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Mode control and laser beam shaping in multimode and multicore fibres 

by 

Kunhao Ji 

Multimode (MM) and multicore fibres (MCFs) have been exploited in numerous important 
research areas, ranging from fibre lasers and telecommunications to transmission and sensing. 
However, designing and understanding multimodal nonlinear optical systems present significant 
technical and conceptual challenges. The ability to control light fields with multiple degrees of 
freedom is expected to become a key focus for future developments in multimode nonlinear 
systems. This project aims to investigate the dynamics of multimodal interactions in multimode 
and multicore fibres. In this thesis, mode control and laser beam shaping in homemade MCFs 
and commercial MMFs are explored. Firstly, the modal dynamics in multimode counter-
propagating systems are investigated, including mode rejection and control when the forward 
signal and backward control beam (BCB) are both operating in the nonlinear regime (high peak 
power). Mode rejection of a specific spatial mode was successfully observed in the output 
forward signal when the input BCB was coupled to the same mode with comparable power, using 
dual-core fibres (DCFs), tri-core fibres (TCFs), and commercial MMFs with lengths of 0.4-1m, at a 
total peak power of 4-16 kW for counter-propagating beams with 0.5 ns pulses at a wavelength of 
1040 nm. Secondly, the concept of counter-propagating nonlinear gratings is introduced when 
only the BCB is in the nonlinear regime. The BCB generates a multimode nonlinear grating that 
can be utilized for all-optical mode switching and power switching for the forward probe beam. 
Mode switching in 0.4 m MMFs and MCFs was observed with a BCB power of 6-12 kW in 0.5 ns 
pulses at a wavelength of 1040 nm. Core-to-core power switching in 0.4 m DCF and TCF was 
measured with a BCB power of 7-10 kW. Thirdly, wavelength and mode conversion in MCFs were 
investigated by exploring four-wave mixing (FWM) between supermodes in MCFs. Efficient FWM 
and supermode/wavelength conversion were demonstrated with a pump wavelength of 1040 nm 
in several homemade MCFs, including DCF, TCF, 4-core, and 7-core fibres. Finally, laser beam 
shaping in uncoupled MCFs was investigated. The controlled generation of ps-pulsed structured 
beams was achieved using a coherently combined 6-core Yb-doped MCF amplifier. This method 
produced linearly polarized Gaussian beams, cylindrical vector mode beams, and orbital angular 
momentum mode beams with peak powers of 10-14 kW and pulse durations of 92 ps at a 
wavelength of 1035nm. Overall, these results demonstrate mode control and beam shaping in 
MMFs and MCFs, highlighting the potential for all-optical light manipulations in various future 
photonics applications. 
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Definitions and Abbreviations 

4CF  4-Core Fibre 

7CF  7-Core Fibre 

ASE  Amplified Spontaneous Emission 

BCB  Backward Control Beam 

CBC  Coherent Beam Combination 

CCD  Charge-Coupled Device 

CCMCF Coupled-Core Multicore Fibre 

CV  Cylindrical Vector 

CW  Continuous Wave 

DCF  Dual-Core Fibre 

DWDM Dense Wavelength Division Multiplexing 

FF  Far-Field 

FMF  Few-Mode Fibre 

FS  Forward Signal 

FWHM Full Width at Half Maximum 

FWM  Four Wave Mixing 

GRIN  Graded-Index 

HOPS Higher-Order Poincaré Sphere 

HWP  Half Wave Plate 

IFA  Interferometric Fibre Analyser 

ISO  Isolator 

LP  Linearly-Polarized 

MCF  Multicore Fibre 

MD  Mode Decomposition 

MI  Modulation Instability 

MLA  Microlens Array 

MMF  Multimode Fibre 

MMMCF Multimode Multicore Fibre 

MMNLSE Multimode Nonlinear Schrödinger Equation 

MOPA Master Oscillator Power Amplifier 

NA  Numerical Aperture 

NF  Near Field 

OAM  Orbital Angular Momentum 

OFDR Optical Frequency Domain Reflectometry 
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OSA  Optical Spectrum Analyser 

OSNR Optical Signal to Noise Ratio 

OTDR  Optical Time Domain Reflectometry 

PB  Probe Beam 

PBS  Polarization Beam Splitter 

PER  Polarization Extinction Ratio 

PM  Polarization Maintaining 

PMF  Polarization Maintaining Fibre 

PP  Phase Plate 

QWP  Quarter Wave Plate 

SBS  Stimulated Brillouin Scattering 

SDM  Space-Division Multiplexing 

SLM  Spatial Light Modulator 

SM  Supermode 

SMF  Single Mode Fibre 

SNR  Signal to Noise Ratio 

SPGD  Stochastic Parallel Gradient Descent 

SPM  Self-Phase Modulation 

SRS  Stimulated Raman Scattering 

STML  Spatiotemporal Mode Locking 

TCF  Tri-Core Fibre 

THG  Third Harmonic Generation 

XPM  Cross Phase Modulation 
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List of symbols 

λ  Wavelength 

ω  Angular frequency 

c  Velocity of light in vacuum 

β  Propagation constant 

β1  First order dispersion 

vg  Group velocity 

β2  Second order dispersion 

∆n  Core-cladding refractive index difference 

t  Time 

ε0  Vacuum permittivity 

E  Electric field 

PL  Linear part of the induced polarization related to electric field 

PNL  Nonlinear part of the induced polarization related to electric field 

𝑬̃  Fourier transform of the electric field 

𝒆̂𝑚  Polarization state of the m-th mode 

Mm  Transverse shape of the m-th mode 

βm  Propagation constant of the m-th mode 

cm
2  Relative mode content (relative power) of the m-th mode 

θm  Relative phase of the m-th mode 

𝑛̅𝑚  Effective mode refractive index of the m-th mode 

βkm  The k-th order dispersion parameter for the m-th mode 

𝜒𝐾
(3)  The 3rd order nonlinear susceptibility related to the Kerr nonlinearity 

𝜒𝑅
(3)  The 3rd order nonlinear susceptibility related to the Raman nonlinearity 

hR  Raman response function 

γ  Kerr coefficient 

Aeff  Effective area 

fR  Fractional contribution of the delayed Raman response 

∆β  Phase mismatch 

fmnpq  Intermodal overlap factor 

ωp  Frequency of pump 

ωi  Frequency of idler 

ωs  Frequency of signal 

𝛿𝑅   Raman-induced index changes 

𝑔𝑅   Raman gain coefficients 
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ℎ̃𝑅  Fourier transform of hR 

Apm  Amplitude of pump in the m-th mode 

Asm  Amplitude of signal in the m-th mode 

Aim  Amplitude of idler in the m-th mode 

Fmx(y)  Amplitude of the forward m-th mode in the x/y polarization state 

Bnx(y)  Amplitude of the backward n-th mode in the x/y polarization state 

p  Polarization-related coefficient 

L  Fibre length 

Pf  Total forward powers 

Pb  Total backward powers 

cmn
2  Mode content of the LPmn mode 

θmn  Mode phase of the LPmn mode 

Ereconstructed Reconstructed electric field 

Cmn  Complex modal coefficients of the LPmn mode 

PBCB  BCB power 

Ωpk  Frequency separation between the FWM gain peaks and pump frequency 

ΩB  FWM Gain bandwidth 

ℓ  Topological charge 

EOUT  Output state of the correlation filter 

EHOPS  Polarization state of the HOPS beam 

UQWP  Jones matrix of QWP 

UQP  Jones matrix of QP 

θβ  Rotation angles of the QWP2 in the correlation filter 

θγ  Rotation angles of the q-plate in the correlation filter 

Iint  Intensity distribution of the interference pattern 

Etarget  Electric field of the target wave 

Eref  Electric field of the reference wave 

Erec  Recovered electric field 

Ck(j)  Complex modal coefficients for the k(j)-th mode 

N  Number of modes 

I  Intensity profile 

T  Transformation matrix 
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Chapter 1�Introduction 

1.1� Multimode and multicore fibres 

An optical fibre is a cylindrical dielectric structure designed to guide light between its two ends. 

It comprises a core, cladding, and coating. When light is launched into the core, it undergoes total 

internal reflection at the core-cladding interface, enabling it to propagate through the fibre. 

Optical fibres were first invented for optical communication purposes. The first low-loss practical 

optical fibre was produced in the 1970s by Corning Incorporated[1, 2]. This breakthrough was 

soon followed by the instalment of a first optical telephone communication system using several 

kilometers of optical fibre by General Telephone and Electronics in 1977[3]. Over the past 40 

years, optical fibre technologies have seen tremendous development, driven by the growing 

demand for high-speed, high-bandwidth, and low-attenuation optical fibre networks for data 

transmission, modern telecommunications, and internet connectivity[4]. Since the 1980s, 

significant efforts have been devoted to increasing the data-carrying capacity of a single optical 

fibre. These efforts include improving fibre materials, fibre structures, manufacturing techniques, 

and transmission systems[5]. Transmission capacity has been significantly enhanced by 

multiplexing optical signals in time, wavelength, polarization and phase, exploiting the different 

wavelengths, polarization states and phases of light[4]. Dense Wavelength Division Multiplexing 

(DWDM) technology, which involves densely packing multiple wavelengths of light, along with 

modern telecommunication systems, is capable of transmitting Tb/s through a single fibre[6].To 

further increase transmission capacity, the concept of Space-Division Multiplexing (SDM) was 

introduced [4, 6, 7]. SDM leverages multiple spatial channels, such as different spatial modes in 

few-mode fibres (FMFs) and multimode fibres (MMFs) or different cores in multicore fibres 

(MCFs). 

MMFs have large core diameters and support the propagation of multiple spatial modes within 

the fibre core. The history of MMFs dates back to the early development of optical fibre 

technology. Figure 1.1(a) shows the annual number of publications on the topic of multimode 

fibre from 1980 to 2023. Researchers have shown increasing interest in exploring multimode 

fibres since 2005, driven by advancements in fibre materials, design, and fabrication techniques. 

Additionally, the simultaneous propagation of multiple modes enables a variety of novel 

functions and techniques that extend beyond signal processing and communications. The 

introduction of MCFs also dates back to the same era of MMFs[8]. MCFs have multiple cores 

within the same fibre, offering variable core numbers, core diameters, and core distributions. This 

adds several degrees of freedom in optical fibre technology and its applications. The fabrication 
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of the first multicore fibre – a seven core fibre with an average single core loss of 3dB/km – was 

reported in 1979 by S. Inao[9]. As shown in Figure 1.1(b), researchers continued to explore and 

investigate multicore fibres from theoretical, fabrication, and application perspectives over the 

following decades. With the advancements in SDM techniques in the 2010s[4], MCFs have once 

again attracted researchers’ attention due to their capability and potential to meet the increasing 

demands for transmission capacity and bandwidth. However, compared with MMFs, as 

illustrated in Figure 1.1(a), MCFs are still in the early stages of development. They need to 

overcome a series of technical, standardization, and application challenges to realize their large-

scale deployment. 

 
Figure 1.1 Number of publications on the topics of multimode fibres and multicore 

fibres. (a) Annual publications on multimode fibres, step-index multimode fibres, and 

graded-index multimode fibres. (b) Annual publications on multicore fibres and 

coupled-core multicore fibres. Source of data: google scholar. 

1.2� Recent progresses on applications of MMFs and MCFs 

Optical fibres have become ubiquitous and been utilized in a multitude of applications, including 

short- and long-distance telecommunications, optical transmissions and sensing, quantum 

communications, imaging, fibre lasers and amplifiers, light delivery and beam shaping, as well as 

novel applications based on various nonlinear effects and modal interactions. Over the past few 

decades, there has been a resurgence of interest in multimode fibres and multicore fibres. This 

resurgence is primarily driven by the potential and possibilities for rapidly advancing optical fibre 

techniques and applications. This section will provide a brief introduction to recent progress in 

the applications of MMFs and MCFs. 



Chapter 1 

33 

1.2.1� Short- and long-distance communications with MMFs and MCFs 

Optical fibre communication systems are the backbone of global communication infrastructures. 

Modern high-capacity communication systems predominantly rely on single-mode fibres (SMFs), 

which support a transmission capacity limit of around 100 Tb/s within the traditional low-loss 

spectral window (1530nm to 1610nm) [4, 6]. To further enhance transmission capacity and 

bandwidth, MMFs and MCFs provide additional spatial channels, but they introduce unique 

challenges in SDM systems. These challenges include mode coupling, modal dispersion, mode 

dependent loss, crosstalk between MCF cores, and fibre nonlinearity[10]. To optimize SDM 

systems, researchers are improving SDM fibres (MMFs and MCFs) with advanced designs to 

mitigate mode coupling and differential mode delay, developing efficient spatial multiplexers and 

demultiplexers to ensure minimal loss and crosstalk, and leveraging advanced digital-signal 

processing techniques to mitigate impairments from mode coupling, modal dispersion, and 

nonlinear effects[6, 8, 10-12]. Additionally, optimizing multimode and multicore fibre amplifiers 

to support multiple modes or cores effectively, and conducting extensive modelling and 

simulation of multimodal, multi-channel information propagation in various types of SDM fibres, 

are critical steps. SDM fibres include multimode fibres, weakly-coupled multicore fibres, 

multimode multicore fibres (MMMCFs), and coupled-core multicore fibres (CCMCFs)[10]. 

Multimode and few-mode fibres have been used in commercial short-reach networks to transport 

independent signals on multiple modes at the same wavelength. The simultaneous propagation 

of multiple modes enables high-capacity transmission, with reported capacities ranging from 

hundreds of Tb/s to 1Pb/s using 3 to 45 fibre modes, as shown in Figure 1.2. To integrate MMFs 

with modern single-mode fibre communication systems, specialized mode multiplexers are 

necessary to match the multiple SMFs with the multiple mode patterns of MMFs. Another crucial 

parameter determining transmission performance is the modal propagation delay, which affects 

the memory length of the transmission system[8, 10-12]. This is a significant factor limiting 

current MMFs in long distance transmission. Researchers are working to minimize differential 

mode delay by optimizing fibre design, using approaches such as graded-index fibres, ring-core 

fibres, and hollow-core fibres[13]. Additionally, due to the differences in mode-dependent gain 

and multimode propagation, developing efficient MMF amplifiers remains a challenge for long 

haul transmission[10]. 

Weakly coupled MCFs consist of multiple single-mode cores embedded in a common cladding 

with negligible mode coupling between the cores. The low crosstalk and minimal interference 

enable a larger transmission capacity and longer transmission distance compared to MMFs. The 

longest optical fibre transmission to date was achieved using a 12-core fibre, covering a distance 

of 14350 km at a capacity of 105.1 Tb/s[8]. 
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MMMCFs combine the features of MMFs and weekly coupled MCFs. By incorporating multiple 

multimode cores, MMMCFs enable denser spatial multiplexing by increasing both the core 

counts and the mode counts. However, because higher-order modes are not well confined within 

the fibre core as the fundamental mode, larger core separation is needed to reduce inter-core 

crosstalk. Reported MMMCFs have cladding diameters larger than SMFs, with the largest 

exceeding 300 µm[10], potentially limiting their compatibility with modern optical fibre networks. 

Moreover, utilizing MMMCFs is more complex than using MMFs and MCFs, as both core 

multiplexing and mode multiplexing must be performed separately. The largest number of spatial 

channels (core count*mode count) yet reported is 120 with a 12-core 10-mode fibre[14]. 

CCMCFs feature multiple single-mode cores spaced closely together, resulting in strong 

crosstalk and coupling between the cores. This strong coupling can beneficially reduce spatial-

mode dispersion, consequently shortening the memory length of transmission system[10]. The 

different coupling conditions between CCMCF cores form mode groups, known as supermodes. 

Therefore, the light propagation mechanism in CCMCFs is similar to multimode propagation in 

MMFs, and their transmission performance is also comparable to that of MMFs. 

 
Figure 1.2 Transmission capacity versus transmission distance in MMFs and MCFs[10]. 

(a) Results for short-distance communications. (b) Results for long-distance 

communications. Abbreviations: C: core; M: mode; CC: coupled core. 

As shown in Figure 1.2, MCFs have the potential to outperform MMFs in high-capacity and long-

distance optical transmissions. However, the engineering and commercialization of MCFs for 

optical communications have not yet been fully realized due to various challenges, including 

technical complexities, the need for further technological maturity, and high costs[8]. 

Researchers are focusing on several improvement directions to address these challenges: 

reducing transmission loss, optimizing MCF structures, developing novel coupling/decoupling 

devices, and ensuring compatibility and standardization. 
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1.2.2� Optical sensing with MMFs and MCFs 

Fibre optical sensing has undergone tremendous growth in the last few decades due to its unique 

advantages, including high sensitivity, miniature size, corrosion-resistance, remote sensing 

capabilities, large scalability, and low maintenance costs. FMFs and MMFs serve as the media 

for independently and simultaneously measuring multiple sensing parameters in the physical, 

chemical, and biological fields[15-17]. These parameters include temperature, curvature, 

refractive index, displacement, and strain. MMF/FMF sensing leverages the differential response 

of various spatial modes to external environments. For example, the Bragg wavelength of a fibre 

Bragg grating or Brillouin frequency shift is highly mode-dependent, making it useful for 

temperature and bending sensing[16]. Additionally, by monitoring the optical attenuation of 

different modes during propagation in an optical fibre or fibre taper, spatial gas distributions can 

be measured in environments with extreme temperature and pressure conditions[17]. 

Multimodal interference in fibre interferometers has also been demonstrated for sensing various 

physical parameters such as temperature, curvature, and distance[18, 19]. 

 
Figure 1.3 Examples of optical fibre sensor structures using MMFs and MCFs[20, 21]. 

MCFs are ideal platforms for optical sensing due to their unique features, including multi-channel 

transmission, high integration, spatial flexibility and multifunctionality[8]. They can be used for 

both point sensing and distributed sensing applications. In MCF point sensing, various 

interferometers implemented with weakly-coupled MCFs or coupled-core MCFs have been 

demonstrated for sensing temperature, bending, vibration, and distance[20, 21]. Additionally, 

MCF distributed sensing utilizes Optical Time Domain Reflectometry (OTDR) or Optical 

Frequency Domain Reflectometry (OFDR) techniques to achieve efficient sensing at multiple 

points or along the entire fibre length[8]. By incorporating SMFs, MMFs, MCFs, and fibre gratings, 

several sensors have been demonstrated for a wide range of applications. Figure 1.3 illustrates 

two examples of integrated optical fibre sensor structures. In Figure 1.3(a)[20], the structure is 

designed for bending sensing, featuring an MCF with six identical outer cores and a central core 
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with a lower refractive index. The reflection peak of the Bragg grating inscribed in the central core 

is separated from the reflection peaks of the other cores, which can be measured by a segment 

of MMF between the MCF and the lead-in SMF. In Figure 1.3(b)[21], a SMF-MMF-MCF-MMF-SMF 

structure is designed to form a Mach-Zehnder interferometer for temperature sensing. The MMF 

serves as a coupler between the SMF and the MCF. The MCF has seven cores with slight refractive 

index differences between the central core and the surrounding cores, inducing interference 

between the cores. The change in the interference spectrum is measured to monitor external 

temperature changes. 

1.2.3� Image transmission and imaging through MMFs and MCFs 

When an image pattern is projected onto the proximal (input) side of a multimode or multicore 

fibre, the resulting image at the distal (output) side appears as a speckle pattern. This occurs 

because the input light couples into multiple fibre modes in MMFs or into multiple fibre cores in 

MCFs, each travelling with different propagation constants and phases along the fibre length. 

Highly multimode fibres and densely multicore fibres are typical media for image transmission 

and imaging[6], necessitating an understanding of the relationship between the optical fields at 

the proximal and distal sides of the fibre[22, 23]. 

The principle of image transmission and imaging through MMFs and MCFs involves achieving 

high-fidelity image transmission or reconstruction at the fibre output by analysing the 

transmission matrix of the fibres[22-26] or by utilizing speckle correlations[27, 28]. This is 

illustrated in Figure 1.4. Once a transmission matrix or conversion matrix is determined for a 

specific transmission fibre, the fibre is calibrated and must remain static. This transmission 

matrix can then be employed to reconstruct the input image, facilitating image transmission. 

Additionally, the transmission matrix can be used to control the input wavefront to achieve 

diffraction-limited imaging, such as in MMF/MCF endoscopy. Various methods have been 

demonstrated to obtain the transmission matrix of a transmission fibre, including phase 

conjugation[24], iterative methods, measuring the complex amplitudes corresponding to several 

input patterns, deep learning approaches[23, 25, 26], and numerical modelling[22]. 

Conversely, it is also possible to reconstruct the input image from the output speckle pattern 

using the angular memory effect in MMFs and MCFs[27, 28]. This effect preserves the phase 

gradients at the fibre input to some extent. For instance, the inherent preservation of phase 

information during propagation through a multicore fibre[28] allows for widefield imaging of 

planar objects across a large range of working distances. This can be achieved by 

computationally analysing a single image of the output speckled intensity pattern. 
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Figure 1.4 Schematics of the experimental setup for (a) image transmission with a 

MMF[25] and (b) speckle-correlation imaging with an MCF[28]. 

Despite these successes, the fragility of the measured transmission matrix or the matrix trained 

by neural networks remains a significant challenge, preventing full optical control of light 

transmission through MMFs and MCFs[6]. Developing new methods to control light and 

continuously image through flexible fibres will not only benefit image transmission but also 

enhance other areas, including optical communications and information processing. 

1.2.4� Multimode/Multicore fibre lasers and amplifiers 

Fibre lasers have been experiencing significant growth and present a substantial share of the 

global laser market, thanks to their unique advantages such as power scalability, compact size, 

high efficiency, and versatility in applications. The large effective modal areas of MMFs and MCFs 

enable power scaling of fibre lasers[6, 29, 30], enhancing their performance and capacity. 

Additionally, multimodal and multi-channel properties of these fibres offer diversities in spatial 

and temporal shapes[31-34], directions, and wavelengths[35, 36] for fibre lasers and amplifiers, 

broadening their range of applications and functionality. 
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The optical signal can be amplified in rare earth-doped fibres (also called active fibres), with 

different emission wavelengths achievable using various dopants[36]. For instance, Yb3+-doped 

fibre lasers have an emission window of 1050-1120nm, Er3+-doped fibre lasers emit from 1530nm 

to 1600nm, and Tm3+-doped and Tm3+- Ho3+ co-doped fibre lasers have an emission range of 1900-

2100nm. The past decade has seen tremendous enhancements in the power scaling of 

continuous-wave (CW) and pulsed lasers. These advancements are attributed to the rapid 

development of active fibres, pump diodes, and the power handling capabilities of fibre 

components such as isolators, combiners, gratings, and coatings[29, 30, 36, 37]. Figure 1.5[36] 

illustrates the power evolution over the past several years of CW all-fibre lasers and amplifiers 

operating at wavelengths of ~1µm, ~1.5µm, and ~2µm. The spectrum windows not covered by 

rare earth-doped fibres can be generated using various nonlinear effects, including Raman 

Scattering, Four-Wave Mixing (FWM), Self-Phase Modulation (SPM), and supercontinuum 

generation[33, 35-37]. 

 
Figure 1.5 Power evolution of CW all-fibre lasers with different rare earth dopants 

operating at wavelengths of (a) ~1µm, (b) ~1.5µm, and (c) ~2µm[36]. 

In addition to power scaling through master oscillator power amplifiers (MOPA) and high-power 

fiber amplifiers, pulsed fibre lasers have seen advancements in pulse energy, operation duration, 

and pulse generation mechanisms[33, 37]. Recently, MMFs have been introduced into mode-

locked fibre lasers, where the multiple spatial (transverse) modes play a crucial role in mode-

locking. For instance, using a short segment of MMF as a novel saturable absorber, various 

ultrafast fibre lasers operating at 1µm, ~1.5µm, and ~2µm have been demonstrated[37]. Another 

promising method is to achieve spatiotemporal mode-locking (STML) in a fully multimode cavity, 

where the mode locking of multiple longitudinal and transverse modes is possible[33, 37]. The 

realization of STML relies on delicate balances between intracavity linear and nonlinear effects, 

including chromatic and modal dispersion, inter- and intra-modal nonlinearities, spectral and 

spatial filtering, and cavity gain and loss. 

With the advancements in MMF lasers and amplifiers, MCF laser cavities and MCF amplifiers 

have also been investigated and demonstrated in recent years, utilizing either uncoupled MCFs 
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or coupled-core MCFs[38-40]. Significant progress has been made in power scaling, spectrum 

extension, and spatiotemporal control of fibre lasers. However, challenges remain in mitigating 

quantum defects[36], managing heat power generation, and studying the limits of gain media[37]. 

Once single-aperture power limits are reached, the primary option for further power scaling is 

beam combination. Parallel fibre laser arrays and uncoupled multicore fibres have been 

employed to achieve diffraction-limited combination with high power or high energy in both CW 

and pulsed regimes[41-43]. Researchers have also demonstrated the reconfigurable and 

controlled generation of structured light beams by exploiting tilted-aperture coherent beam 

combination[44-46]. By incorporating various technical approaches, including coherent or 

incoherent combination, linear or nonlinear methods, active or passive techniques, as well as 

adaptive or deep learning strategies, significant improvements can be expected towards 

intelligent fibre lasers in both CW and pulsed regimes. 

1.2.5� Beam shaping of multimode and multicore fibre lasers 

Precisely controlling the distribution of light is crucial for various applications in optics, ranging 

from microscopy and optical manipulation to spectroscopy and telecommunications[47, 48]. In 

recent years, beam shaping of multimode and multicore lasers has been demonstrated across 

various degrees of freedom, including spatial beam shaping and temporal/frequency shaping at 

different propagation planes. Structured lights with controllable amplitude, phase, and 

polarization distributions have been successfully generated from multimode and multicore fibre 

lasers using internal or external methods with laser cavities[45-47, 49-53]. Numerous techniques 

have been explored to optimize the generated spatial shapes or modes with minimal loss and 

high distinction. These include traditional diffractive optical elements, modern liquid crystal and 

metasurface elements, adaptive wavefront shaping methods[54], reconfigurable solutions 

employing beam-steering devices like digital micro-mirror devices and spatial light 

modulators[49, 51], coherent combinations of parallel laser arrays or multicore fibre 

amplifiers[46, 50], and more recently, deep learning-assisted beam shaping solutions[53]. 

In addition to spatial beam shaping, efforts have been directed towards achieving time or 

frequency shaping of light, and more recently, the simultaneous manipulation of spatial and 

temporal properties of light has emerged. By dispersing optical pulses into different frequency 

components and modulating the amplitude and phase in the frequency domain, temporally 

shaped output can be obtained through the combination of multiple shaped frequency 

components[48]. Concepts such as supercontinuum and optical frequency combs generation 

have emerged in fibre lasers for the extensive spectrum broadening. However, several challenges 

need to be addressed, including mode instability, nonlinear coupling and dispersion 

management, multimodal nonlinear effects, as well as specialty fibre design and fabrications[48, 
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55, 56]. Overall, advancements in fibre lasers and fibre optic technologies are steering laser beam 

shaping towards real-time, self-organized, spatiotemporal shaping techniques. 

1.2.6� Multimodal nonlinear effects in MMFs and MCFs 

As previously mentioned, with the power scaling of fibre lasers and advancements in fibre design 

and fabrication technologies, numerous applications relying on nonlinear optical effects have 

emerged. Compared to single-mode fibres, multimode and multicore fibres offer diverse phase 

matching possibilities and mode choices due to their multi-mode and multi-supermode nature. 

Excitingly, multimodal nonlinear interactions can lead to several new nonlinear effects and 

phenomena in multimode systems. These include forward Brillouin scattering[57], Kerr beam 

self-cleaning[58-63], modal selection for Raman scattering[64, 65], broadband parametric 

amplification[6], optical gratings generated from periodic intermodal beating[66], and the 

combination of Raman and Kerr effects[6]. 

Multimode nonlinear systems are evolving along two primary pathways[6]. One approach aims to 

maximize nonlinear multimode interactions by exploiting the distinct dispersions and mode areas 

of different spatial modes. The other involves combining linear and nonlinear mode mixing. 

Despite progress in understanding the complexities of multimode nonlinear dynamics and 

advancements in specialty fibres and fibre lasers, significant challenges remain. These include 

achieving low-loss, high-purity, and on-demand excitation of desired spatial modes for various 

multimode and multicore fibres, as well as developing real-time, broadband mode 

decomposition approaches[67]. 

1.3� Motivation and key achievements 

As we have reviewed, multimode and multicore fibres present attractive platforms for exploiting 

complex multimodal interaction dynamics, beneficial across a variety of applications such as 

telecommunications, transmission, fibre lasers, and sensing. However, understanding and 

designing multimodal nonlinear optical systems pose significant technical and conceptual 

challenges. The ability to control light fields with many degrees of freedom is anticipated to be a 

prominent direction for future advancements in multimode nonlinear systems. With the 

development of fibre fabrication techniques and power scaling of pulsed fibre lasers, numerous 

approaches have been demonstrated to achieve mode control and mode conversion in 

multimode and multicore fibre systems. Incorporated with tremendous advancements in 

wavefront shaping elements and devices, several methods for arbitrary spatial beam shaping 

with MMFs and MCFs have been investigated. 
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The work presented in this thesis contributes to mode control and beam shaping in multimode 

and multicore fibres by exploring multimode nonlinear dynamics in homemade coupled-core 

multicore fibres and commercial multimode fibres. The key achievements are listed below: 

•� Demonstrated mode rejection and control in nonlinear multimode systems. Developed 

concepts for mode rejection and control by injecting an intense backward control beam 

into a multimode/multicore fibre. This method effectively rejects specific spatial mode 

contents (resulting in null content for the rejected mode) and allows precise mode control, 

driven by multimodal interactions between counter-propagating beams. Efficient 

rejection and control of linearly-polarized (LP) modes and supermodes in MMFs and 

MCFs were successfully achieved. 

•� Provided the demonstration of counter-propagating nonlinear gratings in multimode 

systems. By adjusting the counter-propagating beams with a substantial power 

difference, an intense backward multimode beam can generate counter-propagating 

nonlinear gratings that lead to the mode conversion of a forward low-power signal. 

Controllable conversion between the LP modes or supermodes in MMFs and MCFs was 

achieved. Additionally, ultrafast power switching among cores in MCFs was also 

demonstrated owing to supermode conversion and mixing. 

•� Investigated parametric amplification dynamics and wavelength conversion in coupled-

core multicore fibres. The four-wave mixing between multiple supermodes was 

numerically estimated and experimentally measured. The Raman scattering in multi-

supermode systems was also explored. 

•� Demonstrated reconfigurable spatial beam shaping with a pulsed multicore fibre 

amplifier. In parallel with exploring mode control and conversion in a nonlinear manner, 

arbitrary spatial beam shaping was achieved by coherently combining beamlets from a 

Yb-doped 6-core MCF amplifier. This includes the reconfigurable generation of the LP 

modes, cylindrical vector modes, and orbital angular momentum modes. 

1.4� Thesis outline 

The thesis is organized as follows. Chapter 2 provides a comprehensive review of essential 

concepts in optical fibres and fibre modes, alongside an exploration of nonlinear processes in 

multimode light propagation. It begins with an overview of optical fibre parameters and 

characteristics, followed by introductions of fibre modes and techniques for fibre mode 

decomposition. Subsequently, the chapter delves into the formulation of coupled multimode 

nonlinear Schrödinger equations, discussing both intramodal and intermodal nonlinear effects. 

Finally, it reviews various processes involved in nonlinear spatial control within multimode 
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systems, covering the topics that are highly relevant to this thesis, such as dissipative spatial 

beam clean-up, Kerr beam self-cleaning, self-organization in multimode gain media, polarization 

and mode attractors, and the generation of optically induced long period gratings. 

Chapter 3 investigates the first proposed concept - mode rejection and control within counter-

propagating nonlinear multimode systems. Firstly, the theory and simulations are presented to 

estimate and validate the mode rejection phenomenon. Secondly, experimental demonstrations 

elucidate the rejection of the LP modes in various commercially available few-mode fibres, 

including both polarization-maintaining (PM) fibres such as PM1550-xp, PMHN1, and PM2000, 

and non-PM isotropic fibres like SMF28. Thirdly, the rejection of supermodes is demonstrated by 

experiments conducted with homemade coupled-core multicore fibres, specifically a dual-core 

fibre (DCF) and a tri-core fibre (TCF). To accurately gauge the extent of mode content rejection, 

quantitative assessments employing intensity-based mode decomposition methods are 

introduced and implemented. 

Chapter 4 delves into the intricacies of counter-propagating nonlinear gratings in multimode and 

multicore fibres. Initially, the chapter elucidates the dynamics of counter-propagating nonlinear 

gratings, underpinned by the interaction between a forward probe beam and a backward control 

beam in multimode systems. However, a substantial power difference exists between the 

forward probe beam and the backward control beam, thus necessitating a thorough examination 

of their dynamics through theoretical frameworks and simulations. Subsequently, the chapter 

explores mode conversion phenomena driven by the counter-propagating nonlinear gratings, 

specifically focusing on the conversion between the LP modes within PM-FMFs and between 

supermodes within MCFs, supported by experimental validations. Leveraging the coupled-core 

architecture of the MCFs, the chapter also elucidates how supermode conversion and mixing 

facilitate power switching between cores, ultimately demonstrating ultrafast core-to-core power 

switching in MCFs. 

Chapter 5 studies four-wave mixing and wavelength conversion in coupled-core MCFs. The 

chapter starts with an introduction of the mechanisms of four-wave mixing and Raman scattering 

in MCFs. Then the estimations of four-wave mixing in several homemade MCFs are presented, 

accompanied by discussions on fibre design considerations, customized phase-matching 

conditions, and the impact of Raman scattering. In the end, experimentally measured wavelength 

and supermode conversions are demonstrated by using DCF, TCF, and fibres with 4 and 7 cores. 

Chapter 6 demonstrates reconfigurable spatial beam shaping through coherent beam 

combination utilizing a 6-core Yb-doped MCF amplifier. The chapter commences by outlining the 

principle behind coherent beam combination and introduces the active 6-core fibre. By 

adaptively adjusting the amplitudes and phases injected into the individual MCF cores, the 
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controlled generation of various spatial mode beams is presented in a picosecond pulsed regime, 

including the LP modes and higher-order Poincaré sphere modes. 

Chapter 7 concludes the mode control and beam shaping work presented in this thesis and 

discusses potential pathways for future work. 
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Chapter 2�Theory and review of nonlinear spatial 

control processes in multimode systems 

2.1� Introduction 

In this chapter, the background knowledge of multimode light propagation in optical fibres is 

reviewed. Initially, the structure of optical fibres, their characteristics, fibre modes, and laser 

beam propagation are introduced. Then, the propagation of multimode laser beams in optical 

fibres is explored using the multimode nonlinear Schrödinger equation (MM-NLSEs). Intramodal 

and intermodal nonlinear processes are discussed, including single-/multi-mode modulation 

instability, self- and cross-phase modulation, four-wave mixing, Raman scattering, and the 

interaction between different nonlinear effects. The corresponding derivations of analytical 

solutions to the MM-NLSEs are demonstrated. Finally, a review of nonlinear spatial control 

processes in multimode systems, highly relevant to the topic of this thesis, is presented. These 

nonlinear processes include dissipative spatial beam clean-up, Kerr beam self-cleaning, beam 

self-organization in multimode gain media, polarization and mode attractors in counter-

propagating beams, and optically induced long period gratings. 

