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Abstract—Modern machine learning methods continue to pro-
duce models with a high memory footprint and computational
complexity that are increasingly difficult to deploy in resource
constrained environments. This is, in part, driven by a focus
on costly, power-intensive GPUs, which has a feedback effect
on the variety of methods and models chosen for development.
We advocate for a transition away from the general purpose
processing towards a more targeted, power-efficient, form of
hardware, the Field-Programmable Gate Array (FPGA). These
devices allow the user to programmatically tailor the model
processing architecture, resulting in increased inference per-
formance and lower power demands. Their resources however
are limited, which leads to the necessity of simplifying the
target deep machine learning models. Dynamic Deep Neural
Networks (DNNs) are a class of models that go beyond limits
of static model compression, by tuning computational workload
to the difficultly of inputs on a per-sample basis. In spite of
the model simplification capabilities of Dynamic DNNs and the
provable efficiency of FPGAs, little work has been done towards
accelerating Dynamic DNNs on FPGAs. In this paper we discuss
why this occurs by highlighting the challenges and limitations,
both at the software and hardware level. We detail the available
efficiency, performance gains, and practical benefits of state-of-
the-art Dynamic DNN implementations when FPGAs are adopted
as the acceleration device. Finally, we present our conclusions and
recommendations for continued research in this space.

I. INTRODUCTION

DNNs have become popular due to their impressive perfor-
mance across a range of Artificial Intelligence (AI) applica-
tions, including computer vision [1] and natural language pro-
cessing [2]. Much of the efficacy of modern DNNs stems from
increased capacity afforded by larger architectures. This often
requires increasing the network’s depth, resulting in higher
computational demands. Traditional CPU platforms struggle
to efficiently process DNN models at acceptable speeds for
tasks like object detection that demand real-time processing.
GPUs provide a solution in some circumstances. They provide
massive potential for parallel computation that can speed
up matrix-vector operations, the majority of computations in
DNNs. However, these devices typically have prohibitively
high power demands [3] for applications targeting embedded
systems, IoT, etc.

For the low resource setting, custom hardware architectures
can be developed specifically for DNNs, tailoring process-
ing elements to the required computational characteristics.

Fig. 1: Example of a Dynamic DNN architecture: Early-Exit Network.

The flexible nature and parallelization capabilities of Field-
Programmable Gate Arrays (FPGAs) position them as strong
contenders for accelerating neural network operations, while
maintaining very low power consumption. However, modern
DNN complexity makes their deployment very challenging.
Large networks can contain approximately 40 billion oper-
ations [2] and hundreds of millions of parameters, for the
inference of a single 224 × 224 image. Given these substantial
computational and storage demands, attempting to map them
onto FPGAs without compression is not feasible.

To reduce the inference workload and memory footprint
of DNNs, various methods focus on parameter reduction.
Quantization reduces data precision, while pruning [4] is an
approach that removes a subset of weights and activations,
shrinking model size at the cost of representation power
and potentially requiring complex computations with sparse
matrices. Knowledge distillation [5] transfers knowledge from
a larger model to a smaller one and advancements in Neural
Architecture Search [6] further reduce parameter redundancy.
All of these approaches have a uniform effect on the sam-
ples processed during inference, which, intuitively, causes the
greatest reduction in accuracy on the most difficult samples
for a given task.

Dynamic DNNs [7] are approaches that strategically dis-
tribute computational workload based on their ability to mod-
ify network structure and parameters during the inference
process. The fundamental concept is that different inputs have
different computational demands. Dynamic methods exploit
these differing computational demands, leading to a substan-
tial reduction in computations, improvements in efficiency,



and compactness of the networks. The adaptability of these
networks optimizes model performance for different inputs
and resource constraints whilst maintaining accuracy. As such,
Dynamic DNNs provide a compelling architectural choice for
resource constrained applications.

Despite the efficiency and low power demands of FPGAs,
and the compression capabilities of Dynamic DNNs, only
small research effort has been put towards accelerating and
realising them on this platform. The aim of this paper is to
explore the reasons for this and to motivate the continued
research of Dynamic DNNs on FPGAs. We outline the chal-
lenges of current software and hardware infrastructure in the
support of dynamic characteristics and resource constrained
devices. Furthermore, we present current advancements in this
field, and state-of-the-art implementations. Lastly, we conclude
and identify open research problems.

