101 and HMDB-51 datasets, the
approach demonstrated improved recognition accuracy by efficiently capturing
spatio-temporal dynamics. In 2018, the efficient convolutional network for online
video understanding (ECO) was introduced by Zolfaghari et al. (2018), combining the
two-stream CNN approach with lightweight 3D CNNs, and focusing on efficiency
and real-time processing, with high efficiency and competitive accuracy demonstrated
on the Kinetics and UCF-101 datasets.

Feichtenhofer et al. (2019) introduced the SlowFast network which processes video
data at varying frame rates to capture both spatial semantics and motion dynamics,
achieving state-of-the-art results on the Kinetics-400 and Charades datasets. By
introducing different temporal resolutions, this work innovated on the two-stream
concept, capturing fine and coarse temporal details. Wang et al. (2018a) expanded on
their previous work with TSN, developing a multi-stream approach that incorporated
RGB, optical flow, and warped optical flow streams to model long-range temporal
structures more effectively. This approach achieved state-of-the-art results by

capturing both spatial and temporal information across various time scales. In 2021,
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temporal difference networks (TDN) were introduced by Wang et al. (2021a),
leveraging the multi-stream CNN with a focus on capturing motion dynamics
efficiently. Using the UCF-101 and HMDB-51 datasets, TDN achieved notable
improvements by effectively modeling temporal differences. By emphasizing
temporal differences, this work advanced the ability of the two-stream CNN to

capture motion dynamics more effectively.

Table 4.1 presents the works discussed in this section that utilized two or more stream
CNNs approaches.

TABLE 4.1: Two-stream CNN-based approaches in HAR.

Paper Model Dataset Novelty
Simonyan Two- UCEF-101, Introduced the two-stream architecture
and stream HMDB-51 separating spatial and temporal streams for
Zisserman CNN effective action recognition.
(2014a)
Feichtenhofey  Two- UCF-101, | Explored various fusion strategies to combine
et al. (2016) stream HMDB-51 spatial and temporal streams, and improved
CNN performance.
Wang et al. Two- UCEF-101, Introduced TSN to capture long-range
(2016) stream HMDB-51 temporal structures by dividing videos into
CNN + segments.
TSN
Cosmin Dutg  Three- UCEF-101, Proposed a three-stream method using
et al. (2017) Stream HMDB-51 spatio-temporal vectors with locally
CNN max-pooled features for enhanced
performance.
Zolfaghari Two- Kinetics, Combined the two-stream CNN with
et al. (2018) stream UCF-101 lightweight 3D CNNs for efficient real-time
CNN +3D processing.
CNN
Feichtenhofey = Two- Kinetics- Introduced SlowFast networks processing
etal. (2019) stream 400, video data at varying frame rates to capture
CNN + Charades both spatial and motion dynamics.
SlowFast

Continued on next page
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Table 4.1 — continued from previous page

‘ Paper ‘ Model ‘ Dataset Novelty
Wang et al. CNN- UCF101, Expanded on TSN by developing a
(2018a) RNN, HMDB51 | multi-stream approach that incorporated RGB,
(Multi- optical flow, and warped optical flow streams
stream to model long-range temporal structures more
TSN) effectively.
Wang et al. Multi- Something- | Introduced TDN focusing on capturing motion
(2021a) stream Something dynamics efficiently.
CNN + V1and V2
TDN

4.2.1.2 3D CNN-Based Approaches

The foundational work conducted by Ji et al. (2012) introduced 3D CNNs for HAR,
demonstrating their effectiveness in capturing spatio-temporal features on the KTH
and UCF-101 datasets and outperforming traditional 2D CNNs. The work paved the
way for further research on enhancing 3D convolutional models. Tran et al. (2015)
introduced C3D, a generic 3D CNN for spatio-temporal feature learning, achieving
state-of-the-art performance on the Sports-1M and UCF-101 datasets and highlighting
the scalability and effectiveness of 3D convolutions. Building on the work by Ji et al.
(2012), C3D demonstrated the potential of 3D CNNs across diverse datasets,
influencing subsequent research in 3D CNNSs. Varol et al. (2017) introduced long-term
temporal convolutions to capture extended motion patterns. This work improved the
accuracy on the UCF-101 and HMDB-51 datasets and emphasized the importance of
long-term motion information. Moreover, this study extended the temporal scope of
3D CNNs, highlighting the need for capturing long-term motion for accurate action
recognition. In the same year, Qiu et al. (2017) proposed pseudo-3D residual networks
(P3D), which combined 2D and 3D convolutions to balance the accuracy and
computational complexity. This work achieved competitive performance on the
Kinetics and UCF-101 datasets. Moreover, P3D networks offered a more efficient
approach by blending 2D and 3D convolutions, further refining the capabilities of 3D
CNNs. Additionally, Carreira and Zisserman (2017) introduced I3D by inflating 2D
convolutions to 3D, achieving significant improvements on the Kinetics dataset by
leveraging ImageNet pre-training, thereby setting new performance benchmarks. 13D
bridged the gap between 2D and 3D CNNs, demonstrating the benefits of transfer
learning in 3D convolutional models.

Hara et al. (2018) evaluated the scalability of 3D CNNs with increased data and model

sizes, demonstrating that deeper 3D CNNs can achieve better performance on the



Chapter 4. CNNs, RNNs and Transformers in Human Action Recognition: A Survey
106 and a Hybrid Model

Kinetics and UCF-101 datasets, paralleling the success of 2D CNNs on ImageNet. This
study emphasized the need for larger datasets and deeper models in 3D convolutional
research, highlighting the potential of 3D CNNs to retrace the historical success of 2D
CNN . Building on these insights, Diba et al. (2017) introduced a new temporal 3D
ConvNet architecture with enhanced transfer learning capabilities, demonstrating
superior performance on the UCF-101 and HMDB-51 datasets through architectural
innovations and effective transfer learning. This work underscored the importance of
architectural innovation and transfer learning, pushing the boundaries of 3D CNN
performance and further advancing the field of action recognition. Tran et al. (2018)
further contributed by conducting a comprehensive analysis of spatio-temporal
convolutions, highlighting the benefits of factorizing 3D convolutions into separate
spatial and temporal components, achieving state-of-the-art results on the Kinetics
and UCEF-101 datasets. This dissection provided insights that informed subsequent
model designs and optimizations. In the same year, Xie et al. (2018) explored the
trade-offs between speed and accuracy in spatio-temporal feature learning, proposing
efficient 3D CNN variants that balance computational cost and recognition
performance on the Kinetics and UCF-101 datasets. Their work highlighted the
practical considerations of deploying 3D CNNs, emphasizing the need to balance
speed and accuracy, thereby refining the approach to spatio-temporal feature learning.
Additionally, Wang et al. (2018c) introduced non-local neural networks to capture
long-range dependencies, demonstrating that non-local operations significantly
improve the modeling of complex temporal relationships and enhance action
recognition performance on the Kinetics and Something-Something datasets. By
integrating non-local operations, this study advanced the ability of 3D CNNs to
capture complex temporal patterns, further pushing the boundaries of

spatio-temporal modeling.

Feichtenhofer et al. (2019) introduced SlowFast Networks, a novel approach that
processes video at different frame rates to capture both slow and fast motion
dynamics, and achieved state-of-the-art results on the Kinetics-400 and Charades
datasets. This innovation highlighted the importance of capturing varied motion
dynamics for improved video recognition. In the same year, Tran et al. (2019)
presented channel-separated convolutional networks (CSN), which reduced
computational complexity by separating convolutions by channel, demonstrating
efficiency without sacrificing accuracy on the Kinetics and Sports-1M datasets. This
approach contributed to the development of more computationally feasible models.
Concurrently, Ghadiyaram et al. (2019) leveraged large-scale weakly-supervised
pre-training on video data, significantly boosting performance on the IG-65M and
Kinetics datasets and underscoring the potential of massive datasets in enhancing 3D
CNN capabilities. Additionally, Kopuklu et al. (2019) proposed resource-efficient 3D
CNNs using depthwise separable convolutions and achieved competitive accuracy

with significantly reduced computational requirements on the Kinetics-400 and
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UCE-101 datasets. This work emphasized the importance of optimizing 3D CNNs for

computational efficiency, further advancing the field of action recognition.

Feichtenhofer (2020) proposed X3D, a family of efficient video models by expanding
architectures along multiple axes. It achieved state-of-the-art performance with
reduced model complexity on the Kinetics-400 and Charades datasets. X3D
highlighted the significance of model efficiency in balancing performance and
computational demands. In the same year, Li et al. (2020b) introduced an efficient 3D
CNN with a temporal attention mechanism and achieved high accuracy with efficient
computation by focusing on salient temporal features on the Kinetics-400 and
UCF-101 datasets. This work demonstrated the potential of selectively focusing on
important temporal features to enhance the efficiency and accuracy of 3D CNNs,

further advancing the field of action recognition.

Table 4.2 presents the works discussed in this section that utilized 3D CNN

approaches.

TABLE 4.2: 3D CNN-based approaches in HAR.