2.2� Optical fibres and fibre modes 

2.2.1� Optical fibres 

Optical fibres have high refractive index cores and lower refractive index claddings, which confine 

light propagation within the cores through total internal refraction at the core-cladding interface. 

An additional coating layer with a refractive index lower than the cladding provides mechanical 

protection. Figure 2.1(a) shows a cross-section image of a step-index single-mode fibre. The core 

and cladding are typically made of silica glass, and their refractive indices can be increased or 

decreased by using different dopants, such as germania and fluorine. The coating material is 

usually a polymer, such as acrylate or silicone. Several parameters that can be adjusted when 

designing optical fibres, including core diameter, core shape, refractive index profile, multiple 

layers, and multiple cores. Figure 2.1(b) illustrates the structures of single-mode, multimode, and 

multicore fibres. SMFs have core diameters of a few micrometres. Even SMFs are not truly single 

mode, as they can support two degenerate polarization modes with orthogonal polarizations. 

When polarized light is launched into a conventional SMF, the polarization state is quickly lost 

after a few metres due to inevitable variations of fibre geometry or external stress. By changing 
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the core shape from circular to asymmetrical, such as elliptical, or by adding additional stress 

rods, birefringence can be introduced to help maintain the polarization state during propagation. 

MMFs (including FMFs) have larger cores that support the simultaneous propagation of multiple 

spatial modes. These modes propagate at different velocities and travel along different paths due 

to variations in their effective refractive indices. MCFs have multiple single-mode or multimode 

cores embedded within a single cladding. When the cores are sufficiently separated, coupling 

between them is minimized, resulting in weakly-coupled or uncoupled MCFs, which can be 

treated as a bundle of SMFs. However, as the cores are brought closer together, crosstalk 

between them increases, leading to coupled-core MCFs. In this configuration, light transfers 

between cores during propagation, and supermodes are formed with specific amplitude and 

phase distributions among the cores. 

 
Figure 2.1 (a) Cross section of a single-mode fibre and the refractive index distribution. 

(b) Structures of single-mode, multimode, and multicore fibres. 

One important parameter of optical fibre is the transmission loss of optical signals within the 

fibre. Fibre loss depends on the wavelength (λ) of light and is influenced by several factors, such 

as material absorption and Rayleigh scattering[68]. Silica glass has minimal light absorption in 

the wavelength region of 0.5 to 2 µm, with a minimum loss of ~ 0.2 dB/km at the λ=1.55 µm 

wavelength. The impurity-induced absorption can also affect fibre loss, such as the OH-

absorption peak around λ=1.4 µm. Losses are considerably higher at shorter wavelengths, 

reaching ~1 dB/km at λ=1 µm and a few dB/km in the visible region, which is due to the intrinsic 

Rayleigh scattering of fused silica[69]. Rayleigh scattering loss is inversely proportional to 

wavelength and is dominant at short wavelengths. 

Another important parameter of optical fibre is dispersion, which includes chromatic dispersion 

and mode dispersion. Chromatic dispersion can be further classified into material dispersion and 

waveguide dispersion[68]. Material dispersion is related to the wavelength or frequency (ω) 

dependence of the refractive index and can be well approximated by the Sellmeier equation[68]: 
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 𝑛2(𝜔) = 1 +∑
𝐵𝑗𝜔𝑗

2

𝜔𝑗
2 −𝜔2

𝑚

𝑗=1
 (2.2.1) 

where ω=2πc/λ is the angular frequency (with c being the velocity of light in vacuum), ωj is the 

resonance frequency and Bj is the strength of the j-th resonance. In optical fibres, the parameters 

ωj and Bj are obtained experimentally with m=3 by fitting the measured dispersion curves to 

Eq.(2.2.1). Material dispersion plays a critical role in the propagation of short optical pulses. Its 

effects can be understood by expanding the mode propagation constant (β) in a Taylor series 

around the frequency ω0, where the pulse spectrum is centred: 

 𝛽(𝜔) = 𝑛(𝜔)
𝜔

𝑐
=∑

1

𝑘!
𝛽𝑘(𝜔 − 𝜔0)

𝑘
𝐾

𝑘=0
 (2.2.2) 

where 𝛽𝑘 = (
𝑑𝑘𝛽

𝑑𝜔𝑘)
𝜔=𝜔0

 and k=0,1,2,3,…, which is often referred to as the k-th order dispersion 

parameter. The first order dispersion (β1) is the inverse of the group velocity (vg), which is the 

speed at which the envelope of an optical pulse travels: 

 𝛽1 =
1

𝑐
(𝑛 + 𝜔

𝑑𝑛

𝑑𝜔
) =

𝑛𝑔

𝑐
=
1

𝑣𝑔
 (2.2.3) 

where ng is the group index. The second order dispersion (β2) is the group velocity dispersion, 

which represents the frequency derivative of β1 and is related to pulse distortion and reshaping 

during propagation. 

 
Figure 2.2 (a) Variation of refractive index n with wavelength for silica glass. And the (b) 

propagation constant of fundamental mode, (c) β1, (d) β2, as a function of wavelength for 

a silica fibre (a=4.1 µm, ∆n=0.0052). 

Differently from plane waves, light experiences core confinement in an optical fibre, resulting in 

waveguide dispersion that must be added to the material dispersion to determine the total 

chromatic dispersion. Waveguide dispersion is influenced by fibre geometry, such as core radius 

(a) and core-cladding index difference (∆n). Figure 2.2 illustrates the variation of dispersion 

parameters with wavelength for a step-index silica fibre. Figure 2.2(a) depicts the refractive index 

variation of fused silica as described by Eq. (2.2.1). Figure 2.2(b)-(d) show the parameters β, β1, 
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and β2 for the fundamental mode (LP01 mode) that can propagate in this fibre, which can be 

computed using a finite-element-method software, such as Comsol Multiphysics. As Figure 2.2(d) 

demonstrates, a notable feature for β2 is its vanishing at λ=~1.3 µm, known as the zero-dispersion 

wavelength. In the region shorter than this wavelength, β2>0, indicating normal dispersion in the 

fibre, whereas in the longer wavelength region, the fibre exhibits anomalous dispersion. This 

implies that longer-wavelength pulses travel slower in anomalous dispersion region, contrasting 

with the behaviour in the normal dispersion. 

In addition to chromatic dispersion, mode dispersion also needs to be considered in multimode 

fibres. This encompasses polarization-mode dispersion and intermodal dispersion. Because the 

propagation constants of various polarization modes or spatial modes differ, different modes 

travel at different velocities, resulting in pulse broadening. By combining chromatic dispersion, 

mode dispersion, and fibre nonlinearity, a range of nonlinear effects can be observed, which will 

be discussed in the subsequent sections. 

2.2.2� Fibre modes and mode decomposition 

Light propagates in optical fibres as a combination of fibre modes. To understand light 

propagation and fibre modes, it is necessary to consider the theory of the electromagnetic wave 

equation in dispersive nonlinear media. Starting from Maxwell’s equations, the wave equation 

can be derived[68]: 

 ∇2𝑬(𝒓, 𝑡) −
1

𝑐2
𝜕2𝑬(𝒓, 𝑡)

𝜕𝑡2
=

1

𝜀0𝑐
2

𝜕2𝑷𝑳(𝒓, 𝑡)

𝜕𝑡2
+

1

𝜀0𝑐
2

𝜕2𝑷𝑵𝑳(𝒓, 𝑡)

𝜕𝑡2
 (2.2.4) 

where r and t denote the spatial coordinates and time, respectively, ε0 is the vacuum permittivity, 

E is the electric field, and PL and PNL are the linear and nonlinear parts of the induced polarization 

related to E. After taking the Fourier transform of Eq. (2.2.4), it takes the form[70]: 

 ∇2𝑬̃(𝒓,𝜔) + 𝑛2(𝒓,𝜔)
𝜔2

𝑐2
𝑬̃(𝒓, 𝜔) = −

𝜔2

𝜀0𝑐
2
𝑷̃𝑵𝑳(𝒓, 𝜔) (2.2.5) 

where n is the linear part of the refractive index and 𝑬̃ represents the Fourier transform of the 

electric field. 𝑬̃  can be expressed as the summation of all the electric field components, 

assuming that the polarization state is maintained inside the fibre: 

 𝑬̃(𝒓, 𝜔) =∑ 𝒆̂𝑚𝑀𝑚(𝑥, 𝑦, 𝜔)𝐵̃𝑚(𝑧, 𝜔)𝑒𝑥𝑝[𝑖𝛽𝑚(𝜔)𝑧]
𝑚

 (2.2.6) 

where 𝒆̂𝑚  is the polarization state of a specific mode m, Mm governs its transverse shape, 𝐵̃𝑚 

represents the amplitude of this mode, and βm is the corresponding propagation constant. The 

summation typically includes only the guided modes in multimode fibres. This expression 
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describes how each mode m contributes to the overall electric field in the fibre, considering its 

amplitude, polarization, transverse shape, and propagation constant. 

By neglecting the nonlinear contribution (PNL=0), the remaining part of Eq. (2.2.5) reduces to the 

Helmholtz equation, whose solution 𝑬̃ represents the guided modes (eigenmodes) of the fibre. 

The Helmholtz equation can be solved using various numerical methods or analytical techniques, 

such as the finite element method, finite difference method, and approximate analytical methods. 

For standard single-core step-index fibres, the spatial distributions Mm(x,y,ω) can be obtained by 

rewriting the Helmholtz equation in cylindrical coordinates[68]. The solutions can be classified 

into four types of fibre vector modes: HEnm, EHnm, TE0m, and TM0m modes. An alternative 

classification known as the LP modes can be constructed by combining different vector modes. 

For instance, the LP01 mode corresponds to the HE11 mode, and the LP11 mode is the combination 

of TE01, TM01, and HE21 modes. Calculating guided modes is more convenient using finite-element-

method software, such as the aforementioned Comsol Multiphysics, especially for fibres with 

higher mode counts, complex index distributions, or complex geometries like multicore fibres. 

In a MMF or a coupled-core MCF, multiple spatial modes propagate with random amplitudes and 

phases due to mode coupling, mode competition, and differential modal gain. Assuming that all 

the spatial modes are in the same polarization state and have a single frequency, Eq. (2.2.6) 

suggests that the transverse distribution of the electric field in a fibre can be represented by a 

linear combination of eigenmodes due to modal orthogonality[67]: 

 𝑀(𝑥, 𝑦) =∑ 𝑐𝑚𝑒𝑥𝑝(𝑖𝜃𝑚)𝑀𝑚(𝑥, 𝑦)
𝑚

 (2.2.7) 

where the cm
2 and θm represent the relative mode content (relative power in the mode) and relative 

phase for the m-th eigenmode, respectively. M and Mm denote the transverse mode distribution 

of the total electric field and the m-th mode, respectively. In a multimode system, M tends to 

change randomly when perturbation exists or the system is under instable state (for example, the 

transverse mode instability in high power multimode fibre systems[71]). Analysing the power and 

phase of different modes is useful and necessary for a complete description of multimode beam 

shapes, a process known as mode decomposition (MD). MD aims to obtain the parameters cm 

and θm given the knowledge of Mm for a specific fibre at the output. Numerous methods for mode 

decomposition have been demonstrated, including interference methods that measure the 

complex amplitude M[72, 73], numerical methods based on intensity measurements(|M|2)[67, 74, 

75], and machine learning methods[76]. In the later chapters, demonstrations of mode 

decomposition based on intensity measurements are introduced for MMFs and MCFs. 
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2.3� Nonlinear processes in multimode laser beam propagation 

2.3.1� Multimode nonlinear Schrödinger equations 

To study the nonlinear processes in multimode fibres, the nonlinear contribution PNL needs to be 

considered in the wave equation Eq. (2.2.5). By substituting the electric field from Eq. (2.2.6) into 

the wave equation, and under the assumption of slowly varying amplitude with respect to z while 

neglecting the second derivative with respect to z, the following equations can be obtained: 

 ∇𝑇
2𝑀𝑚(𝑥, 𝑦, 𝜔) + 𝑛2(𝑥, 𝑦, 𝜔)

𝜔2

𝑐2
𝑀𝑚(𝑥, 𝑦, 𝜔) = 𝛽𝑚

2𝑀𝑚
2 (𝑥, 𝑦, 𝜔) (2.3.1) 

where ∇𝑇2  denotes the transverse part of the Laplace operator. Eq. (2.3.1) determines the 

transverse mode shape and the propagation constant βm of each mode. 

 ∑ 2𝑖𝛽𝑚𝒆̂𝑚
𝜕𝐵̃𝑚
𝜕𝑧

𝑀𝑚(𝑥, 𝑦, 𝜔)𝑒
𝑖𝛽𝑚𝑧

𝑚
= −

𝜔2

𝜖0𝑐
2
𝑷̃𝑁𝐿(𝒓,𝜔) 

(2.3.2) 

Eq. (2.3.2) describes the evolution of the amplitude 𝐵̃𝑚 of the m-th mode as it propagates along 

the z direction. By multiplying Eq. (2.3.2) with Mm* and integrating over the transverse plane, the 

amplitude of the m-th mode satisfies the following equation: 

 
𝜕𝐵̃𝑚
𝜕𝑧

=
𝑖𝜔𝑒−𝑖𝛽𝑚𝑧

2𝜖0𝑐𝑛̅𝑚
∬𝒆̂𝑚𝑀𝑚

∗ (𝑥, 𝑦, 𝜔)𝑷̃𝑁𝐿(𝒓,𝜔) 𝑑𝑥𝑑𝑦 (2.3.3) 

where the orthogonality relation between modes (∬𝑀𝑚
∗ 𝑀𝑛 𝑑𝑥𝑑𝑦 =  𝛿𝑚𝑛 , 𝛿𝑚𝑛 = 0 when m≠n, 

𝛿𝑚𝑛 = 1 when m=n) is applied and 𝛽𝑚 = 𝑛̅𝑚𝜔/𝑐 with the effective mode refractive index 𝑛̅𝑚. By 

defining a slowly varying function[68], 

 𝐴𝑚(𝑧, 𝑡) = ∫ 𝐵̃𝑚(𝑧, 𝜔)e
𝑖[(𝛽𝑚−𝛽0𝑚)𝑧−(𝜔−𝜔0)𝑡]𝑑(𝜔 − 𝜔0)

∞

−∞

 (2.3.4) 

where βm is the propagation constant of the m-th mode, β0m is its value at the carrier frequency 

ω0(see Eq. (2.2.2)). By calculating the partial derivative of Am(z,t) and expanding βm in a Taylor 

series around the frequency ω0, after some algebra, one can obtain the following time-domain 

amplitude evolution equation[77]: 

 
𝜕𝐴𝑚
𝜕𝑧

− 𝑖∑
𝑖𝑘𝛽𝑘𝑚
𝑘!

𝜕𝑘𝐴𝑚
𝜕𝑡𝑘

∞

𝑘=1

=
𝑖𝜔0𝑒

−𝑖(𝛽0𝑚𝑧−𝜔0𝑡)

2𝜖0𝑐𝑛̅𝑚
∬𝒆̂𝑚𝑀𝑚

∗ (𝑥, 𝑦)𝑷𝑁𝐿(𝒓, 𝑡) 𝑑𝑥𝑑𝑦 (2.3.5) 

where βkm=(∂kβm/∂ωk) ω=ω0, is the k-th order dispersion parameter for the m-th mode of the fibre at 

frequency ω0. The right-hand side of this equation includes all the nonlinear effects. 
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To specify the nonlinear polarization PNL on the right-hand side of Eq. (2.3.5), the Kerr and Raman 

contributions are considered. The nonlinear polarization can be written in the form[68]: 

 

𝑷𝑵𝑳(𝒓, 𝑡) =
3𝜖0
4
𝜒𝐾
(3)

⋮ 𝑬(𝒓, 𝑡)𝑬(𝒓, 𝑡)𝑬(𝒓, 𝑡) +
3𝜖0
4
𝜒𝑅
(3)

⋮ 𝑬(𝒓, 𝑡)∫ ℎ𝑅(𝑡 − 𝜏)
𝑡

−∞

𝑬(𝒓, 𝜏)𝑬(𝒓, 𝜏)𝑑𝜏 
(2.3.6) 

where 𝜒𝐾
(3) and 𝜒𝑅

(3) represent the 3rd order nonlinear susceptibility related to the Kerr and Raman 

nonlinearities, respectively. The nonlinear polarization PNL is a tensor product of the electric fields, 

and hR is the Raman response function. In a simple case without the Raman contribution, the last 

term involving hR can be neglected. Since the mode profile Fm does not change significantly over 

the spectral bandwidth of the electric field, Mm(x,y,ω) can be approximated by its value at the 

carrier frequency ω0, denoted as Mm(x,y,ω0). By substituting the ansatz: 

 𝑬(𝒓, 𝑡) =∑ 𝒆̂𝑚𝑀𝑚(𝑥, 𝑦, 𝜔0)𝐴𝑚(𝑧, 𝑡)e
𝑖(𝛽0𝑚𝑧−𝜔0𝑡)

𝑚
 (2.3.7) 

through the Eq. (2.3.6) into the Eq. (2.3.5), and retaining only the terms that oscillate at the carrier 

frequency ω0, the multimode nonlinear Schrödinger equations (MM-NLSEs) for the m-th mode 

can be derived[68]: 

 

𝜕𝐴𝑚
𝜕𝑧

− 𝑖∑
𝑖𝑘𝛽𝑘𝑚
𝑘!

𝜕𝑘𝐴𝑚
𝜕𝑡𝑘

∞

𝑘=1

= 𝑖𝛾(1 − 𝑓𝑅)∑∑∑[𝑓𝑚𝑛𝑝𝑞 𝐴𝑛𝐴𝑝
∗𝐴𝑞𝑒

𝑖∆𝛽𝑚𝑛𝑝𝑞𝑧]

𝑞𝑝𝑛

+ 𝑖𝛾𝑓𝑅𝐴𝑚∫ ℎ𝑅(𝑡 − 𝜏)
𝑡

−∞

[𝑓𝑚𝑚𝑚𝑚|𝐴𝑚(𝑧, 𝜏)|
2 + ∑ 𝑓𝑚𝑚𝑘𝑘|𝐴𝑘(𝑧, 𝜏)|

2

𝑘≠𝑚

] 𝑑𝜏

+ ∑ 𝑗𝛾𝑓𝑅𝐴𝑘∫ 𝑓𝑚𝑚𝑘𝑘ℎ𝑅(𝑡 − 𝜏)𝐴𝑚(𝑧, 𝜏)𝐴𝑘
∗ (𝑧, 𝜏)

𝑡

−∞

𝑑𝜏

𝑘≠𝑚

 

(2.3.8) 

where the nonlinear parameter 𝛾 = 3𝜔0𝜒
(3)

8𝑐𝑛̅𝑚𝐴𝑒𝑓𝑓
 is defined using the effective area 𝐴𝑒𝑓𝑓 =

(∬|𝑀1(𝑥,𝑦)|
2𝑑𝑥𝑑𝑦)

2

∬|𝑀1(𝑥,𝑦)|
4𝑑𝑥𝑑𝑦

 of the fundamental mode m=1, The term fR represents the fractional contribution 

of the delayed Raman response to the nonlinear polarization and typically has a value of ~0.18. 

The triple sum extends over the number of modes supported by the fibre. The phase mismatch ∆β 

is defined as: 

 ∆𝛽𝑚𝑛𝑝𝑞 = 𝛽0𝑛 − 𝛽0𝑚 + 𝛽0𝑞 − 𝛽0𝑝 (2.3.9) 

The time-dependent terms on the left-hand side of Eq. (2.3.8) represent the dispersion effects. 

The right-hand side of Eq. (2.3.8) includes all the intramodal and intermodal nonlinear effects that 
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are related to the Kerr nonlinearity and Raman scattering. The intermodal overlap factor, 

determining the relative strength of various intermodal processes, is defined as[68]: 

 
𝑓𝑚𝑛𝑝𝑞 = 𝐴𝑒𝑓𝑓

∬𝑀𝑚
∗ 𝑀𝑛𝑀𝑝

∗𝑀𝑞 𝑑𝑥𝑑𝑦

√(∬𝑀𝑚
∗ 𝑀𝑚 𝑑𝑥𝑑𝑦)(∬𝑀𝑛

∗𝑀𝑛 𝑑𝑥𝑑𝑦)(∬𝑀𝑝
∗𝑀𝑝 𝑑𝑥𝑑𝑦)(∬𝑀𝑞

∗𝑀𝑞 𝑑𝑥𝑑𝑦)

 (2.3.10) 

For instance, in the simple case of a co-polarized bimodal beam, where only two modes (m=1 

and m=2) are considered, the MM-NLSE can be written as: 

 

𝜕𝐴1
𝜕𝑧

− 𝑖∑
𝑖𝑘𝛽𝑘1
𝑘!

𝜕𝑘𝐴1
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𝑘=1

= 𝑖𝛾(1 − 𝑓𝑅)[ 𝑓11𝐴1𝐴1
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𝑖∆𝛽12𝑧]

+ 𝑖𝛾𝑓𝑅𝐴1∫ ℎ𝑅(𝑡 − 𝜏)
𝑡

−∞

[𝑓11|𝐴1(𝑧, 𝜏)|
2 + 𝑓12|𝐴2(𝑧, 𝜏)|

2]𝑑𝜏

+ 𝑗𝛾𝑓𝑅𝐴2∫ 𝑓12ℎ𝑅(𝑡 − 𝜏)𝐴1(𝑧, 𝜏)𝐴2
∗(𝑧, 𝜏)

𝑡

−∞

𝑑𝜏 

(2.3.11) 
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∗𝐴2 + 2𝑓21𝐴1𝐴1
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∗𝐴1𝑒
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+ 𝑖𝛾𝑓𝑅𝐴2∫ ℎ𝑅(𝑡 − 𝜏)
𝑡
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[𝑓22|𝐴2(𝑧, 𝜏)|
2 + 𝑓21|𝐴1(𝑧, 𝜏)|

2]𝑑𝜏

+ 𝑗𝛾𝑓𝑅𝐴1∫ 𝑓21ℎ𝑅(𝑡 − 𝜏)𝐴2(𝑧, 𝜏)𝐴1
∗(𝑧, 𝜏)

𝑡

−∞

𝑑𝜏 

(2.3.12) 

where f11=f1111, f22=f2222, f12= f21=f1122=f2211=f1212=f2121, and ∆β12=2(β02-β01) is the difference between 

the propagation constants of modes 1 and 2. The right-hand side of these two equations includes 

various intramodal and intermodal nonlinear effects. The first term accounts for the self-phase 

modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM). These effects 

arise from the Kerr nonlinearity, leading to changes in the phase and amplitude of the modes due 

to the intensity-dependent refractive index. The second term describes contributions to the SPM 

and XPM induced by Raman scattering, where molecular vibrations in the fibre medium generate 

additional phase modulation and coupling between the modes. The last term represents Raman 

amplification, where energy exchange occurs within the modes. These nonlinear interaction 

processes are fundamental in understanding the complex dynamics of multimode optical fibres 

and will be further elucidated in subsequent sections. 

2.3.2� Intramodal and intermodal nonlinear effects 

The response of optical fibres to light becomes nonlinear under intense electromagnetic fields. 

This nonlinear response arises from the anharmonic motion of bound electrons when exposed to 

an optical field. In silica (SiO2) fibres, which are symmetric molecules, the 2nd-order nonlinear 
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effects are absent. Thus, the lowest order nonlinear effects present in optical fibres are the 3rd-

order nonlinearities, which includes two types of nonlinear processes. One is the non-dissipative 

processes, where no energy is exchanged between the electric field and the optical fibre, 

including SPM, XPM, third-harmonic generation (THG), and FWM. On the contrary, the other type 

of nonlinear responses is dissipative, where some of the energy from the electric field is 

transferred to the optical fibre, including the stimulated Raman scattering (SRS) and stimulated 

Brillouin scattering (SBS). 

SPM is an intramodal process where an electric field experiences a self-induced phase shift as it 

propagates along optical fibres. This nonlinear phase shift is proportional to the intensity of the 

electric field. In a multimode fibre, SPM occurs due to interactions between electric fields of the 

same mode and frequency. A direct consequence of SPM is the spectral broadening of optical 

pulses. In contrast, XPM is an intermodal nonlinear phase shift process. Here, an electric field 

undergoes a nonlinear phase shift induced by another electric field with a different frequency, 

direction, polarization state, or spatial mode. The phase shift due to XPM is proportional to the 

intensity of the participating electric fields. XPM can result in an asymmetric spectral broadening 

of optical pulses[68]. 

THG and FWM involve the generation of new frequencies and require specific phase-matching 

conditions, determined by the propagation constant differences between the electric fields. THG 

refers to the process where three photons at frequency ω transfer their energy to a single photon 

at frequency 3ω. For efficient THG, the phase-matching condition must be satisfied, which 

typically is challenging in optical fibres. Consequently, THG is often neglected in practical 

applications such as those described in Eq. (2.3.8). FWM is a parametric process where two 

photons at frequencies ωp1 and ωp2 interact to generate two new photons at frequencies ωs and 

ωi. The relationship between these frequencies is given by: 

 𝜔𝑝1 +𝜔𝑝2 = 𝜔𝑠 + 𝜔𝑖 (2.3.13) 

The donating frequencies ωp1 and ωp2 in FWM are typically called pumps. The new frequency 

fields generated by this process are referred to as the low-frequency Stokes wave (ωs) and the 

high-frequency anti-Stokes wave (ωi), often referred to as the signal and idler waves, respectively. 

Another phenomenon related to FWM is modulation instability (MI), which manifests as the 

exponential growth of weak perturbations imposed on a CW state during propagation[68, 78]. This 

growth can be understood through FWM processes involving the perturbation waves and the 

pump CW wave. As the perturbation waves interact with the pump wave, energy exchange 

occurs, leading to the amplification of these perturbations. This interaction results in the 

exponential growth characteristic of MI. 
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SBS and SRS are related to vibrational excitation modes of silica. Acoustic phonons participate 

in SBS, whereas optical phonons are involved in SRS. Fundamentally, these processes involve 

the annihilation of a photon, which creates a photon at a lower frequency (Stokes wave) and a 

phonon with the appropriate energy and momentum[68]. In optical fibres, SBS typically occurs in 

the backward direction relative to the incident wave, with a frequency shift of ~10 GHz and a 

bandwidth of ~100 MHz, whereas SRS occurs along the propagation of the incident wave and 

spans a wide bandwidth of ~ 40THz, with peak conversion occurring at ~ 13.1 THz from the 

incident wave[68]. It is important to note that SBS and SRS are temporally delayed processes, 

unlike instantaneous processes such as SPM, XPM, THG, and FWM. The delayed nature of SBS 

and SRS stems from the time required for the phonon population to build up and participate in 

the scattering process. 

This thesis focuses on the nonlinear interactions in multimode systems, thus both intramodal 

and intermodal nonlinear processes need to be considered simultaneously. Since SBS can be 

neglected when using optical pulses with durations of hundreds of picoseconds, this section 

introduces FWM and Raman scattering (which has a response time of ~0.1 ps) by solving the MM-

NLSEs (see Eq. (2.3.8)). There are no direct general analytical solutions to the MM-NLSEs; 

however, they can be solved via several numerical methods, with the split-step Fourier method 

[68] being extensively used. This method is based on the assumption that dispersion and 

nonlinear effects act independently over a short propagation distance dz in fibres. To describe 

light propagation along fibres, the fibre length is divided into multiple dz segments, within which 

the dispersive and nonlinear steps are implemented separately. Additionally, analytical solutions 

of the MM-NLSEs can also be derived under certain conditions, as demonstrated by Eqs. (2.3.21) 

to (2.3.31). Considering a multimode beam oscillating at frequencies ωp, ωs, and ωi, where the 

two pumps are at the same frequency (ωp1= ωp2= ωp), known as degenerate FWM, the electric 

field is in a fixed polarization state and can be defined as: 

 
𝐸(𝑟, 𝑡) =∑ 𝑀𝑚(𝑥, 𝑦, 𝜔𝑝)𝐴𝑝𝑚(𝑧, 𝑡)𝑒𝑥𝑝[𝑗(𝛽

(𝑚,𝜔𝑝)𝑧 − 𝜔𝑝𝑡)]
𝑚

+𝑀𝑚(𝑥, 𝑦, 𝜔𝑠)𝐴𝑠𝑚(𝑧, 𝑡)𝑒𝑥𝑝[𝑗(𝛽
(𝑚,𝜔𝑠)𝑧 − 𝜔𝑠𝑡)]

+ 𝑀𝑚(𝑥, 𝑦, 𝜔𝑖)𝐴𝑖𝑚(𝑧, 𝑡)𝑒𝑥𝑝[𝑗(𝛽
(𝑚,𝜔𝑖)𝑧 − 𝜔𝑖𝑡)] 

(2.3.14) 

where 𝛽(𝑚,𝜔𝑛) denotes the propagation constant of the m-th mode at the frequency 𝜔𝑛(n=p, s, i), 

Mm is the modal distribution of the m-th mode, and Anm(n=p, s, i) represents the amplitude of the 

pump, signal and idler in the m-th mode. By substituting Eq. (2.3.14) into the wave equation Eq. 

(2.2.4) and then following the same approach introduced in section 2.3.1, the following coupled-

amplitude equations are obtained, which include both the Kerr (SPM, XPM, and FWM) and Raman 

nonlinearities: 
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𝜕𝐴𝑝𝑚
𝜕𝑧

= 𝑗𝛾(1 − 𝑓𝑅) [ 𝑓𝑚𝑚𝐴𝑝𝑚|𝐴𝑝𝑚|
2 + ∑ 2𝑓𝑚𝑘𝐴𝑝𝑚|𝐴𝑝𝑘|

2

𝑘≠𝑚

]

+ 𝑗𝛾𝑓𝑅𝐴𝑝𝑚∫ ℎ𝑅(𝑡 − 𝜏)
𝑡

−∞

[𝑓𝑚𝑚|𝐴𝑝𝑚(𝑧, 𝜏)|
2 + ∑ 𝑓𝑚𝑘|𝐴𝑝𝑘(𝑧, 𝜏)|

2

𝑘≠𝑚

] 𝑑𝜏

+ ∑ 𝑗𝛾𝑓𝑅𝐴𝑝𝑘∫ 𝑓𝑚𝑘ℎ𝑅(𝑡 − 𝜏)𝐴𝑝𝑚(𝑧, 𝜏)𝐴𝑝𝑘
∗(𝑧, 𝜏)

𝑡

−∞

𝑑𝜏

𝑘≠𝑚

 

(2.3.15) 

 
𝜕𝐴𝑠𝑚
𝜕𝑧

= 𝑗𝛾(1 − 𝑓𝑅)𝐾 + 𝑗𝛾𝑓𝑅𝑅 (2.3.16) 

 
𝐾 = [ 2𝑓𝑚𝑚𝐴𝑠𝑚|𝐴𝑝𝑚|

2 + ∑ 2𝑓𝑚𝑘𝐴𝑠𝑚|𝐴𝑝𝑘|
2

𝑘≠𝑚

+ ∑ 2𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑖𝑘
∗𝐴𝑝𝑘𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

+∆𝛽𝑘
(𝑖,𝑝)

)𝑧

𝑘≠𝑚

+ 𝑓𝑚𝑚𝐴𝑝𝑚𝐴𝑖𝑚
∗ 𝐴𝑝𝑚𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

+∆𝛽𝑚
(𝑖,𝑝)

)𝑧
+ ∑ 2𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑝𝑘

∗𝐴𝑠𝑘𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
−∆𝛽𝑘

(𝑠,𝑝)
)𝑧

𝑘≠𝑚

] 

(2.3.17) 

𝑅 = 𝐴𝑠𝑚∫ ℎ𝑅(𝑡 − 𝜏)
𝑡

−∞

[𝑓𝑚𝑚|𝐴𝑝𝑚(𝑧, 𝜏)|
2 + ∑ 𝑓𝑚𝑘|𝐴𝑝𝑘(𝑧, 𝜏)|

2

𝑚≠𝑘

] 𝑑𝜏

+ 𝐴𝑝𝑚∫ ℎ𝑅(𝑡 − 𝜏)𝑓𝑚𝑚𝐴𝑠𝑚(𝑧, 𝜏)𝐴𝑝𝑚
∗ (𝑧, 𝜏)

𝑡

−∞

𝑒𝑥𝑝[𝑗(𝜔𝑝 − 𝜔𝑠)(𝜏 − 𝑡)]𝑑𝜏

+ ∑ 𝐴𝑝𝑘∫ ℎ𝑅(𝑡 − 𝜏)𝑓𝑚𝑘𝐴𝑠𝑚(𝑧, 𝜏)𝐴𝑝𝑘
∗(𝑧, 𝜏)

𝑡

−∞

𝑒𝑥𝑝[𝑗(𝜔𝑝 − 𝜔𝑠)(𝜏 − 𝑡)]𝑑𝜏

𝑘≠𝑚

+ ∑ 𝐴𝑝𝑚∫ 𝑓𝑚𝑘ℎ𝑅(𝑡 − 𝜏)𝐴𝑝𝑘(𝑧, 𝜏)𝐴𝑖𝑘
∗(𝑧, 𝜏)

𝑡

−∞

𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
+∆𝛽𝑘

(𝑖,𝑝)
)𝑧
𝑒𝑥𝑝[𝑗(𝜔𝑖 −𝜔𝑝)(𝜏 − 𝑡)]𝑑𝜏

𝑘≠𝑚

+ ∑ 𝐴𝑝𝑘∫ 𝑓𝑚𝑘ℎ𝑅(𝑡 − 𝜏)𝐴𝑝𝑚(𝑧, 𝜏)𝐴𝑖𝑘
∗(𝑧, 𝜏)

𝑡

−∞

𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
+∆𝛽𝑘

(𝑖,𝑝)
)𝑧
𝑒𝑥𝑝[𝑗(𝜔𝑖 −𝜔𝑝)(𝜏 − 𝑡)]𝑑𝜏

𝑘≠𝑚

+ 𝐴𝑝𝑚∫ 𝑓𝑚𝑚ℎ𝑅(𝑡 − 𝜏)𝐴𝑝𝑚(𝑧, 𝜏)𝐴𝑖𝑚
∗ (𝑧, 𝜏)

𝑡

−∞

𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
+∆𝛽𝑚

(𝑖,𝑝)
)𝑧
𝑒𝑥𝑝[𝑗(𝜔𝑖 − 𝜔𝑝)(𝜏 − 𝑡)]𝑑𝜏

+ ∑ 𝐴𝑝𝑚∫ 𝑓𝑚𝑘ℎ𝑅(𝑡 − 𝜏)𝐴𝑝𝑘
∗(𝑧, 𝜏)𝐴𝑠𝑘(𝑧, 𝜏)𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

−∆𝛽𝑘
(𝑠,𝑝)

)𝑧
𝑡

−∞

𝑒𝑥𝑝[𝑗(𝜔𝑝 − 𝜔𝑠)(𝜏 − 𝑡)]𝑑𝜏

𝑘≠𝑚

+ ∑ 𝐴𝑠𝑘 ∫ 𝑓𝑚𝑘ℎ𝑅(𝑡 − 𝜏)𝐴𝑝𝑘
∗(𝑧, 𝜏)𝐴𝑝𝑚(𝑧, 𝜏)𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

−∆𝛽𝑘
(𝑠,𝑝)

)𝑧
𝑡

−∞

𝑑𝜏

𝑘≠𝑚

 

  (2.3.18) 

where rapidly oscillating terms are neglected (they average out to 0), and the signal and idler 

amplitudes are much weaker than the pump amplitude (|Ap| >> |As|, |Ai|). Consequently, the 

terms that contain more than one weak-field amplitude, such as Ap1AsAs*, are reduced. The 

letter K and R refer to the Kerr and Raman nonlinearities, respectively. Eq. (2.3.16) describes the 

amplitude evolution of the signal in the m-th mode with the contributions of intramodal and 

intermodal interactions between the pump, signal, and idler waves. An equation for the idler of 

the m-th mode can be obtained by exchanging the label s with i in Eqs. (2.3.16) - (2.3.18). The wave 

vector mismatch is defined as: 

 ∆𝛽𝑚
(𝑠,𝑝)

= 𝛽(𝑚,𝜔𝑠) − 𝛽(𝑚,𝜔𝑝) (2.3.19) 

 ∆𝛽𝑚
(𝑖,𝑝)

= 𝛽(𝑚,𝜔𝑖) − 𝛽(𝑚,𝜔𝑝) (2.3.20) 

When the pulse width exceeds 1 ps, the amplitude variations over the time scale of the Raman 

response function hR can be considered negligible. This simplification allows to introduce the 

Raman-induced index changes (𝛿𝑅) and gain coefficients (𝑔𝑅) as follows[68]: 
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 𝛿𝑅 = 𝑓𝑅Re[ℎ̃𝑅(Ω)] (2.3.21) 

 𝑔𝑅 = 2𝛾𝑓𝑅Im[ℎ̃𝑅(Ω)] (2.3.22) 

where ℎ̃𝑅 denotes the Fourier transform of hR, and Ω=ωp–ωs=ωi–ωp is the Stokes shift, then Eqs. 