II. RELATED WORK

To exemplify the practical benefits of Dynamic DNNs
and FPGAs in a low resource setting, we survey existing
advancements in both the mapping of standard DNNs onto
FPGAs, and the implementation of dynamic methods to reduce
DNN computational workload.

A. FPGAs

FPGAs are devices featuring a versatile array of config-
urable logic elements, highly optimized Digital Signal Process-
ing (DSP) blocks, and flexible on-chip SRAM blocks (Block
RAM, URAM), all interconnected by adaptable routing. The
strategic arrangement of these components, coupled with the
flexible routing capabilities, empowers FPGA engineers to
leverage inherent parallelism within deep learning models.
Their flexibility, task specificity, and efficiency are key mo-
tivators for FPGA use in DNN acceleration. However, FPGAs
typically require device domain knowledge to make effective
use of these benefits due to the complexities of tooling and
required fine tuning of algorithm implementation. There are
many tools that can map high-level expressions of DNNs
directly to the device [8]. Examples include fpgaConvNet [9],
a toolflow that can take a pre-trained CNN model, device
specification, and user throughput requirements to construct
an optimised hardware architecture for efficient inference.
Similarly, HPIPE [10] is a framework for accelerating DNN
inference on server-scale FPGAs, leveraging pruned network
sparsity to increase the efficient utilisation of FPGA resources.
Both frameworks utilise the streaming dataflow paradigm
whereby inputs can be streamed in consecutively and operated
on in parallel through the use of pipelining. This drastically
increases throughput without exhausting memory bandwidth.

B. Network Compression Methods

DNNs are computationally and memory intensive applica-
tions and mapping modern architectures to FPGA devices
without compression can be a difficult or even impossible
task. Typical methods to reduce the inference workload and
memory footprint of a DNN focus on parameter reduction.
Quantization is the process by which the precision of the

DNN weights and activations is reduced from the standard
IEEE floating point format. Frameworks like FINN [11] and
hls4ml [12] focus on the minimization of precision by reducing
the width of parameters and operators in standard convolution
and linear down to 3 bits or lower. For FPGAs, this enables
the packing of multiple operations into a DSP block for
performance gains. Alternatively, custom logic operations can
reduce resource utilization [13]. Logic element and LUT
based tools take this a step further by incorporating complex
DNN function behaviour within the discrete building blocks of
FPGA programmable logic [14]–[16], leading to low latency
and resource utilization for resource-constrained DNN tasks.
Additional fine tuning is often employed to minimise the
impact on accuracy [17]. Using a higher precision such as 8
or 16 bit integer and fixed-point representations can mitigate
accuracy drops and still achieve workload reduction.

Pruning a DNN is the process through which a subset
of weights and activations is removed [4]. This results in
a significant reduction in the model parameters [18] but
also in permanently removing network parameters, leading
to losses in representation power. Fully unstructured pruning
can reduce a high percentage of network parameters but the
random nature of the removed parameters often necessitates
the computation of large, sparse matrix multiplications. For
GPU computation, this can result in performance reductions,
but FPGA architectures can be tailored to efficiently perform
sparse operations, as with HPIPE.

Knowledge distillation [5] is a popular method to produce
compact networks with the accuracy of larger-scale networks.
During the training phase a smaller, simpler model (often
referred to as the student model) is trained to mimic the
behavior of a larger, more complex model (often referred
to as the teacher model). The objective is to transfer the
‘knowledge’ learned by the teacher model to the student model
in a more compressed form. These methodologies, coupled
with the increasing use of Neural Architecture Search [6] and
development of smaller hand-tuned network architectures [19]
means that models are becoming less redundant. To continue
improve efficiency and performance in this case, dynamic
methods of parameter reduction are employed.

C. Dynamic DNNs

Unlike static DNNs, which have fixed architectures and pa-
rameters throughout training and deployment, Dynamic DNNs
adapt their structures or parameters at runtime in response
to input data or system changes. This adaptability allows
dynamic approaches to allocate computational resources more
efficiently, scaling up or down based on the complexity of
the task or the available computational resources. This dy-
namic computational resource allocation enhances the infer-
ence efficiency of the network, improving performance whilst
maintaining accuracy on large-scale datasets and complex
tasks beyond what is capable with static methods alone. Fur-
thermore, static network compression techniques like pruning
or quantization typically occur during training or as a post-
processing step. Dynamic methods can accommodate changes



in data characteristics or task requirements over time, leading
to improved performance and robustness in real-world appli-
cations [20], [21]. By facilitating continual learning, they can
adapt to new tasks or data distributions incrementally while
retaining knowledge learned from previous experiences. This
capability is particularly valuable in applications where the
model needs to continuously learn from new data streams or
adapt to evolving tasks, such as in online learning, adaptive
systems, and autonomous agents.