Paper Model Dataset Novelty
Jietal 3D CNN UCF-101, Introduced 3D CNNSs for HAR, effectively
(2012) HMDB-51 capturing spatio-temporal features and
outperforming 2D CNN.
Tran et al. 3D CNN Sports-1M, Introduced C3D, a generic 3D CNN for
(2015) UCF-101 | spatio-temporal feature learning, and achieved
state-of-the-art performance.
Varol et al. 3D CNN UCF-101, Introduced long-term temporal convolutions
(2017) HMDB-51 to capture extended motion patterns, and
improved accuracy.
Qiu et al. 3D CNN Kinetics, Proposed P3D networks combining 2D and 3D
(2017) UCEF-101 convolutions, balancing accuracy and
computational complexity.
Carreira 3D CNN Kinetics | Introduced I3D by inflating 2D convolutions to
and 3D, leveraging ImageNet pre-training for
Zisserman significant improvements.
(2017)
Hara et al. 3D CNN Kinetics, Evaluated the scalability of 3D CNNs with
(2018) UCF-101 increased data and model sizes, and showed
parallels to 2D CNN success.
Continued on next page
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‘ Paper ‘ Model Dataset Novelty
Diba et al. 3D CNN UCF-101, Introduced a new temporal 3D ConvNet
(2017) HMDB-51 architecture with enhanced transfer learning
capabilities.
Tran et al. 3D CNN Kinetics, Conducted a comprehensive analysis of
(2018) UCF-101 | spatio-temporal convolutions, and highlighted
the benefits of factorizing 3D convolutions.
Xie et al. 3D CNN Kinetics, Explored speed-accuracy trade-offs in
(2018) UCEF-101 spatio-temporal feature learning, and
proposed efficient 3D CNN variants.
Wang et al. 3D CNN Kinetics, Introduced non-local operations to capture
(2018¢) Something- long-range dependencies, and improved
Something | modeling of complex temporal relationships.
Feichtenhofer 3D CNN Kinetics- Proposed SlowFast networks to process video
et al. (2019) 400, at different frame rates, capturing both slow
Charades and fast motion dynamics.
Tran et al. 3D CNN Kinetics, Introduced CSN to reduce computational
(2019) Sports-1M complexity without sacrificing accuracy.
Ghadiyaram| 3D CNN IG-65M, Leveraged large-scale weakly-supervised
et al. (2019) Kinetics pre-training on video data, and significantly
boosted performance.
Kopuklu 3D CNN Kinetics- Proposed resource-efficient 3D CNNs using
et al. (2019) 400, depthwise separable convolutions, and
UCF-101 achieved competitive accuracy with reduced
computational requirements.
Feichtenhofer 3D CNN Kinetics- Proposed X3D, a family of efficient video
(2020) 400, models by expanding architectures along
Charades multiple axes.
Lietal. 3D CNN Kinetics- | Introduced a temporal attention mechanism to
(2020b) 400, enhance efficiency and accuracy in 3D CNNs.
UCF-101

4.2.1.3 CNN-RNN-Based Approaches

The integration of CNNs and RNNs for HAR was significantly advanced by the work
of Donahue et al. (2015), who introduced long-term recurrent convolutional networks
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(LRCN). This approach effectively combined the spatial feature extraction capabilities
of CNNs with the temporal dynamics modeling of LSTMs, demonstrating substantial
improvements in action recognition tasks on datasets like UCF-101 and HMDB-51.
Building on this foundation, Yue-Hei Ng et al. (2015) extended the application of deep
networks to video classification by integrating deep CNNs with LSTMs to handle
longer video sequences. Their method, tested on the Sports-1M and UCF-101 datasets,
highlighted the importance of capturing extended temporal dependencies for
improved performance in complex video classification tasks. Further pushing the
boundaries, Srivastava et al. (2015) explored unsupervised learning of video
representations using LSTMs. By leveraging LSTMs to learn spatio-temporal features
without labeled data, their approach demonstrated effective video representation
learning on the UCF-101 dataset, showcasing the versatility and potential of
CNN-RNN architectures in both supervised and unsupervised learning scenarios for
HAR.

The development of CNN-RNN architectures for HAR saw significant advancements
in 2016. Wu et al. (2015b) proposed a hybrid deep learning framework that modeled
spatial-temporal clues by combining CNNs for spatial feature extraction with RNNs
for temporal sequence modeling. Their approach, tested on the UCF-101 and
HMDB-51 datasets, demonstrated substantial improvements in video classification
accuracy. Additionally, Li et al. (2016) expanded the application of CNN-RNN
architectures to real-time scenarios with their approach for online human action
detection using joint classification-regression RNNs. Combining CNNs for spatial
features and RNNSs for temporal dynamics, their method, tested on the ]-HMDB and
UCF-101 datasets, achieved notable improvements in accuracy and efficiency,
showcasing the practicality of CNN-RNN models in real-time action detection.

Building on these advancements, 2017 and 2018 witnessed further refinements and
innovations in CNN-RNN architectures for HAR. Li et al. (2018b) introduced
VideoLSTM, integrating convolutions, attention mechanisms and optical flow within a
recurrent framework, and demonstrating improved performance on the UCF101 and
HMDB51 datasets. Carreira and Zisserman (2017) made a significant contribution with
the two-stream Inflated 3D ConvNet (I3D), which inflated 2D CNN architectures into
3D and combined them with RNNSs for temporal modeling. The model was evaluated
on the Kinetics dataset, as well as UCF101 and HMDB51. Ullah et al. (2017) proposed
a novel architecture combining CNNs with bi-directional LSTMs, effectively utilizing
both spatial and temporal information from video sequences and showing superior
performance on the UCF-101 and HMDB-51 datasets. In 2020, in the realm of human
activity recognition using sensor data, Xia et al. (2020) proposed an LSTM-CNN
architecture that effectively captured both temporal dependencies and local feature
patterns, showing improved accuracy on the WISDM, UCI HAR, and OPPORTUNITY
datasets. Similarly, Mutegeki and Han (2020) developed a CNN-LSTM approach for
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smartphone sensor-based activity recognition, demonstrating high accuracy on the
UCI HAR dataset and further validating the effectiveness of combining CNNs and

RNN s for processing time-series data in activity recognition tasks.

Recent advancements in HAR have leveraged sophisticated CNN-RNN architectures

to enhance performance and reduce computational complexity. Muhammad et al.
(2021) introduced an attention-based LSTM network combined with dilated CNN
features, and significantly improved the recognition accuracy on the UCF-101 and

HMDB-51 datasets by capturing essential spatial features through dilated

convolutions and temporal patterns with attention mechanisms. Building on this,
Malik et al. (2023) focused on multiview HAR; utilizing a CNN-LSTM architecture to
cascade pose features, they achieved high accuracy (94.4% on the MCAD dataset and

91.67% on the IXMAS dataset) while reducing the computational load by targeting

pose data rather than entire images.

Table 4.3 presents the works discussed in this section that utilized CNN-RNN

approaches.
TABLE 4.3: CNN-RNN-based approaches in HAR.
Paper Model Dataset Novelty
Donahue CNN- UCF-101, Combined CNN:s for spatial feature extraction
et al. (2015) RNN, HMDB-51 with LSTMs for temporal dynamics.
(LRCN)
Yue-Hei Ng | CNN-RNN | Sports-1M, | Integrated deep CNNs with LSTMs to handle
et al. (2015) UCEF-101 longer video sequences, capturing extended
temporal dependencies.
Srivastava CNN- UCEF-101 Explored unsupervised learning of video
et al. (2015) RNN, representations using LSTMs, leveraging
(Unsuper- spatiotemporal features.
vised
LSTM)
Wuetal. | CNN-RNN | UCF-101, | Modeled spatial-temporal clues by combining
(2015b) HMDB-51 CNN:s for spatial features with RNNs for
temporal sequence modeling.
Lietal. CNN-RNN | J-HMDB, Applied CNN-RNN architectures to real-time
(2016) UCF-101 scenarios for online human action detection.

Continued on next page
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Table 4.3 — continued from previous page

‘ Paper Model ‘ Dataset Novelty
Lietal. CNN-RNN UCF-101, Integrated convolutions, attention
(2018b) (VideoL- HMDB-51 mechanisms, and optical flow within a
STM) recurrent framework.
Carreira 3D Kinetics, Inflated 2D CNN architectures into 3D, and
and CNN-RNN UCF101, combined them with RNNs for temporal
Zisserman HMDB51 modeling.
(2017)
Ullah et al. CNN- UCF101, Combined CNNs with bi-directional LSTMs to
(2017) RNN, HMDB51 utilize both spatial and temporal information.
(CNN-
BiLSTM)
Xiaetal. | CNN-RNN | WISDM, Captured both temporal dependencies and
(2020) ud], local feature patterns for human activity
OPPORTU- recognition using sensor data.
NITY
Mutegeki | CNN-RNN udI Developed a CNN-LSTM approach for
and Han smartphone sensor-based activity recognition,
(2020) and demonstrated high accuracy.
Muhammad CNN- UCEF-101, Improved recognition accuracy with
et al. (2021) RNN, HMDB-51 | attention-based LSTM network combined with
(CNN- dilated CNN features.
Attention-
LSTM)
Malik et al. | CNN-RNN MCAD, Achieved high accuracy in multiview HAR by
(2023) IXMAS cascading pose features using a CNN-LSTM
architecture.