(2.3.15) and (2.3.16) can be rewritten as follows: 

 𝜕𝐴𝑝𝑚
𝜕𝑧

= 𝑗𝛾 [ 𝑓𝑚𝑚|𝐴𝑝𝑚|
2 + ∑ 2𝑓𝑚𝑘|𝐴𝑝𝑘|

2

𝑘≠𝑚

] 𝐴𝑝𝑚 (2.3.23) 

𝜕𝐴𝑠𝑚
𝜕𝑧

= 𝑗𝛾 [(2 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚|𝐴𝑝𝑚|
2 + ∑(2 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘|𝐴𝑝𝑘|

2

𝑘≠𝑚

] 𝐴𝑠𝑚

+ ∑ 𝑗2𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑖𝑘
∗𝐴𝑝𝑘𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

+∆𝛽𝑘
(𝑖,𝑝)

)𝑧

𝑘≠𝑚

+ 𝑗𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚𝐴𝑝𝑚𝐴𝑖𝑚
∗ 𝐴𝑝𝑚𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

+∆𝛽𝑚
(𝑖,𝑝)

)𝑧

+ ∑ 𝑗𝛾(2 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑝𝑘
∗𝐴𝑠𝑘𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

−∆𝛽𝑘
(𝑠,𝑝)

)𝑧

𝑘≠𝑚

+
𝑔𝑅
2
𝑓𝑚𝑚|𝐴𝑝𝑚|

2𝐴𝑠𝑚

+ ∑
𝑔𝑅
2
𝑓𝑚𝑘|𝐴𝑝𝑘|

2𝐴𝑠𝑚
𝑘≠𝑚

+ ∑ 𝑔𝑅𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑝𝑘𝐴𝑖𝑘
∗𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

+∆𝛽𝑘
(𝑖,𝑝)

)𝑧

𝑘≠𝑚

+
𝑔𝑅
2
𝑓𝑚𝑚𝐴𝑝𝑚𝐴𝑝𝑚𝐴𝑖𝑚

∗ 𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
+∆𝛽𝑚

(𝑖,𝑝)
)𝑧
+ ∑

𝑔𝑅
2
𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑝𝑘

∗𝐴𝑠𝑘𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
−∆𝛽𝑘

(𝑠,𝑝)
)𝑧

𝑘≠𝑚

 

  (2.3.24) 

𝜕𝐴𝑖𝑚
𝜕𝑧

= 𝑗𝛾 [(2 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚|𝐴𝑝𝑚|
2 + ∑(2 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘|𝐴𝑝𝑘|

2

𝑘≠𝑚

] 𝐴𝑖𝑚

+ ∑ 𝑗2𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝐴𝑝𝑘𝐴𝑝𝑚𝐴𝑠𝑘
∗𝑒

−𝑗(∆𝛽𝑘
(𝑠,𝑝)

+∆𝛽𝑚
(𝑖,𝑝)

)𝑧

𝑘≠𝑚

+ 𝑗𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚𝐴𝑝𝑚𝐴𝑝𝑚𝐴𝑠𝑚
∗ 𝑒

−𝑗(∆𝛽𝑚
(𝑠,𝑝)

+∆𝛽𝑚
(𝑖,𝑝)

)𝑧

+ ∑ 𝑗𝛾(2 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑝𝑘
∗𝐴𝑖𝑘𝑒

𝑗(∆𝛽𝑘
(𝑖,𝑝)

−∆𝛽𝑚
(𝑖,𝑝)

)𝑧

𝑘≠𝑚

−
𝑔𝑅
2
𝑓𝑚𝑚|𝐴𝑝𝑚|

2𝐴𝑖𝑚

− ∑
𝑔𝑅
2
𝑓𝑚𝑘|𝐴𝑝𝑘|

2𝐴𝑖𝑚
𝑘≠𝑚

− ∑ 𝑔𝑅𝑓𝑚𝑘𝐴𝑝𝑘𝐴𝑝𝑚𝐴𝑠𝑘
∗𝑒

−𝑗(∆𝛽𝑘
(𝑠,𝑝)

+∆𝛽𝑚
(𝑖,𝑝)

)𝑧

𝑘≠𝑚

−
𝑔𝑅
2
𝑓𝑚𝑚𝐴𝑝𝑚𝐴𝑝𝑚𝐴𝑠𝑚

∗ 𝑒
−𝑗(∆𝛽𝑚

(𝑠,𝑝)
+∆𝛽𝑚

(𝑖,𝑝)
)𝑧
− ∑

𝑔𝑅
2
𝑓𝑚𝑘𝐴𝑝𝑚𝐴𝑝𝑘

∗𝐴𝑖𝑘𝑒
𝑗(∆𝛽𝑘

(𝑖,𝑝)
−∆𝛽𝑚

(𝑖,𝑝)
)𝑧

𝑘≠𝑚

 

  (2.3.25) 

Under the un-depleted pump assumption, Eq. (2.3.23) describes the propagation of the pump 

and yields the solutions: 

 𝐴𝑝𝑚 = √𝑃𝑚𝑒
𝑗𝛾(𝑓𝑚𝑚𝑃𝑚+∑ 2𝑓𝑚𝑘𝑃𝑘𝑘≠𝑚 )𝑧, 𝑃𝑚 = |𝐴𝑝𝑚|

2, 𝑃𝑘 = |𝐴𝑝𝑘|
2 (2.3.26) 

The pump experiences different intensity-dependent phase shifts for different modes. After 

substituting this solution into Eqs. (2.3.24) and (2.3.25), one can obtain the following equations 

determining the evolution of the signal and idler amplitudes: 

𝜕𝐴̅𝑠𝑚
𝜕𝑧

= {𝑗 [Δ𝛽𝑚
(𝑠,𝑝)

+  𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚𝑃𝑚 + ∑ 𝛾(−𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝑃𝑘
𝑘≠𝑚

] +
𝑔𝑅
2
(𝑓𝑚𝑚𝑃𝑚 + ∑ 𝑓𝑚𝑘𝑃𝑘

𝑘≠𝑚

)} 𝐴̅𝑠𝑚

+ ∑[𝑗2𝛾(1 − 𝑓𝑅 + 𝛿𝑅) + 𝑔𝑅]𝑓𝑚𝑘√𝑃𝑚𝑃𝑘𝐴̅𝑖𝑘
∗

𝑘≠𝑚

+ [𝑗𝛾(1 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅
2
] 𝑓𝑚𝑚𝑃𝑚𝐴̅𝑖𝑚

∗

+ ∑ [𝑗𝛾(2 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅
2
] 𝑓𝑚𝑘√𝑃𝑚𝑃𝑘𝐴̅𝑠𝑘

𝑘≠𝑚
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  (2.3.27) 

𝜕𝐴̅𝑖𝑚
∗

𝜕𝑧
= − {𝑗 [Δ𝛽𝑚

(𝑖,𝑝)
+  𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚𝑃𝑚 + ∑ 𝛾(−𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝑃𝑘

𝑘≠𝑚

] +
𝑔𝑅
2
(𝑓𝑚𝑚𝑃𝑚 + ∑ 𝑓𝑚𝑘𝑃𝑘

𝑘≠𝑚

)} 𝐴̅𝑖𝑚
∗

− ∑[𝑗2𝛾(1 − 𝑓𝑅 + 𝛿𝑅) + 𝑔𝑅]𝑓𝑚𝑘√𝑃𝑚𝑃𝑘𝐴̅𝑠𝑘
𝑘≠𝑚

− [𝑗𝛾(1 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅
2
] 𝑓𝑚𝑚𝑃𝑚𝐴̅𝑠𝑚

− ∑ [𝑗𝛾(2 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅
2
] 𝑓𝑚𝑘√𝑃𝑚𝑃𝑘𝐴̅𝑖𝑘

∗

𝑘≠𝑚

 

  (2.3.28) 

where 𝐴̅𝑠𝑚 = 𝐴𝑠𝑚exp [𝑗𝜙𝑚𝑧 − 𝑗Δ𝛽𝑚
(𝑠,𝑝)

𝑧] , 𝐴̅𝑖𝑚∗ = 𝐴𝑖𝑚
∗ exp [−𝑗𝜙𝑚𝑧 + 𝑗Δ𝛽𝑚

(𝑖,𝑝)
𝑧]  with 𝜙𝑚 = 𝛾(𝑓𝑚𝑚𝑃𝑚 +

∑ 2𝑓𝑚𝑘𝑃𝑘𝑘≠𝑚 ) . At this step, Eqs. (2.3.27) and (2.3.28) can be analytically solved in a matrix 

formalism by rewriting them in the form of: 

 𝜕𝑧𝐯 = 𝐌𝐯, 𝐯 = [𝐴̅𝑠 𝐴̅𝑖∗]𝑇 , 𝐌 = [
𝐌𝑠,𝑠 𝐌𝑠,𝑖

−𝐌𝑖,𝑠 −𝐌𝑖,𝑖
] (2.3.29) 

where v is a 2N х 1 vector with N as the number of modes, 𝐴̅𝑠 and 𝐴̅𝑖∗ are N х 1 vectors (𝐴̅𝑠 =

[𝐴̅𝑠1, 𝐴̅𝑠2, … , 𝐴̅𝑠𝑁], 𝐴̅𝑖∗ = [𝐴̅𝑖1
∗, 𝐴̅𝑖2∗, … , 𝐴̅𝑖𝑁∗ ]), and M is a 2N х 2N matrix: 

𝐌𝑠,𝑠[𝑚,𝑚] = {𝑗 [Δ𝛽𝑚
(𝑠,𝑝)

+  𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚𝑃𝑚 +∑ 𝛾(−𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝑃𝑘𝑘≠𝑚 ] +
𝑔𝑅

2
(𝑓𝑚𝑚𝑃𝑚 + ∑ 𝑓𝑚𝑘𝑃𝑘𝑘≠𝑚 )}, 

𝐌𝑠,𝑠[𝑚, 𝑘] = [𝑗𝛾(2 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅

2
] 𝑓𝑚𝑘√𝑃𝑚𝑃𝑘, 

𝐌𝑠,𝑖[𝑚,𝑚] = [𝑗𝛾(1 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅

2
] 𝑓𝑚𝑚𝑃𝑚, 

𝐌𝑠,𝑖[𝑚, 𝑘] = [𝑗2𝛾(1 − 𝑓𝑅 + 𝛿𝑅) + 𝑔𝑅]𝑓𝑚𝑘√𝑃𝑚𝑃𝑘, 

𝐌𝑖,𝑖[𝑚,𝑚] = {𝑗 [Δ𝛽𝑚
(𝑖,𝑝)

+  𝛾(1 − 𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑚𝑃𝑚 + ∑ 𝛾(−𝑓𝑅 + 𝛿𝑅)𝑓𝑚𝑘𝑃𝑘𝑘≠𝑚 ] +
𝑔𝑅

2
(𝑓𝑚𝑚𝑃𝑚 +

∑ 𝑓𝑚𝑘𝑃𝑘𝑘≠𝑚 )}, 

𝐌𝑖,𝑖[𝑚, 𝑘] = [𝑗𝛾(2 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅

2
] 𝑓𝑚𝑘√𝑃𝑚𝑃𝑘, 

𝐌𝑖,𝑠[𝑚,𝑚] = [𝑗𝛾(1 − 𝑓𝑅 + 𝛿𝑅) +
𝑔𝑅

2
] 𝑓𝑚𝑚𝑃𝑚, 

𝐌𝑖,𝑠[𝑚, 𝑘] = [𝑗2𝛾(1 − 𝑓𝑅 + 𝛿𝑅) + 𝑔𝑅]𝑓𝑚𝑘√𝑃𝑚𝑃𝑘. 

  (2.3.30) 

The solution of Eq. (2.3.29) can be written as: 

 𝐯[𝑗](𝑧) =∑ 𝑐𝑘𝑤𝑘[𝑗]exp(𝜆𝑘𝑧)
2𝑁

𝑘=1
 (2.3.31) 

where λk and wk are the eigenvalues and eigenvectors of M, the label j denotes the j-th element of 

v, and the coefficients 𝑐𝑘 =
v(𝑧=0)∙diag(ones𝑁,−ones𝑁)∙𝑤𝑘

𝑤𝑘∙diag(ones𝑁,−ones𝑁)∙𝑤𝑘
 with onesN denoting an N х 1 vector of ones. 

In order to verify the accuracy of the analytical solution Eq. (2.3.31) and to demonstrate Kerr and 

Raman effects in multimodal systems, the split-step Fourier method was implemented to 

numerically solve the MM-NLSEs Eq. (2.3.8). Initially, the Raman contribution is neglected (fR= δR= 

gR=0), and three different modes with the same polarization states are considered, which are 
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maintained during propagation. The fibre dispersion parameters and nonlinear coefficients are 

listed in Table 2.1. 

Table 2.1 Fibre dispersion parameters and nonlinear coefficients for the 3-mode fibre 

@ λ=1040 nm Mode 1 Mode 2 Mode 3 

β1 (ps/mm) 4.902 4.904 4.906 

β2 (ps2/km) 30.362 27.101 22.639 

β3 (х0.01 ps3/km) 2.227 2.405 3.006 

γ (W-1km-1) 3 Overlap factor (f11, 
f22, f33, f12, f13, f23) 

(1, 1.44, 1.18, 0.70, 
1.08, 0.74) 

Figure 2.3 illustrates the comparison between the numerical and analytical solutions for the 

evolution of the three modes over a fibre propagation length of 1m. Figure 2.3(a) shows the 

spectral envelopes for the input and output three modes. The input modes are continuous waves 

oscillating at the same frequency 288.5 THz (wavelength=1040 nm), each with an average power 

of 2 kW. Background noise added to the input serves as a probe that can be amplified by the gain 

provided by the modulation instability, resulting from phase-matched four-wave mixing. 

Consequently, new frequencies emerge in distinct spectral regions centred at ±8.5 THz, ±12 THz, 

and ±22 THz, arising from MI between different pairs of modes. Mode-dependent gain, depicted 

as red lines in Figure 2.3(b), can be readily calculated. The analytical gains calculated from 

Eq.(2.3.31) via 20log10(v(z=1m)/v(z=0)), perfectly align with the numerical results. The slight 

discrepancy in gain around the pump frequency is attributable to the Lorentzian shape of the 

input spectra in the simulations, while the analytical model assumes a single-frequency input. 

 
Figure 2.3 Comparison between the numerical and analytical solutions to the MM-

NLSEs for a 3-mode fibre when only considering Kerr nonlinearity. (a) Input and output 

spectra for each mode (centred around the pump frequency) obtained by numerical 

simulation. (b) Gain spectra obtained from numerical (red) and analytical (blue) 

methods. 
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Another simulation instance is conducted, incorporating Raman contributions. Analytical 

solutions (Eq.(2.3.31)) are computed, considering both Kerr and Raman nonlinearity (fR=0.18), 

within the same 3-mode fibre and utilizing identical parameters, including modes, powers, and 

fibre length. Figure 2.4(a) illustrates the input and output spectra envelopes when considering the 

complex intramodal and intermodal processes. Notably, the gain spectra in Figure 2.4(b) diverge 

from those depicted in Figure 2.3(b) within the frequency range from -25 THz to 0 THz, attributed 

to Raman scattering. Figure 2.3 and Figure 2.4 validate the accuracy of the analytical methods 

presented in this section. Moreover, while numerical methods entail time-consuming processes 

due to various inherent challenges such as step size and resolution, analytical method offers 

rapidity through matrix calculations. Hence, it serves as efficient precursor to the implementation 

of time-consuming numerical methods. Leveraging these methods facilitates the study and 

prediction of the complex interaction dynamics within multimode nonlinear systems. 

 
Figure 2.4 Comparison between the numerical and analytical solutions to the MM-

NLSEs for the same 3-mode fibre as Figure 2.3, when taking into account both Kerr and 

Raman nonlinearity. (a) Input and output spectra obtained by numerical simulation. (b) 

Gain spectra obtained from numerical (red) and analytical (blue) methods. 

2.4� Review of nonlinear spatial control processes in multimode 

systems 

The multimode interaction in nonlinear multimode systems brings a plethora of novel effects and 

phenomena. Controlling the output beam pattern in these systems is pivotal and has been 

achieved by complex mode control devices and signal-processing algorithms. This section 

reviews various all-optical nonlinear spatial control processes in multimode systems, which are 

highly relevant to the objective of this thesis – mode control and beam shaping in multimode 

systems. The following nonlinear spatial control processes are introduced: dissipative spatial 

beam clean-up, Kerr beam self-cleaning, beam self-organization in multimode gain media, 

polarization and mode attractors, and optical long period gratings. 
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2.4.1� Spatial beam clean-up through dissipative nonlinear process 

Spatial beam clean-up refers to the process by which a spatial beam profile is cleaned to a single 

mode condition, typically evolving towards the fundamental mode with a Gaussian-shaped 

profile. In multimode graded-index (MM-GRIN) fibres, dissipative nonlinear processes such as 

SBS and SRS cause the generated Stokes waves to evolve into one of the lower-order modes [79-

83]. In this process, the pump is coupled to multiple modes, and the beam clean-up in Stokes 

waves is predominantly observed in MM-GRIN fibres. The output Stokes mode can be selectively 

controlled to propagate lower-order modes by adjusting the launching conditions of pump 

wave[82]. This is due to the significant overlap between the lower-order Stokes modes and the 

multimode pump modes [81, 82], resulting in mode-dependent gain that favours the lower-order 

modes. The output Stokes mode can be selectively controlled to propagate lower-order modes 

by adjusting the launching conditions of the pump wave[82]. However, step-index MMFs are not 

suitable for exploring Brillouin- or Raman-induced beam clean-up. In these fibres, the overlap 

between the multimode pump modes and different orders of Stokes modes is similar, and no 

mode-selective gain is achieved[83]. 

In recent years, the Brillouin and Raman beam clean-up effects have been developed to achieve 

high-power, high brightness Stokes light with high fundamental mode purity. Raman fibre lasers 

based on MM-GRIN fibres, pumped with high-power multimode laser diodes, have been studied, 

resulting in an output power of 50 W with high brightness[84]. Another significant application of 

dissipative nonlinear beam clean-up is in amplifier configurations[82, 84, 85], where the Brillouin- 

or Raman-induced Stokes beam maintain the same mode as the externally excited seed beams. 

In such amplifiers, the amplification of low-order modes is possible by selectively exciting seed 

modes. The dependence of the Raman clean-up effect on the seed beam quality has been 

demonstrated at the 2-kW level with MM-GRIN fibres[86]. 

2.4.2� Kerr beam self-cleaning in highly multimode fibres 

Kerr beam self-cleaning involves the transformation of the transverse intensity profiles at the 

MMF output from a speckled pattern to a bell-shaped beam sitting on a low intensity background. 

Unlike dissipative beam clean-up, Kerr beam self-cleaning is observed at the pump wavelength 

rather than the Stokes wavelength. This effect has been experimentally observed in MM-GRIN 

fibres with pulse durations ranging from nanosecond down to femtoseconds, and at wavelengths 

ranging from visible to near-infrared region. Table 2.2 provides a review of experiments reported 

on Kerr beam self-cleaning. Kerr beam self-cleaning primarily occurs with ps pulses having tens 

of kW peak power over a few meters of MM-GRIN fibres. Most experiments have used 1 µm lasers, 

with one notable exception at 532 nm using a frequency-doubling technique[87]. Typically, the 



Chapter 2 

60 

self-cleaned output beam resembles the fundamental fibre mode (LP01 mode), as indicated in the 

last column of Table 2.2. However, by adjusting the input launching conditions - such as using 

tilted injection[88], a deformable mirror[89], or dual beams[63] - self-cleaning to higher order fibre 

modes has also been observed. More recently, the concept of cascaded Kerr beam self-cleaning 

has been numerically investigated to further improve laser beam quality by using multiple MM-

GRIN fibres[90]. 

Table 2.2 Review of experiments on Kerr beam self-cleaning 

Year Name of 
researcher 

Pulse 
duration 

Peak power 
(kW) 

Wavelength 
(nm) 

Fibre Output 
resembling 

2016 Krupa[91] 900 ps 50 1064 6m GRIN LP01 

2016 Liu[92] 80 fs 600 1030 20cm GRIN LP01 

2016 Wright[87] 1 ns 0.5-3 532 100m GRIN LP01 

2017 Guenard[59] 500 ps 200 1064 3m Yb-MMF LP01 

2017 Krupa[60] 900 ps 44 1064 12m GRIN LP01 

2018 Deliancourt[93] 750 ps 50 1064 8.3m GRIN LP01 

2019 Deliancourt[89] 7 ps 30-45 1064 5m GRIN LP01, LP11, 
LP02, LP21, 
LP12, LP22 

2019 Niang[94] 500 ps 130 1064 9.5m Yb-
GRIN taper 

LP01 

2020 Fabret[95] 60 ps 55 1064 12m GRIN LP01 

2022 Mangini[96] 174 fs-
0.5ns 

30 1030, 1064 3m GRIN LP01 

2023 Ferraro[63] 65 ps 100 1064 2m GRIN LP01 

2023 Ferraro[63] 174 fs-7.8 
ps 

23.4 1030 2m GRIN LP01 

There are some appealing features of the Kerr beam self-cleaning process. Firstly, it requires a 

peak power level lower than the threshold required for self-focusing, which needs megawatt peak 

power. Moreover, Kerr beam self-cleaning is observed well before Raman amplification, 

indicating that beam self-cleaning occurs without significant spectral broadening, frequency 

conversion, or dissipative processes. Secondly, the efficiency of self-cleaning is highly 

dependent on the refractive index profile of the fibre core and the number of modes involved. This 

dependency explains why beam self-cleaning is typically observed in MM-GRIN fibres. Thirdly, a 

cut-back study[60] shows that the Kerr self-cleaning is an accumulated nonlinear phase shift 

process, proportional to the product of fibre length and power. This is distinct from self-focusing 

or scattering processes, which require a fixed power threshold. Fourthly, the self-cleaned output 

beam typically resembles the fundamental fibre mode whereas the higher-order modes remain 
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significant in the output. Lastly, the self-cleaned output beam can preserve the spatial coherence 

of the input laser source. This has been demonstrated by the coherent combination of two self-

cleaned beams from two independent GRIN fibres pumped by the same laser[95]. 

The several features of Kerr beam self-cleaning suggest that this effect is associated with a 

beam’s evolution towards a well-defined mode power distribution in a MM-GRIN fibre, rather than 

merely converting power from higher-order modes to the fundamental mode. Since the first 

observation of this effect, researchers have been working to elucidate the physical mechanisms 

behind it. Several hypotheses and models have been presented to explain the complex 

multimode dynamics[83], including nonreciprocal intermodal coupling driven by a dynamic 

optical grating, quasi-phase-matching conditions favouring gain in the fundamental mode, 

hydrodynamic 2D turbulence, wave condensation, mode-dependent losses, the transfer of 

entropy from the spatial shape to the temporal pulse shape[92], and so forth. Among these 

studies, two prevailing theories have emerged to explain the Kerr beam self-cleaning effect, both 

supported by experimental results. One is the purely Kerr-induced transfer of disorder from the 

spatial to temporal/spectral domain[97]. Driven by a complex multimode intermodal four-wave 

mixing process, the output spectrum of each fibre mode will be deformed in a different manner. 

As a result, the fundamental mode emerges with dominant weight in the pump wavelength after 

the propagation through the MM-GRIN fibre. This increased spectral disorder also results in 

temporal reshaping, causing pulse break-up and compression[83, 92]. The other theory is based 

on a statistical mechanics model of wave thermalization[61, 62, 96, 98]. In this framework, a 

multimode beam is described as a gas of photons obeying an equation of state at thermal 

equilibrium. The occupation probability of the fibre modes can be reproduced by the Rayleigh-

Jeans law[62]. At thermal equilibrium, the fundamental mode achieves macroscopic occupation 

in MM-GRIN fibres, leading to beam self-cleaning to the fundamental mode. 

2.4.3� Beam self-organization in multimode gain media 

Kerr beam self-cleaning occurs in passive MMFs in an energy-conservative manner. However, it 

is also crucial to investigate this phenomenon in multimode gain media. A similar effect, known 

as beam self-organization, has been observed in active fibres. In an initial experiment, Kerr self-

cleaning effect was demonstrated in an amplifying MMF using a 3-metre double-clad ytterbium-

doped MMF with non-parabolic refractive index profile [59]. This experiment compared the self-

cleaning effect in both passive and active configurations using the same fibre. It was found that 

spatial self-cleaning could be achieved with a significantly lower power threshold in the active 

configuration. In the passive setup, self-cleaning required input peak powers above 40 kW with 

500 ps pulses. Conversely, when the fibre was pumped (active configuration) and with a gain of 

20 dB, only a peak power of 500 W was needed to initiate the beam self-cleaning process. Another 
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experiment used a 9.5m-long Yb-doped MM-GRIN fibre taper, with the fibre’s cross-section 

diameter gradually decreasing from 122 µm to 37 µm[94]. This setup further explores the beam 

self-cleaning phenomenon in multimode gain media, highlighting the potential for lower power 

thresholds and enhanced control over beam profiles in active fibre systems. 

In addition to the beam shaping with doped MMFs, fibre laser arrays and multicore fibres offer 

alternative platforms for achieving beam self-organization. Mutually injected fibre laser arrays 

have been investigated both theoretically and experimentally to achieve different phase-locked 

states of the laser arrays[99-101]. In one configuration involving two laser arrays, each array uses 

an individual Erbium doped single mode fibre as the gain medium, and the two arrays are mutually 

injected through fibre splitters. Experiments demonstrated that these two fibre lasers could 

output coherent light at the same wavelength with a stable phase relationship between the 

arrays[99]. This stable phase condition, which can be either in-phase or out-of-phase, is induced 

by virtual longitudinal mode competition within the entire laser array cavity. This setup 

showcases the potential for controlled and coherent beam output from multiple laser sources. 

The self-organization of fibre laser arrays holds significant importance for achieving coherent 

beam combination, leading to the generation of high power, high-brightness, and diffraction-

limited light. As multicore fibres have been proposed for power scaling and beam combination, 

researchers have explored their potential for obtaining self-organized supermode outputs, where 

multiple beamlets from MCF cores exhibit fixed intensity and phase relations. 

In one early experiment, a hexagonal 7 coupled-core Yb-doped fibre, with a length of 15 m, served 

as the gain media within a laser cavity[102]. The output exhibited a high-brightness beam in the 

far field, indicating that the dominant modes in the MCF were in-phase supermode (the 

fundamental supermode) in the near-field. A subsequent theoretical explanation proposed the 

nonlinear refraction mechanism[103] as the basis for this self-organization effect in active MCFs. 

It suggested that either in-phase or out-of-phase supermode could be selected by controlling the 

pump intensity. Further experiments demonstrated the fundamental supermode operation of a 

5.8m-long 19-coupled-core Yb-doped MCF amplifier, achieving high pulse energies up to 0.65 mJ 

with ~100 ns pulses[104]. 

More recently, coupled-core MCFs have attracted attention for exploring a broader range of 

effects involving both spatial and temporal dynamics[105-108]. These include phenomena such 

as spatiotemporal optical bullets, simultaneous beam combining and pulse compression[105, 

106, 108], multicore beam self-focusing[107], and multicore supercontinuum generation. For 

instance, an 11-mm 7-core MCF has been shown to function as a saturable absorber, inducing 

pulse compression from ~ 370 fs to ~200 fs in the central core, while spatially trapping pulse 
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energy in the central core[106]. Such studies highlight the versatility and potential applications of 

coupled-core MCFs in advanced optical systems. 

2.4.4� Polarization and mode attractors in counter-propagating beams 

The Kerr beam self-cleaning and self-organization processes typically take place in a co-

propagating multimode system, where spatial redistribution arises from the one-directional 

multimode interactions. However, researchers have also explored the interaction between two 

counter-propagating beams in optical fibres over the last two decades. In this context, the 

concept of polarization and mode attraction has been demonstrated. 

Polarization attraction is a Kerr effect where the polarization state of an intense optical signal 

beam can be transformed from arbitrary to a desired state[109]. This transformation in nonlinear 

fibres is driven by the intermodal FWM process between the signal beam and a strong counter-

propagating control beam. This phenomenon is observable in single-mode ultralow-birefringence 

fibres, where the counter-propagating beams can be treated as two polarization modes, such as 

left- and right-circular polarization states. Through specific boundary conditions applied to the 

counter-propagating system, the output forward beam adopts the polarization state of the 

backward input beam, given that the two beams have sufficiently high power or the interaction 

medium (fibre) has significant nonlinearity. 

In the first experiment reported in 2001[110], 22 ns pulses with a peak power of ~200 W were 

launched at the two ends of a 1.45m-long step-index ultralow birefringence fibre, operating at a 

wavelength of 532 nm. Nonlinear polarization switching occurred in the forward beams when 

selectively adjusting the bidirectional beams with the same or opposite linear or circular 

polarization states. Subsequently, in 2005, a similar effect known as mode attraction was 

proposed using bimodal high-birefringence fibres. In mode attraction, the forward beam is 

attracted to the opposite mode of the backward control mode. An initial experimental 

investigation demonstrated this effect in a 2 m-long bimodal fibre using 6.5 ns pulses with 175 W 

peak power at a wavelength of 532 nm[109]. 

With a growing interest in controlling polarization states in telecommunication fibres, polarization 

attraction was extensively explored from various perspectives[111, 112], including wavelength 

extension to C-band[113-116], reduction in power requirement[114], variation in pulse 

duration[114, 116], performance in kilometres long telecommunication fibres, and high data rate 

and bandwidth[116]. Additionally, conceptual devices such as the omnipolarizer[117, 118], four-

wave mixing polarizer[119], and mode attractor[118, 120] have been demonstrated. However, the 

mode attraction process remains incompletely explored, particularly concerning the complex 

dynamics when extending from a bimodal system to a multimode counter-propagating system. 



Chapter 2 

64 

The investigation of mode control dynamics in nonlinear multimode counter-propagating 

systems is addressed in subsequent chapters. 

The theory behind polarization and mode attraction has been explored using the nonlinear 

Schrödinger equations in a bimodal context. To generalize this to counter-propagating multimode 

systems, the co-propagating MM-NLSEs (see Eq.(2.3.8)) can be modified accordingly. In an 

isotropic multimode fibre, where forward and backward beams are coupled across N spatial 

modes at the same frequency, and can be decomposed into x/y linear polarization states, the 

Fourier transform of the electric field can be expressed as: 

 

𝑬̃(𝑟, 𝜔) =∑ {𝒆̂𝑥𝑚𝑀𝑚(𝑥, 𝑦, 𝜔)𝐹̃𝑚𝑥(𝑧, 𝜔)𝑒𝑥𝑝 [𝑖𝛽𝑥
(𝑚)(𝜔)𝑧]

𝑚

+ 𝒆̂𝑦𝑚𝑀𝑚(𝑥, 𝑦, 𝜔)𝐹̃𝑚𝑦(𝑧, 𝜔)𝑒𝑥𝑝 [𝑖𝛽𝑦
(𝑚)(𝜔)𝑧]

+ 𝒆̂𝑥𝑚𝑀𝑚(𝑥, 𝑦, 𝜔)𝐵̃𝑚𝑥(𝑧, 𝜔)𝑒𝑥𝑝 [−𝑖𝛽𝑥
(𝑚)(𝜔)𝑧]

+ 𝒆̂𝑦𝑚𝑀𝑚(𝑥, 𝑦, 𝜔)𝐵̃𝑚𝑦(𝑧, 𝜔)𝑒𝑥𝑝 [−𝑖𝛽𝑦
(𝑚)(𝜔)𝑧]} 

(2.4.1) 

where the spatial distributions of the orthogonally polarized modes are assumed to be the same 

(the transverse mode distribution of the m-th mode denoted as Mm). 𝛽𝑥
(𝑚)  and 𝛽𝑦

(𝑚)  are the 

propagation constants of the x and y polarization components for the m-th mode, 𝐹̃𝑚𝑥, 𝐹̃𝑚𝑦, 𝐵̃𝑚𝑥, 

and 𝐵̃𝑚𝑦 represent the amplitudes of the forward(F) and backward(B) modes. 

By substituting Eq. (2.4.1) into the wave equation Eq. (2.2.4), and following the same procedures 

introduced in section 2.3.1, one can derive the coupled-amplitude equations that govern the 

interaction between the counter-propagating beams[109, 110]: 

𝜕𝐹𝑚𝑥
𝜕𝑧

− 𝑖∑
𝑖𝑘𝛽𝑘𝑚𝑥
𝑘!