In this paper we focus on dynamic depth approaches
and more specifically in early-exit dynamic networks. Early-
exiting is a structure-focused approach that enables inference
to stop at an earlier stage, when the network is confident
enough to produce an output. Early-exit networks consist of
a backbone architecture, additional exit points or classifiers
distributed throughout its depth (Fig. 1), and a method for
quantifying task confidence. During the inference process, as
a sample traverses the network, it passes through both the
backbone and each exit in a sequential manner. The prediction
output is determined by the exit that satisfies a predefined cri-
terion, known as the exit policy. For example, an ‘easy’ input
sample will confidently exit early, bypassing the remainder of
the model. Training networks with multiple exits is a common
practice observed in early-exiting dynamic networks [22],
[23], where the primary focus lies in minimizing a weighted
cumulative loss incurred by intermediate classifiers. We note
that architectural choices can depend on factors such as target
device capabilities, and workload. A given backbone can be
adapted to fulfill specific runtime requirements [24], [25].

III. DYNAMIC DNN & FPGA ACCELERATION
CHALLENGES

Integrating intermediate classifiers introduces complexity
and additional computational load. In most cases, these com-
ponents consist of standard DNN layers such as convolutional,
fully-connected, activation, and pooling layers. From a com-
putational perspective, these layers are required to rapidly
down-sample the intermediate feature maps from shallower
sections of the DNN in order to feed a classification layer
(e.g. Softmax) with the appropriate number of logits. From
a functionality perspective, these layers are tasked with co-
alescing the fine-grained features of shallower layers and
making task decisions based on a more limited receptive
field. In BranchyNet [26], the early-exit modules include
convolutional and fully connected layers along with ReLU
activation functions, while in EPNet [27] and DynExit [28],
the convolutional layers are omitted. Through hand-crafted
architecture design and training, a high percentage of samples
trigger an early exit at shallow layers. BranchyNet achieves
90.2% of inputs to exit after the 2nd layer of an early-
exit AlexNet, and more than 57% to exit after the 32nd
on a early-exit ResNet-110. However training and deploying
dynamic networks can be proven a very challenging task as
current deep learning hardware and libraries are optimized
for static models, and they can be proven very unfriendly
towards their different architectures. For example Tensorflow

uses frozen graphs which refers to a trained model that has
been serialized into a single file containing both the model’s
architecture and trained parameters. This serialization process
‘freezes’ the graph, meaning that the architecture and model’s
parameters become constants and cannot be further trained
or modified. In addition, dynamic architectures have a data-
dependent inference procedure which usually requires a model
to handle input samples sequentially. This poses a major
challenge for the parallel processing of batched input samples.

A. Software Frameworks & Training

The architectural differences of dynamic networks require
more complex training methodologies in order to achieve high
accuracy on a given task. The majority of works concerning
early-exit networks employ one of the following training
methods. The End-to-end strategy jointly trains the backbone
and intermediate classifiers with a loss function that is the
weighted combination of losses at each exit. As noted in [22],
this method has the advantage of allowing the development of
a novel architecture and can lead to accuracy improvements.
However, this method can be costly due to increased training
times and has the potential for reduced convergence resulting
from conflicting gradient information at intermediate classi-
fiers. For larger networks, [26] uses a similar method but starts
with a pre-trained backbone network. This can reduce the cost
of training and improve convergence but limits the potential
architectures to existing DNNs. MESS [30] and HAPI [24]
use a further streamlined method of training called IC-only
training in which, only the exit-specific computation and
intermediate classifiers have their parameters updated during
training and the backbone parameters are frozen. This allows
the customisation of a dynamic neural network for different
performance requirements based on the selection of available
exits but can suffer from decreased accuracy at shallower
classifiers. Training methodologies for dynamic networks are
an ongoing area of research. As a result, there is limited
optimised support in existing software frameworks, reducing
the availability of well trained models for deployment on
FPGAs.