4.2.2 ViT-Based Approaches in HAR

In 2020, the ViT was conceptualized and introduced in the academic domain through
the paper authored by Dosovitskiy et al. (2020). The ViT marked a paradigm shift in
still image recognition methodologies, applying the Transformer model,
predominantly known for its success in NLP, to the realm of computer vision. The
application of ViTs in action recognition, a more specific and complex task within the
tield of computer vision, followed the initial introduction of ViT. Specifically, in 2021
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and beyond, subsequent research and publications have explored and expanded the
use of ViTs for action recognition tasks, demonstrating their efficacy in capturing
spatial-temporal features within video data. They employ attention mechanisms to
minimize redundant information and to model interactions over long distances in
both space and time Koot et al. (2021). The adaptation of ViT to action recognition
signifies the model’s versatility and its potential for broader applications in computer

vision beyond static image analysis.

Recent advancements in action recognition have seen a significant shift towards ViT,
highlighting their efficacy in video understanding tasks. Arnab et al. (2021)
introduced ViViT, extending the vision Transformer architecture to handle video
sequences. They demonstrated its potential on datasets like Kinetics-400 and
Something-Something-V2, marking a substantial improvement in video action
recognition capabilities. Building on this, Bertasius et al. (2021) proposed a space-time
Transformer that models temporal information innovatively, and achieved
competitive results on similar datasets. The efficiency of multiscale ViTs was further
illustrated by Fan et al. (2021), who showed that such architectures could effectively
capture fine-grained video details and enhance classification performance on
comprehensive video datasets. Moreover, Liu et al. (2022) presented the Swin
Transformer, utilizing a shifted window mechanism to model long-range
dependencies more efficiently, and leading to significant improvements in action
recognition accuracy. Together, these works underscore the transformative impact of
ViTs in advancing the field of HAR. Additionally, Wang et al. (2021b) introduced
ActionCLIP, leveraging the CLIP model for enhanced video action recognition on
multiple standard video datasets, including Kinetics-400 and HMDB-51. This novel

approach integrated visual and linguistic representations.

Chen and Ho (2022) introduced Mm-ViT, a multi-modal video Transformer designed
for compressed video action recognition, and demonstrated high performance by
leveraging multi-modal inputs on compressed video datasets such as HACS and
UCF101. Sharir et al. (2021) explored the extension of ViT to video data, showing its
potential in capturing temporal dynamics effectively across several standard video
datasets including Kinetics-400 and HMDB-51. Furthermore, Xing et al. (2023)
developed SVFormer, a semi-supervised video Transformer that leverages both
labeled and unlabeled data to bridge the gap between supervised and unsupervised
learning, and achieved significant improvements in action recognition tasks on
various standard HAR datasets such as Kinetics-400 and UCF101. Together, these
works underscore the transformative impact of ViTs in advancing the field of HAR.

Table 4.4 presents the works discussed in this section that utilized ViTs.
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TABLE 4.4: ViT-based approaches in HARs.

Paper Model Dataset Novelty
Arnab et al. ViViT Kinetics- Extended ViT to video sequences.
(2021) 400,
Something-
Something-
V2
Bertasius | Space-Time | Kinetics- Innovative temporal information modeling.
et al. (2021) Trans- 400
former
Fan et al. Multiscale Kinetics- Efficient capture of fine-grained video details.
(2021) ViT 400,
Something-
Something-
V2
Liu et al. Swin Kinetics- Shifted window mechanism for long-range
(2022) Trans- 400, dependency modeling.
former Something-
Something-
V2
Wang et al. | ActionCLIP | Kinetics- Leveraged CLIP for enhanced video action
(2021Db) 400, recognition.
HMDB-51
Chen and Mm-ViT HACS, Multi-modal inputs for compressed video
Ho (2022) UCF101 action recognition.
Sharir et al. ViT Kinetics- Applied ViT to video data.
(2021) 400,
HMDB-51
Xing etal. | SVFormer Kinetics- Semi-supervised learning for action
(2023) 400, recognition.
UCF101

4.2.3 CNN-ViT Hybrid Architectures

The integration of ViTs with CNNSs has significantly advanced HAR tasks. Zhang et al.
(2021c) proposed a two-stream hybrid CNN-Transformer network (THCT-Net), which
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demonstrated enhanced generalization ability and convergence speed on the NTU
RGB+D dataset by combining CNNs for low-level context sensitivity and
Transformers for capturing global information. Following this, Jegham et al. (2022)
applied a similar hybrid model to driver action recognition, leveraging multi-view
data to achieve high accuracy through the integration of CNNSs for spatial feature
extraction and Transformers for temporal dependencies. Kalfaoglu et al. (2022)
extended this approach by integrating 3D CNNs with Transformers for late temporal
modeling, and achieved substantial improvements in action recognition accuracy on
the HMDB-51 and UCF101 datasets. Moreover, Yu et al. (2023) proposed Swin-Fusion,
which combines Swin Transformers with CNN-based feature fusion to achieve
state-of-the-art performance on datasets like Kinetics-400 and
Something-Something-V2, demonstrating the robustness and superior performance of
hybrid models in HAR tasks.

Djenouri and Belbachir (2022) proposed a hybrid visual Transformer model that
integrates CNNs and Transformers for efficient and accurate human activity
recognition. They demonstrated its capability on datasets like Kinetics-400 and
UCF101, and showed that the hybrid approach leverages the local feature extraction of
CNNs with the global context modeling of Transformers. Following this, Surek et al.
(2023) provided a comprehensive review of deep learning approaches for video-based
human activity recognition, emphasizing the potential of hybrid models. This review
underscored the effectiveness of such hybrid models in capturing both spatial and
temporal features from video data, and evaluated on various human activity datasets
including NTU RGB+D and UTD-MHAD. Ahmadabadi et al. (2023) explored the use
of knowledge distillation techniques to enhance the performance of hybrid
CNN-Transformer models. Their approach was validated on datasets such as
HMDB-51 and Kinetics-400, showing significant improvements in HAR by effectively
transferring knowledge from complex models to more efficient ones. Together, these
works highlight the evolving landscape of hybrid models in human activity
recognition, showcasing their robustness and efficiency in handling complex video
data.

Table 4.2 presents the works discussed in this section that utilized CNN-ViT
approaches.
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TABLE 4.5: CNN-ViT hybrid approaches in HARs.

Paper Model Datase Novelty
Zhang et al. The NTU Combined CNNs and Transformers for
(2021¢) two-stream RGB+D improved generalization and convergence
hybrid speed.
CNN-
Transformer
network
(THCT-
Net)
Jegham Multi-view Custom Leveraged multi-view data for spatial and
et al. (2022) vision driver temporal feature integration.
Trans- action
former datasets
Kalfaoglu 3D CNN- | HMDB-51, Integrated 3D CNNs with Transformers for
etal. (2022) | Transformer| UCF101 late temporal modeling.
Yu et al. Swin- Kinetics- Combined Swin Transformers with
(2023) Fusion 400, CNN-based feature fusion for state-of-the-art
Something- performance
Something-
V2
Djenouri Hybrid Kinetics- Efficient and accurate human activity
and visual 400, recognition leveraging strengths of CNNs and
Belbachir Trans- UCF101 Transformers
(2022) former
Surek et al. Various NTU Comprehensive review highlighting the
(2023) deep RGB+D, potential of hybrid models.
learning UTD-
models MHAD
including
hybrid
models
Ahmadabadi  Hybrid HMDB-51, Knowledge distillation from
et al. (2023) CNN- Kinetics- CNN-Transformer models for enhanced
Transformer 400 performance.
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4.2.4 Discussion

In the field of HAR, the choice of models — whether CNN-based, ViT-based, or a
hybrid of CNN and ViT - significantly influences the outcome and efficiency of the
task. CNN-based models are particularly adept at extracting local features due to their
convolutional nature LeCun et al. (2015), making them highly effective in pattern
recognition within images and videos. Their computational efficiency is a boon for
real-time applications Howard et al. (2017), and their robustness to input variations is
notable Simonyan and Zisserman (2014b). However, CNNs often struggle with global
contextual understanding Szegedy et al. (2015) and are prone to overfitting. Moreover,
their ability to model long-range temporal dependencies Karpathy et al. (2014), which

is crucial in action recognition, is somewhat limited.

ViT-based models, in contrast, excel in capturing global dependencies Carion et al.
(2020); Dosovitskiy et al. (2020), thanks to their self-attention mechanism. This
attribute makes them particularly suited for understanding complex actions that
require a broader view beyond local features. ViTs are scalable with data, benefiting
significantly from larger datasets, and are flexible in processing inputs of various sizes
Touvron et al. (2021). The adaptability in processing various input sizes is a byproduct
of the patch-based approach and the global receptive field of the ViTs. However, these
models are computationally more intensive and require substantial training data to
achieve optimal performance Khan et al. (2022). Unlike CNNSs, ViTs are not as efficient
in extracting detailed local features, which can be a critical drawback in certain action

recognition scenarios.