𝜕𝑘𝐹𝑚𝑥
𝜕𝑡𝑘

∞

𝑘=1

= 𝑖𝛾𝑓𝑚𝑚 [𝐹𝑚𝑥𝐹𝑚𝑥
∗ 𝐹𝑚𝑥 +

2

3
𝐹𝑚𝑥𝐹𝑚𝑦

∗ 𝐹𝑚𝑦 + 2𝐹𝑚𝑥𝐵𝑚𝑥
∗ 𝐵𝑚𝑥 +

2

3
𝐹𝑚𝑥𝐵𝑚𝑦

∗ 𝐵𝑚𝑦]

+ 𝑖𝛾∑ 𝑓𝑚𝑛 [2𝐹𝑚𝑥𝐹𝑛𝑥
∗ 𝐹𝑛𝑥 +

2

3
𝐹𝑚𝑥𝐹𝑛𝑦

∗ 𝐹𝑛𝑦 + 2𝐹𝑚𝑥𝐵𝑛𝑥
∗ 𝐵𝑛𝑥 +

2

3
𝐹𝑚𝑥𝐵𝑛𝑦

∗ 𝐵𝑛𝑦
𝑛≠𝑚

+ 2𝐹𝑛𝑥𝐵𝑚𝑥
∗ 𝐵𝑛𝑥 +

2

3
𝐹𝑛𝑥𝐵𝑚𝑦

∗ 𝐵𝑛𝑦] 

  (2.4.2) 

𝜕𝐵𝑚𝑦

𝜕𝑧
+ 𝑖∑

𝑖𝑘𝛽𝑘𝑚𝑦

𝑘!

𝜕𝑘𝐵𝑚𝑦

𝜕𝑡𝑘

∞

𝑘=1

= −𝑖𝛾𝑓𝑚𝑚 [𝐵𝑚𝑦𝐵𝑚𝑦
∗ 𝐵𝑚𝑦 +

2

3
𝐵𝑚𝑦𝐵𝑚𝑥

∗ 𝐵𝑚𝑥 + 2𝐵𝑚𝑦𝐹𝑚𝑦
∗ 𝐹𝑚𝑦 +

2

3
𝐵𝑚𝑦𝐹𝑚𝑥

∗ 𝐹𝑚𝑥]

− 𝑖𝛾∑ 𝑓𝑚𝑛 [2𝐵𝑚𝑦𝐵𝑛𝑦
∗ 𝐵𝑛𝑦 +

2

3
𝐵𝑚𝑥𝐵𝑛𝑦

∗ 𝐵𝑛𝑦 + 2𝐵𝑚𝑦𝐹𝑛𝑦
∗ 𝐹𝑛𝑦 +

2

3
𝐵𝑚𝑦𝐹𝑛𝑥

∗ 𝐹𝑛𝑥
𝑛≠𝑚

+ 2𝐵𝑛𝑦𝐹𝑚𝑦
∗ 𝐹𝑛𝑦 +

2

3
𝐵𝑛𝑦𝐹𝑚𝑥

∗ 𝐹𝑛𝑥] 

  (2.4.3) 
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where the Raman interaction is neglected, Fmx(y)(z,t) and Bnx(y)(z,t) denote the amplitude of the 

forward m-th mode in the x/y polarization state and the amplitude of the backward n-th mode in 

the x/y polarization state, respectively. The last two terms on the right-hand side of these 

equations are automatically phase-matched, representing the energy exchange among the 

forward beams with different polarization states and mode distributions driven by the counter-

propagating beams. These inherently phase-matched terms are unique to a counter-propagating 

configuration because similar intermodal phase matching conditions would require specific fibre 

designs in a co-propagating system. The coupling strength between the orthogonally polarized 

modes is one third of the coupling strength between the parallelly polarized modes, as indicated 

with the coefficients 2 and 2/3. The equations for the mode Fmy and Bmx can be obtained by 

replacing the label x(y) with y(x) in these two equations. 

2.4.5� Optically induced long period gratings in multimode fibres 

Spatial control over the transverse mode distribution in optical fibres can also be achieved 

through the introduction of periodic perturbations to the light propagation[121]. Beyond 

permanent optical gratings and acousto-optic mode converters, the concept of optically induced 

long period gratings has been proposed and experimentally investigated using nanosecond and 

femtosecond pulses with kilowatt peak powers[66, 122-125]. When a high-power beam (writing 

beam) is coupled with two modes into the fibre, the mode beating between these modes 

generates an instantaneous and temporal grating via the Kerr effect. Another low-power beam 

(probe beam) can be diffracted by this optical grating, leading to a periodic mode conversion for 

the probe beam. 

Initial experiments were conducted with step-index few-mode fibres, spanning lengths from a few 

metres to centimetres[66, 123]. In these experiments, the writing beam and probe beam were 

orthogonally polarized to separate them at the same wavelength. Efficient mode conversion of 

probe beam requires phase matching between the writing and probe beams. By using graded-

index fibres, which feature flat dispersion and phase-matching curves, the wavelength of the 

probe beam can be extended from a single frequency to a large bandwidth[122, 125]. For 

instance, in an experiment using a 19.5 cm MM-GRIN fibre, 400-fs pulses with 250 kW peak power 

at a wavelength of 1030 nm were used as the writing beam. An energy conversion of 18% between 

the LP01 mode and the LP11 mode was observed in a probe beam at a wavelength of 1250 nm with 

2 ps pulses at 500 W peak power[125]. 

Meanwhile, theoretical and simulation approaches have been developed to understand the 

transverse mode conversion controlled by optical long period gratings. These approaches include 

the development of coupled mode equations[122], the beam propagation method[66], solutions 



Chapter 2 

66 

to the MM-NLSEs[124], material representations[121], four-wave mixing representations[121], 

and the intermodal Bragg-scattering four-wave mixing effect[126, 127]. However, state-of-the-art 

theories and models typically consider up to only two modes. It is crucial to generalize these 

theories to account for any number of modes. Furthermore, the optical long period grating effect 

in counter-propagating systems remains unexplored both theoretically and experimentally. 

These aspects are investigated in Chapter 4, where counter-propagating optical nonlinear 

gratings in multimode and multicore fibres are demonstrated theoretically and experimentally. 

2.5� Conclusions 

In this chapter, the propagation of multimode laser beams in optical fibres has been introduced 

using the MM-NLSEs. The intramodal and intermodal nonlinear interaction processes have been 

discussed based on the derivation of analytical solutions to the MM NLSEs, including self- and 

cross-phase modulation, four-wave mixing, and Raman scattering. The multimode interaction in 

multimode systems brings several novel effects and phenomena. As the main objective of this 

thesis is spatial mode control and laser beam shaping, several nonlinear spatial control 

processes in multimode systems have been reviewed, including dissipative spatial beam clean-

up, Kerr beam self-cleaning, beam self-organization in multimode gain media, polarization and 

mode attractors in counter propagating beams, and optically induced long period gratings. The 

work introduced in Chapters 3 and 4 is based on the nonlinear interaction between counter-

propagating beams, which shares a similar mechanism with polarization and mode attractors. 

However, the number of involved modes has been extended from two to multiple modes, and the 

mode control/shaping dynamics for the counter-propagating beams has been further 

investigated. Chapter 5 introduces spectrally beam shaping (wavelength conversion) in multicore 

fibres, and the corresponding background theory is reviewed in Section 2.3. Chapter 6 also 

investigates spatial beam shaping in multicore fibres; however, it focuses on a linear coherent 

beam combination approach. The corresponding state-of-the art and underlying mechanism are 

introduced at the beginning of Chapter 6. 
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Chapter 3�Mode rejection and control in multimode 

and multicore fibres 

3.1� Introduction 

In this chapter, the concept of “mode rejection in nonlinear optical fibres” is introduced and 

validated through experiments conducted with various few-mode fibres and homemade coupled 

multicore fibres. The phenomenon observed involves a forward-propagating beam autonomously 

rejecting a specific spatial mode when influenced by a backward-propagating beam of 

comparable power. Initially, the theoretical framework of mode rejection within counter-

propagating beams is outlined, supported by simulation results. Subsequently, experimental 

investigations are conducted to demonstrate the rejection of different LP modes or supermodes 

using a range of fibres, including 2-mode fibres (PM1550-xp, PMHN1, SMF28, and dual-core 

fibre), a 3-mode fibre (tri-core fibre), and a 6-mode fibre (PM2000), all operating at a wavelength 

of 1.04 µm. The chapter explores the impact of various parameters on the mode rejection effect 

through experimentation and simulations, including factors such as the input conditions of the 

counter-propagating beams (launch power, polarization state, and mode composition), fibre 

design, and fibre nonlinearity. Lastly, the concept of mode control within counter-propagating 

multimode beams is demonstrated, expanding upon the initial observations of mode rejection to 

further elucidate the dynamics of multimode nonlinear interactions. 

3.2� Mode rejection dynamics 

3.2.1� Theory 

The coupled nonlinear Schrödinger equations (see Eqs. (2.4.2) and (2.4.3)) introduced in Chapter 

2 describe the conservative nonlinear interactions among electric fields in a counter-propagating 

system with varying properties, including different polarization states, propagation directions, 

and spatial modes. These equations suggest a range of nonlinear effects commonly explored in 

counter-propagating multimode systems, such as four-wave mixing. However, a novel nonlinear 

effect – mode rejection – has not been thoroughly investigated. Mode rejection occurs when two 

laser beams are injected into opposite ends of a Kerr nonlinear medium (optical fibres, in this 

thesis), enabling a forward signal (FS) beam to self-organize its spatial mode distribution to 

eliminate a specific mode from the output signal. This process is driven by a backward 

propagating beam, termed the backward control beam (BCB). For simplicity, the following theory 
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is introduced in a scalar regime, considering the FS and BCB as either co-polarized or 

orthogonally polarized. This allows the simplification of Eqs. (2.4.2) and (2.4.3) to: 

 

𝜕𝐹𝑚
𝜕𝑧

+ 𝛽1
(𝑚) 𝜕𝐹𝑚

𝜕𝑡
= −𝑖𝛾𝑚𝑚|𝐹𝑚|

2𝐹𝑚 + 𝑖𝐹𝑚∑ 𝛾𝑚𝑛(𝑝|𝐵𝑛|
2 + 2|𝐹𝑚|

2)
𝑛

+ 𝑖𝐵𝑚
∗ ∑ 𝑝𝛾𝑚𝑛𝐵𝑛𝐹𝑛

𝑛≠𝑚
 

(3.2.1) 

 

−
𝜕𝐵𝑚
𝜕𝑧

+ 𝛽1
(𝑚) 𝜕𝐵𝑚

𝜕𝑡

= −𝑖𝛾𝑚𝑚|𝐵𝑚|
2𝐵𝑚 + 𝑖𝐵𝑚∑ 𝛾𝑚𝑛(𝑝|𝐹𝑛|

2 + 2|𝐵𝑛|
2)

𝑛

+ 𝑖𝐹𝑚
∗ ∑ 𝑝𝛾𝑚𝑛𝐵𝑛𝐹𝑛

𝑛≠𝑚
 

(3.2.2) 

where the second and higher order derivatives with respect to t are neglected, meaning that the 

dispersion length is much larger than the fibre length. These simplified equations hold true for 

experiments involving picosecond pulses, kilowatt peak power, and fibre lengths on the order of 

metres. γmn is the nonlinear Kerr coefficient related to the m-th and the n-th modes and it is 

defined by γmn=γfmn (see Eq.(2.3.10) for fmn). The polarization-related coefficient p=2 when the FS 

and the BCB are co-polarized, whereas p=2/3 when they are orthogonally polarized. On the right-

hand side of Eqs. (3.2.1) and (3.2.2), the first two terms describe the self-phase modulation and 

cross-phase modulation, which result in phase evolutions of the m-th mode. The last term gives 

rise to the energy exchange between the m-th and n-th modes of the FS and BCB. 

Stationary solutions can be found such that Fm(z,t)=Fm(z) and Bm(z,t)=Bm(z). By focusing on a 

stationary problem and considering the case where γmm=2γmn=γ, the equations without time-

dependent terms simplify as follows: 

 𝜕𝐹𝑚
𝜕𝑧

= 𝑖𝛾𝐹𝑚∑ (𝜌|𝐵𝑛|
2 + |𝐹𝑚|

2)
𝑛

+ 𝑖𝜌𝛾𝐵𝑚
∗ ∑ 𝐵𝑛𝐹𝑛

𝑛
 (3.2.3) 

 −
𝜕𝐵𝑚
𝜕𝑧

= 𝑖𝛾𝐵𝑚∑ (𝜌|𝐹𝑛|
2 + |𝐵𝑛|

2)
𝑛

+ 𝑖𝜌𝛾𝐹𝑚
∗ ∑ 𝐵𝑛𝐹𝑛

𝑛
 (3.2.4) 

where ρ=p/2, the equations simplify and the boundary conditions fix the input FS at z=0 and the 

input BCB at z=L (L is the fibre length), i.e., Fm(0) and Bm(L). To further analyse the system, the 

following change of variables is introduced: 

 𝐹𝑚 = 𝑃𝑓
1/2
 𝑓𝑚𝑒

𝑖𝛾(𝑃𝑓+𝜌𝑃𝑏)𝑧 (3.2.5) 

 𝐵𝑚 = 𝑃𝑏
1/2
 𝑏̂𝑚𝑒

−𝑖𝛾(𝑃𝑏+𝜌𝑃𝑓)𝑧 (3.2.6) 

where Pf = ∑m|Fm|2 and Pb = ∑m|Bm|2 are the total forward and backward powers and they are 

conserved during propagation (with losses neglected). According to Eqs. (3.2.5) and (3.2.6), 

∑m|𝑓𝑚|2 = ∑m|𝑏̂𝑚|2 = 1. In the following derivations, the focus is on a defined correlation coefficient 

DR = (∑mFmBm|)/(PfPb)1/2. Note that DR and 𝐷̂𝑅 = ∑ 𝑓𝑚𝑏̂𝑚𝑚  are identical except for a phase term 
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𝑒𝑖𝛾∆𝑃(𝜌−1)𝑧 with ∆P = Pb - Pf, and consequently |DR| = |𝐷̂𝑅|. Inserting Eqs. (3.2.5) and (3.2.6) into 

Eqs. (3.2.3) and (3.2.4) yields the following relations: 

 𝜕𝑧𝑓𝑚 =     𝑖𝛾𝜌𝑃𝑏𝐷̂𝑅𝑏̂𝑚
∗  (3.2.7) 

 𝜕𝑧𝑏̂𝑚
∗ =    𝑖𝛾𝜌𝑃𝑓𝐷̂𝑅 

∗ 𝑓𝑚 (3.2.8) 

By calculating the derivative of 𝐷̂𝑅 with respect to z, one can find a simple equation by substituting 

Eqs. (3.2.7) and (3.2.8) into 𝜕𝑧𝐷̂𝑅: 

 𝜕𝑧𝐷̂𝑅 = 𝑖𝛾𝜌 𝐷̂𝑅 ⋅ 𝛥𝑃 (3.2.9) 

Eq. (3.2.9) can be solved analytically and the solution reads 𝐷̂𝑅(𝑧) = 𝐷̂𝑅(0) ⋅ 𝑒
𝑖𝛾𝜌𝛥𝑃𝑧 . Note that at 

this point 𝐷̂𝑅(𝑧)  is still undetermined. Indeed, due to the counter-propagating nature of the 

system, 𝐷̂𝑅(0) is unknown since it depends on bn(0). However, by inserting the solution of Eq. 

(3.2.9) into Eqs. (3.2.7) and (3.2.8), the solution for 𝑓𝑚(L) can be obtained. After some algebra, 

this leads to the following equality: 

 
𝑓𝑚(L) =

𝑖𝑓𝑚(0)ℎ𝑒
1
2
𝑖𝛾 𝜌 𝛥𝑃 L − 𝑏̂𝑚

∗ (L)𝐷̂𝑅(L) 𝑠𝑖𝑛(𝑇 ℎ) (𝑣 + 𝑤)

𝑖ℎ 𝑐𝑜𝑠(𝑇 ℎ) − 𝑣 𝑠𝑖𝑛(𝑇 ℎ)
 (3.2.10) 

where v = ∆P/(2Q), w = Ptot/(2Q), h2 = v2 + |𝐷̂𝑅(L)|2, T = ργQL, Q2 = PfPb, Ptot = Pf + Pb. After multiplying 

the left- and right-hand sides of Eq. (3.2.10) by 𝑏̂𝑚(L), one can take the summation over the 

spatial modes to obtain the following implicit equation for 𝐷̂𝑅(L): 

 
𝐷̂𝑅(L) =

𝑖𝐷̂𝑅
(𝑖𝑛)

ℎ𝑒
1
2
𝑖𝛾 𝜌 𝛥𝑃 L − 𝐷̂𝑅(L) 𝑠𝑖𝑛(𝑇 ℎ) (𝑣 + 𝑤)

𝑖ℎ 𝑐𝑜𝑠(𝑇 ℎ) − 𝑣 𝑠𝑖𝑛(𝑇 ℎ)
 (3.2.11) 

where 𝐷̂𝑅
(𝑖𝑛) = ∑ 𝑓𝑚(0)𝑏̂𝑚(L)𝑚  represents the correlation among the input FS (𝑓𝑚(0)) and the 

input BCB ( 𝑏̂𝑚(L) ), and it is fixed by the boundary conditions. Note that 𝐷̂𝑅
(𝑖𝑛)  and 𝐷𝑅

(𝑖𝑛) =

(∑ 𝑓𝑚(0)𝑏𝑚(L)𝑚 )/(𝑃𝑓𝑃𝑏)
1/2

 are identical up to a phase term and therefore they share the same 

magnitude. Eq. (3.2.11) can be solved numerically for determining 𝐷̂𝑅(L) in the complex domain. 

It is however useful to derive an equation for the magnitude |𝐷̂𝑅(L)| ≡ |𝐷𝑅(L)|. For the sake of 

simplicity, an example case where the powers of the FS and the BCB are identical (∆P=0) is 

analysed, then Eq. (3.2.11) can be further simplified with v=0, w=1, and h=|𝐷̂𝑅(L)|: 

 𝐷̂𝑅(L) =
𝑖𝐷̂𝑅

(𝑖𝑛)ℎ − 𝐷̂𝑅(L) 𝑠𝑖𝑛(𝑇 ℎ)

𝑖ℎ 𝑐𝑜𝑠(𝑇 ℎ)
 (3.2.12) 

By multiplying Eq. (3.2.12) with 𝑖ℎ 𝑐𝑜𝑠(𝑇 ℎ), the following condition can be obtained: 

 𝐷̂𝑅(L)[𝑖ℎ 𝑐𝑜𝑠(𝑇 ℎ) + 𝑠𝑖𝑛(𝑇 ℎ)] = 𝑖𝐷̂𝑅
(𝑖𝑛)ℎ (3.2.13) 
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Finally, by computing the magnitude of the left- and right-hand sides of Eq. (3.2.13), one can 

obtain the relation determining the mode rejection: 

 sin2(𝑇ℎ) =
ℎ2  − |𝐷𝑅

(𝑖𝑛)
|2

ℎ2 − 1
 (3.2.14) 

In order to obtain an estimate for |𝐷̂𝑅(L)|, it proves useful to graphically represent Eq. (3.2.14). 

Figure 3.1 shows an example of the solutions (h), which indicate the correlation coefficients at 

the fibre output (|𝐷̂𝑅(L)|). It is worth noting that, despite the existence of multiple solutions (green 

points of intersection), the system always relaxes towards the one corresponding to the smallest 

value of h, namely h1. Figure 3.1 compares the solutions with different fibre lengths (L), suggesting 

that in a highly nonlinear regime (T>>1 with sufficiently high L or Q), the solution h1 will approach 

0. With a further approximation by eliminating h, Eq. (3.2.14) can be recast as |𝐷̂𝑅(L)| = |𝐷𝑅(L)| =

𝑎𝑠𝑖𝑛( |𝐷𝑅
(𝑖𝑛)| )/𝑇, which indicates that 𝐷𝑅(L) will decrease to 1/(QL). Under this estimation, if the 

input BCB is coupled into a specific mode, for instance, the m-th mode, such that 𝑏𝑚(L) = √𝑃𝑏 

and 𝑏𝑛≠𝑚(L) = 0 , then |𝐷𝑅(L)| = (∑ 𝑓𝑚(L)𝑏𝑚(L)𝑚 )/(𝑃𝑓𝑃𝑏)
1/2

 reduces to 𝑓𝑚(L)/√𝑃𝑓 . The 

condition |𝐷𝑅(L)| → 0 implies that |𝑓𝑚(L)| → 0, suggesting that the output FS carries no energy in 

the m-th mode irrespective of the input conditions of the FS, meaning the m-th mode is rejected 

at the fibre output. 

 
Figure 3.1 Graphical representation of Eq. (3.2.14) when ∆P=0. The parameters are set 

as: (a) ρ=1, γ=0.003 W-1m-1, L=0.2 m, Q=10 kW, |𝐷𝑅
(𝑖𝑛)|2=0.6; (b) ρ=1, γ=0.003 W-1m-1, 

L=1 m, Q=10 kW, |𝐷𝑅
(𝑖𝑛)|2=0.6. 

3.2.2� Simulations 

A striking feature of Eqs. (3.2.1) and (3.2.2) is that they exhibit the same mode rejection dynamics 

even in the general case where the Kerr coefficients γmn are arbitrary. Indeed, one could still 

observe a relaxation towards a stationary state and again the nonlinear interaction among the 
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counter-propagating modes performs as an underpinning “driving force” that leads to mode 

rejection. To illustrate and confirm the validity of the theoretical estimation shown in Figure 3.1, 

a simulation tool is used to numerically solve the coupled nonlinear Schrödinger equations (Eqs. 

(3.2.1) and (3.2.2)) via a standard finite-difference method[110]. The evolution of the counter-

propagating beams Fm(z) and Bm(z) can be numerically solved with the defined boundary 

conditions. The validity of the simulation tool was tested against a different numerical tool (the 

shooting method[128]) and compared with the experimental results of mode rejection, which are 

demonstrated in the following sections of this chapter. 

 
Figure 3.2 Distribution function of the input relative powers |Fm(t,0)|2/Pf and of the output 

relative powers |Fm(t,0)|2/Pf of the FS when simulating 1000 instances of Eqs. (3.2.1) and 

(3.2.2). The FS and the BCB are continuous waves in (a), whereas they are pulsed waves 

in (b). The following set of Kerr coefficients is used in each simulation: γ11=1 W-1km-1; 

γ22=1.5 W-1km-1; γ33=1.6 W-1km-1; γ44=1.2 W-1km-1; γ12= γ21=0.7 W-1km-1; γ13= γ31=1.1 W-1km-

1; γ14= γ41=0.8 W-1km-1; γ23= γ32=0.7 W-1km-1; γ24= γ42=1 W-1km-1; γ34= γ43=0.9 W-1km-1. 

Figure 3.2 shows the simulation of Eqs. (3.2.1) and (3.2.2) when using a 0.4m-long 4-mode fibre 

with arbitrary Kerr coefficients as listed in the caption. In Figure 3.2(a) the FS and the BCB are co-

polarized continuous waves, both with average powers of Pf = Pb = 2.5 kW. By running 1000 
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simulations where the 4 modes are randomly coupled into the input FS while the input BCB only 

coupled to the M1 mode, the power distribution among the modes in the output FS is 

redistributed. The dispersed power distribution function of the input and output FS is shown in 

Figure 3.2(a). The top row represents the power distribution for the modes in the input FS, and the 

bottom row represents the power distribution for the modes in the output FS. The result clearly 

illustrates an effective rejection of the M1 mode from the output FS. In almost all 1000 instances, 

the power of the output FS coupled to the M1 mode is lower than 10% and is less than 5% in 914 

instances. 

In comparison to the CW regime, 1000 simulations were also implemented considering the co-

polarized FS and BCB with pulse widths of 1 ns and peak powers of 2.5kW (semi-transparent red 

bars in Figure 3.2(b)) and 40 kW(blue bars in Figure 3.2(b)), respectively. Figure 3.2(b) displays the 

power distribution functions over the 4 modes for the input FS and output FS. In this case, the 

input BCB is also coupled to the M1 mode while the input FS is randomly coupled with the 4 modes. 

A comparison between Figure 3.2(a) and (b) reveals that the efficiency of rejecting the M1 mode is 

lower in Figure 3.2(b). In 988 out of 1000 simulations, the power of the output FS coupled to the 

M1 mode is less than 10% when using much higher peak powers. However, when the peak power 

is not high enough (for instance, 2.5kW in Figure 3.2(b)), the rejection of a specific mode is 

inefficient. This inefficiency arises because the pulse length of a 1 ns pulse in fibres is ~0.2 m, 

meaning that the maximum interaction length of the FS and the BCB is also 0.2m, provided the 

two pulses encounter inside the fibre. Despite using the same fibre length and same 

peak/average power for the pulsed/CW simulation, the nonlinearity (effective fibre length times 

coupled power) is lower in the pulsed case. However, the nonlinearity can be increased by using 

pulses with longer pulse widths or with higher peak powers. 

Indeed, the simulations align closely with the theoretical predictions in both CW and pulsed 

regimes. They illustrate that a specific mode can be selectively rejected from the output FS 

regardless of its input launching mode composition, as long as a backward-injected intense BCB 

is coupled to the rejected mode with similar power as the input FS. 

3.3� Rejection of LP modes in multimode fibres 

3.3.1� Experimental setup and mode decomposition of multimode fibres 

In this section, the mode rejection effect is experimentally investigated using several few-mode 

fibres. The selective rejection of different LP modes is demonstrated to validate the theoretical 

and simulation predictions. The experiments were conducted in commercial PM fibres (PM1550-

xp, PMHN1, and PM2000) and non-PM isotropic fibres (SMF28). 
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3.3.1.1� Experimental setup 

To experimentally illustrate the mode rejection process, few-mode fibres were first utilized to 

explore the mode conversion of the FS controlled by the BCB. A schematic of the experimental 

setup is depicted in Figure 3.3. The output from an in-house built linearly polarized laser source 

(a YDF MOPA system operating at a wavelength of 1040 nm and emitting ~0.5 ns Gaussian-

shaped pulses with maximum peak power of ~40 kW) is passed through a free-space isolator 

(ISO, Coherent PAVOS) to prevent damage from the backward beams. Then the input beam was 

split into two beams to work as the FS and BCB using a combination of a half-wave plate (HWP) 

and a polarization beam splitter (PBS). The FS and BCB were injected at opposite ends of test 

fibres, including bimodal fibres (PM1550-xp, PMHN1, SMF28) supporting the LP01 and LP11 mode, 

and a 6-mode fibre (PM2000) supporting the propagation of LP01, LP11e, LP11o, LP21e, LP21o, and LP02 

modes. Both ends of the test fibres were perpendicularly cleaved for high-quality mode 

excitation. A phase plate (PP) and a spatial light modulator (SLM, Holoeye PLUTO) were employed 

to excite different combinations of the spatial modes propagating in the fibre. The combination of 

HWP, PBS and another HWP was used to control the power and polarization states of the input 

FS and BCB beams. The output FS and BCB were sampled with optical wedges and observed at 

different polarization orientations on a camera by using a rotatable linear polarizer. The wedges 

were placed with the incident beam angle of ~10 degrees ensuring that the sampled beam 

maintains a similar polarization state to the output beam. The far-field (FF) and near-field (NF) 

beam profiles were collected with cameras placed after a beam splitter (BS) and a lens. The 

coupling efficiency of the FS and BCB into the test fibres was characterized by measuring both 

the input power (with unused power from the FS(BCB) recorded by the power meters (PWM), as 

shown in Figure 3.3) and output power from the test fibres. 

 
Figure 3.3 Schematic experimental setup for the investigation of mode rejection. 
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The pulse length is ~0.1 m in the fibre, and the nonlinear interaction length for the counter-

propagating pulses is ~0.2m. Considering the limitations imposed by the size of optics and multi-

axis stages, as well as the need to mitigate Raman amplification, the test fibres was chosen to be 

between 0.4m and 2m in length. With a coupled peak power of ~10 kW and a Kerr coefficient γ=3 

W-1km-1, the nonlinear length is ~0.03 m, which is significantly smaller than the dispersion length. 

The group velocity dispersion parameter β2 is ~20 ps2/km for the test fibres at a wavelength of 

1040 nm, allowing the dispersion to be neglected in the experiments with 0.5ns pulses. This was 

confirmed by measuring the output pulse shape and spectrum, which showed no significant 

changes compared to the input pulse shape and spectrum. 

In addition to qualitatively monitoring the mode conversion on the camera, mode decomposition 

is implemented by numerically analysing the near-field beam profiles. The camera, placed on an 

optical rail, captures the beam profiles around the focal plane of the lens positioned before the 

NF imaging camera (see Figure 3.3). The focal length of the lens used to collimate the output 

signal is 20 mm. Another lens with a focal length of 500 mm is placed ~520 mm away from the 

collimating lens, forming a 4-f system that images the fibre end facet with a magnification factor 

of 25x. The camera (Beamage-3.0, Gentec) has a pixel size of 5.5 µm, providing sufficient 

resolution for the near-field beam profiles (filling ~2000 pixels) of a fibre with a mode field 

diameter of ~10 µm. The complex amplitude (intensity and phase) of the output beams in the 

near-field is retrieved using an iterative phase retrieval method[43, 74]. The retrieved field is then 

decomposed over the fibre eigenmodes to obtain the relative mode content and relative phase, 

as introduced in section 2.2.2. An optimization method, the stochastic parallel gradient descent 

algorithm (SPGD)[75], is used to compensate for mode decomposition errors induced by noise 

and aberrations. 

3.3.1.2� Mode decomposition of LP modes 

The mode decomposition method for few-mode fibres used in this thesis consists of two 

procedures: data acquisition and post-processing. After aligning the experimental setup (see 

Figure 3.3), beam profiles are measured at three different positions (before, on, and after the focal 

plane) by translating the camera along an optical rail. The complex amplitude can then be 

retrieved iteratively by virtually propagating the beam from one position to another in a sequential 

order. As shown in Figure 3.4, the intensity profiles (I1, I2, I3) are measured at three different 

positions (z1, z2, z3). Intensity profiles are typically collected near a magnified near-field using a 4-

f system, with the resulting image size on the order of a few hundred micrometres. These profiles 

are used to retrieve the phases (P1, P2, P3) and complex amplitudes (E1, E2, E3). Starting from an 

initial guessed phase (Pinitial), the complex amplitude E1 is constructed. E1 is then virtually 

propagated to position z2 by using the angular spectrum theory [43], yielding E2. At this stage, E2 
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is updated by replacing its amplitude with the square root of the measured intensity I2 while 

retaining the phase information (P2). This procedure is repeated, iteratively updating the complex 

amplitudes between the three positions until the phase and complex amplitude are accurately 

retrieved after sufficient rounds of iteration. 

 
Figure 3.4 Schematic of the mode decomposition method used for FMFs. 

Once the complex amplitude at the focal plane (z2) is retrieved, the complex modal coefficients 

Cmn can be calculated by applying the correlation calculation between the retrieved complex 

amplitude and the fibre eigenmodes[72]: 

 𝐶𝑚𝑛 =
∬𝐸𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑥, 𝑦) ∙ 𝐸𝐿𝑃𝑚𝑛

∗ (𝑥, 𝑦) 𝑑𝑥𝑑𝑦

√(∬|𝐸𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑥, 𝑦)|
2 𝑑𝑥𝑑𝑦)(∬|𝐸𝐿𝑃𝑚𝑛(𝑥, 𝑦)|

2 𝑑𝑥𝑑𝑦)
= 𝑐𝑚𝑛exp(𝑖𝜃𝑚𝑛) (3.3.1) 

where ELPmn is the complex amplitude of the LPmn mode, cmn
2 and θmn are the mode content and 

phase of this mode. To evaluate the mode decomposition results, the multimode electric fields 

are typically reconstructed by superposing all the supported LP modes: 

 𝐸𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑥, 𝑦) =∑𝐶𝑚𝑛𝐸𝐿𝑃𝑚𝑛(𝑥, 𝑦) (3.3.2) 

The reconstructed field Ereconstructed is theoretically equal to the retrieved field and should have the 

same intensity distribution as the measured beam profiles. However, in practice, they can differ 

due to noise and aberrations in the measuring system. Additionally, the theoretically defined LP 

modes might deviate from the actual LP modes supported by the fibre, as the magnified complex 

amplitude of LP modes is used in mode composition methods to ensure sufficient spatial 

resolution. This discrepancy in ELPmn can introduce errors in mode decomposition. To achieve 

more accurate results, the modal coefficients are further optimized by using the SPGD algorithm, 

which minimizes the difference between the reconstructed field and the measured beam profile. 
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3.3.2� Mode rejection in polarization-maintaining fibres 

3.3.2.1� Mode rejection in PM1550-xp 

To simplify the analysis, the initial investigation of mode rejection focuses on the scalar regime, 

where the counter-propagating beams are in the same polarization state. This configuration is 

facilitated by employing polarization-maintaining fibres and polarized input beams. Initially, a 

bimodal PM fibre (PM1550-xp, Thorlabs) is utilized in the experiment. The refractive index profile 

and core geometry of the fibre are measured using an Interferometric Fibre Analyser 

(Rayphotonics IFA-100). The measured refractive index profiles are depicted in Figure 3.5, 

indicating a core-to-cladding index difference (∆n) of ~0.0054, corresponding to a core numerical 

aperture (NA) of 0.125. Additionally, the stress rod exhibits a lower refractive index than the 

cladding, with a difference of 0.012. 

 
Figure 3.5 Refractive index profile measurement for PM1550-xp. (a) 2D refractive index 

profile. (b) Refractive index profile along the fast axis. (c) Refractive index profile of the 

stress rod. 

Table 3.1 The dispersion and nonlinear coefficients for PM1550-xp 

Dispersion β (µm-1) β1 (ps/mm) β2 (ps2/km) 

LP01 8.7857 4.8987 14.6301 

LP11 8.7714 4.8986 26.4917 

Kerr coefficient γ=3 W-1km-1   

Overlap factor 
fm1_m2 m1=LP01 m1=LP11e m1=LP11o 

m2=LP01 1 0.5770 0.5567 

m2=LP11e 0.5770 0.8617 0.2796 

m2=LP11o 0.5567 0.2796 0.8144 

Next, the propagation constants, dispersion, and nonlinear coefficients of this fibre at a 

wavelength of 1µm were computed based on the measured index profile using Comsol software. 
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The PM1550-xp fibre supports the propagation of LP01 and LP11 modes, with their corresponding 

coefficients listed in Table 3.1. For simplicity in the subsequent analysis, the degenerate LP11 

mode (LP11e, LP11o) is considered as a single mode. Therefore, the mode rejection of the LP01 mode 

leads to mode conversion towards these two quasi-degenerate LP11 modes. 