B. Intermediate Feature Map Dependence

The dynamic nature of the network builds in an inherent
reliance on control information to govern the data-flow across
different network stages. From Fig 1 we note that the inter-
mediate classifiers use the previous layer’s output to reach
a decision. These intermediate feature maps are required by
both the intermediate classification layers or, in cases when an
early exit does not occur, the remainder of the backbone of the
dynamic network. Propagating the intermediate feature map
through the exit branch destroys them, so to prevent unneces-
sary repeated computation of these feature maps, a method of
preserving them is required in the form of intermediate on-chip
buffering or routing to external memory. The viability of the
first option is not always guaranteed for larger DNNs due to
the memory requirements of intermediate feature maps in e.g



(a) (b)
Fig. 2: Explored designs for (a) Pipeline and (b) Parallel approaches to Decision Sub-Networks [29]

VGG, ResNet etc., while the second option can significantly
impact the latency of a given inference.

C. Hardware Design & Toolflows

Additional layers, intermediate classifiers, and supporting
components can dramatically increase the complexity of the
hardware design task for Dynamic DNN deployment on FP-
GAs. Designers need to carefully balance the standard trade-
offs between computational efficiency, latency, and resource
utilization while ensuring proper synchronization and data-
flow across different inference paths with increased routing
congestion and resource overhead. Hand-crafted development
and testing of FPGA-based accelerators for complex appli-
cations such as Dynamic DNNs presents many challenges
and consumes considerable time. We note that numerous
FPGA manufacturers and researchers have invested resources
in developing mapping toolflows for standard DNNs, such
as Xilinx’s Vitis AI, Nvidia’s NVDLA, Angel-Eye, among
others. These tools are integrated with well-known static net-
work libraries like Caffe, TensorFlow, and Torch, generating
comprehensive, but often, inaccessible designs. Due to the
control and data-flow nature of Dynamic DNNs, mapping the
architecture requires the use of custom layer types, impacting
the intermediate stages of the backbone network, resulting in
the limited support of the existing frameworks in capturing
and mapping the dynamic behaviour to FPGAs. We observe
the need to continue to develop tooling in the area of dynamic
DNN mapping to FPGAs. fpgaConvNet [9] and FINN [11]
are two mapping tools that had no initial support for early-
exit networks but continued development on these open-
source tools has extended the support to dynamic networks,
as detailed in Section IV.

IV. ADVANCEMENTS FROM PRIOR WORKS

We present an explanation of a selection of prior works that
address some of the aforementioned challenges, highlighting
the active development in the area and spaces for future
research. We focus on the novel methods of utilizing Dynamic
DNN methods, Early-Exit Networks, and their implementation
on FPGA devices in the low resource setting.

Excluding the individual research efforts to develop support
software for dynamic DNNs, there is little large-scale support
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Fig. 3: High-level overview of the components of the ATHEENA
tooflow [32].

in this area. Intel developed a tool for general DNN com-
pression [31] which provides some support in this area but
is limited to training and profiling the benefits of early-exits.
The code does not utilization of the exits during inference but
this is registered as future work.

Following the limitations of existing FPGA-based accel-
erators for Dynamic DNNs, [29] proposes two hardware
architectures for early-exit networks designed from scratch.
The pipelined approach, depicted in Figure 2 (a), adopts a
traditional early-exit architecture. During a given inference,
an input sample is processed normally until reaching the layer
preceding the decision sub-network. The processing of the
backbone is stalled until the results of the intermediate classi-
fication are computed and an early-exit decision is made. This
architecture allows for the reuse of existing hardware modules,
achieving nearly 0% additional area overhead. While this may
result in some under-utilization of existing components, it
proves beneficial in scenarios with limited resources.

However, this approach struggles with the need of saving
the intermediate output, as interpreted in SectionIII B. To
solve that a parallel design approach is proposed by (Figure
2 (b)) where the parallelisation capabilities of the FPGAs are
exploited. In more detail, the early-exit branch is executed
in parallel with the backbone network, utilising separate hard-
ware modules. That way the the intermediate output is fed into
both the next layer of the backbone network and the early-exit
branch. This approach eradicates not only the latency overhead
during early exit branch computation but also eliminates the
necessity to store intermediate layer outputs.