Hybrid models that combine CNNs and ViTs aim to harness the strengths of both
architectures. They offer the local feature extraction capabilities of CNNs along with
the global context awareness of ViTs, potentially providing a more balanced approach
to action recognition. These models can be more efficient and versatile, adapting well
to a range of tasks. However, this combination brings its own challenges, including
increased architectural complexity, higher resource demands, and the need for careful
tuning to balance the contributions of both CNN and ViT components. The choice
among these models depends on the specific requirements of the action recognition
task, such as the available computational resources, the nature and size of the dataset,

and the types of actions that need to be recognized.

For a summary of the advantages and disadvantages of these three architectural

variations, see Table 4.6.
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TABLE 4.6: Capability comparison between Transformer-based, CNN-based, and hy-

brid models in HARs.
Criteria | ViT-based | CNN-based | Hybrid Models
Advantages
Excel at capturing global dependen- v v
cies
Scalable with data | v | | v
Flexible in processing various input v v
sizes
Adept at extracting local features | | v | v
Computationally efficient ‘ ‘ v ‘
Robust to input variations | | v | v
Efficient and versatile | | | v
Adapts well to a range of tasks | | | v
Disadvantages
Computationally intensive ‘ v ‘ ‘ v
Requires substantial training data | v | | v
Limited global contextual under- v
standing
Prone to overfitting | | v |
Limited in modeling long-range de- v
pendencies
Architectural complexity | | | v
Higher resource demands | | | v
Need for careful tuning ‘ ‘ ‘ v
Balancing contributions of both com- v

ponents can be challenging

4.3 Proposed CNN-ViT Hybrid Architecture

In this section, we present our proposed CNN-ViT architecture for HAR, leveraging
the benefits of both approaches described in previous sections, see Figure 4.1. The
architecture incorporates a TimeDistributed layer with a CNN backbone, followed by

a ViT model to classify actions in video sequences.

Spatial component. Let X be a collection of N frames, i.e, X = {Xl}fi ;- The CNN
backbone (i.e. MobileNet in Howard et al. 2017) in the TimeDistributed layer (see
Figure 4.1) processes the individual frames X; and outputs the spatial features vector
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v; = pe(X;) € RL, where py is the CNN model (e.g. MobileNet or VGG16) with
parameters in 6 wrapped by the TimeDistributed layer.

Temporal component. In the proposed hybrid CNN-ViT model, it is engineered to
process the sequence of the N spatial features vectors, i.e., {vi}f\i 1» Where each v;
represents a distinct frame of the input video clip, see Figure 4.1. Afterwards, the ViT
block outputs a final representation, z, which is then fed into the softmax layer to
classify the action in the video. In detail, the Transformer encoder is designed to
process a sequence of vectors, each representing one frame, and aggregate information

into a single vector for classification.

In the proposed ViT-only model in Figure 4.2 for the purpose of comparison, each
vector represents a distinct patch. These vectors are first linearly projected into a
high-dimensional space, facilitating the model’s ability to learn complex patterns
within the data. To ensure the model captures the sequential nature of the input,
positional encodings are added to these embeddings. The core of the ViT consists of
two layers, each comprising a multi-head self-attention mechanism and a
feed-forward network. The self-attention mechanism allows the model to weigh the
importance of different patches relative to each other, while the feed-forward network,
utilizing an exponential linear unit (ELU) activation function, processes each position
independently to capture global context. The ViT is designed to aggregate the
information from all vectors and positional encodings into a single [CLS] token, which
is prepended to the input sequence. The output vector associated with this [CLS]
token, after propagation through the Transformer layers, serves as a comprehensive

representation of the entire input, suitable for downstream classification tasks.
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FIGURE 4.1: The hybrid CNN-ViT architecture for HARs.
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FIGURE 4.2: The ViT-only architecture for HARs.

4.3.1 Experiments

The goal of the presented experiments is not necessarily to produce a model that
outperforms the state-of-the-art models in the HAR field. Rather, the aim is to conduct
a comparison among the CNN, ViT-only, and hybrid models to give further insights.

The Royal Institute of Technology in 2004 unveiled the KTH dataset, a significant and
publicly accessible dataset for action recognition Schuldt et al. (2004). The KTH
dataset was chosen here for its balanced representation of spatial and temporal
features. Renowned as a benchmark dataset, it encompasses six types of actions:
walking, jogging, running, boxing, hand-waving, and hand-clapping. The dataset
features performances by 25 different individuals, introducing a diversity in
execution. Additionally, the environment for each participant’s actions was
deliberately altered, including settings such as outdoors, outdoors with scale changes,
outdoors with clothing variations, and indoors. The KTH dataset comprises 2,391
video sequences, all recorded at 25 frames per second using a stationary camera
against uniform backgrounds.

Nine experiments were conducted, with each of the aforementioned models trained
on three different lengths of frame sequences. Care was taken to avoid pre-training in
order to ensure the neutrality of the results. The TransNet model in 3 was adopted to
represent the CNN model, the ViT model, and the Hybrid model were depicted in
Figure 4.2 and Figure 4.1, respectively. For the spatial component of the hybrid model,
we employed the spatial component of TransNet; and for the temporal component, we
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employed the same ViT model that we used in the ViT-only model. We constructed
our model utilizing Python 3.6, incorporating the Keras deep learning framework,
OpenCV for image processing, matplotlib, and the scikit-learn library. The training
and test were performed on a computer equipped with an Intel Core i7 processor, an
NVidia RTX 2070 graphics card, and 64GB of RAM.

4.3.1.1 Results and Discussion

TABLE 4.7: Experimental results of different models on the KTH Dataset using three

different context lengths. In particular, the hybrid model was trained without pre-

training, whereas Hybridpre is for the hybrid model pre-trained on ImageNet. Every
experiment was repeated over five runs to ensure robust statistical evaluation.

Context length H CNN-based \ ViT-only \ Hybrid \ Hybridye
12 frames 94.35+041 | 9244 £0.16 | 94.12+0.05 | 96.34 + 0.03
18 frames 93.91+0.32 | 92.82+0.07 | 94.56 +0.10 | 97.13 + 0.04
24 frames 93.49+0.24 | 93.69+0.08 | 95.78 = 0.60 | 97.89 + 0.05

Table 4.7 presents the quantitative results of the three distinct models, i.e., CNN,

ViT-only, and a hybrid model on the KTH dataset, focusing on three different context
lengths, i.e., short (12 frames), medium (18 frames), and long (24 frames). The results
from these experiments provide insightful revelations into the efficacy of each model

under different temporal contexts. More details are given below.

The CNN model exhibited a decrease in accuracy as the frame length increased,
recording 94.35% for 12 frames, 93.91% for 18 frames, and 93.49% for 24 frames. This
descending trend suggests that CNN may struggle with processing longer sequences
where temporal dynamics become more complex, potentially leading to challenges
such as overfitting or difficulties in temporal feature retention over extended

durations.

In contrast, the ViT model demonstrated an improvement in performance with longer
sequences, achieving accuracy of 92.44% for 12 frames, 92.82% for 18 frames, and
93.69% for 24 frames. This ascending pattern supports the notion that ViT
architectures, with their inherent self-attention mechanisms, are well-suited to
managing longer sequences. The ability of ViTs to assign varying degrees of
importance to different parts of the sequence likely contributes to their enhanced

performance on longer input frames.

The hybrid CNN-ViT model showcased the highest and continuously improving
accuracy rates across all frame lengths: 94.12% for 12 frames, 94.56% for 18 frames,
and an impressive 95.78% for 24 frames. Moreover, the pre-trained hybrid model
showcased the same trend, with the best accuracy achieved. This type of model

synergistically combines CNN’s robust spatial feature extraction capabilities with
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ViT’s efficient handling of temporal relationships via self-attention. The results from
this model indicate that such a hybrid approach is particularly effective in capturing
the complexities of action recognition tasks in video sequences, especially as the

sequence length increases.

These findings underscore the potential advantages of hybrid neural network
architectures in video-based action recognition tasks, particularly for handling longer
sequences with complex interactions. The superior performance of the hybrid
CNN-ViT model suggests that integrating the spatial acuity of CNNs with the
temporal finesse of ViTs can lead to more accurate and reliable recognition systems.
Future work could explore the scalability of these models to other datasets, their
computational efficiency, and their robustness against variations in video quality and
scene dynamics. Additionally, further research might investigate the optimal balance
of CNN and ViT components within hybrid models to maximize both performance

and efficiency.