Prior to the mode rejection experiments, a 1m length of the PM1550-xp fibre was placed in the 

experimental setup (see Figure 3.3), where the polarization extinction ratio (PER) of the output 

signal beam was evaluated. When solely launching signal beams with either the LP01 mode or the 

LP11 mode at different power levels, the PER of the output signal beam ranged from 13 to 28 dB, 

as illustrated in Figure 3.6. Notably, the input beam exhibited a good PER of ~28 dB. The observed 

variation in the output beam’s PER can be attributed to slight polarization fluctuations in the laser 

source and the sensitivity of the HWP angles (see Figure 3.3), which are utilized to align the input 

linear polarization state with the fast/slow axis of the PM1550-xp. With the PER of the output 

beams from the 1-m PM1550-xp consistently surpassing 12dB, the scalar regime approximation 

is satisfactorily met. 

 
Figure 3.6 PER of the output beams from a 1m-long PM1550-xp fibre 

The mode rejection experiments began with rejecting the LP01 mode in the FS. In this scenario, the 

BCB was only coupled into the LP01 mode, while the FS was coupled into a combination of the 

LP01 and LP11 modes. To ensure the nonlinear interaction involved counter-propagating modes 

with the same polarization states, the polarization state of the input FS and BCB was orientated 

along the slow or fast axis by optimizing the rotation angles of the two HWPs before the fibre ends. 

Figure 3.7 shows the evolution of the modal distribution in the output FS as the BCB power varied, 

while the total input FS power was kept constant at ~15 kW. The coupling loss was ~1 dB for the 

LP01 mode and ~4 dB for the LP11 mode, resulting in the FS being coupled with a peak power of 6 

to 12 kW when coupled with the combination of the two LP modes. The maximum peak power of 

the BCB was ~8 kW. Figure 3.7(a) displays the result when the input FS was primarily coupled to 

the LP01 mode, holding ~83 % of the FS power (point A). As the BCB power increased, the FS 

spontaneously converted towards the LP11 mode, effectively rejecting the LP01 mode. Figure 3.7(b) 
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provides the corresponding output beam profiles of the FS. The conversion efficiency was ~34 %, 

limited by system insertion loss and the available laser power. Alternatively, the mode rejection 

of the LP01 mode was further investigated with an input FS coupled with a combination of modes, 

with ~46% of the power coupled to the LP01 mode (point D), as shown in Figure 3.7(d) and (e). The 

output FS rejected the LP01 mode and efficiently self-organized into the two-lobe LP11 mode (point 

F in Figure 3.7(e)), which contained ~90 % LP11 mode. The MD method introduced in section 

3.3.1.2 was implemented at each BCB power, and the mode contents in Figure 3.7(a) and (d) were 

obtained from MD. Additionally, the beam quality factor M2 was calculated from the retrieved 

complex amplitude by virtually propagating the electric field within several Rayleigh lengths[43]. 

Figure 3.7(c) and (f) show the calculated M2 of the FS output at different BCB powers, indicating 

that the beam quality worsened (M2 increased with more LP11 mode content) as the BCB power 

increased, corresponding to a decrease in LP01 mode content. It is worth noting that the curves in 

Figure 3.7 are not smooth, which could be attributed to mode decomposition error (deviation 

along y-axis direction in (a) and (d) and the corresponding M2 value deviation in (c) and (f)) as well 

as BCB power variation (along x-axis direction, resulting from variation in coupling efficiency). 

 
Figure 3.7 Mode rejection of the LP01 mode in the PM1550-xp with the input FS coupled 

into different combinations of modes and the BCB coupled into the LP01 mode. (a), (d) 

Relative mode content of the output FS as a function of the BCB power. Error bars of 

±2% are added in the experimental results to represent the estimated uncertainty of the 

MD algorithm (see Section 3.3.1.2). (b), (e) Output FS beam profiles corresponding to 

different BCB powers (labelled A - F). (c), (f) The calculated M2 factor for the output FS 

versus the BCB powers. 
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To illustrate the MD accuracy in the measurements, two examples of MD results are provided in 

Figure 3.8, corresponding to results at point A (BCB=0 kW) and point C (BCB=7.7 kW) as labelled 

in Figure 3.7(a). Figure 3.8(a) shows the FS consists of ~4.8 % LP11e and ~12.3 % LP11o modes when 

the BCB is switched off, while Figure 3.8(c) shows the content of the LP11e and LP11o modes 

increases to ~17.1 % and ~34.1 % respectively when the BCB is switched on, resulting in ~34 % 

power reduction in the LP01 mode. Figure 3.8(b) and (d) display the intensity and phase 

distribution reconstructed from the MD results. The two-dimensional correlation coefficients [74] 

of the reconstructed intensity profiles with respect to the measured ones are higher than 99%, 

which is the typical value for MD accuracy based on the intensity measurements[67]. 

 
Figure 3.8 Mode decomposition results at points A and C shown in Figure 3.7(a). (a), (c) 

MD results: normalized mode contents of LP01, LP11e, and LP11o modes and the relative 

phase between them. (b), (d) Reconstructed intensity and phase based on the MD 

results in comparison with the measured intensity. I-meas: measured intensity, I-rec: 

reconstructed intensity, Phase-rec: reconstructed phase, I-diff: discrepancy between I-

meas and I-rec, Corr: two-dimensional correlation coefficient. 

In contrast, the mode rejection of the LP11 mode in the FS is investigated next, with the input FS 

coupled with a combination of the LP01 and LP11 modes while the BCB is coupled into the LP11 

mode. Figure 3.9(a) shows the evolution of the output FS modal distribution as the BCB power 

varies. The input FS is kept constant at a peak power of ~6.5 kW (~10 kW incident at the fibre end), 
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and the BCB is coupled into the LP11 mode with a maximum power of ~3 kW (~11.5 kW launched 

at the fibre end, noting that the low coupling efficiency due to exciting the LP11 mode with a phase 

plate). The output FS gradually evolves towards the LP01 mode, with the LP11 mode content 

decreasing by ~28%. Figure 3.9(b) demonstrates that the output FS is converted to a single lobe 

with more LP01 mode output. The rejection of the LP11 mode is further confirmed by the 

improvement in the M2 factor, as shown in Figure 3.9(c). 

 
Figure 3.9 Mode rejection of the LP11 mode in the PM1550-xp with the BCB coupled into 

the LP11 mode. (a) Relative mode content of the output FS as a function of the BCB 

power. (b) Output FS beam profiles corresponding to different BCB powers (labelled 

with A - C). (c) Calculated M2 factor for the output FS versus the BCB powers. 

 
Figure 3.10 Efficiency of mode rejection versus the polarization direction difference 

between the FS and BCB. The input FS and BCB in (a) and (b) have the same mode 

compositions as those in Figure 3.7 (a) and (d), respectively. 

To gain a more comprehensive understanding of this nonlinear process, two factors affecting the 

efficiency of mode rejection were experimentally investigated. One factor is the relative 

polarization states of the counter-propagating beams. Using a PMF ensures the polarization state 

is well maintained. By continuously adjusting the relative polarization between the FS and the 

BCB while keeping their powers constant, the efficiency of mode rejection is compared in Figure 

3.10. Figure 3.10(a) shows the case having the same mode composition and polarization state as 

the input FS in Figure 3.7(a), but the input BCB is in the LP01 mode with varying polarization states 
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with respect to Figure 3.7(a). Figure 3.10(b) corresponds to Figure 3.7(d) but also features a 

varying polarization state for the input BCB. The results illustrate that maximized rejection is 

achieved when the FS and BCB are co-polarized (0-deg polarization direction difference, with 

both beams being linearly polarized). The efficiency of mode rejection decreases as the 

polarization difference increases. The reduction in the LP01 mode content is ~30 % at a 0-deg 

polarization difference and ~10 % at a 90-deg difference. This variation in mode rejection 

efficiency aligns with the predicted coupling coefficient p (see Eqs. (3.2.1) and (3.2.2)), where the 

p=2 corresponds to the co-polarized condition and p=2/3 to the orthogonally polarized condition. 

A conversion efficiency comparable to the co-polarized case can be achieved under orthogonal 

polarization if the power of the input FS and BCB is increased threefold. Figure 3.10 also 

illustrates that when the FS and BCB are orthogonally polarized, the output FS beam profile 

remains similar whether the BCB is switched on or off, as shown by the dashed lines and inset 

pictures. 

 
Figure 3.11 Mode rejection observed in different polarization orientations with the BCB 

coupled into the LP01 mode. (a), (c) Mode content of the LP01 mode versus the BCB power 

when observed in different polarization directions. (b), (d) Comparison of the FS output 

beam profiles at different polarization directions when the BCB is switched on/off. 

Pol(Max/Mid/Min): polarization direction containing the maximum/medium/minimum 

power of output FS. 

Another factor to consider is the relationship between the polarization states of the output FS and 

the orientation of polarization where mode rejection is observed using camera (assuming the FS 
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and the BCB are linearly polarized, and a rotatable linear polarizer is positioned before the 

camera). In Figure 3.7 and Figure 3.9, mode conversion was observed in the polarization 

orientation aligned with the axis containing the maximum power, as the sampled FS output (see 

Figure 3.3) is linearly polarized with a PER of ~11 dB. However, it is worth measuring mode 

conversion in other polarization orientations. For instance, Figure 3.11 illustrates the evolution of 

the LP01 mode content with respect to the BCB power when measuring at three polarization 

directions by rotating the polarizer before the camera. In these measurements, the input BCB is 

coupled to the LP01 mode, and the counter-propagating beams are co-polarized. The curves and 

FS output beam profiles indicate that the rejection of the LP01 mode exhibits similar efficiency 

across different polarization orientations. 

In conclusion, this section demonstrates the mode rejection of the LP01 and LP11 modes in 

PM1550-xp by injecting counter-propagating beams into the fibre. The experimental findings align 

well with the theoretical predictions: when two counter-propagating beams with comparable 

powers propagate in a multimode fibre, the forward signal organizes itself to reject the mode 

matching that of the backward control beam. Maximal mode rejection efficiency occurs when the 

two beams are co-polarized, with mode conversion efficiency gradually dropping as the 

polarization states of the counter-propagating beams diverge. Utilizing a 1m-long PM1550-xp and 

a total peak power of ~16kW, rejection of the LP01 or LP11 modes is achieved with a conversion 

efficiency of ~30%. 

3.3.2.2� Mode rejection in PMHN1 

The PM1550-xp fibre exhibits standard nonlinearity due to its regular fibre core diameter. To 

further explore the mode rejection effect and its applicability to other fibres, a highly nonlinear 

PMHN1 (Thorlabs) was used. The PMHN1 features an elliptical core with a mode field area of 

~12.4 µm2 and a mode field diameter of ~4 µm, resulting in higher nonlinearity compared to the 

PM1550-xp. The PMHN1 supports two-mode propagation at a wavelength of 1 µm, specifically 

the LP01 mode and LP11 mode. Figure 3.12 shows the cross-section image of the PMHN1 and the 

supported LP mode distributions at 1 µm. The dispersion and nonlinear coefficients of the LP 

modes for this fibre are listed in Table 3.2. 

 
Figure 3.12 Cross section of the PMHN1 and the supported LP modes at 1 µm 
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Table 3.2 The dispersion and nonlinear coefficients for PMHN1 

Dispersion β (µm-1) β1 (ps/mm) β2 (ps2/km) 

LP01 8.8737 4.9782 15.5632 

LP11e 8.8267 4.9901 22.4802 

LP11o 8.7947 4.9789 57.2380 

Kerr coefficient γ=13.2 W-1km-1   

Overlap factor 
fm1_m2 m1=LP01 m1=LP11e m1=LP11o 

m2=LP01 1 0.6372 0.5544 

m2=LP11e 0.6372 0.9467 0.2911 

m2=LP11o 0.5544 0.2911 0.8112 

Following similar procedures to those used in the PM1550-xp experiments, a ~0.4 m long PMHN1 

fibre was placed in the counter-propagating setup (see Figure 3.3). Prior to the high-power 

experiments, a series of preliminary optimizations were conducted at a low power level. These 

optimizations included adjusting the rotation angles of the waveplates, the phase patterns 

loaded onto the SLM, the position of the phase plate, and the choice of lenses. The BCB was 

selectively coupled into either the LP01 or LP11 mode by changing the phase pattern displayed on 

the SLM (the phase pattern for the LP01 mode is a flat phase profile, whereas the phase pattern 

for the LP11 mode is split into two regions with π phase difference), while the FS was coupled into 

a combination of the LP01 and LP11 modes by adjusting the position of the phase-plate with respect 

to the incident beam. The polarization state of the input FS and BCB was aligned along the slow 

or fast axis to ensure that the nonlinear interaction involved the counter-propagating modes with 

the same polarization states. 

Figure 3.13 illustrates the rejection of the LP01 and LP11 modes in the FS in the PMHN1. In Figure 

3.13(a), the input BCB is coupled into the LP01 mode, and the FS shows a gradual rejection of the 

LP01 mode as the BCB power increases. Initially, 79% of the power is in the LP01 mode, this 

decreases to 50% when the BCB power reaches ~2 kW. Compared to the results with PM1550-xp 

(see Figure 3.7), achieving a reduction of the LP01 mode content from 80% to 50% in PM1550-xp 

requires counter-propagating beams with a total power of ~16kW (2*8 kW). However, in PMHN1, 

a similar conversion efficiency is achieved with a total power of ~4 kW (2*2 kW). This discrepancy 

arises from the difference in nonlinear coupling coefficients between the two fibres, with 

PMHN1’s intra- and inter-modal nonlinear coefficients being ~4 times larger than those of 

PM1550-xp (see Table 3.1 and Table 3.2). 
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Figure 3.13(b) demonstrates the mode rejection when the input BCB is coupled into the LP11 

mode. As the BCB power increases, the output FS shows a gradual rejection of the LP11 mode, 

with its relative power decreasing from 76% to 40% as the BCB power rises from 0 kW to ~2 kW. 

Figure 3.13(c) illustrates efficiency of LP11 mode rejection when varying the relative polarization 

states between the FS and the BCB, while maintaining the input mode distributions. A significant 

rejection (26% conversion of LP11 mode content) is observed when the BCB is co-polarized (0 deg) 

with the FS. Conversely, when the BCB is orthogonally polarized relative to the FS, the LP11 mode 

rejection is negligible. These experimental results align well with the simulations (discussed in 

section 3.2.2) that use the experimental parameters, including pulse duration, peak power, fibre 

length, mode composition, and the relative polarization state of the counter-propagating beams. 

 
Figure 3.13 Mode rejection of different LP modes in PMHN1 with experimental results 

(markers) compared to simulations (lines). Abbreviations: exp – experiment, simu - 

simulation. (a) Rejection of the LP01 mode when the input FS is a combination of 79% 

LP01 mode and 21% LP11 mode with a total peak power of ~1.6 kW. (b) Rejection of the 

LP11 mode when the input FS is a combination of 24% LP01 mode and 76% LP11 mode with 

a total power of ~2.6 kW. (c) Relative power of the FS modes as a function of the 

polarization difference between the FS and the BCB when the BCB is coupled into the 

LP11 mode. 

 
Figure 3.14 Mode rejection of the LP11 mode in PMHN1 when further increasing the 

counter-propagating beam powers. (a) Relative power of the output FS modes versus 

the launched BCB power, along with the beam profiles at different BCB powers. (b) 

Measured spectra of the output BCB at different powers when the FS is switched off. (c) 

A zoomed-in view of the spectra shown in (b). 
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Given that similar mode rejection efficiency can be achieved in the PMHN1 with ~4 times lower 

power than in the PM1550-xp, further investigations involved increasing the input power. Figure 

3.14 presents results when the counter-propagating beam powers were increased from 2kW to 

5kW. The input BCB was coupled into the LP11 mode, and the input FS was coupled with a 

combination of 21% LP01 mode and 79% LP11 mode. However, instead of observing continued 

rejection of a specific mode when the BCB power exceeded ~1.8 kW, the relative power of the 

LP11 mode stabilized at 40% – 50%. In Figure 3.14(a), the experimental results diverge from the 

simulation predictions beyond ~1.8 kW BCB power. This discrepancy can be explained by 

analysing the output spectra of the BCB at different coupled powers. Figure 3.14(b) and (c) show 

significant generation of new frequencies when the BCB power exceeds ~1.8 kW, with a 

supercontinuum observed at ~3.38 kW peak power. Consequently, the effective BCB power at 

1040 nm (the central wavelength) constitutes only a portion of the launched power, meaning that 

the BCB power at 1040 nm does not increase beyond ~1.8 kW. These new frequency components 

degrade the observation of mode rejection, as the process relies on transverse mode control at 

the same wavelength within a narrow bandwidth. 

To conclude, the mode rejection of the LP01 and LP11 modes in a 0.4m long highly nonlinear 

PMHN1 fibre has been experimentally demonstrated. A mode rejection efficiency of ~30% was 

achieved using a total power of ~4 kW (2*2kW) for the counter-propagating beams, which is ~4 

times lower than the power requirement for achieving a 30% mode rejection in the PM1550-xp. 

The rejection of different LP modes was measured, and the experimental results align well with 

theoretical predictions and simulations. 

3.3.2.3� Mode rejection in PM2000 

The PM1550-xp and PMHN1 fibres serve as 2-mode platforms for the experimental 

implementation of mode rejection. To increase the number of modes and investigate the mode 

rejection process in a multimode medium, another PMF (PM2000, Thorlabs) is used. The PM2000 

fibre supports the propagation of six LP modes at a 1 µm wavelength, including the LP01, LP11e, 

LP11o, LP21e, LP21o, and LP02 modes. The PM2000 has a core diameter of ~7 µm and a numerical 

aperture of ~0.2. The dispersion and nonlinear coefficients of the LP modes for this fibre are listed 

in Table 3.3 and Table 3.4. 

Following procedures similar to those used for the experiments with PM1550-xp and PMHN1, a 

~0.4m long PM2000 was placed in the counter-propagating setup. Preliminary optimizations at 

low power levels, such as adjusting the waveplate angles and SLM phase patterns, were 

conducted. The BCB was selectively coupled into either the LP01 or the LP11 mode by adjusting the 

position of the phase plate, while the FS was coupled with a combination of LP modes with varying 

relative powers and phases by modifying the phase pattern loaded on the SLM. The polarization 
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state of the input FS and BCB was orientated along the slow or fast axis of the fibre to ensure that 

the nonlinear interaction involved counter-propagating modes with the same polarization states. 

Table 3.3 The dispersion coefficients for PM2000 

Dispersion β (µm-1) β1 (ps/mm) β2 (ps2/km) 

LP01 8.8290 4.9298 15.2879 

LP11e 8.8039 4.9363 16.0593 

LP11o 8.8035 4.9363 16.1967 

LP21e 8.7730 4.9381 43.0024 

LP21o 8.7728 4.9382 43.4914 

LP02 8.7667 4.9228 131.0580 

Table 3.4 Nonlinear coefficients for PM2000 

Overlap factor 
fm1_m2 m1=LP01 m1=LP11e m1=LP11o m1=LP21e m1=LP21o m1=LP02 

m2=LP01 1 0.6432 0.6430 0.4046 0.4008 0.5207 

m2=LP11e 0.6432 0.9419 0.3978 0.5436 0.5412 0.2531 

m2=LP11o 0.6430 0.3978 0.9411 0.5296 0.5285 0.2664 

m2=LP21e 0.4046 0.5436 0.5296 0.5125 0.5110 0.2312 

m2=LP21o 0.4008 0.5412 0.5285 0.5110 0.5111 0.2306 

m2=LP02 0.5207 0.2531 0.2664 0.2312 0.2306 0.5148 

Kerr coefficient γ=5.3 W-

1km-1      

Figure 3.15 and Figure 3.16 provide examples of the rejection of LP01 and LP11o modes in the output 

FS from the PM2000. Figure 3.15 illustrates a scenario where the input BCB is coupled into the 

LP01 mode, resulting in a gradual rejection of the LP01 mode in the output FS as the launched BCB 

power increases. Initially, nearly 95% of the power is in the LP01 mode, decreasing to ~13 % with 

a BCB power of ~4.6 kW. It is worth noting that, despite the transition to a 6-mode platform from 

a 2-mode one, the experimental results align well with simulations. Figure 3.15(b) demonstrates 

the close match between the theoretical predictions and experimental results, considering the 

experimental parameters such as pulse duration, peak power, fibre length, and input mode 

compositions. 

Figure 3.16 presents two additional instances of mode rejection in PM2000, where the input BCB 

is coupled to the LP01 mode (Figure 3.16(a)) and the LP11 mode (Figure 3.16(b)). In Figure 3.16(a), 

a reduction in the LP01 mode content from ~35 % down to ~16 % is observed with a BCB power of 
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~4.5 kW. However, the mode conversion efficiency is not as pronounced as seen in Figure 3.15 

due to different conditions of the input FS. The relative power and phase of each LP mode in the 

FS can affect mode rejection performance, meaning that while rejection of a specific mode 

matching the input BCB mode may occur, the increase in other mode contents will vary 

depending on the input FS condition. In this instance, rejection of the LP01 mode in FS results in 

increased content of the LP11o, LP21e, and LP211o modes by ~15 %, ~25 %, and ~23 %, respectively. 

In Figure 3.16(b), the input FS comprises ~46 % LP11o, ~25 % LP11e, ~21 % LP02, and ~8 % LP21o 

modes. With a launched BCB power of ~2.6 kW, the output FS demonstrates rejection of the LP11o 

mode, with its mode content reduced by ~35 %. 

 
Figure 3.15 Mode rejection of the LP01 mode in PM2000. (a) Relative power of the 

output FS modes versus the launched BCB power, along with the output FS beam 

profiles at different BCB powers. (b) Relative power of individual LP modes versus the 

BCB power, in comparison with simulations (lines). 

 
Figure 3.16 Relative power of the output FS modes versus the launched BCB power, 

along with beam profiles at different BCB powers, illustrating the rejection of (a) the LP01 

mode and (b) the LP11o mode in PM2000. 
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3.3.3� Mode rejection in isotropic fibres 

To explore the mode rejection process in a more general medium, such as an isotropic fibre where 

polarization maintenance is not feasible like in PMFs, a bimodal fibre, SMF28, is employed. The 

refractive index profile of SMF28 is shown in Figure 3.17, revealing an average core to cladding 

refractive index difference of ~0.0053 (corresponding to NA~0.124 @1.04 µm) and a core 

diameter of ~8.3 µm. Through simulation in Comsol using the measured index profile, the 

dispersion and nonlinear coefficients are obtained and listed in Table 3.5. Despite similarities in 

core size, NA, modal dispersion parameters between SMF28 and PM1550-xp, the intermodal 

nonlinear coefficients (fm1_m2) in SMF28 are ~50% smaller (compared to PM1550-xp coefficients in 

Table 3.1). This reduction stems from a lower intermodal overlap between the LP01 and the LP11 

modes in SMF28, potentially affecting mode rejection efficiency. 

 
Figure 3.17 Measured refractive index profile for SMF28 

Table 3.5 The dispersion and nonlinear coefficients for SMF28 

Dispersion β (µm-1) β1 (ps/mm) β2 (ps2/km) 

LP01 8.7820 4.8965 16.0203 

LP11 8.7684 4.8925 26.6194 

Kerr coefficient γ=3.1 W-1km-1   

Overlap factor 
fm1_m2 m1=LP01 m1=LP11e m1=LP11o 

m2=LP01 1 0.2967 0.2563 

m2=LP11e 0.2967 0.4290 0.1968 

m2=LP11o 0.2563 0.1968 0.4341 

Prior to implementing the mode rejection experiments with SMF28 fibre, preliminary 

measurements were conducted to understand polarization and modal coupling in a co-

propagating configuration. A 1m-long piece of SMF28 was placed in the experimental setup (see 
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Figure 3.3), with the BCB blocked. The FS was coupled into either the LP01 or LP11 mode at various 

power levels. Intermodal coupling between the LP01 and LP11 modes was quantified using the MD 

method introduced in section3.3.1.2, revealing coupling variations between ~5 to 10% at different 

powers. The input FS exhibited a high PER of ~25 dB, and the output PER was measured using a 

combination of a quarter wave plate (QWP), a HWP and a PBS. The results, shown in Figure 3.18, 

indicate that the output PER as a function of the coupled powers, with wave plate angles 

optimized for each measurement to achieve maximum PER. The LP01 mode maintained a good 

PER (>10 dB) at low powers, but experienced decreased PER at high peak powers due to strong 

polarization coupling. Conversely, the LP11 mode exhibited significant scrambling even at low 

power levels, and PER measurements showed randomness and variability over time, indicating 

substantial random polarization coupling. These observations suggest that while the LP01 mode 

can maintain its polarization state to some extent at low powers, the LP11 mode faces 

considerable polarization scrambling, leading to unpredictable polarization states within the 

fibre. Despite these challenges, investigating the mode rejection process in SMF28 remains 

valuable for understanding mode control in more complex environments. 

 
Figure 3.18 PER of the output beams from a 1m-long SMF28 versus the coupled peak 

power, measured at different times (represented by different colours) and in different 

mode coupling conditions: (a) LP01 mode and (b) LP11 mode. 

 
Figure 3.19 Mode conversion in SMF28 when observing in different polarization 

directions with the BCB (LP01 mode) switched on and off. 
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The initial investigation focused on the rejection of the LP01 mode, with the input BCB coupled into 

the LP01 mode and the input FS coupled with a combination of the LP01 and LP11 modes. Initially, 

both the input BCB and FS were polarized along the same axis. Figure 3.19 illustrates the mode 

conversion for the output FS, observed at various polarization orientations by rotating the linear 

polarizer before the camera, with fixed camera exposure time to demonstrate relative powers. 

With the FS and BCB coupled at ~6.5 kW and ~7.5 kW, respectively, optimal rejection of the LP01 

mode occurred at a specific angle (OPT angle), close to the polarization orthogonal to the input 

polarization. For instance, if the input FS is x-polarized, the OPT angle aligns with the y-

polarization direction. This OPT angle is influenced by factors such as the relative polarization 

between the FS and BCB, FS mode composition, and random polarization coupling, as well as 

mode coupling related to the launched power. In Figure 3.19, the OPT angle deviates ~15 deg from 

the minimum power orientation (OPT-15 deg), with efficient mode rejection observed within 

orientations ranging from OPT-10 deg to OPT+10 deg. When observed in the direction orthogonal 

to the OPT angle, mode rejection is negligible, and the output FS beam shape is similar when the 

BCB is switched on and off. This behaviour contrasts with observations using the PM1550-xp, 

where mode rejection occurs across all polarization directions (see Figure 3.11). 

 
Figure 3.20 Mode rejection of the LP01 mode in SMF28 with mode conversion towards 

the LP11 degenerate modes when observing at the OPT angle. (a), (d) Mode content in the 

output FS versus the BCB power. (b), (e) Output FS beam profiles at different BCB 

powers. (c), (f) Calculated M2 factor for the output FS versus the BCB power. 

The mode conversion at the OPT angle was measured to analyse mode rejection in the SMF28, as 

depicted in Figure 3.20 and Figure 3.21. In Figure 3.20, two measurements showcase the input FS 
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predominantly coupled to the LP01 mode at the OPT angle (point A: ~81% LP01 mode power, point 

D: ~95% LP01 mode power), while the input BCB is coupled with the LP01 mode. As the BCB power 

increases, a conspicuous conversion towards the LP11 mode is observed in the output FS. Figure 

3.20(a)-(c) demonstrate that the rejection of the LP01 mode leads to a conversion to the LP11 mode 

with two lobes oriented vertically, with the mode composition at point C being ~7.6% LP01 mode, 

~5.4% LP11e mode, and ~87% LP11o mode. Figure 3.20(c) shows that the increase in the M2 factor 

is more pronounced in the vertical(y) direction with increasing BCB power (M2 increment is 

~0.34/~1.53 in the x/y direction), emphasizing the dominance of conversion from the LP01 mode 

to the LP11o mode in this measurement. In contrast, Figure 3.20(d)-(f) illustrate that the FS mode 

is primarily converted to the LP11e mode, with the output FS at point F containing ~11% LP01 mode, 

~87% LP11e mode, and ~2% LP11o mode. As a consequence, the M2 factor increases ~1.77 and 

~0.09 in the x and y directions, respectively. It is worth noting that the curves in Figure 3.20 are 

not smooth, which could be attributed to mode decomposition error (deviation along y-axis 

direction in (a) and (d), and the corresponding M2 value deviation in (c) and (f)) as well as BCB 

power variation (along x-axis direction, resulting from variation in coupling efficiency). 

Likewise, the rejection of the LP11 mode in SMF28 was measured at the OPT angle. Figure 3.21 

shows the mode content evolution in the output FS as a function of the BCB power, with the input 

FS at ~8.75 kW and the input BCB coupled into the LP11 mode with a maximum power of ~5 kW. 

Notably, the output FS exhibits a rejection of the LP11 mode, with a reduction of ~22 % in mode 

content, accompanied by a transformation of the output FS shape towards a single lobe. 

 
Figure 3.21 Mode rejection of the LP11 mode in SMF28 when observing at the OPT 

angle. (a) Mode content in the output FS versus the BCB power. (b) Output FS beam 

profiles at different BCB powers. (c) Calculated M2 factor for the output FS versus the 

BCB power. 

To understand the influence of the relative polarization states between the counter-propagating 

beams in the SMF28, the random polarization coupling shown in Figure 3.18 should be 

considered as well. By adjusting the FS and BCB with different polarization differences (Pol-diff), 

the mode rejection efficiency at the OPT angle is compared in Figure 3.22, where the LP01 mode is 
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rejected. The maximized rejection is achieved when the input FS and BCB are co-polarized (Pol-

diff=0 deg), and the mode rejection efficiency gradually degrades as the polarization difference 

increases. It is noteworthy that when the polarization state of the BCB differs from that of the FS, 

the mode conversion can follow an uncertain direction. For example, with Pol-diff=20 deg in 

Figure 3.22(a), the content of the LP01 mode decreases from ~100% to ~40% at ~4 kW BCB power, 

then unexpectedly increases to 80% at ~6 kW, before decreasing again. Another notable 

difference in the mode rejection behaviour in SMF28 compared to PM1550-xp (see Figure 3.10) is 

the conversion efficiency. The increment in the LP11 mode content is ~70% when the Pol-diff is 0 

deg and ~10% when Pol-diff is 90 deg, with a difference larger than the theoretical prediction (the 

mode conversion efficiency is ~3x lower when the Pol-diff changes from 0 deg to 90 deg). 

 
Figure 3.22 Mode rejection efficiency at the OPT angle with different relative 

polarizations between the FS and the BCB. (a) Content of the LP01 mode in the output FS 

versus the BCB power when the polarization difference between the FS and the BCB is 

0 deg to 90 deg. (b) Mode conversion results for the output FS at different Pol-diff values 

in comparison with the case when the BCB is switched off. 

To conclude, the measurement of the mode rejection in SMF28 provides an example of beam self-

organization in a random multimode medium where strong polarization coupling influences the 

complex nonlinear processes. Despite these complexities, mode rejection still occurs at an 

optimal polarization direction (OPT angle), and the rejection is observed in the mode that is the 

same as the input BCB mode. The mode rejection efficiency is maximized at the OPT angle when 

the input FS and BCB are co-polarized. However, when the input beams are not co-polarized, the 

mode conversion may follow an uncertain direction into different mode states. 

3.3.4� Conclusion on the rejection of LP modes in multimode fibres 

In section 3.3, the mode rejection of different LP modes is demonstrated using various FMFs in a 

setup with few-kW, 0.5ns-pulsed counter-propagating laser beams. Using a 1m long PM1550-xp 

fibre with a total peak power of 16 kW, selective rejection of the LP01 and LP11 mode in the FS is 
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achieved with ~30% mode conversion efficiency. In comparison, a 0.4m long, highly nonlinear 

PMHN1 fibre requires only ~4 kW total power to achieve similar selective rejection of the LP01 and 

LP11 modes with ~30% mode conversion efficiency. Extending beyond the 2-mode case, a 0.4m 

long, 6-mode PM2000 fibre with 9 kW total power achieves rejection of the LP01 and LP11o mode 

with 20% - 80% conversion efficiency. Finally, the mode rejection effect is explored in an isotropic 

fibre, SMF28, where rejection of the LP01 and LP11 modes is observed around the OPT angle with 

22% - 80% mode conversion efficiency. It is worth noting that these fibres are placed in a relaxed 

state (0.4 m long fibres are kept straight, while 1 m long fibres are bent with a curvature radius 

greater than 20 cm), ensuring that higher-order modes are well-maintained during propagation. 

Several parameters affecting mode rejection efficiency have been investigated theoretically and 

experimentally. These include input mode composition (see |Bn|2 in Eqs.(3.2.1) and (3.2.2)), input 

polarization (see p in Eqs.(3.2.1) and (3.2.2)), polarization coupling (changes in p), and spectrum 

broadening during propagation (changes in |Bn|2 within a specific linewidth). Maximized mode 

rejection occurs when the input FS and BCB are co-polarized with equivalent powers. However, 

polarization coupling and spectrum broadening can degrade mode rejection efficiency. 

3.4� Rejection of supermodes in multicore fibres 

3.4.1� Homemade multicore fibres and experimental setup 

In this section, the investigation focuses on the mode rejection effect within two homemade 

multicore fibres with strongly coupled cores, utilizing the concept of supermode (SM) to represent 

specific field distributions (relative power and phase between cores) in MCFs. A dual-core fibre 

(DCF) and a tri-core fibre (TCF) are meticulously designed and fabricated via the stack-and-draw 

technique[13]. The rejection of supermodes in MCFs is explained through the same theoretical 

framework as mode rejection in MMFs. 

 
Figure 3.23 Cross-section images of the homemade DCF and TCF, along with the 

corresponding supermode (SM1(2,3)) distributions in the near-field and far-field. 

Table 3.6 Information of the fabricated DCF and TCF 
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Core 

diameter 
(µm) 

Core 
spacing 

(µm) 
Core NA 

Cladding 
diameter 

(µm) 

Outer 
diameter 

(µm) 
Length (m) 

DCF A1664 5.0±0.1 9.4 0.15 140.2 175 2004 

 A1665 5.2±0.1 9.8 0.15 145.8 185 2005 

TCF S01 5±0.15 9.4 0.15 137.9 - 105 

 S02 4.8±0.14 9.8 0.15 146.5 - 65 

 S1 4.6±0.14 7.4 0.15 110.5 - 420 

Table 3.7 The dispersion and nonlinear coefficients for the DCF and TCF 

  β (µm-1) β1 (ps/mm) β2 (ps2/km) 

DCF SM1 8.7820 4.9061 23.5772 

 SM2 8.7817 4.9070 20.6093 

TCF SM1 8.7855 4.9057 24.4249 

 SM2 8.7853 4.9066 22.1396 

 SM3 8.7850 4.9074 19.5544 

DCF  Kerr coefficient γ=3 W-1km-1  

  Overlap factor 
fSM1_SM1=1 

fSM1_SM2=1.04 
fSM2_SM2=1.02 

 

TCF  Kerr coefficient γ=2.3 W-1km-1  

  Overlap factor 
fSM1_SM1=1 

fSM1_SM2=0.68 
fSM1_SM3=1.03  

fSM2_SM2=1.38 
fSM2_SM3=0.70 
fSM3_SM3=1.07 

Prior to fabricating the MCFs, fibre design was conducted using Comsol software, starting with a 

step-index dual-core geometry. Through comparisons of designs with varying core diameters, 

spacings, positions, and core-to-cladding refractive index differences, considering both 

feasibility and fabrication accuracy, the designs for the DCF and TCF with Germanium-doped 

cores were finalized. The geometries as shown in Figure 3.23, and the information of the 

fabricated fibres is summarized in Table 3.6. The DCF features two identical cores symmetrically 

positioned within a silica cladding, while the TCF comprises one central core and two side cores 

equidistant from the central core. The nonsymmetric core positions induce large birefringence, 

making these two fibres function as polarization-maintaining fibres. The DCF and TCF have single-

mode cores and support the propagation of 2 and 3 supermodes, respectively. The SM1 mode 

represents the fundamental mode, where the electric fields from all cores are in phase, resulting 
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in a mainly single lobe distribution in the far-field. Higher-order supermodes (SMX, X>1) exhibit 

specific relative powers and phases among the cores, leading to various NF and FF beam profiles, 

as depicted in Figure 3.23. These MCFs were simulated in Comsol using the measured core 

geometry, and the resulting dispersion and nonlinear coefficients are summarized in Table 3.7. 