An alternate work details the development of the toolflow,
visualized in Figure 3. The toolflow investigates the re-
source/throughput trade-off that can be made when fac-
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cluded in the ATHEENA [32] accelerator and the separation between
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toring the probabilistic nature of the early-exit network.
ATHEENA [32] is a toolflow that constructs a deeply
pipelined, early-exit network accelerator to perform inference
on an FPGA. The toolflow maps the full network onto the
FPGA and optimises the level of parallel computation to
maximise throughput under the resource constraints of a given
device. This is achieved by utilising the open-source fpgaCon-
vNet [9] as a baseline for tuning the parallelism of DNN-
specific layers. ATHEENA builds on this work by profiling a
given, trained, early-exit network to gauge the probability of
an input sample using a given exit. Assuming the real-world
task data is of a similar distribution to the training and profiling
sets, then there is a high likelihood that the accelerator will
have a similar utilisation of early-exits.

The early-exit network accelerator can then be split into
stages, where each stage contains the backbone layers and
intermediate classifiers, as shown in Figure 4. Here, a con-
ditional buffer component is introduced to store intermediate
feature maps between the network stages to reduce redundant
computation. Now that we have some computations that no
longer progress to later stages of the network, these layers
have a lower utilisation, matching the profiled probability.
This means that required throughput of these stages can be
reduced by a factor of the profiled probability of exiting at

that stage. This in turn means the resources of these stages
can be allocated to earlier stages, improving throughput of the
accelerator by ≈ 2− 3×.

AdaPEx [33] is a related FPGA work that explore dynamic
network inference on FPGAs making use of adaptive pruning
and early-exit intermediate classifiers to further explore the
trade-off of resources and throughput at run-time. AdaPEx is
built on the FINN [11] HLS framework, used to construct
multiple FPGA accelerators for a given traditional DNN.
The key difference with this work is that the full system is
coordinated by a runtime manager. Each of these accelerators
has a different level of channel-wise pruning, with reduced
accuracy corresponding to improved accelerator performance.
The runtime manager is responsible for orchestrating the
reconfiguration of the FPGA based on the user requirements
for accuracy and throughput. Since reconfiguration can be
costly, the work also provides runtime-parameterized versions
of the HLS templated accelerators that can support multiple
scales of pruning. This drastically reduces the latency cost of
switching between models at the cost of additional resource
overhead and reduced efficiency. In addition to pruning, this
work augments a standard DNN with intermediate classifiers
attached along the backbone of the network. Using these
additional degrees of freedom, the work can explore the trade-
off between accuracy, throughput and power-efficiency. One of
the similarities with this and many previous works is the use of
quantization to reduce the memory footprint of the parameters
of DNNs deployed on the FPGA, as well as reducing the
resources required for performing arithmetic operations.

V. FUTURE DIRECTIONS

Libraries. The continued development of libraries targeting
dynamic networks focusing on optimization and integration
with mainstream software (Pytorch, Tensorflow etc.). While
training and profiling is possible with existing libraries, op-
timized execution that can leverage batched computation and
high power compute is not well supported in mainstream tools.

Hardware-Software co-design. Existing FPGA hardware
tools (hls4ml, finn etc.) have limited support in this area and
even less for Dynamic DNNs. While there is an intuitive
explanation for the performance improvements of Dynamic
DNNs, an exploration of why they are effective in their current
state will help to derive more performant architectures and
adoption in different ML tasks.

Neural Models. The majority of research on Dynamic
DNNs has focused on tasks of image classification utilising
CNNs. However, a diverse number of models (RNNs, GANs
etc.) are already efficiently deployed on FPGAs, tackling
various tasks like object detection, regression and image
captioning, for which dynamism could be very beneficial.

Training Strategies. Training DNNs is inherently challeng-
ing especially, when FPGAs are targeted. Developing hardware
friendly strategies could enable on-device training leveraging
the platform’s low power and acceleration potential.

Distributed Execution. Beyond the resource constrained
setting, the flexibility of both Dynamic DNNs and FPGAs can



be leveraged in multi-FPGA systems. Using runtime managers,
reconfiguration, and high bandwidth interconnects, this system
could tackle much larger-scale networks while continually
adapting the level of computation on a per-sample basis.

VI. CONCLUSION

There are clear benefits of both FPGAs and dynamic DNN
architectures as effective tools for reducing power consump-
tion and flexibly adjusting computational workload to meet
accuracy constraints in a resource constrained environment.
This flexibility and customization is responsible for many of
the key challenges preventing the widespread adoption of these
types of networks, resulting in limited tools for both training
and deployment. In spite of this, we highlight the existence,
and continuing development, of custom implementations and
tooling that address network support and hardware complexity
issues, enabling users to begin to leverage some of the benefits
of Dynamic DNNs on FPGAs. However, plenty of space
remains for further research.
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