TABLE 4.8: Comparison of the proposed hybrid model with the state-of-the-art models

on the KTH dataset.
Methods | Venue Accuracy
Geng and Song (2016) ICCSAE 16 92.49
Arunnehru et al. (2018) RoSMa 18 94.90
Abdelbaky and Aly (2020) | ITCE "20 87.52
Jaouedi et al. (2020) KSUCI journal 20 | 96.30
Liu et al. (2020) JAIHC 20 91.93
Sahoo et al. (2020) TETCI 20 97.67
Lee et al. (2021) CVE 21 89.40
Basha et al. (2022) MTA journal 22 96.53
Ye and Bilodeau (2023) CVEF 23 90.90
Ours - 97.89

To complete the comparison, Table 4.8 shows that the impressive 97.89% accuracy
achieved by the presented CNN-ViT hybrid model on the KTH dataset places it
prominently among state-of-the-art models for HAR. This performance is notably
superior when compared to earlier benchmarks reported in the literature such as
Geng and Song (2016) with 92.49% and Arunnehru et al. (2018) with 94.90%. Our
model utilizes an ImageNet-pre-trained MobileNet Howard et al. (2017) as the CNN
backbone in the spatial component, which enhances its robust feature extraction
capabilities. Combined with the dynamic attention mechanisms of ViT, it can thereby
enhance both the spatial and temporal processing of video sequences. Furthermore,
our hybrid model not only surpasses other contemporary approaches like Liu et al.
(2020) (91.93%) and Lee et al. (2021) (89.40%), but also shows competitive /superior
performance against some of the highest accuracy in the field, such as Jaouedi et al.
(2020) (96.30%) and Basha et al. (2022) (96.53%). Even in comparison to the high
benchmark set by Sahoo et al. (2020) (97.67%), our hybrid model demonstrates a
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marginal but significant improvement, underscoring the efficacy of integrating CNN
with ViT. This integration not only facilitates more nuanced feature extraction across
both spatial and sequential dimensions but also adapts more dynamically to the
varied contexts inherent in video data, making it a potent solution for realistic action
recognition scenarios.

On the whole, the integration of CNN with ViT is particularly advantageous for
enhancing feature extraction capabilities and focusing on relevant segments
dynamically through the attention mechanisms of ViTs. This not only helps in
improving accuracy but also in making the model more adaptable to varied video
contexts, a key requirement for action recognition in realistic scenarios. This
comparative advantage suggests that hybrid models are paving the way for future
explorations in HAR, combining the best of convolutional and ViT-based architectures

for improved performance and efficiency.

4.3.1.2 Statistical Significance Analysis

In this section, we present the statistical significance analysis used to evaluate the
performance of the proposed model in comparison with benchmark models. The
analysis here employs two statistical methods: the paired-samples t-test (see Algorithm
2 in Appendix) and the one-sample t-test (see Algorithm 3 in Appendix) Montgomery
and Runger (2020); Devore (2000). The symbols and variables used in Algorithms 2
and 3 are summarized in Table 6.1 in Appendix.

TABLE 4.9: The t-statistic values for the models in Table 4.7 across the three contexts.

Context CNN-based Vit-only Hybrid Hybridpe
12 vs. 18 frames 6.52 19.75 51.12 70.19
12 vs. 24 frames 14.22 37.67 134.33 141.14
18 vs. 24 frames 6.59 58.14 301.23 73.14

TABLE 4.10: The two-tailed 5% p-value for the models in Table 4.7 across the three
contexts.

Context CNN-based ViT-only Hybrid Hybridpre

12 vs. 18 frames 295 x 1073 394 x10° 885x 107 247 x1077
12 vs. 24 frames 1.45x107% 297 x107° 1.84x10% 151x10°8
18 vs. 24 frames 2.76 x 1073 524 x 107 731 x 10719 2.09 x 1077

The paired-samples t-test algorithm evaluates different individual models in Table 4.7
whether there is a significant difference of the performance of a model between two
related contexts among the total three contexts (i.e., 12, 18, and 24 frames). Applying
Algorithm 2 on the quantitative results in Table 4.7, we obtain the t-statistic values t;,
given in Table 4.9 and the p-values p, given in Table 4.10 for each model on paired
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contexts. For the paired-samples t-test, the null hypothesis (Ho) posited that no
significant difference exists between two contexts for each model. The alternative
hypothesis (Hp1) suggested that a significant difference existed between two contexts
for each model. The results in Table 4.10 demonstrates statistically significant
differences across all contexts for each model, with p-values lower than the adjusted

significance level a, using the Bonferroni correction.

The one-sample t-test algorithm is used here to evaluate whether there is a significant
difference between the performance of the proposed model and the mean
performance of the benchmark models in Table 4.8. In this test, the null hypothesis
(Hoo) assumes that the performance of the proposed model is not significantly
different from the mean performance of the benchmark models in Table 4.8. The
alternative hypothesis (H,1) posits that a significant difference does exist. By applying
Algorithm 3 on the data in Table 4.8, we obtain a p-value of p, = 0.0034, which is
significantly lower than the commonly accepted significance level of 0.05. As a result,
we reject the null hypothesis. This finding indicates that the performance difference
between the proposed model and the state-of-the-art models is statistically significant.
Consequently, we can conclude with 95% confidence that the proposed model
outperforms the current state-of-the-art models for the HAR task under consideration.
This result highlights the effectiveness of the proposed model in advancing the field.

4.4 Conclusions

This survey provides a comprehensive overview of the current state of HAR by
examining the roles and advancements of CNNs, RNNs, and ViTs. It delves into the
evolution of these architectures, emphasizing their individual contributions to the
tield. The introduction of a hybrid model that combines the spatial processing
capabilities of CNNs with the temporal understanding of ViTs represents a
methodological advancement in HAR. This model aims to address the limitations of
each architecture when used in isolation, proposing a unified approach that
potentially enhances the accuracy and efficiency of action recognition tasks. The
chapter identifies key challenges and opportunities within HAR, such as the need for
models that can effectively integrate spatial and temporal information from video
data. The exploration of hybrid models, as suggested, offers a pathway for future
research, particularly in improving model performance on complex video datasets.
The discussion encourages further investigation into optimizing these hybrid
architectures and exploring their applicability across various domains. This work sets
a foundation for future studies to build upon, aiming to push the boundaries of what
is currently achievable in HAR and to explore new applications of these technologies

in real-world scenarios.
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Chapter 5

Conclusions

The conclusion of this thesis summarizes the key findings and contributions made
toward advancing HAR through innovative model architectures and methodologies.
This work has focused on addressing critical challenges in the field, such as improving
feature extraction, enhancing transfer learning capabilities, and developing hybrid
models that better capture both spatial and temporal aspects of human actions. By
integrating state-of-the-art techniques such as CNNs, ViTs, and data augmentation
strategies, this research has presented new solutions that offer significant
improvements over traditional methods in terms of accuracy;, efficiency, and
generalization across diverse datasets. Section 5.1 summarises each of the three
Chapters. Section 5.2 identifies the limitations of the current thesis while Section 5.3
offers suggestions for future studies. The contributions of the current thesis are

presented in Section 5.4. Finally, Section 5.5 provides a concluding remark.

5.1 Summary of The Thesis

The current thesis investigates and addresses key challenges in HAR by introducing
new model architectures and strategies for enhancing feature extraction, transfer
learning, and data augmentation. Through a series of three interconnected studies,
this research aims to improve the ability of HAR systems to generalize across complex
and dynamic environments. The thesis explores the decomposition of the 3D-CNN
and the integration of CNNs with ViTs to form hybrid models capable of capturing
both spatial and temporal features. This integration helps overcome the limitations of
traditional models that either excel in spatial or temporal analysis but struggle to
balance both. The following sections provide a concise summary of each of the

Chapters presented in this thesis.
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51.1 Summary of The Second Chapter

The second Chapter 2 provides a comprehensive overview of data augmentation
techniques employed in computer vision tasks, particularly in image classification and
segmentation. It addresses the challenges posed by the large data requirements of
deep neural networks, such as CNNs, and the issue of overfitting when data is scarce.
The chapter emphasizes the importance of data augmentation, which artificially
expands datasets to improve model generalization. By increasing both the size and
diversity of training data, data augmentation can effectively mitigate overfitting.

The survey highlights two main categories of data augmentation: traditional methods
and deep learning-based methods. Traditional techniques include geometric
transformations such as flipping, rotation, cropping, and photometric transformations
like brightness and contrast adjustments. These techniques are simple yet effective in
improving data diversity and size. However, they come with limitations, such as
boundary issues in rotation, where black patches or missing pixel information may
affect the model’s performance. To address such limitations, the chapter proposes a
novel geometric augmentation strategy named RLR. The chapter presents
experimental results that show RLR consistently outperforming traditional
augmentation methods, particularly in classification tasks, where maintaining local

image integrity is essential for model generalization.

The chapter extensively reviews the application of data augmentation in classification
and segmentation tasks. It explores the efficacy of various augmentation methods
across different classification and segmentation datasets. The review includes an
analysis of traditional augmentation methods and more advanced techniques, such as
GAN s and texture transfer. GANSs, for example, are highlighted for their ability to
generate synthetic images that augment datasets, making models more robust to data

scarcity.

The chapter showed that computer vision researchers frequently combine several data
augmentation techniques, making it difficult to evaluate the impact of each method
individually. In this chapter, the random rotation technique was examined in detail,
focusing on its influence on two distinct tasks: classification and segmentation. The
findings indicate that classification and segmentation rely on different features, which
may not benefit equally from the same augmentation methods. For classification,
random rotation proved beneficial, as it altered the object’s shape while preserving
texture, leading to enhanced model performance. This suggests that classification
tasks are less sensitive to shape distortions caused by rotation and can benefit from the

added variation introduced by the technique.