The supermodes represent the electric field distribution across the cores, and their distribution 

may vary with changes in core geometry, such as alterations in core diameter, core spacing, or 

core refractive index. Additionally, bending can also influence the supermode distributions. 

These variations in supermode distribution can, in turn, result in changes to modal dispersion and 

nonlinear coefficients. Here, an example analysis of core size discrepancies and macro-bending 

effects on the DCF is presented. Figure 3.24 compares the 3 DCFs with changes in core size or 

bending condition. DCF1 supports the supermodes with similar amplitudes in the two cores. It 

can represent straight fibre with identical cores, also represents bent fibres with non-identical 

cores, as illustrated in the first row of Figure 3.24. DCF2 and DCF3 represent straight fibres with 

non-identical cores or bent fibres with identical cores, and there is a significant difference 

between the amplitudes of the corresponding supermodes in the two cores, as shown in the 

second and third rows of Figure 3.24. For example, if a DCF with two identical cores is bent (along 

the line connecting the two core centres) with a decreasing curvature radius, the supermode 

distribution changes from DCF1 to DCF2 and then to DCF3. Conversely, when a DCF with non-

identical cores is bent at a certain radius of curvature, the supermode distribution evolves from 

DCF3/DCF2 to DCF1. In addition, the changes in supermode distributions are negligible when the 

bending direction is orthogonal to the line connecting the two cores. 

 
Figure 3.24 Simulated electric field distributions for the DCFs with core spacings twice 

the core diameter (diameter~5 µm). DCF1: straight fibres with identical cores or bent 

fibres with non-identical cores. DCF2: bent fibres (16 – 30 cm bending radius) with either 

identical cores or straight fibres with non-identical cores. DCF3: bent fibres (bending 

radius. 

Changes in supermode distributions can significantly affect nonlinear coupling efficiency. Figure 

3.25 illustrates the calculated nonlinear coefficients for two DCFs under different bending 
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conditions based on Comsol simulations. While the propagation constants and dispersion 

parameters for different supermodes remain similar across different scenarios, the nonlinear 

coefficients, particularly the intermodal overlap factor (fSM1-SM2x(y)), exhibit substantial variations. 

In Figure 3.25(a), for a DCF with identical cores, the intermodal coupling strength is comparable 

to the intramodal coupling strength when the fibre is nearly straight (bending radius>100 cm). 

However, the intermodal coupling strength decreases drastically with an decreasing bending 

radius. The Kerr coefficient (γ) doubles from 3.1 W-1km-1 to 5.7 W-1km-1 as the fibre bending radius 

decreases from 100 cm down to 4 cm, attributed to the reduced effective mode area as amplitude 

redistributing from two cores to one core. Conversely, Figure 3.25(b) shows that for fibre cores 

with non-identical cores, the intermodal coupling strength increases as the bending radius 

decreases. Overall, the intermodal overlap factor could decrease by ~85% from a symmetrical to 

an asymmetrical supermode distribution. This suggests that in experiments involving coupled 

MCFs, it is crucial to consider core geometry and fibre bending conditions to ensure optimal 

nonlinear coupling efficiency. 

One of the advantages of using MCFs for mode rejection experiments is the higher intermodal 

overlap between supermodes compared to LP modes, leading to stronger intermodal coupling in 

MCFs. For example, the coupling coefficient between the SM1 and SM2 modes in a DCF is similar 

to the intermodal Kerr coefficients (γ11= γ22= γ12). In contrast, in the PM1550-xp fibre, the 

intermodal Kerr coefficients are lower, with γ11=1.2γ22=1.8γ12 (see Table 3.1). 

 
Figure 3.25 Calculated nonlinear coupling coefficients of two DCFs with (a) identical 

cores and (b) non-identical cores at different bending radii. The inset numbers are the 

Kerr coefficients (γ) and the lines are overlap factors. 

To experimentally explore mode rejection in DCF and TCF, the same setup shown in Figure 3.3 is 

used. The input BCB is shaped with an SLM to effectively excite different supermodes in the DCF 

and TCF. The phase pattern for coupling into the DCF is a superposition of 2 two-dimensional 

blazed gratings with a grating period determined by the core spacing and the focal length of the 

lens used for coupling. For TCF coupling, the phase pattern is a superposition of 3 two-
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dimensional blazed gratings with specific grating periods. When a Gaussian shaped beam is 

incident on the SLM, multiple beamlets are reflected from the SLM screen. The angle, phase, and 

amplitude of each beamlet can be controlled by adjusting each blazed grating in the phase 

pattern. The corresponding beam spots in the Fourier plane of the focusing lens are then coupled 

into the MCF cores. The insertion loss of the SLM is ~1 dB, and the coupling loss into the MCF 

ranges from 3 to 3.5 dB depending on the supermode excitations. On the input FS side, the 

coupling over supermodes is adjusted by changing the position of the phase plate and the 

incident beam angle. A more straightforward method to excite a combination of supermodes with 

lower loss is by selectively coupling the light into one of the MCF cores. 

3.4.2� Characterization and mode decomposition of MCFs 

Prior to conducting the mode rejection experiments with MCFs, the fabricated MCFs are 

characterized, and a mode decomposition method for coupled MCFs is proposed and 

demonstrated. A 0.4m-long DCF/TCF (see Table 3.6) is placed straight in the counter-propagating 

setup (see Figure 3.3), and the supermode excitation results are shown in Figure 3.26. The 

supermode (SMx) excitation is controlled by the SLM, and the output beam profiles resemble the 

theoretical NF and FF shapes (see Figure 3.23). Notably, the excited supermodes remain stable 

at various power levels in this short piece of fibre. Figure 3.26 demonstrates that when the relative 

content and phase for the SM1 and SM2 modes are different in the DCF, the NF profile may retain 

the same distribution, whereas the FF shape differs. This observation is evident when comparing 

Mix1(Mix3) and Mix2(Mix4). This finding indicates that mode decomposition for the supermodes 

is more effectively implemented with the FF beam profiles. 

 
Figure 3.26 Output beam profiles from the DCF and TCF measured in both the near-

field and far-field under different supermode coupling conditions. 

As shown in the simulation in Figure 3.27, the NF and FF distributions are compared when the 

DCF is coupled with different mode contents and phases between the supermodes. Figure 

3.27(a) illustrates the NF distribution characterized by the intensity ratio between the two cores. 

Different combinations of supermodes can result in the same power ratio between the cores, 

leading to identical NF distributions. Examples in Figure 3.27(b) and (c) show combinations of SM1 

and SM2 modes with varying relative powers. Despite the different mode compositions, the NF 
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distributions appear the same, as indicated in the first columns of these figures. However, the FF 

distributions vary significantly with different supermode combinations, providing a basis for 

mode decomposition to determine the relative supermode content. 

 
Figure 3.27 Comparison of the near-field and far-field distributions for the DCF with 

different mode contents and relative phases. (a) The ratio of the intensities in two cores 

as a function of the SM1 mode content (c1
2) with a relative phase (ϕ2) between the two 

modes. (b) The NF and FF beam profiles when c1
2=1/3, ϕ2=0.1*π. (c) The NF and FF beam 

profiles when c1
2=2/3, ϕ2=0.1*π. 

 
Figure 3.28 Comparison of FF beam profiles for the DCF with different mode 

compositions when (a) the content of the SM1 mode is larger than the SM2 mode, with 

the legend indicating the relative powers between the two modes. (b) the content of the 

SM2 mode is larger than the SM1 mode. (c) Theoretical accuracy for mode decomposition 

based on FF beam profiles. 

To illustrate the distinguishable differences in the FF beam profiles, the FF beam profiles for the 

DCF with different mode compositions are compared in Figure 3.28(a) and (b). Figure 3.28(a) 

shows that the FF features a main lobe in the centre when the SM1 mode is dominant, whereas 

the FF exhibits two identical lobes when the SM2 mode is dominant, as shown in Figure 3.28(b). 

Note that these results represent the case when the relative phase between the two modes is 0. 

However, the change in the FF profiles remains distinguishable if the relative phase changes. 

These results illustrate that implementing mode decomposition in the far-field is feasible and 

reliable by comparing the measured FF beam profiles with the reconstructed intensity profiles 



Chapter 3 

99 

that can be obtained with the SPGD algorithm. The theoretical mode decomposition accuracy 

exceeds 98%, as shown in Figure 3.28(c), where the FF mode decomposition for the DCF is 

implemented in 100 instances with different supermode compositions (random mode content 

and phase). It is worth mentioning that mode decomposition methods based on off-axis 

holography method [129] and matrix formalism method [67] have also been implemented for the 

DCF and TCF, details of which are provided in Appendix A. The proposed MD method, based on 

FF beam profiles and the SPGD algorithm, is primarily used in the following experiments due to 

its easy implementation, high accuracy, and robustness to noise and fibre perturbations. 

3.4.3� Mode rejection in dual-core fibres 

In this section, mode rejection is experimentally demonstrated using the DCF. A 1 m long DCF 

was used, and the preliminary optimization of the experimental setup (see Figure 3.3) followed 

similar procedures introduced for the few-mode fibres. The input BCB was selectively coupled 

into the SM1 or SM2 mode by optimizing the phase pattern displayed on the SLM, while the input 

FS was randomly coupled into a combination of the two supermodes. Since the DCF is a high 

birefringent fibre, the input FS and BCB were co-polarized along the fast or slow axis (parallel to 

the line connecting the two core centres) to ensure that the nonlinear interaction involves the 

counter-propagating modes with the same polarization states. The output FS/BCB maintained 

the input polarization with a PER > 20 dB at different powers. 

 
Figure 3.29 Mode rejection results in the DCF. Mode decomposition of the output FS 

versus the BCB power under different launching conditions (experiments: markers; 

simulations: lines). The bottom images are the FF beam profiles of the output FS for 3 

distinct values of BCB power. The input power and mode composition of the FS and BCB 

are listed on the top of each panel. Error bars of ±3% are added to the experimental 

results, which represents the estimated uncertainty of the MD algorithm. 

Figure 3.29 illustrates three examples of supermode rejection in the output FS. In Figure 3.29(a), 

the input BCB is coupled into the SM2 mode, resulting in a gradual rejection of the SM2 mode in 
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the output FS as the BCB power increases. Initially, with ~40% of the power in the SM2 mode, the 

output FS contains less than 10% of the power in the SM2 mode at a BCB power of ~5.1 kW. As a 

result, ~90 % of the output FS power is coupled to the SM1 mode. Consequently, the output FS 

exhibits a single lobe in the far-field and resembles the SM1 mode, corresponding to the in-phase 

combination of the two cores. On the contrary, when the input BCB is coupled to the SM1 mode, 

as shown in Figure 3.29(b) and (c), the output FS undergoes rejection of the SM1 mode and is 

therefore mainly coupled to the SM2 mode. When the input BCB power is ~5.6 kW, ~81% and 

~98% of the output FS power is coupled to the SM2 mode in Figure 3.29(b) and (c), respectively. 

Consequently, the output FS exhibits two distinct symmetric lobes and resembles the SM2 mode 

in the far-field, corresponding to the out-of-phase combination of the two cores. It is worth 

mentioning that these experimental results align well with simulations using the experimental 

parameters, such as pulse duration, peak power, fibre length, mode composition, and 

polarization state of the counter-propagating beams. 

 
Figure 3.30 Mode decomposition results for the DCF in the far-field. (a), (b) MD results 

and the comparison between the measured and reconstructed FF beam profiles when 

the input BCB is the SM1 mode. (c), (d) MD results and beam profile comparisons when 

the input BCB is the SM2 mode. 

In Figure 3.29, the MD of the output FS is implemented at each measurement at different BCB 

powers. Two examples of MD results for the FF beam profiles are illustrated in Figure 3.30, 

demonstrating the rejection of the SM1 mode and the SM2 mode. Figure 3.30(a) shows that the 

output FS consists of ~44.4% SM1 mode when the BCB (coupled into the SM1 mode) is switched 
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off, whereas the content of the SM1 mode drastically decreases to just 2.6% when the BCB is 

switched on with the maximum power. The measured and reconstructed FF beam profiles with 

the BCB off/on are shown in Figure 3.30(b), exhibiting an intensity correlation coefficients [74] of 

~ 98% and confirming that the SM1 mode is effectively rejected at maximum BCB power. 

Conversely, Figure 3.30(c) shows that the SM2 mode content in the output FS decreases from 

~57.4% to ~13.7% when the BCB (coupled into the SM2 mode) is switched from off to on. The 

correlation coefficient for the measured and reconstructed FF beam profiles in this case is also 

~98%, confirming effective rejection of the SM2 mode. The correlation coefficients for the FF MD 

results in DCF are slightly lower than those for the FMFs in the near field, which is primarily due 

to aberrations and noise in the imaging system. NF profiles fill ~2k pixels on camera, whereas FF 

profiles could occupy ~750k pixels, making the FF profiles more susceptible to deformation from 

system aberrations. Therefore, aberration-free lenses should be used, and careful attention 

should be paid to FF beam profile measurements. Several parameters that could influence mode 

rejection efficiency are experimentally analysed in the following sections, including the impact of 

the input BCB, variations in the FS, and the influence of perturbations applied to the fibre. 

3.4.3.1� Impact of control beams 

 
Figure 3.31 Mode rejection results for a specific input FS in the DCF but with different 

input BCBs. (a) The SM2 mode content versus the BCB power with different input BCB 

modes, and the output FS beam profiles at points A-C are given in (b). (c), (d) The mode 

rejection results with different BCB polarization directions relative to the FS. 
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Previous experiments with the FMFs have demonstrated that the mode composition and the 

polarization state of the BCB could significantly influence mode rejection in the output FS. Figure 

3.31(a) shows the mode rejection results for the output FS when the input FS is coupled with ~50% 

SM1 mode and ~50% SM2 mode (point A). By switching the input BCB from the SM1 mode to the 

SM2 mode, selective rejection of the SM1 mode and SM2 mode is observed, respectively. With a 

BCB power of ~3.5 kW, the output FS (~2.5 kW) is selectively coupled to the SM2 mode (point B) 

and the SM1 mode (point C), as depicted in the FF beam profiles in Figure 3.31(b). 

Additionally, the mode rejection efficiency is analysed by varying the polarization direction of the 

input BCB while maintaining the same input FS conditions. Figure 3.31(c) and (d) illustrate that 

the efficiency of rejecting the SM1(SM2) mode gradually decreases as the polarization direction 

difference between the FS and the BCB increases from 0 degrees to 90 degrees. This trend aligns 

with theoretical predictions and previous experimental observations in FMFs. These results 

highlight the importance of controlling both mode composition and polarization states to 

optimize mode rejection efficiency in DCFs. 

3.4.3.2� Variation of forward signals 

Following the discussion of the mode rejection effect under different BCB launching conditions, 

the mode rejection efficiency is further investigated when the FS is randomly coupled with a 

combination of two supermodes, while the input BCB is fixed at either the single SM1 or SM2 mode. 

Figure 3.32 illustrates the efficient mode rejection of the SM1 or SM2 mode, regardless of the FS 

initial state, with the FS and BCB being co-polarized in all instances. Specifically, the content of 

the SM1 mode is reduced from an initial range of 20% to 60% down to 3% to 20%, as shown in 

Figure 3.32(a). Similarly, the content of the SM2 mode decreases from an initial range of 40% to 

100% down to 0% to 30%, as depicted in Figure 3.32(b). These results demonstrate the consistent 

efficiency of mode rejection even when the FS is randomly coupled, provided that the input BCB 

maintains the coupling to a fixed single supermode. 

 
Figure 3.32 Mode rejection results for the DCF with different input FSs and a fixed input 

BCB in the (a) SM1 mode and (b) SM2 mode. 



Chapter 3 

103 

3.4.3.3� Robustness of mode rejection 

The robustness of the mode rejection effect in the counter-propagating setup is investigated 

using the DCF. Figure 3.33 shows the variation of the SM1 and SM2 mode content in the output FS 

under different fibre perturbations when the BCB is coupled to a single mode. Each perturbation 

involves moving or bending the fibre with varying intensities and at different positions, leading to 

random coupling among the fibre modes and potentially altering the FS launching conditions. For 

each perturbation, the MD of the output FS is computed, and the output FS beam profile is imaged 

with the BCB either switched off or on. 

When the BCB is switched off, the output FS varies randomly, as indicated by the black lines and 

FF beam profiles in Figure 3.33. However, when the BCB is switched on and coupled to a single 

mode, mode rejection occurs irrespective of the FS launching conditions. As a result, effective 

rejection of the SM1 mode is observed in the output FS, with the relative power of the SM1 mode 

dropping below 10%, as shown in Figure 3.33(a). Consequently, the output FS is locked into the 

SM2 mode with a total counter-propagating beam power of ~12kW (2*6 kW). Similarly, Figure 

3.33(b) demonstrates robust rejection of the SM2 mode when the input BCB is in the SM2 mode, 

and the FS is perturbed to different mode states with varied SM2 mode content. The output FS far-

field consistently exhibits a distribution similar to the SM1 mode when the BCB is switched on, 

with the relative power of the SM2 mode falling below 40%. Although the mode rejection efficiency 

is lower due to the high relative power of the SM2 mode in the output FS (up to 85%) when the BCB 

is switched off, the SM2 mode is still robustly rejected using ~12 kW counter-propagating beam 

power. The robustness analysis suggests that mode rejection is a useful method for achieving 

stable spatial mode locking in a bimodal system. 

 
Figure 3.33 Robustness of the mode rejection effect (red lines) in the DCF with 

comparisons to the output FS when the BCB is switched off (black lines). 5 and 10 

different perturbations are included in (a) and (b). 

To conclude, mode rejection of each supermode in a 1m long DCF is observed using 5-6 kW peak 

powers for the FS and the BCB. By adjusting the mode composition and polarization state of the 
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input BCB, the mode rejection effect can provide stable and robust spatial mode locking to a 

specific mode in the output FS from the DCF, irrespective of the initial launching conditions. 

3.4.4� Mode rejection in tri-core fibres 

In this section, mode rejection is further explored using the TCF. As shown in Figure 3.23, the three 

supermodes in the TCF are: the SM1 mode, where all three cores are in-phase with the intensity 

in the centre core being twice that of the side cores; the SM2 mode, where the centre core has 

zero intensity, and the two side cores are out of phase with identical intensities; and the SM3 

mode, where the intensity distribution among the cores is the same as the SM1 mode, but the 

centre core has a π rad phase difference with the two side cores. Following a similar procedure 

to the experiments with the DCF, a ~0.4m long TCF was placed in the experimental setup (see 

Figure 3.3) to explore the selective rejection of the supermodes. The input BCB is selectively 

coupled into the SM1, SM2, or SM3 mode by adjusting the phase pattern loaded on the SLM, while 

the input FS is coupled into a combination of supermodes with different relative powers and 

phases. The TCF is a birefringent fibre due to the nonsymmetric design. The polarization state of 

the input FS and BCB is orientated along the fast or slow axis (parallel to the line connecting the 

centres of the two side cores), ensuring that the nonlinear interaction involves the counter-

propagating modes with the same polarization states. 

 
Figure 3.34 Mode rejection of the (a) SM1, (b) SM2, (c) SM3 mode in the TCF. Mode 

decomposition of the output FS in the TCF versus the BCB power under different 

launching conditions (experiments: markers, simulations: lines). The bottom images are 

the FF beam profiles of the output FS for three distinct BCB powers. The input power and 

mode composition of the input FS and BCB are listed on the top of each panel. 

Figure 3.34 illustrates the experimental observations of mode rejection in the TCF, in comparison 

with simulation results. Figure 3.34(a) shows an example when the input BCB is coupled to the 

SM1 mode, so that the output FS gradually rejects the SM1 mode as BCB power increases. Initially, 

with ~40% of the power in the SM1 mode, the output FS ultimately contains nearly 0% SM1 mode 
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content at a BCB power of ~6.2 kW. Consequently, the output FS power is redistributed, with 

~70% coupling to the SM3 mode and ~30% coupling to the SM2 mode. Starting with a similar initial 

FS condition, but with the input BCB coupled to the SM2 mode, the output FS undergoes a 

different conversion process, as shown in Figure 3.34(b). The SM2 mode content is almost 

completely rejected with a BCB power of ~4.5 kW. Finally, when the input BCB is coupled to the 

SM3 mode, as shown in Figure 3.34(c), the output FS experiences a rejection of the SM3 mode, 

with ~16% reduction of the SM3 mode content at a BCB power of ~5.3 kW. These observations 

demonstrate the effective mode rejection in the TCF for different supermodes. The experimental 

results align closely with the simulations, confirming the reliability of numerical simulations. 

 
Figure 3.35 Mode rejection effect in the TCF with varying polarization states between 

the BCB and the FS. (a)-(c) Mode conversion of the three supermodes when the input 

BCB is coupled to the SM1 mode with different polarization directions relative to the FS. 

(d)-(f) Mode conversion of the three supermodes when the input BCB is coupled to the 

SM2 mode with varying polarization directions relative to the FS. 

Furthermore, Figure 3.35 illustrates the impact of relative BCB polarization on mode rejection 

efficiency in the TCF. In Figure 3.35(a)-(c), the input BCB is coupled into the SM1 mode, while it is 

coupled to the SM2 mode in Figure 3.35(d)-(f). At ~6 kW BCB power, the SM1 mode is absent in the 

output FS when the FS and BCB are co-polarized (0deg, dark blue line in Figure 3.35(a)). However, 

with orthogonal polarization (0deg, light blue line in Figure 3.35(a)), ~20% of FS power remains in 

the SM1 mode at the output. At ~4.5 kW BCB power, complete rejection of the SM2 mode from the 

output FS is achieved with co-polarization (0deg, dark blue line in Figure 3.35(e)). Nonetheless, 
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there is still ~7% power coupled to the SM2 mode with orthogonal polarization (90deg, green line 

in Figure 3.35(e)). Additionally, Figure 3.35 shows that mode rejection occurs with intermediate 

efficiency as relative polarization between the counter-propagating beams varies from 0 deg and 

90 deg. 

3.4.5� Mode conversion dynamics of the BCB 

Eqs. (3.2.1) and (3.2.2) are invariant with respect to the exchange between FS and BCB modes. 

However, different boundary conditions apply to the input FS and to the input BCB, which reflect 

their different roles. Because the input BCB plays the role of control beam, its mode content is 

fixed and coupled to one single mode. For this reason, the output FS systematically undergoes 

rejection irrespectively of the input FS mode content. On the other hand, the input FS plays the 

role of a probe beam with arbitrary mode content. Exploring the mode conversion in the output 

BCB offers valuable insights into the interaction dynamics of counter-propagating multimode 

systems. 

 
Figure 3.36 Comparison between the dynamics of the output FS and output BCB in the 

DCF. The MD of the output FS(BCB) versus the launched BCB(FS) powers during the 

rejection of the SM2 mode in the output FS. The input and output FS(BCB) far-field beam 

profiles are shown in (b). The input power and mode composition of the input FS and 

BCB are listed on the top of each panel. 

Figure 3.36 illustrates the mode decomposition of the output BCB(FS) from the DCF as a function 

of the launched FS(BCB) power when the BCB is primarily coupled to a single mode. Similar to 

earlier findings, increasing the BCB power results in the output FS rejecting the same mode as the 

input BCB mode, as depicted in Figure 3.36(a). In contrast, the output BCB does not exhibit any 

rejection dynamics, since different input FSs with arbitrary mode content can lead to different 

output BCB mode compositions. 

It is worth noting that in the special case of a two-mode fibre with identical Kerr coefficients (γ11= 

γ22= γ12), the mode content of the output BCB is organized towards the orthogonal modal state of 

the input FS when they have equal power[130]. This phenomenon is observed in the DCF 
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experiments, where the condition for the Kerr coefficients is approximately met (see Table 3.7). 

In Figure 3.36(c), the input BCB is mainly coupled to the SM2 mode, whereas the input FS is a 

combination of 61% SM1 mode and 39% SM2 mode. As expected, the output BCB achieves a mode 

content of ~40% SM1 mode and ~60% SM2 mode when the two beams have equal power 

(indicated by the yellow dashed vertical lines). This observation is remarkable, particularly when 

the input FS exhibits a random mode content over time. In such a scenario, the amount of 

disorder of the input FS is transferred to the output BCB, whose mode content becomes therefore 

randomly distributed. This dynamic is similar to that of polarization attraction phenomena in 

single-mode fibres[109, 112, 113], where a mutual exchange in the degree of polarization is 

achieved between FS and BCB, that is to say, the polarization attraction undergone by the output 

FS takes place at the expense of a depolarization of the output BCB. 

3.5� From mode rejection to mode control 

 
Figure 3.37 Comparison between the dynamics of the counter-propagating beams in 

the DCF. The mode decomposition of the output FS(BCB) in the DCF versus the 

launched BCB(FS) powers when the BCB is not coupled to a single mode. (a)-(c) Both 

the output FS and output BCB are in the SM2 mode. (d)-(f) Both output counter-

propagating beams are mainly in the SM1 mode. 

Mode rejection occurs when the input BCB is coupled to a single mode. In more complex 

scenarios, the input BCB can be coupled to a set of modes. Within this framework, it becomes 

pertinent to explore whether a specific output FS mode distribution can be achieved by 

appropriately setting the input BCB for a given input FS. Figure 3.37 presents two experimental 
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results (dots) alongside their corresponding simulations (lines) where both the input BCB and 

input FS are coupled to a mixture of modes, as depicted at the top of each panel. In Figure 3.37, 

the input FS is coupled with ~60% SM1 mode and ~40% SM2 mode, with a relative phase of -0.8 

rad. Similarly, the input BCB is coupled with ~60% SM1 mode and ~40% SM2 mode. However, in 

Figure 3.37(a)-(c), the input BCB has a relative mode phase of 2.4 rad, whereas in Figure 3.37(d)-

(f), the relative mode phase for the input BCB is -1.3 rad. With ~7kW peak power for each counter-

propagating beam, the mode content for both output FS and output BCB evolves similarly in both 

experiments and simulations. Consequently, the output FS and output BCB exhibit similar far-

field profiles, as shown in Figure 3.37(b) and (e). This demonstrates that the output FS can be 

converted to a specific mode distribution from a given input FS by properly adjusting the input 

BCB, even when the input BCB is not single mode (not mode rejection). Additionally, it is possible 

to achieve identical output beam profiles from both ends of the fibre (similar output FS and output 

BCB) despite differing launching conditions at the input ends. 

Similarly, the interaction dynamics of the counter-propagating beams in the TCF is also 

investigated. The theoretical framework developed for the special case where γmm=2γmn=γ 

provides insight into possible scenarios (see section 3.2.1). For instance, it is possible to focus 

all the output FS power into a single mode, say the k-th mode, provided that the input BCB has 

the following configuration: |𝑏̂𝑘(L)| ≈ 0, 𝑏̂𝑛≠𝑘(L) ≈ −𝑖|𝑓𝑛(0)|𝑒
𝑖∅𝑘𝑛/√1 − |𝑓𝑘(0)|

2
, where ∅𝑘𝑛  is 

the relative phase between the input FS k-th mode and n-th mode. Figure 3.38 shows two 

preliminary experiments in TCF where the input BCB is coupled to a combination of modes. For 

the same input FS, different input BCBs result in substantially different output FS mode 

distributions. 

 
Figure 3.38 Preliminary experiments of all-optical mode control in the TCF, where the 

input BCB is coupled to a combination of supermodes (see the mode composition on 
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the top of each panel), while the input FS remains almost identical. The bottom images 

display the FF beam profiles of the output FS at different BCB powers. 

These preliminary results pave the way towards a more general idea of mode control in multimode 

systems, that is to say, the ability to control the mode content of the output FS on demand and 

all-optically via the BCB, or to efficiently manage the mode content of two counter-propagating 

beams. The BCB can also be generated through back-reflection or amplification of the FS, 

eliminating the need for an independent and additional optical source. This leads to the idea of 

light self-organization, where the output counter-propagating beams can be shaped in time and 

space. This approach opens new opportunities such as all-optical spatiotemporal beam shaping 

or highly scalable coherent combination in multimode and multicore fibres and waveguides. 

3.6� Conclusions 

In this chapter, the concepts of mode rejection and mode control are proposed and investigated 

in multimode counter-propagating systems using several few-mode fibres and two homemade 

multicore fibres. Mode rejection refers to the reduction of a specific mode content in the output 

FS when the input BCB is coupled to the same mode with intense power. By appropriately 

adjusting the input BCB, the selectivity and robustness of the mode rejection effect are 

demonstrated, leading to an all-optical method for achieving spatial mode locking. By tuning the 

temporal behaviour, all-optical spatiotemporal beam shaping can be obtained. In addition to the 

mode rejection effect observed in the output FS, the evolution dynamics of the output BCB are 

also investigated using the DCF and the TCF. The general idea of mode control is explored, 

showing that the output counter-propagating beams can potentially be spatiotemporally 

controlled in an all-optical manner. 

Notes: The results reported in this chapter have been selectively published (see LoP1, LoP4, 

LoP5, LoP11, LoP12 in the List of Publications). LoP1 includes the mode decomposition method 

for multicore fibres, where also includes some results reported in the Appendix A.2. This is a 

single-authored paper published in Optics Letters. LoP5 includes the main results of mode 

rejection and control that were demonstrated in this chapter. This is a co-authored paper 

published together with Ian Davidson, Jayanta Sahu, David J. Richardson, Stefan Wabnitz, and 

Massimiliano Guasoni in Nature Communications. The experiments, simulations, co-

development of derivations and code were my work; the 3-core fibre was fabricated by Ian 

Davidson from the Optoelectronics Research Centre; the dual-core fibres used in the 

experiments were fabricated by Jayanta Sahu from the Optoelectronics Research Centre; the 

idea of mode rejection and light self-organization was originally conceived by Massimiliano 

Guasoni from the Optoelectronics Research Centre; this project was supervised by Massimiliano 
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Guasoni and David J. Richardson from the Optoelectronics Research Centre. I also sincerely 

acknowledge Saurabh Jain for his assistance with the preliminary experiments. LoP4, LoP11, and 

LoP12 are conference papers where we reported on the observation of mode rejection and light 

self-organization in optical fibres. 

Table 3.8 summarizes the mode rejection results for the LP modes and supermodes in the MMFs 

and MCFs introduced in this chapter. By using 0.4m-1m long fibres and a total peak power of ~4-

16 kW (0.5 ns pulses), selective rejection of individual LP modes and supermodes is achieved 

with a conversion efficiency ~20-80%. The maximum mode rejection efficiency is obtained when 

using co-polarized FS and BCB in polarization maintaining fibres. Other factors that can affect the 

efficiency of mode rejection, such as launched power, fibre nonlinearity, polarization coupling, 

and spectrum broadening, have also been investigated. 

By appropriately adjusting the input BCB, the selectivity and robustness of the mode rejection 

effect are demonstrated, leading to an all-optical method for achieving spatial mode locking. By 

tuning the temporal behaviour, all-optical spatiotemporal beam shaping can be obtained. In 

addition to the mode rejection effect observed in the output FS, the evolution dynamics of the 

output BCB are also investigated using the DCF and the TCF. The general idea of mode control is 

explored, showing that the output counter-propagating beams can potentially be 

spatiotemporally controlled in an all-optical manner. 

Notes: The results reported in this chapter have been selectively published (see LoP1, LoP4, 

LoP5, LoP11, LoP12 in the List of Publications). LoP1 includes the mode decomposition method 

for multicore fibres, where also includes some results reported in the Appendix A.2. This is a 

single-authored paper published in Optics Letters. LoP5 includes the main results of mode 

rejection and control that were demonstrated in this chapter. This is a co-authored paper 

published together with Ian Davidson, Jayanta Sahu, David J. Richardson, Stefan Wabnitz, and 

Massimiliano Guasoni in Nature Communications. The experiments, simulations, co-

development of derivations and code were my work; the 3-core fibre was fabricated by Ian 

Davidson from the Optoelectronics Research Centre; the dual-core fibres used in the 

experiments were fabricated by Jayanta Sahu from the Optoelectronics Research Centre; the 

idea of mode rejection and light self-organization was originally conceived by Massimiliano 

Guasoni from the Optoelectronics Research Centre; this project was supervised by Massimiliano 

Guasoni and David J. Richardson from the Optoelectronics Research Centre. I also sincerely 

acknowledge Saurabh Jain for his assistance with the preliminary experiments. LoP4, LoP11, and 

LoP12 are conference papers where we reported on the observation of mode rejection and light 

self-organization in optical fibres. 

Table 3.8 Summary of the mode rejection results for MMFs and MCFs 
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Fibre Length (m) 
Total peak power of 

FS and BCB (kW) 
Rejected modes Efficiency 

PM1550-xp 1 16 LP01, LP11 30% 

PMHN1 0.4 4 LP01, LP11 30% 

PM2000 0.4 9 
LP01, LP11e, LP11o, 

LP21e, LP21o, LP02 
20% - 80% 

SMF28 1 16 LP01, LP11 22% - 80% 

DCF 0.4 - 1 12 SM1, SM2 20%-50% 

TCF 0.4 12 SM1, SM2, SM3 20%-40% 
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Chapter 4�Counter-propagating nonlinear gratings in 

multimode and multicore fibres 

4.1� Introduction 

In this chapter, the concept of “all-optical counter-propagating nonlinear gratings” in multimode 

systems is proposed. These gratings are generated by a backward-propagating multimodal beam 

with intense power, the mode beating between these modes generates an instantaneous grating 

via the Kerr effect. This optical nonlinear grating could lead to all-optical ultrafast switching of a 

low-power forward-propagating beam, while in Chapter 3 both forward and backward beams are 

in a high nonlinear regime. All-optical mode switching between fibre modes (in MMFs and MCFs) 

and power switching between fibre cores (in MCFs) are validated through experiments conducted 

with various FMFs and homemade MCFs. Initially, the theoretical framework of counter-

propagating nonlinear gratings is introduced, supported by theoretical estimations of mode 

switching and power switching in MMFs and MCFs. Subsequently, experimental investigations 

demonstrate the all-optical switching of LP modes or supermodes using a range of fibres, 

including PM1550-xp, PMHN1, DCF, and TCF. Lastly, ultrafast all-optical power switching 

between MCF cores is demonstrated using counter-propagating beams with 500 ps pulses in DCF 

and TCF. The dynamics of counter-propagating nonlinear gratings are discussed by comparing 

the experimental results from different fibres and by direct comparison with the theory and 

simulations. Several conceptual devices are introduced based on the dynamics of counter-

propagating nonlinear gratings, including all-optically tuneable mode converters, all-optically 

tuneable power splitters, combiners, and power switches, as well as all-optical phase detection 

at terminal ends. 