In contrast, segmentation tasks, which depend heavily on accurate shape feature

extraction, showed poorer results when random rotation techniques were applied.
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The RLR method, while effective in preserving some local details, distorted the global
shape of objects, particularly in the segmentation of human bodies. This distortion
negatively impacted the segmentation task, where shape integrity is crucial. The
study highlights that while rotation-based augmentation can enhance classification
performance, it may degrade results in segmentation tasks where shape features are
more important than texture. These findings emphasize the need for task-specific data

augmentation strategies that consider the feature priorities of each task.

In conclusion, the chapter highlights the need to tailor data augmentation techniques
to the specific requirements of the computer vision task at hand. For tasks like
segmentation, where shape features are crucial, augmentation techniques that

preserve or enhance shape features should be prioritized.

5.1.2 Summary of The Third Chapter

The third Chapter 3 focuses on addressing the limitations of current HAR models,
which often have complex structures and require lengthy training times. To overcome
these challenges, the chapter proposes a simplified, end-to-end deep learning
architecture called TransNet. The architecture breaks down traditional 3D-CNNs into
2D-CNN and 1D-CNN components, where the 2D-CNN extracts spatial features from
video frames, and the 1D-CNN captures the temporal patterns across frames. This
decomposition makes the model more efficient while maintaining strong performance
in HAR tasks. The model’s compatibility with pre-trained 2D-CNNSs, such as
MobileNet and VGG16, further enhances its flexibility and transfer learning

capabilities.

One of the key motivations behind TransNet is to leverage the power of transfer
learning for HAR tasks. By utilizing well-trained models from other domains, such as
image classification or segmentation, TransNet can efficiently learn from limited HAR
datasets without overfitting. The integration of pre-trained 2D-CNNs allows for the
reuse of spatial features already learned in other tasks, improving the model’s
efficiency and effectiveness in recognizing human actions. The chapter also introduces
TransNet+, an extension that incorporates autoencoder-based encoders trained on
tasks like HSS to improve spatial feature extraction. This strategy enhances HAR by
pretraining the model on specific tasks that capture important features, such as human

shapes, making it highly adaptable to action recognition.

The chapter reviews related work on HAR, highlighting the challenges posed by
cluttered backgrounds and the need for precise temporal modeling. Traditional
methods like 3D-CNNs and RNNs are known for their ability to capture
spatio-temporal features but often require large datasets and substantial

computational resources. TransNet, by contrast, simplifies the model architecture
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without sacrificing performance, making it suitable for both limited HAR datasets and
limited-resources devices. Moreover, TransNet addresses the background clutter
problem by focusing on human features, offering a more practical solution for

environments with complex backgrounds.

Experimental results conducted on benchmark datasets, such as KTH, UCF101, and
HMDB51, demonstrate TransNet’s superior performance compared to state-of-the-art
HAR models. The model, especially when pre-trained using HSS, shows notable
improvements in action recognition accuracy, highlighting the effectiveness of
combining 2D-CNN spatial feature extraction with 1D-CNN temporal analysis. For
instance, on the KTH dataset, TransNet achieved 100% accuracy, outperforming
several contemporary models, which underscores its robustness and adaptability. The
chapter also compares the performance of various backbone models (MobileNet,
VGG16, etc.), showing that TransNet performs consistently well across different

architectures.

One of the significant contributions of TransNet is its ability to perform transfer
learning across diverse datasets and tasks. By pretraining the model on tasks such as
HSS, the chapter demonstrates that TransNet+ can effectively transfer knowledge (i.e.
Human shape features) to HAR tasks, achieving higher accuracy and efficiency. This
approach reduces the dependency on large training datasets, making it an ideal
solution for domains where data is limited. Additionally, the chapter provides a
detailed analysis of TransNet’s model complexity, highlighting its reduced
computational cost compared to 3D-CNNs, making it a potential choice for real-time
HAR applications.

In conclusion, the chapter presents TransNet as a versatile and efficient solution for
human action recognition, leveraging transfer learning and a simplified architecture to
address the limitations of traditional HAR models. Through extensive experiments
and comparisons with state-of-the-art methods, the chapter demonstrates that
TransNet not only improves accuracy but also offers significant advantages in terms of
model complexity and training speed. The introduction of TransNet+ further
enhances its capabilities, making it a promising architecture for future HAR

applications in both academic research and industry.

5.1.3 Summary of The Fourth Chapter

The fourth Chapter 4 provides a detailed exploration of deep learning models used in
HAR, with a specific focus on CNNs, RNNs, and ViTs. It discusses the evolution of
these models and their application in understanding human actions in video
sequences, emphasizing the need for capturing both spatial and temporal information

for accurate recognition. The chapter underscores the limitations of each model, such
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as CNNs'’ struggle with temporal dependencies and RNNs’ challenges with
long-range context, while also highlighting the transformative potential of ViTs, which
have shown superior performance in recent years due to their self-attention

mechanisms that excel in both spatial and temporal tasks.

The survey also proposes a hybrid model that integrates CNNs and ViTs, aiming to
leverage the spatial feature extraction capabilities of CNNs and the global temporal
context modeling strengths of Transformers. This hybrid model is designed to
overcome the limitations of traditional models by combining their respective
advantages, offering a more comprehensive approach to HAR tasks. The chapter
outlines the growing trend toward hybrid models, particularly for applications that
require precise action recognition in complex environments, such as medical
diagnostics, security surveillance, and autonomous systems. Through a review of
literature and analysis of benchmark datasets, the study demonstrates that hybrid
architectures hold promise for advancing the state-of-the-art in HAR, particularly

when dealing with large datasets and complex action sequences.

The chapter systematically reviews the evolution of CNNs from their early use in
image classification to more complex spatio-temporal models like 3D-CNNs which
can process video frames by extending CNNs to the temporal dimension. It discusses
the advent of RNNS, particularly LSTMs and GRUs, which were initially introduced
to handle sequential data but were later found to be limited by issues such as
vanishing gradients and a lack of parallelization capabilities. Transformers, and more
specifically Vision Transformers, are presented as a breakthrough in overcoming these
limitations, utilizing self-attention mechanisms that process sequences more efficiently

and capture long-range dependencies in video data.

The chapter emphasizes the significance of data representation in HAR, explaining
how CNN:s are effective in capturing local spatial features, while Transformers excel at
understanding global patterns across frames. However, each approach has its
trade-offs: CNNs are computationally efficient but struggle with temporal
relationships, while Transformers, although highly effective in capturing global
dependencies, require substantial computational resources and large datasets for
training. This leads to the discussion of hybrid models, which attempt to balance these
strengths and weaknesses, offering improved performance and generalization in

action recognition tasks.

In the experimental section, the chapter proposes and tests a novel hybrid model that
integrates CNNs for spatial feature extraction with Transformers for temporal
dynamics, showing that this architecture outperforms standalone CNNs, RNNs, and
ViTs in action recognition tasks on a benchmark dataset. The results demonstrate that

hybrid models can achieve higher accuracy and efficiency by effectively capturing
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both local spatial details and global temporal patterns, particularly in scenarios

involving complex human actions.

In conclusion, the chapter highlights the ongoing evolution of deep learning models in
human action recognition, proposing that hybrid CNN-Transformer models represent
the future of HAR research. By integrating the strengths of multiple architectures,
these models offer a more robust and flexible approach to tackling the challenges of
real-world video data, particularly in domains where both spatial and temporal
precision are critical. The study suggests that future research should focus on refining
these hybrid models to further improve their efficiency and scalability for large-scale

applications.

5.2 Thesis Limitation

5.2.1 Datasets Issues

One of the significant limitations in HAR is the availability and quality of datasets,
which poses challenges for training deep learning models Jegham et al. (2020). HAR
models, particularly those using deep architectures like CNNs, RNNs, and ViTs,
require large amounts of data to generalize well to new, unseen examples Arnab et al.
(2021). However, most publicly available HAR datasets are limited in size and
diversity. Popular datasets such as UCF101, HMDB51, and Kinetics-400, while
commonly used, may not be sufficient for capturing the wide range of human actions
in real-world scenarios. These datasets are often constrained by their limited number
of labeled examples, specific environments, and controlled settings, which reduces the
generalizability of the models trained on them. As a result, models trained on these
datasets often struggle to perform well when applied to more complex or dynamic

environments, leading to reduced accuracy and robustness.

Another critical limitation of HAR datasets is the imbalance of action classes. Many
datasets have an unequal distribution of action categories, where certain common
actions (e.g., walking, running) have significantly more examples than rarer or more
complex actions (e.g., medical activities). This class imbalance can lead to biased
models that perform well on frequent actions but fail to recognize or generalize to less
common activities. Additionally, certain datasets lack diversity in terms of
demographic representation, background variability, and action complexity, making it
difficult for models to capture the full spectrum of human behaviors. For example,
datasets collected in specific regions or environments might lack diversity in terms of
cultural context, clothing styles, or lighting conditions, which further limits the

model’s ability to adapt to new or unfamiliar contexts.
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Moreover, many HAR datasets are limited in terms of temporal annotation and
labeling granularity. Some datasets provide only coarse labels for the entire video
sequence, without detailed information about when specific actions occur within a
video. This lack of fine-grained temporal annotation makes it difficult for models to
accurately detect and classify actions in real-time or within continuous video streams.
Action detection, as opposed to action classification, requires more precise labeling to
train models that can identify the start and end points of actions. This temporal
limitation hinders the performance of HAR models, especially in applications that
require real-time action recognition, such as surveillance systems, autonomous

vehicles, or assistive technologies for healthcare.

Finally, there is a notable limitation in the accessibility of large-scale, annotated
datasets due to privacy and ethical concerns. Collecting and annotating video data for
HAR tasks often involves recording individuals performing various actions, which
raises significant privacy issues. In domains like healthcare or security, where HAR
could have significant impact, gathering action data in real-world, sensitive settings is
often constrained by ethical considerations. This limits the ability of researchers to
access diverse datasets that represent actions in natural environments. Furthermore,
annotating large-scale video datasets is a labor-intensive process, often requiring
human annotators to manually label actions, which adds to the cost and complexity of
dataset creation. Consequently, these limitations in dataset size, diversity, temporal
annotation, and privacy impact the overall progress and accuracy of HAR models in
real-world applications.

5.2.2 The Publicly Available State-of-the-art Transformers

One significant limitation in HAR is the lack of publicly available state-of-the-art
transformer models that are pre-trained on large-scale datasets, comparable to the
widespread availability of CNNSs like those trained on ImageNet. Transformers,
particularly ViTs, have shown immense promise in advancing HAR by capturing both
spatial and temporal dependencies comparably or more effectively than traditional
CNNs or RNNs. However, while CNNs benefit from models pre-trained on massive
image datasets like ImageNet, which are readily accessible for transfer learning, the
same infrastructure for transformers is still emerging. This gap hinders the ability of
researchers and practitioners to leverage the full potential of transformers for HAR
tasks, as models often have to be trained from scratch or fine-tuned on smaller,

domain-specific datasets, which is computationally expensive and time-consuming.

The absence of large-scale pre-trained transformer models for HAR tasks also presents
challenges in terms of data efficiency and model generalization. Pre-trained models,
such as CNNs fine-tuned from ImageNet, allow for effective transfer learning,
enabling models to generalize better even when the target dataset is relatively small.
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Transformers, on the other hand, are known to require significantly larger amounts of
data to achieve optimal performance due to their reliance on self-attention
mechanisms that capture global context. Without large pre-trained ViTs or other
transformer variants available, researchers often face difficulties training transformers
on limited HAR datasets, leading to overfitting and suboptimal performance. This
contrasts with CNNs, where pre-trained models significantly reduce the need for large
training datasets by providing robust feature representations learned from a broader

context.

Furthermore, while there has been rapid progress in transformer-based architectures,
their training requirements are considerably higher than those of CNNs. Transformers
generally require extensive computational resources, both in terms of hardware and
training time, especially when trained from scratch on large video datasets. This
creates a barrier for many researchers who lack access to such resources, limiting the
widespread experimentation and adoption of transformers in HAR. Pre-trained
transformers on large video datasets like Kinetics or Something-Something are still
relatively scarce, in contrast to pre-trained CNNs that can be readily accessed through
public repositories and frameworks such as PyTorch or TensorFlow. This scarcity of
pre-trained transformer models not only slows down research progress but also
impedes the deployment of advanced HAR systems in practical applications.

The lack of availability of these state-of-the-art transformer models also limits the
community’s ability to compare new architectures and methods effectively. In
CNN-based HAR, researchers often compare their models against well-established
baselines such as ResNet, MobileNet, or VGG, which have been rigorously tested and
pre-trained on large datasets. However, with transformers, there is a shortage of
publicly available, pre-trained models that can serve as benchmarks for performance
evaluation. This makes it difficult for the research community to measure progress
consistently or to determine the advantages of new transformer-based models over
existing approaches. Thus, the absence of pre-trained state-of-the-art transformers not
only hinders practical performance improvements but also stifles innovation by
making it more difficult to establish reliable benchmarks and facilitate knowledge

sharing across the HAR research community.

5.3 Thesis Future Work

In the future works of this thesis, three research directions will be pursued to further
advance the field of HAR. The first work will involve a comprehensive survey on the
use of Graph Neural Networks (GNNs) in HAR, exploring how GNNs can model
complex human actions through spatial and temporal relationships. The second work

will focus on investigating different attention techniques, evaluating the latest
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transformer models in HAR, and developing hybrid models that combine the
strengths of GNNs and CNNs with ViTs for improved performance. Finally, the third
work will aim to create an Arabic sign language video dataset, filling a crucial gap in
the field, while also surveying existing sign language datasets. This dataset will be
used to train and benchmark the models developed in the thesis and potential future
works, contributing to more inclusive and effective action recognition systems. These
studies will collectively enhance the understanding and development of HAR,
particularly in underrepresented areas like sign language recognition and hybrid
model architectures.

5.3.1 First Paper: Survey on Graph Neural Networks and Developing a
GNN-CNN Hybrid Model for HAR

The first future work will involve conducting a comprehensive survey of GNNs in
HAR and a development of a GNN-CNN hybrid model. GNNs have emerged as a
powerful tool for capturing complex relationships in data represented as graphs,
making them highly suitable for tasks like HAR, where interactions between joints in
skeleton-based data or relationships between objects can be modeled as graphs Yan

et al. (2018). The survey will explore the current landscape of GNNs in HAR, and their
application to benchmark datasets. The survey will provide valuable insights into the
advantages and limitations of GNNSs, their ability to capture spatial and temporal
dynamics, and how they compare to other models traditionally used in HAR, such as
CNNs and RNNSs.

Additionally, this work will involve the creation of a GNN-CNN hybrid model for
HAR, leveraging the strengths of both architectures. While CNNs excel at extracting
local spatial features from video frames, they are limited in modeling the relationships
between different regions or time steps. GNNs, on the other hand, are excellent at
capturing these relationships, making the combination of both approaches highly
beneficial for HAR tasks. The GNN-CNN hybrid model will be designed to utilize
CNN:s for initial spatial feature extraction from video frames, followed by GNNs to
model the relational structure between key points or body joints over time. This
hybrid approach will provide a more comprehensive representation of human actions,
allowing for better recognition of complex actions involving multiple interacting

objects or people.

The importance of this survey lies in its ability to synthesize the existing research on
GNNs in HAR, identifying trends, gaps, and future directions for researchers. Given
that GNNs are relatively new in the field of HAR compared to CNNs and RNNSs, this
paper will highlight their potential and limitations. It will also provide insights into
the datasets commonly used for GNN-based HAR, how GNNs handle data variability,
and the techniques used to improve generalization. The implementation of this survey
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will involve categorizing various GNN architectures, comparing their performance on
benchmark HAR datasets, and discussing their effectiveness in capturing both spatial

and temporal aspects of human actions.

5.3.2 Second Paper: Exploring Attention Techniques and Developing a
GNN-ViT Hybrid Model for HAR

The second paper will focus on exploring various attention mechanisms in HAR,
assessing recent transformer models, and developing a GNN-ViT hybrid model.
Attention mechanisms, such as self-attention and temporal attention, have been
transformative in improving model performance across various deep learning
applications by allowing models to focus on the most relevant parts of the input data
Vaswani et al. (2017). In HAR, attention techniques can significantly enhance a
model’s ability to prioritize important spatial and temporal features, leading to more
accurate recognition of actions in complex video sequences. This paper will explore
different attention mechanisms and assess how their integration into HAR models
improves the overall performance, particularly in capturing long-range dependencies

between frames.

The study will culminate in the creation of a GNN-ViT hybrid model, combining the
ability of GNNs to model relationships in graph-structured data with the global
attention capabilities of ViTs. This hybrid model will be designed to handle both
spatial and temporal relationships in HAR more effectively by leveraging GNNs for
modeling skeleton or body joint data and ViTs for extracting and attending to relevant
global features in video frames. The models developed will be compared to existing
state-of-the-art methods to determine their efficacy in improving HAR accuracy and

generalization, particularly in complex scenarios.

5.3.3 Third Paper: Creating an Arabic Sign Language Video Dataset and
Surveying Existing Sign Language Datasets

The third paper will focus on addressing a critical gap in HAR research by creating a
large-scale Arabic sign language video dataset and conducting a survey of existing
sign language datasets in academia. While sign language recognition has been studied
extensively for languages like American Sign Language (ASL) Athitsos et al. (2008)
and German Sign Language Li et al. (2020a), there is a notable lack of resources for
Arabic sign language Moustafa et al. (2024). This paper aims to fill this gap by
developing a diverse, annotated dataset specifically for Arabic sign language gestures,
which will be invaluable for researchers developing HAR models tailored to this
language. The dataset will include a wide range of signs performed by different
individuals, capturing variations in gestures, facial expressions, and hand movements.
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This new dataset will provide the foundation for developing models that can
accurately recognize Arabic sign language in real-world applications.