4.2� Dynamics of counter-propagating nonlinear gratings 

4.2.1� Theory 

The counter-propagating nonlinear grating is generated by a high-power backward control beam 

(BCB) in a multimode system, and it can influence the propagation of a low-power forward probe 

beam (PB) in an all-optical manner. However, unlike the governing equations of mode rejection 

introduced in Chapter 3, here the coupled nonlinear Schrödinger equations are modified due to 

the substantial power difference between the counter-propagating beams. Assuming that the PB 

fields Fm are much weaker than the BCB fields Bm, Eqs. (3.2.1) and (3.2.2) are simplified as follows: 
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𝜕𝑧
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𝑛
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∗ ∑ 𝑝𝛾𝑚𝑛𝐵𝑛𝐹𝑛
𝑛≠𝑚
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 −
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2𝐵𝑚 + 𝑖𝐵𝑚∑ 2𝛾𝑚𝑛|𝐵𝑛|
2

𝑛
 (4.2.2) 

where Fm (Bm) denotes the amplitude of the m-th mode in the PB (BCB). As a result, the right-hand 

side of Eq. (4.2.1) is left with the cross-phase modulation terms induced by the BCB modes, and 

the energy exchange term describing the interaction between the m-th and n-th modes. In 

contrast, the right-hand side of Eq. (4.2.2) is left with only the self-phase and cross-phase 

modulation terms induced by the BCB modes. 

The evolution of the BCB amplitude Bm can be readily found from Eq. (4.2.2) in the CW limit, 

 𝐵𝑚 = |𝐵𝑚|𝑒𝑥𝑝 [−𝑖 (𝛾𝑚𝑚|𝐵𝑚|
2 +∑ 2𝛾𝑚𝑛|𝐵𝑛|

2

𝑛≠𝑚
) 𝑧] (4.2.3) 

By substituting this solution into Eq. (4.2.1) and applying the transformation 𝐹𝑚 =

𝑓𝑚𝑒𝑥𝑝[𝑖(𝛾𝑚𝑚|𝐵𝑚|
2 +∑ 2𝛾𝑚𝑛|𝐵𝑛|

2
𝑛≠𝑚 )𝑧], the following equations describing the evolution of the 

m-th mode in the PB along the propagation direction z can be obtained (again, in the CW limit), 
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𝑛≠𝑚

 
(4.2.4) 

The amplitude fm can be analytically solved from these equations by rewriting them as, 
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  (4.2.6) 

where M is a N*N matrix representing the interactions between the PB modes influenced by the 

BCB, with N as the total mode count. By calculating the eigenvalues and eigenvectors of M, the 

analytical evolution of the PB amplitude can be obtained, 

 [
𝑓1(𝑧)
⋮

𝑓𝑁(𝑧)
] = 𝑤 [

𝑒𝑖𝜆1𝑧 0 0
0 ⋯ 0
0 0 𝑒𝑖𝜆𝑁𝑧

]𝑤−1 [
𝑓1(𝑧 = 0)

⋮
𝑓𝑁(𝑧 = 0)

] (4.2.7) 
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where w is the matrix of eigenvectors, λk are eigenvalues obtained through eigenvalue 

decomposition of M, and fm(z=0) represents the initial PB launching condition. In the simplest 

instance of a 2-mode and co-polarization (p=2) scenario, the solutions describing the PB 

evolutions can be derived as follows, 

 𝑓1(𝑧) = [𝐴1𝑒
𝑖
𝑔
2
𝑧 + 𝐴2𝑒

−𝑖
𝑔
2
𝑧
] 𝑒

𝑖
∆∅12
2

𝑧 (4.2.8) 
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where 𝐴1 =
−∆∅12+𝑔

2𝑔
𝑓1(𝑧 = 0) +

𝐶

𝑔
𝑓2(𝑧 = 0) , 𝐴2 =

∆∅12+𝑔

2𝑔
𝑓1(𝑧 = 0) −

𝐶

𝑔
𝑓2(𝑧 = 0) , 𝐶 =

2𝛾12|𝐵1||𝐵2| , 𝑔 = √∆∅12
2 + 4𝐶2 , ∆∅12 = −𝛾11|𝐵1|

2 + 𝛾22|𝐵2|
2 . Therefore, the BCB acts as a 

tuneable optical grating that can be used for all-optical switching among the modes of the output 

PB. The switching of the PB modes depends on the launched power |Bm|2, mode composition 

|Bm|2/∑n|Bn|2, and the polarization state p of the BCB, as well as the initial PB conditions fm(z=0). 

4.2.2� Simulations 

4.2.2.1� Mode switching driven by counter-propagating nonlinear gratings 

In this section, the theoretical mode switching of the PB (Eq. (4.2.7)) is demonstrated for several 

fibres used in Chapter 3, including PM1550-xp, PMHN1, DCF, and TCF. The mode switching 

results are discussed by varying the power, mode composition, and polarization state of the BCB, 

along with different initial PB mode compositions. 

The first type of fibre under consideration is the traditional single-core multimode fibre, 

demonstrated using PM1550-xp and PMHN1. The dispersion parameters and Kerr coefficients of 

different modes in these fibres are provided in Table 3.1 and Table 3.2. For these fibres, a 2-mode 

scenario (LP01 and LP11 modes) is considered, with the counter-propagating beams in either co-

polarization or orthogonal polarization states. The counter-propagating beams are continuous 

waves and have the same frequency in the calculations. 

Considering a 10cm-long PM1550-xp fibre, a BCB with 10 kW power and a forward PB with a 

substantially weaker power of 0.1 kW are launched from its opposite ends, both in the same 

polarization state. The initial PB condition (input into the left end of the fibre, z=0 in Figure 4.1) is 

set as 100% LP01 mode, whereas the input BCB is set as 50% LP01 mode and 50% LP11 mode with 

0 rad phase difference between them. After applying the PM1550-xp parameters (nonlinear 

coefficients and fibre length) and boundary conditions (mode composition, power, and 

polarization) to Eqs. (4.2.3)-(4.2.7), the amplitudes (Fm and Bm) of different modes for PB and BCB 
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can be obtained at specific positions. These amplitudes are the modal coefficients of different 

modes (see Eq.(3.3.2)). By superposing the transverse mode profiles with the corresponding 

amplitudes, one can obtain the evolution of spatial shapes for PB (propagating from left to right) 

and BCB (propagating from right to left). Figure 4.1 illustrates the side views (along y-axis) of the 

spatial shape of PB(BCB) as a function of the longitudinal position (along z-axis) inside the fibre. 

The propagation distance is converted to the numbers of nonlinear length LNL. In this case, LNL is 

3.3 cm (10kW peak power and γ=3kW-1m-1), consequently, this 10cm-long fibre supports a 

propagation of 3*LNL.A complete mode switching of the PB from the LP01 mode to the LP11 mode 

is achieved in this fibre, as shown in the inset mode profiles. On the contrary, the BCB mode 

distribution remains unchanged during propagation. It is worth noting that increasing the number 

of propagated nonlinear lengths can be achieved by either using a longer fibre or increasing the 

launched BCB power while maintaining the fibre length. The theoretical mode switching remains 

the same using either approach, as Eqs. (4.2.6) and (4.2.7) include the tuneable parameters z 

(fibre length) and |Bm|2 (BCB powers). Notably, the latter approach indicates an all-optical method 

to achieve mode switching in fixed optical fibres. 

 
Figure 4.1 Theoretical mode switching of the PB in PM1550-xp calculated from Eq. 

(4.2.7), with the evolution of the counter-propagating BCB calculated from Eq. (4.2.3). 

The boundary conditions: PB (z=0, 100% LP01 mode, total power=0.1 kW), BCB (z=3*LNL 

(10 cm), 50% LP01 mode and 50% LP11 mode, total power=10 kW). 

Similarly, by applying the PMHN1 parameters to Eqs. (4.2.3) and (4.2.7), theoretical mode 

switching results can be obtained for a 10cm-long PMHN1 fibre, as depicted in Figure 4.2. The 

boundary conditions are the same as those for the PM1550-xp as shown in Figure 4.1. However, 

due to an approximately fourfold increase in the nonlinearity for elliptical-core PMHN1 (see Table 

3.1 and Table 3.2), the 10cm-long PMHN1 fibre supports a propagation of 13.2*LNL. In comparison 

with Figure 4.1, Figure 4.2 clearly highlights that the PB mode distribution at the fibre output can 

be all-optically and periodically tuned by increasing BCB power or using fibres with higher 

nonlinearity. In the specific case of switching between the LP01 and LP11 modes, where γ12 ~ 0.6 

γ11 (see Table 3.1 and Table 3.2), complete mode switching from one mode to another requires 
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propagation of approximately 3*LNL (3*LNL needed for PM1550-xp, ~2.7*LNL needed for PMHN1, 

obtained from Figure 4.1(c) and Figure 4.2(c)). This suggests that an all-optical mode switching 

for a fixed fibre can be achieved by adjusting the BCB powers to satisfy the requirements of the 

nonlinear length. 

 
Figure 4.2 Theoretical mode switching of the PB in PMHN1, with the boundary 

conditions: PB (z=0, 100% LP01 mode, total power=0.1 kW), BCB (z=13.2*LNL (10 cm), 

50% LP01 mode and 50% LP11 mode, total power=10 kW). 

 
Figure 4.3 Theoretical mode switching in PMHN1 with different boundary conditions. (a) 

PB (z=0, 100% LP01 mode, total power=0.1 kW), BCB (z=13.2*LNL (10 cm), 50% LP01 mode 

and 50% LP11 mode, total power=10 kW, orthogonally polarized with the PB). (b) PB (z=0, 

50% LP01 mode and 50% LP11 mode, total power=0.1 kW), BCB (z=13.2*LNL, 90% LP01 

mode and 10% LP11 mode, total power=10 kW, co-polarized with the PB). (c) PB (z=0, 

30% LP01 mode and 70% LP11 mode, total power=0.1 kW), BCB (z=13.2*LNL, 80% LP01 

mode and 20% LP11 mode, total power=10 kW, co-polarized with the PB). 

Additionally, mode switching can also be controlled by adjusting the polarization state and mode 

composition of the BCB. Figure 4.3 presents three examples using the PMHN1 fibre, with 

boundary conditions different from those in Figure 4.2. In Figure 4.3(a), the mode switching period 

(the numbers of nonlinear lengths needed for complete conversion from one mode to another) is 

stretched by three times when the BCB polarization is converted from the co-polarized state to 

the orthogonally polarized state with respect to the PB polarization. This variation is determined 

by the polarization-dependent coefficient p (p=2 and 2/3 respectively for the co-polarized and 

orthogonally polarized cases). Figure 4.3(b) and (c) depict cases where the initial PB condition is 
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not in single-mode and the BCB is not evenly coupled into the two LP modes (see caption for 

details). These results indicate that the mode switching behaviour varies when either the PB or 

the BCB changes. However, all-optical mode switching for a PB with a random mode composition 

is still achievable by properly adjusting the BCB launching conditions. 

To validate the theoretical outcomes, analytical solutions from Eq. (4.2.7) are computed against 

the numerical simulations of the coupled nonlinear Schrödinger equations, Eqs. (3.2.1) and 

(3.2.2), using the standard finite-difference method introduced in Section 3.2.2. Figure 4.4 

presents the comparisons of PB mode switching from the same initial state containing 100% LP01 

mode, under different BCB conditions: (a) launched total powers, (b) mode compositions, (c) 

polarization states. Importantly, the analytical solutions (lines) agree well with the numerical 

simulations (dots) in all the different cases under test. In Figure 4.4(a), three BCB powers are 

compared to illustrate the tuneable mode switching period within a fixed fibre length. In Figure 

4.4(b), three BCB mode compositions are compared to illustrate the tuneable maximum mode 

conversion. Finally, in Figure 4.4(c), the comparison between the co-polarized and orthogonally 

polarized BCB demonstrates the polarization dependence of mode switching. 

 
Figure 4.4 Analytical solutions (lines) from Eq. (4.2.7) and numerical simulations (dots) 

of Eqs. (3.2.1) and (3.2.2) in a 2-mode counter-propagating scenario, with the PMHN1 

fibre parameters applied. (a) Mode switching of the PB (normalized power PPB=1) versus 

the propagation distance when the BCB is evenly coupled to the LP01 mode and the LP11 

mode under different total launched powers (PCB=1, 50, 100). (b) Mode switching of the 

PB versus the launched BCB power under different BCB mode compositions, with 

c(LP01) of the total launched BCB power coupled to the LP01 mode. (c) Mode switching of 

the PB versus the launched BCB power under different BCB polarization states, with 0 

deg denoting the co-polarization and 90 deg denoting the orthogonal polarization. 

Followingly, DCF and TCF are also analysed by applying their parameters (see Table 3.7) into Eqs. 

(4.2.3) and (4.2.7). Figure 4.5 demonstrates the theoretical mode switching between the 

supermodes in a 10cm-long DCF. A forward PB with 0.1 kW power and a co-polarized BCB with 

10 kW power are launched at opposite fibre ends. Initially, the PB is coupled into 100% SM1 mode, 

while the BCB is evenly coupled to the SM1 and SM2 modes with a 0 rad phase difference between 
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them. In DCF, periodic mode switching of the PB from the SM1 mode to the SM2 mode is achieved, 

as depicted in Figure 4.5(c) with inset mode and phase distributions. In contrast, Figure 4.5(a) 

shows that the BCB mode composition remains constant during propagation. Unlike the case for 

the PM1550-xp illustrated in Figure 4.1, here, a complete switching from one mode to another 

requires a shorter propagation distance of just 1.5*LNL. This increased efficiency is due to the 

larger intermodal Kerr coefficient γ12 in DCF, which is approximately twice as large as those in 

PM1550-xp (see Table 3.1 and Table 3.7), leading to a more efficient energy exchange between 

the modes (indicated by the last term in Eq. (4.2.1)). 

 
Figure 4.5 Theoretical mode switching of the PB in DCF, with the boundary conditions: 

PB (z=0, 100% SM1 mode, total power=0.1 kW), BCB (z=3*LNL (10 cm), 50% SM1 mode 

and 50% SM2 mode, total power=10 kW). 

 
Figure 4.6 Theoretical mode switching in bimodal platforms: (a) PM1550-xp, (b) PMHN1, 

(c) DCF. For each fibre, the relative power of the LP01(or SM1) mode in PB is plotted as a 

function of the LP01 mode power in BCB (x-axis), the propagation distance (y-axis), and 

the initial LP01 mode power in PB (z-axis). The slices are the LP01 mode power evolutions 

in PB with the same initial LP01 mode power but under different BCB mode compositions 

and at different propagation distances. 

Until now, specific instances of mode switching under defined boundary conditions have been 

demonstrated using bimodal fibres (PM1550-xp, PMHN1, and DCF). To delve deeper into the 

mode switching process and the dynamics of counter-propagating nonlinear gratings, the PB 

evolution over propagation distance is computed while varying the boundary conditions. 

Specifically, the input mode compositions of the BCB and PB are independently varied, resulting 
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in the 3D plots depicted in Figure 4.6. In each figure, assuming the BCB and PB co-polarized, the 

relative power of the fundamental mode (LP01 mode or SM1 mode) in PB is depicted as a function 

of three parameters: (1) BCB mode composition (x-axis), (2) propagation distance (either real fibre 

length or substituted with variable BCB powers, y-axis), and (3) initial PB condition (z-axis). By 

comparing the slices along the z-axis, it is observed that the power distribution shifts along the x-

axis as the initial power of the fundamental mode increases from 0 to 1 in the PB, as indicated 

with the dashed arrows. Figure 4.6 provides comprehensive predictions for the all-optically 

tuneable mode switching of the PB in these bimodal fibres, even with random initial PB 

conditions. The mode switching capability can be adjusted in several ways, including varying 

launched power, mode composition, and polarization state of the BCB, as well as altering fibre 

length and nonlinearity. 

 
Figure 4.7 Theoretical mode switching of the PB in TCF, with the boundary conditions: 

PB (z=0, 100% SM1 mode, total power=0.1 kW), BCB (z=9.2*LNL (40 cm), 73% SM1 mode, 

10% SM2 mode, and 17% SM3 mode, total power=10 kW). 

In contrast to previous analyses focusing on bimodal scenarios, the exploration now extends to 

the general case using a fibre supporting more than two spatial modes, with TCF serving as an 

example. Nonetheless, the generalisation to an arbitrary number of modes (and cores) follows a 

similar approach. Leveraging Eqs. (4.2.3) and (4.2.7), the evolution of the PB and BCB can be 

derived as a function of propagation distance. Figure 4.7 illustrates an instance of mode switching 

where the PB is initially coupled solely into the SM1 mode, while the BCB is coupled with 73% SM1 

mode, 10% SM2 mode, and 17% SM3 mode. The fibre length is set at 40 cm, corresponding to a 

propagation of 9.2*LNL. Other parameters, such as counter-propagating beam power and 

polarization state, remain consistent with the DCF analysis. A switching from the SM1 mode to the 

SM3 mode in the PB occurs during propagation from 0 to ~6*LNL, as indicated by the inset near-

field intensity profiles and phase distributions in Figure 4.7(c). In contrast, the relative power of 

each BCB mode remains constant throughout propagation. However, the varying relative phases 

between the BCB modes result in a fluctuating transverse mode distribution, as depicted in Figure 

4.7(a). It is essential to note that in a fibre supporting more than two modes, mode switching 
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between the modes may not occur in a periodic manner as the propagation length or BCB power 

increases. This variation arises from a much higher degree of freedom in the system, including 

the relative power and phase between multiple modes in the PB and BCB. 

4.2.2.2� All-optical power switching in multicore fibres 

Due to the multi-channel architecture in multicore fibres, switching between the supermodes 

gives rise to another intriguing phenomenon: all-optical core-to-core power switching. As 

demonstrated in the TCF mode switching results depicted in Figure 4.7, the capabilities of power 

combining and splitting have already been showcased. Here, a detailed elucidation is provided. 

Through the coherent combination of supermodes with varying relative power and phase, the 

power distribution among the MCF cores can be modified. This relationship between core fields 

and mode fields (as obtained in Eq. (4.2.7)) can be expressed as: 

 [
𝐸𝑐1(𝑧)
⋮

𝐸𝑐𝑁(𝑧)
] = T [

𝑓1(𝑧)
⋮

𝑓𝑁(𝑧)
] (4.2.10) 

where EcN is the electric field in the N-th core, and T is a transformation matrix. T is contingent 

upon the supermode distributions specific to a given MCF. For instance, in the case of a DCF, T =

1

√2
[
1 1
1 −1

], while for a TCF, T = 1

2
[
√2 0 √2

1 √2 −1

1 −√2 −1

]. 

Based on Eq. (4.2.10), the distribution of PB power across each core of the fibre can be 

determined. Figure 4.8 illustrates the theoretical power switching in a 20cm-long DCF, where a 

total BCB power of 10 kW and a total PB power of 0.1 kW are applied. Similar to Figure 4.6, Figure 

4.8(a) presents a 3D plot showcasing the PB power distributions within the right DCF core, as a 

function of (1) BCB mode composition (x-axis), (2) propagation distance (either real fibre length 

or substituted with variable BCB powers, y-axis), and (3) initial PB condition (z-axis). Compared 

with Figure 4.6(c), it is obvious that power switching requires different PB and BCB conditions 

compared to mode switching. 

A clear power switching between the DCF cores can be obtained when the PB is initially evenly 

coupled into the SM1 and SM2 modes with a 0 rad phase difference between them. Under this 

condition, the corresponding power distribution slice is depicted in Figure 4.8(b), where all the PB 

power is focused on the right core before propagation (resulting from the in-phase combination 

of the SM1 and SM2 modes leading to destructive interference within one core). Figure 4.8(b) 

demonstrates that a complete power switching from the right core to the left core can be 

achieved when the relative SM1 mode power in the BCB is approximately 88% or 12%. As an 

illustration, Figure 4.8(c) depicts the power distribution within the two DCF cores when the BCB 
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is coupled with 88% SM1 mode and 12% SM2 mode, showcasing complete power switching from 

the right core to the left core achieved at a propagation distance of 3.5*LNL – 4.7*LNL. Notably, 

Figure 4.8(c) also illustrates an effective power splitting with a tuneable ratio between the cores. 

By adjusting the nonlinear length through varying the launched BCB power, all-optically power 

switching and all-optically tuneable power splitting can be achieved in a fixed-length fibre. 

 
Figure 4.8 Theoretical power switching between the DCF cores in PB. (a) The PB power 

distributions in the right DCF core as a function of the SM1 mode power in BCB (x-axis), 

the propagation distance (y-axis), and the initial SM1 mode power in PB (z-axis). The 

slices are the results under the same initial SM1 mode power in PB. (b) A slice of (a) when 

the initial SM1 mode power in PB is set as 0.5. (c) The PB power distribution within the 

two DCF cores versus the propagation distance, with the initial SM1 mode power of 0.5 

in PB and the BCB coupled into 88% SM1 mode and 12% SM2 mode. 

Subsequently, Figure 4.9 presents two examples showcasing complete power switching from one 

core to another core in the TCF. The fibre length is 1 m, with total powers of 10 kW and 0.1 kW for 

the BCB and PB, respectively. In Figure 4.9(a)-(c), the input PB consists of an in-phase 

combination of 50% SM1 mode, 30% SM2 mode, and 20% SM3 mode, while the input BCB 

comprises an in-phase combination of 70% SM1 mode, 10% SM2 mode, and 20% SM3 mode. 

Figure 4.9(a) illustrates the redistribution of PB power across the three cores as the propagation 

distance increases. The integrated power in the three cores is compared in the upper figure of 

Figure 4.9(c), indicating that most of the power focuses on core2 (as labelled in Figure 4.9(a)) at a 

propagation distance of 5.2*LNL, then shifts to core1 at 11.4*LNL, and finally to core3 at 17.4*LNL. 

Additionally, as the BCB is coupled with a mixture of modes, although the relative mode content 

of each supermode remains constant, the varying phase differences between the modes could 

also lead to the BCB power variations among the cores, as depicted in Figure 4.9(b) and (c). 

Similarly, Figure 4.9(d)-(f) shows the dynamics when the PB and the BCB are coupled into 2 of the 

3 modes. The input PB is a combination of 50% SM1 mode and 50% SM3 mode, whereas the BCB 

is coupled with 80% SM1 mode and 20% SM3 mode. Under this condition, the TCF works as a 2-

mode platform because the counter-propagating nonlinear grating is only composed of the SM1 

and SM3 modes, resulting in mode switching between these two modes in the PB. Nevertheless, 
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periodic power switching among the cores can still be observed. Starting from a condition with all 

the power located in the core1, Figure 4.9(d) and (f) demonstrate that most of the PB power 

returns to core1 after propagating a distance of 9.3*LNL, while the power becomes evenly 

distributed in core2 and core3 at a distance ranging from 2.9*LNL to 5.8*LNL. The power 

redistribution among the cores for the BCB, as a result of varying phase differences between the 

SM1 and SM3 modes, is illustrated in Figure 4.9(e) and (f). 

 
Figure 4.9 Theoretical power switching between the TCF cores, with the boundary 

conditions: (a)-(c) PB{50% SM1, 30% SM2, and 20% SM3 modes}, CB{70% SM1, 10% SM2, 

and 20% SM3 modes}; (d)-(f) PB{50% SM1, 0% SM2, and 50% SM3 modes}, CB{80% SM1, 

0% SM2, and 20% SM3 modes}. The power distribution among the cores is depicted in (a) 

and (d) for the PB, and (b) and (e) for the BCB, with the integrated powers within 

individual cores plotted in (c) and (f). 

Figure 4.8 and Figure 4.9 suggest that power switching among the MCF cores can be all-optically 

tuned via the total power and mode composition of the BCB, the fibre geometry and fibre length, 

as well as the polarization state of the BCB (though not shown in the figures, the power switching 

period will be stretched by 3 times if the BCB is converted from co-polarization to orthogonal 

polarization). 

4.2.2.3� Comparison between linear and nonlinear probe beam regime 

The dynamics of the counter-propagating system, as described in Eqs. (3.2.1) and (3.2.2) of 

Chapter 3, are significantly influenced by the degree of nonlinearity of both the forward probe 

beam and backward control beam. 
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Figure 4.10 Comparison between high power probe (mode rejection) and low power 

probe in a bimodal fibre. (a)-(b) Mode distribution of the output probe (a) and output BCB 

(b) versus the BCB peak power when the probe is in a strong nonlinear regime (peak 

power fixed to 10 kW). The output probe is asymptotically organized to the mode state 

orthogonal to the input BCB, and vice versa. (c)-(d) Mode distribution of the output probe 

(c) and output BCB (d) versus the BCB peak power when the probe is in linear regime 

(peak power fixed to 0.01 kW). The output probe mode distribution oscillates 

sinusoidally as a function of the BCB power, whereas the BCB mode distribution is 

unchanged. 

When both beams operate in a strongly nonlinear regime, the system exhibits asymptotic 

rejection of specific mode states, as introduced in Chapter 3. For instance, in the case of a 

bimodal fibre, the output probe beam is organized towards the mode state orthogonal to the input 

BCB, and vice versa. In the example shown in Figure 4.10 (a) and (b), a bimodal fibre with 

parameters L=1 m, γ11= γ12= γ22= 1 W-1km-1 is used for simulation. The input probe beam is entirely 

coupled to mode M1, while the input BCB is distributed with 60% of its power in mode M1 and 40% 

in mode M2. The probe beam, with a total fixed peak power PPB =10 kW, operates in a highly 

nonlinear regime (number of nonlinear lengths LγPPB =10, γ= 1 W-1km-1 being the average Kerr 

coefficient). As the BCB power increases from 0 to 10 kW, entering itself a strongly nonlinear 

regime, the mode rejection process outlined above occurs. Indeed, the output probe (Figure 

4.10(a)) tends to approach the mode state orthogonal to the input BCB, namely, ~40% in mode 

M1 and ~60% in mode M2. In turn, the output BCB (Figure 4.10(b)) tends to approach the mode 
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state orthogonal to the input probe, namely, all power coupled to the mode M2 (mode rejection of 

the mode M1). 

However, when the probe operates at a low peak power level, therefore remaining in a linear 

regime (which is the condition underlying the results in this chapter) the dynamics change 

drastically. The mode rejection process is not triggered. This is shown in Figure 4.10 (c) and (d) 

where the probe peak power is now arbitrarily low (here PPB =0.01 kW, therefore the number of 

nonlinear lengths LγPPB =0.01). In this case, the output BCB’s mode distribution remains 

unchanged, mirroring the input (Figure 4.10(d)). Meanwhile, the output probe mode distribution 

exhibits a sinusoidal evolution as the BCB power increases (Figure 4.10(c)), in line with the 

predictions of the theoretical model (Eqs. (4.2.8) and (4.2.9)) and the simulations reported in this 

section. 

To conclude, this section introduces and derives the nonlinear intermodal dynamics of a counter-

propagating setup where the power difference between the mutually injected beams is 

substantially large. This gives rise to an effect, counter-propagating nonlinear grating, different 

from the mode rejection phenomenon discussed in Chapter 3. This nonlinear grating is generated 

by the backward control beam and can be all-optically tuned via various parameters including the 

total power, mode composition, and polarization state of the BCB, as well as the fibre geometry 

and nonlinearity. The counter-propagating nonlinear grating enables two intriguing effects in 

MMFs and MCFs: mode switching and power switching of a low-power forward-propagating PB. 

The developed theory is applicable to N-mode and N-core platforms. Theoretical prediction of 

mode switching between the LP modes (or the supermodes) are illustrated in several bimodal 

fibres (PM1550-xp, PMHN1, and DCF) and a 3-mode fibre (TCF). Furthermore, power switching, 

tuneable power splitting, and combining between the cores in DCF and TCF have been 

investigated. Based on the theory and simulations presented here, a series of experiments on 

mode and power switching will be demonstrated in the following sections. 

4.3� All-optical switching of LP modes in multimode fibres 

4.3.1� Experimental setup 

To experimentally investigate the mode switching effect, FMFs are initially utilized to explore all-

optical switching between the LP modes. The experimental setup is similar to Figure 3.3, with a 

simplified schematic depicted in Figure 4.11. The PB and BCB are split from the 1 µm MOPA 

system operating with ~0.5 ns pulse durations. The power ratio between the BCB and PB is 

adjusted to be larger than 20:1 by rotating HWP1 to a proper angle. The PB and BCB are injected 

from opposite ends of the test fibres, such that the high-power BCB can generate counter-
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propagating nonlinear gratings to influence PB propagation. The BCB input end is cleaved at an 

angle of 8° to eliminate back reflection into the camera, thus the low-power output PB can be 

better observed. The PB input end is perpendicularly cleaved to ensure high quality mode 

excitation. The launched power of the BCB and PB can be controlled by appropriately rotating 

HWP4 and HWP2 in combination with PBSs. The polarization state of the BCB and PB can be 

adjusted by rotating HWP5 and HWP3. An SLM is used for BCB coupling, allowing for selectable 

coupling conditions by flexibly adjusting the phase pattern displayed on the SLM screen. The 

output PB is sampled using a wedge with an incident beam angle of ~10 deg, ensuring that the 

sampled laser beam maintains a similar polarization to the output PB. The near-field and far-field 

intensity profiles are measured with cameras, with PB output beam profiles corrected by 

subtracting BCB reflection at the flat-cleaved fibre end. Mode decomposition is then 

implemented based on the corrected profiles. A linear polarizer or a combination of PBS and HWP 

can be inserted before the BS to measure the output for different input polarization states. An 

identical setup is placed after the BCB output to measure the BCB output beam profile, which is 

used to analyse the BCB mode composition. 

 
Figure 4.11 Experimental setup to investigate the mode switching dynamics in 

nonlinear optical fibres. 

The experimental procedure for measuring mode switching comprises several steps: precisely 

coupling the BCB and PB to specific mode states, tuning the input beam properties, measuring 

the output PB and BCB intensity profiles, and post-processing the measured beam profiles. As 

the theory and simulation illustrate, an optimal mode switching requires specific mode 

compositions for the counter-propagating beams. Achieving all-optical switching of the PB 

involves tuning the input BCB from three perspectives - total power, polarization state, and mode 

composition – using waveplates, PBS, and SLM. The data post-processing involves mode 

decomposition based on numerical analysis of the measured beam profiles, a method that is 

discussed in Chapter 3. All-optical mode switching in the PB is measured as a function of BCB 

power by analysing a series of PB output beam profiles at different BCB powers. 
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4.3.2� Mode switching in PM1550-xp and PMHN1 

Unlike the theoretical analysis developed in section 4.2, the laser beams used in the experiments 

are pulsed rather than CW, enabling the high peak power required for the experiments. The pulse 

width is ~0.5 ns, corresponding to a pulse length of 10 cm in the fibre. Consequently, the total 

interaction length of 10 cm is achieved in the fibre for the counter-propagating PB and BCB. The 

test fibre is ~0.4 m in length and placed in an optimized position to ensure synchronisation of the 

forward PB and backward BCB pulses. 

 
Figure 4.12 Observation of LP mode switching in the PM1550-xp fibre under various 

boundary conditions, as detailed at the top of each panel. The experimental results 

(dots with ±2% error bars) are compared with the theoretical calculations (lines). (a)-(c) 

Mode decomposition of the PB output PBout over the LP01, LP11e, and LP11o modes, as a 

function of BCB power. (d)-(f) Mode decomposition of PBout over the LP01 and LP11 modes 

as a function of BCB power, with LP11 mode content as the content summation of the 

LP11e and LP11o modes. 

The PM1550-xp fibre is placed in the experimental setup to explore LP mode switching in the PB. 

A series of preliminary optimizations has been conducted at a low BCB power prior to the mode 

switching experiments, including adjusting the rotation angles of waveplates and optimizing the 

phase patterns displayed on the SLM. The PB and BCB are set to the same linear polarization state 

aligned with either the fast or the slow axis of the fibre. The BCB is coupled with high peak powers 

with a tuneable range from 0 to ~12 kW, whereas the PB is coupled with a constant power of ~0.6 

kW. There is no noticeable change in the PB output beam profiles when the BCB power is low and 
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comparable to the PB power. However, as the BCB power increases, the mode distribution of the 

PB output gradually switches to another mode state. Figure 4.12 illustrates the power evolution 

of each LP mode in the PM1550-xp fibre under various boundary conditions, i.e., the input mode 

composition of PB and BCB. 

Figure 4.12(a)-(c) present the PB output decomposed into the LP01, LP11e, and LP11o modes, while 

Figure 4.12(d)-(f) display the summed relative powers of the LP11e and LP11o modes to illustrate 

mode switching between the LP01 and LP11 modes. Theoretical predictions (lines) are calculated 

based on Eq. (4.2.7) and are provided for comparison with the experimental results (dots). For 

instance, in Figure 4.12(a), the input PB is composed of 15% LP01 mode, 9% LP11e mode, and 76% 

LP11o mode with a relative modal phase of 0 rad, 0.6 rad, and 0.5 rad, respectively. Meanwhile, the 

BCB is coupled into a combination of 90% LP01 mode, 1% LP11e mode, and 9% LP11o mode. The 

relative modal phase for the BCB modes is not listed in Figure 4.12 because it does not affect 

mode switching between the PB modes, as illustrated by the |Bm| and |Bn| terms in Eq. (4.2.4). 

Under this boundary condition, as the BCB power increases, the relative LP01 mode power in the 

PB exhibits a variation from 0.2 down to 0.05, then increases from 0.05 to 0.9 before decreasing 

again. Correspondingly, Figure 4.12(d) illustrates the switching from the LP11 mode to the LP01 

mode as the BCB power increases, achieved by summing the LP11e and LP11o mode powers in 

Figure 4.12(a). In this instance, the LP11o mode content is higher than the LP11e mode, both in the 

PB and BCB. Consequently, the LP11 mode content is approximated to be 85% in the PBin and 10% 

in the BCB, with a relative LP11 mode phase of 0.5 rad in the PBin retained from the phase of the 

LP11o mode in Figure 4.12(a). Moreover, since the LP11o mode predominates over the LP11e mode in 

the BCB, mode switching primarily occurs between the LP11o mode and the LP01 mode in the PB, 

resulting from a counter-propagating nonlinear grating primarily formed by these two modes. It is 

worth noting that the slight mismatch between experiment and theory in Figure 4.12 can be 

attributed to the mode decomposition error (discrepancy along y-axis) and variation in BCB power 

(discrepancy along x-axis, resulting from variation in coupling efficiency). 