In addition to creating the dataset, the paper will include a survey of existing sign
language video datasets used in academic research, such as
RWTH-PHOENIX-Weather (German) Forster et al. (2012) and ASLLVD (American)
Neidle et al. (2012). This survey will provide a comparative analysis of these datasets
in terms of size, diversity, and annotation quality, highlighting the specific challenges
faced in sign language recognition. After creating the Arabic sign language dataset,
the paper will train and evaluate all the models developed in this thesis, including the
GNN-CNN and GNN-ViT hybrid models, on this new dataset. This will allow for an
assessment of how well these models perform in recognizing sign language compared
to traditional action recognition tasks, contributing to advancements in sign language
recognition and making these technologies more accessible to Arabic-speaking

communities.

5.4 Thesis Contribution

The current thesis makes several significant contributions to the field of HAR. Firstly,
it introduces innovative architectures, specifically the CNN-ViT-based models for
HAR, which combine CNNs with ViTs to enhance both spatial and temporal feature
extraction. This hybrid model offers a novel approach to addressing one of the
primary limitations of traditional models (i.e. balancing spatial and temporal feature
extraction). CNNs are well known for their efficacy in capturing spatial features, but
they struggle with long-range temporal dependencies. In contrast, ViTs excel at
capturing global temporal patterns due to their self-attention mechanisms. By
integrating both architectures, the thesis presents a more comprehensive and efficient
model for HAR that shows superior performance in benchmark datasets, particularly

in scenarios involving complex human actions.

Another critical contribution of the thesis is its advancement in transfer learning for
HAR through the proposed TransNet and TransNet+ architectures. TransNet model
benefits from disassembling the complex 3D-CNN architecture into 2D-CNN and
1D-CNN architectures. By leveraging pre-trained 2D CNNSs, such as MobileNet and
VGG16, it efficiently performs spatial feature extraction while reducing the need for
large HAR-specific datasets. Simultaneously, the 1D-CNN serves as a fast and
accurate temporal feature extractor. TransNet+ goes a step further by incorporating
autoencoders pre-trained on related tasks, such as human semantic segmentation, to
direct feature extraction more effectively. This approach significantly enhances model
generalization and reduces the dependency on large datasets, a persistent limitation in

HAR research. The thesis demonstrates that transfer learning, when combined with
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effective feature extraction strategies, can result in more robust HAR models that can

be applied to various real-world environments.

The thesis also contributes to the ongoing discourse on data augmentation techniques
in HAR. It provides a comprehensive overview of data augmentation techniques in
computer vision, focusing on image classification and segmentation. It addresses
challenges such as the large data requirements of deep neural networks and the risk of
overfitting when data is scarce, emphasizing the role of data augmentation in
expanding datasets to improve model generalization. However, the thesis highlights
the importance of task-specific augmentation strategies, as different tasks prioritize
distinct features. For instance, random rotation enhances classification by introducing
shape variations while preserving texture but degrades segmentation performance
due to its reliance on precise shape features. The findings underscore the necessity of
tailoring augmentation techniques to the feature priorities of specific tasks,

particularly for segmentation, where preserving shape integrity is paramount.

Finally, the thesis future works emphasizes the importance of developing inclusive
and diverse datasets for HAR applications. In particular, the creation of an Arabic sign
language video dataset addresses a crucial gap in the field, enabling more accessible
research and development in sign language recognition. This contribution not only
advances HAR but also promotes the development of assistive technologies for
underrepresented linguistic communities. By training the proposed models on this
new dataset, the thesis highlights the potential for hybrid CNN-ViT models and data
augmentation strategies to improve sign language recognition systems, making them

more adaptable and accurate across various sign languages.

5.5 Concluding Remark

I am pleased to have completed my research on this topic, as it has greatly improved
my understanding of HAR mechanisms and deep learning methods. I hope this thesis
will contribute to advancing knowledge in this area. However, there are still important
questions about the relationship between HAR and deep learning that need further
investigation. Throughout this research, more complex questions have emerged than I

initially considered, and I look forward to future work in this exciting field.
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Appendix

6.1 Statistical Significance Analysis Methods

This appendix presents two statistical significance analysis methods: the
paired-samples t-test and the one-sample t-test (Montgomery and Runger, 2020;
Devore, 2000) in Algorithm 2 and Algorithm 3, respectively. The symbols and

variables used in Algorithms 2 and 3 are summarized in Table 6.1.

Algorithm 2 processes the data in Table 4.7 from five experimental runs for each
model across two contexts out of the total three contexts. It pairs the results from the
tirst run of each context, followed by pairing the results from the second run of each
context, continuing in this manner until all five runs have been paired. The algorithm
then computes the two-tailed p-value, denoted as p,, for the paired-samples t-test.
Algorithm 3 utilizes the performance results of the state-of-the-art models along with
the performance result of the proposed model from Table 4.8. The algorithm then

computes the two-tailed p-value, denoted as p,, for the one-sample t-test.



138

Chapter 6. Appendix

Symbol | Definition

C1i Performance of a model in the first context (i.e., 12 frames) of the i-th run in the paired-samples test.
Co; Performance of a model in the second context (i.e., 18 frames) of the i-th run in the paired-samples test.
C3i Performance of a model in the third context (i.e., 24 frames) of the i-th run in the paired-samples test.
1np Number of paired observations (i.e., the number of runs) in the paired-samples t-test.

d; Differences between paired observations (c1; — cy;) in the paired-samples t-test.

d Mean of the differences between paired observations in the paired-samples t-test.
Sdp Standard deviation of the differences in the paired-samples t-test.

tsp t-statistic value for the paired-samples t-test.
dfp Degrees of freedom for the paired-samples t-test, calculated as n, — 1.

Py Two-tailed p-value for the paired-samples t-test.

e Number of comparisons for the paired-samples t-test (i.e., 12 vs. 18, 12 vs. 24, and 18 vs. 24 frames).
m; Performance of the state-of-the-art i-th model used in the one-sample t-test.

o Population size, i.e., the number of state-of-the-art models.

Ho Mean performance of the state-of-the-art models.

Sdo Standard deviation of the performance of the state-of-the-art models.

tso t-statistic value for the one-sample t-test.
dfo Degrees of freedom for the one-sample t-test, calculated as 1, — 1.

Po Two-tailed p-value for the one-sample t-test.

my Observed performance of the proposed model in the one-sample t-test.

« Significance level for hypothesis testing, typically set at 0.05.

oy Adjusted significance level using the Bonferroni correction.

TABLE 6.1: List of symbols and variables used in the paired-samples t-test (i.e., Algo-

rithm 2) and one-sample t-test (i.e., Algorithm 3).
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Algorithm 2 Paired-Samples t-Test Algorithm

10:
11:
12:
13:

14:

Input: The model performance on two different frame contexts: (cy;, ¢2;), where
i=1,2,...,n, withn, = 5 (experimental runs); the number of comparisons n, = 3;
and the significance level « = 0.05.

Output: Two-tailed p-value p,.

Calculate the differences between the paired observations:

d; = c1; — ¢4, i:1,2,...,1’lp.

Compute the mean of the differences:

Compute the standard deviation of the differences:

2;21 (dz' - d_)z

Sqy = )
dp n, —1

Calculate the t-statistic value:

d
tep = —————.
T sap/ /1y
Determine the degrees of freedom:
Calculate the two-tailed p-value:

pp=2X fcia(‘tsri’rdfp)r

where the f., function uses a statistical t-distribution table/software (e.g., the SciPy
library and Python programming language) to find the critical t-value correspond-
ing to the calculated t-statistic (ts,) and degrees of freedom (dy).

Apply the Bonferroni correction:

g, = a/ne,

where 7, is the number of comparisons and n. = 3 for the case in Table 4.7.
if p, < &, then
Reject the null hypothesis (Hy), i.e., there is a significant difference.
else
Fail to reject the null hypothesis, i.e., there is not enough evidence to suggest a
significant difference.
end if
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Algorithm 3 One-Sample T-test Algorithm

1: Input: Performance results of state-of-the-art models: my,my, ..., m,, ; the perfor-
mance result of the proposed model: m,; and the significance level a« = 0.05.

2: Output: Two-tailed p-value p,.

3: Compute the population mean:

2

Mo = L&l i

4: Compute the population standard deviation:

B \/Z?il(mi — Ho)?
Sdo = .

no_].

5. Calculate the t-statistic:
b, = 2 M
SO Sdo/ ,77’10 .

6: Determine the degrees of freedom:
d fo = MNo — 1.
7. Calculate the two-tailed p-value:

Po =2 X fco(|tso|/dfo)/

where the f., function uses a statistical t-distribution table/software (e.g., the SciPy
library and Python programming language) to find the critical t-value correspond-
ing to the calculated t-statistic (t5,) and degrees of freedom (d,).

8: if p, < a then

: Reject the null hypothesis (Hyp), i.e., there is a significant difference.

10: else

11:  Fail to reject the null hypothesis, i.e., there is not enough evidence to suggest a

significant difference.
12: end if
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