Figure 4.12(a) demonstrates an almost complete switching from the LP11 mode to the LP01 mode 

in the PB output (~85% power conversion between the modes) by using a co-polarized BCB power 

of ~11 kW. Note that further increasing the BCB power to ~22 kW would lead to a switching back 

to the LP11 mode. Additionally, partial switching between the LP01 and LP11 modes is illustrated in 

Figure 4.12(b) and (e), as well as (c) and (f). A tuneable mode switching ratio can be observed by 

adjusting the mode composition of the input PB and BCB, which can be estimated from the 3D 

plots provided in Figure 4.6(a). Notably, achieving a mode switching period for the PM1550-xp 

fibre requires a BCB power of ~10 kW and a propagation of 3*LNL in the experiments, which aligns 

with the theoretical calculation in Figure 4.1(c). Given the pulse length of 10cm and a BCB power 

of 10 kW, the fibre supports propagation of ~3*LNL (LNL=3.3 cm). 
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Subsequently, LP mode switching in the PMHN1 is investigated by using a 0.4m-long fibre and a 

BCB power of ~5 – 6 kW. The 10cm-long pulse length in the PMHN1 fibre supports propagation of 

~6 – 8*LNL at 5 – 6 kW BCB power. As shown with the theoretical calculation in Figure 4.2(c), the 

switching period is ~2.7*LNL in the PMHN1 fibre. Therefore, periodic mode switching can be 

observed in the PB, with the modal distributions converting to another mode state as the BCB 

power increases, and then returning to the initial mode state when further increasing the BCB 

power. After preliminary optimizations of waveplate angles, SLM phase patterns, and coupling 

lenses at a low power level, the PB peak power is set constant at ~0.2 kW, while the BCB peak 

power is tuneable from 0 to 6 kW, ensuring that the BCB power is significantly higher than the PB 

power. The PB and BCB are set to the same linear polarization state aligned with either the fast or 

the slow axis of the fibre. 

 
Figure 4.13 Observation of LP mode switching in the PMHN1 fibre under various 

boundary conditions, as detailed at the top of each panel. The experimental results 

(dots) are compared with the theoretical calculations (lines). (a)-(c) Mode 

decomposition of PBout over the LP01, LP11e, and LP11o modes, as a function of BCB power. 

(d)-(f) Mode decomposition of PBout over the LP01 and LP11 modes as a function of BCB 

power, with LP11 mode content as the content summation of the LP11e and LP11o modes. 

Similar to the observations in the PM1550-xp fibre, the PB output remains unchanged when the 

BCB power is low and comparable to the PB power. However, the mode distribution of the PB 

output gradually switches to another mode state as the BCB power increases. Figure 4.13 

displays several mode switching results in the PMHN1 fibre under various boundary conditions 

and varying BCB powers. Figure 4.13(a)-(c) show the mode decomposition of the PB output into 
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the LP01, LP11e, and LP11o modes, while the relative powers of the LP11e and LP11o modes are 

summed in Figure 4.13(d)-(f) to illustrate the mode switching between the LP01 and LP11 modes. 

Figure 4.13(d)-(f) are derived from Figure 4.13(a)-(c) by assuming the LP11e mode and LP11o mode 

as degenerate modes and taking the phase of the dominant mode between them. Theoretical 

predictions (lines) are calculated based on Eq. (4.2.7) and are provided for comparison with the 

experimental results (dots). 

For instance, in Figure 4.13(a) and (d), the input PB is composed of 89% LP01 mode, 3% LP11e mode, 

and 8% LP11o mode with a relative modal phase of 0 rad, 1.5 rad, and -1.5 rad, respectively, while 

the BCB is coupled with 2% LP01 mode, 2% LP11e mode, and 96% LP11o mode. By taking the 

approximation of a single LP11 mode propagation, the input PB consists of 89% LP01 mode and 11% 

LP11 mode with a phase difference of -1.5 rad between them, and the input BCB is a combination 

of 2% LP01 mode and 98% LP11 mode. Figure 4.13(a) shows a dominant mode switching between 

the LP01 mode and LP11o mode, which results from the counter-propagating nonlinear grating 

generated primarily formed by these two modes. In this case, periodic switching between the LP01 

and LP11o mode can be obtained with intermodal power conversion of ~20%. Simultaneously, the 

LP11e mode content exhibits minor fluctuations at different BCB powers. This is due to the low 

content of this mode in the BCB and the lower intermodal Kerr coefficient between the LP11e and 

LP11o modes. Consequently, Figure 4.13(d) illustrates periodic partial switching between the LP01 

and LP11 modes in this fibre. Figure 4.13(b), (c), (e), and (f) illustrates other partial mode switching 

results in the PMHN1 fibre with intermodal power conversion of ~50 – 60%. Complete switching 

(100% conversion) from one mode to another mode is achievable if the BCB power and mode 

composition are further optimized, as indicated by the shift in the colour scale in Figure 4.6(b). It 

is worth mentioning that experimental results generally match the theoretical calculations when 

the BCB power is below 2 kW. However, as the BCB power increases further, the experimental 

results begin to diverge from the theoretical curves. This inconsistency is also observed during 

the mode rejection experiments using the PMHN1 fibre and is associated with significant spectral 

broadening of the BCB spectrum when the power exceeds 2 kW, as illustrated in Figure 3.14. 

So far, LP mode switching has been demonstrated in both the PM1550-xp and PMHN1 fibres. To 

systematically illustrate this phenomenon, some of the results shown in Figure 4.12 and Figure 

4.13 are directly compared in Figure 4.14. In the results of the PM1550-xp shown in Figure 4.14(a), 

the relative LP01 mode power in the PB varies differently as the BCB power increases, 

demonstrating tuneable maximum intermodal power conversion (the difference between the 

maxima and minima). The PB output beam profiles are illustrated in Figure 4.14(b) when the BCB 

is turned off (PBCB=0) and on (PBCB=~11 kW), with the LP01 mode content in the BCB indicated. In 

comparison, Figure 4.14(c) and (d) summarise three mode switching results in the PMHN1 fibre 

with tuneable maximum intermodal power conversion. Given a higher nonlinearity in the PMHN1 
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fibre, lower BCB power is required for mode switching. A conversion from the peak(valley) to the 

valley(peak) in the LP01 mode content of the PB requires a BCB power of ~2.05 kW in the PMHN1 

fibre, corresponding to a propagation of ~2.7*LNL (pulse length=0.1m and nonlinear coefficient 

γ=13.2 W-1km-1). This periodic mode switching is also illustrated with the PB output beam profiles 

at four distinct BCB powers in Figure 4.14(d). In contrast, the PM1550-xp requires a BCB power of 

~10 kW for a LP01 mode content conversion from the peak(valley) to the valley(peak) (see Figure 

4.14(a)), which corresponds to a propagation of 3*LNL (pulse length=0.1m and nonlinear 

coefficient γ=3 W-1km-1). 

 
Figure 4.14 Comparisons of mode switching results using the PM1550-xp and the 

PMHN1 fibres. The evolution of the LP01 mode power in the PBout is compared under 

varying PBin and BCB coupling conditions. The experimental results (dots) are compared 

with the theoretical calculations (lines). (a) Five different mode switching results of 

PM1550-xp, with the PBout beam profiles and BCB conditions illustrated in (b). (c) Three 

mode switching results of PMHN1, with the corresponding PBout beam profiles at various 

BCB powers displayed in (d), alongside the BCB conditions. PBCB: BCB power. 

In conclusion, mode switching in low-power PBs is experimentally observed in both the PM1550-

xp and PMHN1 fibres by using ~0.4m-long fibres and a 0.5ns pulsed BCB with peak powers of 5 - 

11 kW. Mode switching is driven by the counter-propagating nonlinear gratings generated by the 

high-power BCB, with the specific pairs of modes involved in the switching determined by the 

mode composition of the BCB. By using ~10 kW BCB power, a switching from the LP01(LP11) mode 

to the LP11(LP01) mode can be achieved in the PM1550-xp fibre. However, for the PMHN1 fibre, a 

BCB power of ~2.05 kW is sufficient to achieve a similar mode conversion result. The 
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experimental results are consistent with the theoretical predictions, demonstrating successful 

tuneable mode switching. 

4.4� Supermode switching and power switching in multicore fibres 

4.4.1� Supermode switching in DCF and TCF 

The DCF and TCF fibres are utilized to investigate the supermode switching effect, according to 

the theoretical predictions shown in Figure 4.6(c) and Figure 4.7. DCF and TCF fibres with a length 

of ~0.4m are used, and the experimental setup is the same as Figure 4.11. However, the BCB and 

PB are swapped with the SLM used for the PB coupling into the MCFs, while the BCB is coupled 

using an additional phase plate or by selectively coupling a single beam into one of the fibre cores. 

This allows for the PBs to be coupled with random mode compositions by varying the SLM phase 

patterns (see Section 3.4.1 for details of phase patterns used for MCF coupling), facilitating 

comprehensive mode switching experiments. Consequently, the fibre end at the BCB input is 

angle-cleaved to eliminate BCB reflections, whereas the PB input end is perpendicularly cleaved 

to ensure high-quality couplings. After preliminary optimizations of the waveplate angles, SLM 

phase patterns, and coupling lenses at low power levels, the PB is set as a random combination 

of supermodes with a constant peak power of ~0.25 kW, while the BCB is set as a specific 

combination of supermodes with a peak power tuneable from 0 to ~11 kW. Due to the 

polarization-maintaining capabilities of the DCF and TCF (introduced in Chapter 3), the 

polarization states of the PB and BCB can be set to either co-polarized or orthogonally polarized 

with a high polarization extinction ratio of ~10dB. The output beam profiles in the far field are then 

measured and analysed to illustrate the supermode switching in the MCFs. 

The switching period for the DCF requires a propagation length ranging from 1.5*LNL to 3*LNL, as 

illustrated in Figure 4.6(c). The exact number of LNL required depends on the mode compositions 

of the BCB and PB. Since the 0.1m-long pulse length in the fibre (0.5ns pulse width) supports a 

propagation of 3.3*LNL at a BCB power of 11 kW, a complete switching between the SM1 mode and 

SM2 mode can be obtained at this power level. Figure 4.15(a) demonstrates a switching from a 

nearly SM2 mode state to a pure SM1 mode state as the BCB power (coupled with 65% SM1 mode 

and 35% SM2 mode) increases from 0 to ~8kW, corresponding to 2.4*LNL. Due to the periodic 

nature of switching, the SM1 mode content decreases when further increasing the BCB power. 

Conversely, Figure 4.15(b) illustrates a switching from a nearly SM1 mode state to a nearly SM2 

mode with a BCB power of ~8 kW, using the same BCB configuration as in Figure 4.15(a). Similarly, 

Figure 4.15(c) and (f) illustrate the mode switching dynamics when the BCB remains unchanged, 

whereas the input PB is coupled with different relative modal phases. Both experimental results 
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and theoretical calculations illustrate an opposite dynamic in the output PB, with complete 

conversion to the SM1 (SM2) mode obtained in Figure 4.15(c) (Figure 4.15(f)) at a BCB power of ~5 

kW. Starting from varying input conditions, the PB output mode can be all-optically switched to a 

single supermode state by using a BCB power of ~5 – 8 kW, corresponding to a propagation of 

~1.5 – 2.4*LNL (pulse length=0.1m and nonlinear coefficient γ=3 W-1km-1). 

 
Figure 4.15 Observation of supermode switching in the DCF under various boundary 

conditions, as detailed at the top of each panel. The experimental results (dots) are 

compared with the theoretical calculations (lines). Mode decomposition of PBout over 

the SM1 and SM2 modes, as a function of BCB power. PB and BCB are co-polarized in (a)-

(c), and (f), whereas they are orthogonally polarized in (d) and (e). 

Apart from tuning the mode switching dynamics through mode compositions, the relative 

polarization state of the PB and BCB is also investigated, as illustrated in Figure 4.15(d) and (e). 

Theoretical calculations suggest that the mode switching efficiency is ~3 times lower when the 

PB and BCB are orthogonally polarized compared to co-polarized cases (see Figure 4.4(c)). This 

implies that achieving the same mode switching results in orthogonally polarized cases requires 

either 3 times higher power or 3 times longer interaction length. This can be explained by 

comparing Figure 4.15(a) with (d) or Figure 4.15(b) with (e), where the input PB and BCB have 

identical mode compositions but different relative polarization states. For instance, in Figure 

4.15(a) and (d), the input PB is coupled with ~10% SM1 mode and ~90% SM2 mode, and the BCB 

is coupled into a combination of 65% SM1 mode and 35% SM2 mode. In the co-polarized case 
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(Figure 4.15(a)), a BCB power of ~4 kW is required to achieve the SM1 mode power conversion 

from 10% to 65%. On the contrary, it requires a BCB power of ~12 kW to obtain a similar amount 

of mode conversion in the orthogonally polarized case (Figure 4.15(d)). 

Subsequently, supermode switching in a 0.4m-long TCF is measured by using a PB with a peak 

power of ~0.2 kW and a BCB with a peak power of 5 - 7 kW. Figure 4.16 illustrates the power 

evolution of the SM1, SM2, and SM3 modes in the PB output as the BCB power increases, under 

various boundary conditions as denoted in the title of each panel. Experimental results (dots) are 

compared with theoretical calculations (lines), and the output PB beam profiles are shown in the 

inset pictures. In Figure 4.16(a) and (c), the three supermodes are switching their power mutually, 

whereas mode switching occurs only in the SM1 mode and SM2 mode in Figure 4.16(b) resulting 

from negligible power (just 1%) coupled to the SM3 mode in the BCB. It is worth noting that the 

coupled BCB power is limited by the laser source and coupling efficiency in the experiments, but 

a complete switching to a specific mode state would be obtained if further increasing the BCB 

power. 

 
Figure 4.16 Observation of supermode switching in the TCF under various boundary 

conditions. Mode decomposition of PBout over the SM1, SM2, and SM3 modes, as a 

function of BCB power, with the boundary conditions detailed at the top of each panel. 

The experimental results (dots) are compared with the theoretical calculations (lines). 

The insets are PBout beam profiles when the BCB is switched on or off. 

In conclusion, mode switching in low-power PBs is experimentally observed in both the DCF and 

TCF fibres by using ~0.4m-long fibres and a 0.5ns pulsed BCB with peak powers of 5 - 11 kW. The 

mode switching dynamics are comprehensively explored in terms of the launched power, mode 

composition, and relative polarization state of the BCB, as well as various initial conditions of the 

PB. By using a 0.5ns pulsed BCB with ~8 kW peak power, one can achieve all-optical switching 

from the SM1(SM2) mode to the SM2(SM1) mode in the DCF when the BCB and PB are co-polarized. 

About 3 times higher BCB power is needed to achieve a similar conversion when the BCB is 

orthogonally polarized with respect to the PB. As for the TCF, mode switching can occur in two 
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modes or among all the three supermodes, controlled by the counter-propagating gratings 

formed by the BCB. 

4.4.2� Power switching between MCF cores 

Due to the coherent combination of supermodes with varying relative powers and phases, 

supermode switching in the PB enables another intriguing effect: power switching between the 

MCF cores. As indicated by the theoretical calculations depicted in Figure 4.8 and Figure 4.9, 

exploring power switching among the MCF cores can be accomplished using the same 

experimental setup for the supermode switching experiments, with adjustments made to the 

input conditions of the PB and BCB. 

Power switching between the two DCF cores in the PB is initially explored and observed in a 0.4m-

long fibre. Experimental parameters are similar to the DCF mode switching experiments. The PB 

peak power is set constant at ~0.25 kW, while the BCB peak power is tuneable from 0 to 10 kW. 

Near-field beam profiles of the PB output are measured as the BCB power increases. The 

intensities in the pixels corresponding to the mode fields in the two cores are summed to 

represent the relative power in each core, with the total power normalized to 1. 

 
Figure 4.17 Experimental observation of power switching between the DCF cores with 

different initial states at a BCB power of ~10 kW. The relative power in the left core 

(labelled as core1) is plotted as a function of the BCB power, with the total power within 

the two cores normalized as 1. 

Figure 4.17 illustrates four instances of power switching from different initial power distributions 

among the cores, where the BCB is coupled to a combination of 70% SM1 mode and 30% SM2 

mode and is co-polarized with respect to the PB. Starting from 100% power distributed in core1, 

the PB power gradually switches from core1 to core2, with approximately 50% power conversion 

observed at a BCB power of ~10 kW, as illustrated by the purple dots. Subsequently, the green 

dots illustrate power decreasing in core1 from 60% to 15% as the BCB power increases from 0 to 

~10 kW. Conversely, the yellow and red results demonstrate power switching from core2 to core1 
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with a BCB power of ~10 kW. The near-field beam profiles on the right depict three distinct states 

of power switching: predominantly in core1, evenly distributed between the two cores, and mainly 

in core2. 

 
Figure 4.18 Observation of power switching between cores in the TCF under various 

boundary conditions. The relative power in each individual core is plotted as a function 

of BCB power, with the total power within all cores normalized to 1. Five experimental 

results are shown in (a)-(e), with the core labels indicated in (f). 

Power switching between the three cores in the TCF is then explored by using a 0.4m-long fibre 

and ~7 kW BCB power. Figure 4.18 illustrates five instances of power switching in the PB with a 

constant power of ~0.2 kW and co-polarized with respect to the BCB. In these measurements, 

the BCB is selectively coupled into one of the three cores, which gives rise to the coupling to a 

combination of 9% SM1 mode, 85% SM2 mode, and 6% SM3 mode for the results shown in Figure 

4.18(a), (b), and (d), whereas a combination of 73% SM1 mode, 10% SM2 mode, and 17% SM3 

mode for the results shown in Figure 4.18(c) and (e). The forward PB is coupled to different 

combinations of cores using the SLM, as shown in the inset NF beam profiles when BCB power is 

0. The core distribution of the output PB is displayed in Figure 4.18(f), and the PB output beam 

profiles are measured as the BCB power increases. The intensities in the pixels corresponding to 

the mode fields in the three cores are summed to represent the relative power in each core, with 

the total power normalized to 1. Figure 4.18 illustrates the complex power switching dynamics: 

the power switching may occur within two of the three cores or among all three cores. 

Specifically, Figure 4.18(a) shows the power switching from core1 to core3 as the BCB power 

increases from 0 to ~7 kW; Figure 4.18(b) displays the power focusing into core1 at a BCB power 

of ~7 kW; Figure 4.18(c) illustrates the power switching between core2 and core1; Figure 4.18(d) 
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and (e) are the results where the PB evolves to a mode state with a uniform power distribution 

among the cores even if the input PB is randomly distributed. 

To summarise, power switching in low-power PBs is experimentally observed in the DCF and TCF 

by using ~0.4m-long fibres and a 0.5ns pulsed BCB with peak powers of 7 – 10 kW. The exploration 

of power switching dynamics involves adjustments in BCB power and the mode compositions of 

the BCB and input PB. The experiments reveal that within DCF and TCF fibres, power can be 

mutually switched between cores by adjusting the BCB power. 

It is worth noting that the power switching experiments presented here are limited by the available 

BCB peak power. A higher degree of power switching between cores can be achieved by further 

increasing the BCB power. The selection of a core for power transmission within an MCF, also 

termed core-switching, has been investigated using various techniques, including long period 

gratings[131], beam-steering mirror[132], multi-path interference, and phase modulation[133]. 

In uncoupled or weakly-coupled MCFs, an inter-core power extinction ratio of approximately 16-

39 dB has been reported[133]. However, core switching in coupled MCFs remains an area of 

limited exploration. Femtosecond witching in nonlinear coupled waveguides has been 

demonstrated at a high peak power (>50 kW), achieving a power conversion efficiency of ~50% 

[134]. Additionally, an experiment using a triple-core photonics crystal fibre demonstrated SPM-

induced inter-core combining at a power level of ~800 W[135]. The power switching results 

reported in this section, obtained at a BCB peak power of ~10 kW, are comparable to those 

reported in coupled MCFs. A higher power extinction ratio among the cores could be achieved by 

further increasing the BCB power or employing the materials with enhanced nonlinearity. 

4.5� Applications: conceptual devices for all-optical light-by-light 

manipulation 

The observations of mode switching and power switching in MMFs and MCFs suggest promising 

applications in several conceptual devices for light-by-light manipulation. These applications 

include the development of all-optically tuneable mode converters, ultrafast tuneable power 

splitters, combiners and switches, as well as all-optical phase detection at terminal ends. 

4.5.1� 0-100% All-optically tuneable mode converters 

Based on the mode switching effect, an all-optically tuneable mode converter can be developed, 

offering a tuneable modal conversion ratio ranging from 0% to 100%. This converter operates by 

launching an intense counter-propagating BCB into the fibre. Given the mutual injection 

configuration, the BCB can be readily distinguished from the output PB signals. The desired 
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modal conversion ratio can be achieved by precisely adjusting the power, mode composition, 

and polarization state of the BCB. 

Taking the DCF as an example, Figure 4.19 presents three experimental outcomes: complete 

conversion (d), partial conversion (e), and negligible conversion (f) between the SM1 mode and the 

SM2 mode within the same piece of DCF. For a specific input PB (see the title in each panel), Figure 

4.19(a)-(c) illustrate how mode conversion can be dynamically tuned by adjusting the BCB mode 

composition (y axis) and BCB power (x axis). The colour gradient reflects the relative SM1 mode 

power in the output PB, demonstrating the mode conversion dynamics with a 0 – 100% tuning 

range. The dashed lines represent the evolution of SM1 mode power in PBout as BCB power 

increases, with the BCB coupled with a relative SM1 mode power of 65% in Figure 4.19(a) and (b), 

and 99% in Figure 4.19(c). These dashed lines are replotted in Figure 4.19(d)-(f) for comparison 

with the experimental results, showing good agreement. PB output beam profiles at three distinct 

BCB powers are illustrated on the right for visualisation. 

 
Figure 4.19 All-optically tuneable mode conversion in the DCF by adjusting BCB power 

and mode composition. (a)-(c) Theoretical mode conversion of PBout as a function of the 

BCB power (x-axis) and the BCB mode composition (y-axis), with the input PBin 

conditions indicated at the top of each panel. The colour scale represents the relative 

SM1 mode power in PBout. The red dashed lines denote the relative SM1 mode content in 

PBout when (a) 65%, (b) 65%, and (c) 99% of the BCB power is coupled to the SM1 mode. 

The corresponding experimental results are illustrated in (d) a full conversion up to 100% 

SM1 mode, (e) a partial conversion to the 88% SM2 mode, and (f) a negligible conversion. 

Error bars of ±3% are added to the experimental results to represent the estimated 

uncertainty of the MD algorithm for MCFs. PBout beam profiles at 3 distinct BCB powers 

are displayed on the right. 
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Furthermore, tuneable mode conversion can also be achieved by controlling the relative 

polarization state of the BCB with respect to the PB. Figure 4.20(a) and (b) present two 

comparative results when the relative BCB polarization state is adjusted from co-polarization to 

orthogonal polarization, while maintaining the mode compositions for the PB and BCB (as 

indicated in the panel titles). By using a BCB with a maximum power of ~11 kW, the relative SM1 

mode power in the output PB can be all-optically tuned in the range of 10 – 100% under the co-

polarized condition, whereas the tuning range is constrained to 10 – 65% under the orthogonally 

polarized condition. PB output beam profiles at three distinct BCB powers are illustrated on the 

right for visualisation. Moreover, Figure 4.20(c) shows the PB output evolutions when the relative 

polarization state of the BCB is continually adjusted, with linear polarization direction differences 

ranging from 0 deg to 90 deg. In the absence of the BCB, the SM1 mode content in the output PB 

remains around 100% (see the beam profiles on the right). However, with the BCB turned on, the 

SM1 mode content can be converted to the range of ~36% - 70% under varying relative 

polarizations, demonstrating the tuneability of mode conversion. 

 
Figure 4.20 All-optically tuneable mode conversion in the DCF by adjusting the BCB 

polarization state. The SM1 mode content in PBout is plotted as a function of the BCB 

power when the BCB is (a) co-polarized or (b) orthogonally polarized with respect to the 

PB. The boundary conditions are detailed at the top of each panel, and the PBout beam 

profiles at 3 distinct BCB powers are listed on the right. (c) Mode conversion in PBout 

versus the relative polarization state of the BCB with respect to PB, starting from the SM1 

mode state when the BCB is turned off. 

In a word, by launching a counter-propagating BCB with specific total power, mode composition, 

and polarization state into the fibre, the output of a PB with random mode compositions can be 

all-optically tuned to achieve a 0 – 100% conversion between the modes. 

4.5.2� All-optically ultrafast tuneable power splitters, combiners, and switches 

Based on the power switching effect, MCFs can be engineered as all-optically tuneable power 

splitters, power combiners, and power switches by launching a counter-propagating BCB into the 

fibre, as presented with the experimental tests in Figure 4.21 and Figure 4.22. Figure 4.21(a) 

showcases a tuneable power splitter implemented with a 0.4m-long DCF, where the power is all-
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optically split from a single core into the two cores with an arbitrary ratio of X/(1-X) at the PB 

output, achieved by adjusting the BCB power accordingly. The insets are side views of the spatial 

beam shape in the two cores, illustrating the power distributions between the two cores with an 

increasing BCB power from 0 to ~9 kW. Conversely, Figure 4.21(b) demonstrates a tuneable 

power combiner, where the power is all-optically combined from the two DCF cores into one of 

them. By using a BCB power of ~11 kW, the PB power can be effectively combined in either core1 

or core2. The insets are side views of the spatial beam shape in the two cores with an increasing 

BCB power from 0 to ~11 kW. Moreover, Figure 4.21(c) introduces a tuneable power switch with 

the PB output power all-optically switched from core2 to core1 at a BCB power of ~10 kW. The 

insets are the side views of the spatial beam shape in the two cores with an increasing BCB power 

from 0 to ~10 kW. It is worth noting that proper adjustment of the BCB mode composition is 

essential for each case, and co-polarization of the BCB and PB is maintained throughout these 

experiments. In Figure 4.21(a) and (b), the BCB is coupled to a combination of 70% SM1 mode and 

30% SM2 mode, whereas in Figure 4.21(c), it is coupled with 40% SM1 mode and 60% SM2 mode. 

 
Figure 4.21 All-optically tuneable devices integrated with a 0.4m-long DCF. (a) 

Tuneable X/(1-X) power splitters by varying BCB power, with the measured relative 

powers illustrating power splitting from one core to two cores. The insets are side views 

of the spatial beam shape in the two cores. (b) Tuneable power combiner, with the 

measured relative powers and insets demonstrating power combining from two cores 

into one core. (c) Tuneable power switch, providing the power rerouting from one core 

to another core. 

Similarly, TCF is also tested as a tuneable power splitter, combiner, and switch, as demonstrated 

in Figure 4.22(a)-(c). In these measurements, the BCB is selectively coupled into one of the fibre 

cores, with a composition of 9% SM1 mode, 85% SM2 mode, and 6% SM3 mode for the results 

shown in Figure 4.22(a) and (b), whereas in Figure 4.22(c), the BCB is a combination of 73% SM1 

mode, 10% SM2 mode, and 17% SM3 mode. Using a BCB power of approximately 7 kW, the output 

PB from this 0.4m-long TCF can be all-optically split to an arbitrary ratio between the cores, 

combined to one single core, or switched from one core to another. 
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Figure 4.22 All-optically tuneable devices integrated with a 0.4m-long TCF. Side views 

of the spatial beam shape in the three cores illustrating power distribution among the 

cores. (a) Tuneable power splitters by varying BCB power, with measurement 

demonstrating even power splitting among three cores. (b) Tuneable power combiner, 

with measurement demonstrating power combining into one of the three cores. (c) 

Tuneable power switch, providing the power rerouting from one core to another core. 

 
Figure 4.23 Experimental setup for investigating the temporal dynamics of power 

switching in the DCF, with an inset illustrating the counter-propagating PB and BCB, as 

well as the BCB reflection at the fibre end. M: mirror, L1(2): lens. 

Given the promising performance of these all-optically tuneable devices, it is intriguing to 

investigate their switching speed. Figure 4.23 illustrates an experimental setup for measuring the 

temporal dynamics of power switching in the DCF. Although similar to the experimental setup in 

Figure 4.11, several adjustments are implemented: the SLM is used for the PB coupling to achieve 

a random power distribution between the cores; the PB output pulse from one of the two cores is 

selectively measured using a pinhole. The PB output is imaged at the pinhole position via a pair of 

lenses (L1 with a focal length of 13.86 mm and L2 with a focal length of 500 mm), providing a 

magnification of ~36x. With a diameter of ~200 µm, the pinhole can effectively filter out the beam 

from a single core, given that the magnified output beam diameter for each core is ~180 µm, and 
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the centre-to-centre distance between the beams from two fibre cores is ~360 µm. The filtered 

PB output is then coupled through a telescope into a MMF connected to an oscilloscope to 

measure the temporal shape. A replica of the filtered output imaged onto the camera using 

another telescope to visualise the beam profile for the filtered PB output. Due to the flat cleave at 

the PB input end, some of the input BCB power could reflect backward from this flat-cleaved end. 

As depicted in the inset figure, the PB continues propagating forward after encountering the BCB 

in the middle of the fibre (as illustrated by the “Meeting point” in Figure 4.23). The back reflection 

of BCB at the flat-cleaved fibre end propagates in the same direction as PB. However, there is a 

delay length between the PB output and BCB back reflection. In this experiment where the 

“Meeting point” is in the middle of the fibre, the delay length equals to the fibre length (~40 cm), 

corresponding to a delay of ~2 ns in time for the BCB reflection. 

 
Figure 4.24 Measured temporal shapes for PBout (0.5ns pulse width) in the two DCF 

cores, with the BCB either (a), (d) turned off or (c), (f) turned on. The relative powers in 

two cores are normalized such that their sum equals 1. (a)-(c) represent an example of 

power switch, with power distributions versus BCB power displayed in (b), whereas (d)-

(f) illustrate an example of power splitter with power distributions shown in (e). 

Figure 4.24 illustrates two measurements using the DCF as a power switch and a power splitter 

with a BCB power of 6 kW. In Figure 4.24(a)-(c), the PB output pulse in core2 has a relative power 

of 0.65 when the BCB is turned off, whereas it contains a relative power of 0.35 when the BCB is 

turned on. The power transfer from core2 to core1 occurs at a rapid speed of 2 GHz, 

corresponding to the 0.5 ns pulse width of the BCB in this measurement. Notably, this switching 

speed can be further enhanced by using shorter BCB pulses. Furthermore, Figure 4.24(d)-(f) 

illustrate the ultrafast switching speed in a tuneable power splitter, where the relative power of 

the PB output pulses splits to a ratio of 0.6:0.4. In these measurements, the PB pulses and the 
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BCB pulses have the same pulse duration, and they are synchronized to meet in the middle of the 

fibre, leading to the temporal shape of the output PB maintaining a similar shape as the input PB. 

However, the temporal dynamics may differ if the pulse duration of the PB is different or if the PB 

pulse is not synchronized with the BCB pulse. 

4.5.3� All-optical phase detection at terminal ends 

 
Figure 4.25 All-optical detection of input PB phase in the DCF by measuring the PBout 

evolution (at terminal ends). (a) Theoretical SM1 mode power as a function of BCB power 

(y-axis) and the phase difference between the SM1 and SM2 modes in PBin (x-axis). Mode 

decomposition of the input PB and BCB is indicated at the top. The red dashed lines 

correspond to the experimental results in (b)-(d), where the BCB is coupled with 65% 

SM1 mode and 35% SM2 mode. The PBin is coupled with ~90% SM1 mode and ~10% SM2 

mode, but with various SM2 mode phases and various polarization states: (b) ϕ=0.3 rad, 

BCB and PB are co-polarized (parallel); (c) ϕ=2.4 rad, BCB and PB are orthogonally 

polarized; (d) ϕ=5.6 rad, BCB and PB are orthogonally polarized. 

The PB mode conversion can vary depending on the initial mode composition of the PB, as 

demonstrated in Figure 4.6, Figure 4.14, and Figure 4.15. In a multimode system, maintaining a 

constant input BCB mode composition while randomly varying the input PB (in terms of mode 

contents or relative phases) enables the detection and estimation of the initial conditions of the 

PB by observing how the output PB mode composition evolves with changes in the launched BCB 
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power. Figure 4.25 and Figure 4.26 present examples of phase detection for the input PB modes 

by measuring the output PB evolutions at the terminal end of a 0.4m-long DCF. 

In Figure 4.25, the BCB maintains a consistent mode composition of 65% SM1 mode and 35% SM2 

mode, while the input PB varies its mode composition by adjusting the coupling conditions, 

approximately comprising 90% SM1 mode and 10% SM2 mode with varying relative phases 

between them. Figure 4.25(a) illustrates the theoretical variation of SM1 mode power in the output 

PB (colour-coded) versus the BCB power (y axis) and the relative phase of the SM2 mode in the 

input PB (x axis), calculated using Eq. (4.2.7). Notably, the y-axis on the left indicates the required 

BCB power for co-polarized BCB and PB configurations, the required power would be 3x larger 

when the BCB and PB are orthogonally polarized. 

For each specific relative phase of the SM2 mode in the input PB, the evolution of SM1 mode power 

in the output PB follows the direction of the y-axis, as shown by the dashed lines in Figure 4.25(a). 

By measuring the SM1 mode power in the output PB at various BCB powers, as presented by the 

blue bars in Figure 4.25(b)-(d), the relative phase of the SM2 mode in the input PB can be 

determined by aligning the experimental results with the theoretical plot in Figure 4.25(a). The red 

dashed lines are replotted in Figure 4.25(b)-(d), and they closely match the experimental results. 

Consequently, the relative phase of the SM2 mode in the input PB can be detected: 0.3 rad (b), 2.4 

rad (c), and 5.6 rad (d). In these measurements, Figure 4.25(b) corresponds to the co-polarized 

case, while Figure 4.25(c) and (d) are the orthogonally polarized cases. 

 
Figure 4.26 All-optical detection of input PB phase in the DCF by measuring the PBout 

evolution at terminal ends. (a) Theoretical SM1 mode power as a function of BCB power 

(y-axis) and the phase difference between the SM1 and SM2 modes in PBin (x-axis). Mode 

decomposition of the input PB and BCB is indicated at the top. The red dashed lines 

correspond to the experimental results in (b)-(c), where the BCB is coupled with 75% 

SM1 mode and 25% SM2 mode. The PBin is coupled with ~67% SM1 mode and ~33% SM2 

mode, but with different SM2 mode phases: (b) ϕ=2.1 rad; (c) ϕ=5.6 rad. 

Similarly, Figure 4.26 presents another example where the BCB maintains a consistent mode 

composition of 75% SM1 mode and 25% SM2 mode, while the input PB varies its mode 

composition, approximately comprising 67% SM1 mode and 33% SM2 mode, with varying relative 
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phases between them. Figure 4.26(a) illustrates the theoretical variation of SM1 mode power in 

the output PB, which is completely different from the theoretical plot in Figure 4.25(a). However, 

the relative phase of the SM2 mode in the input PB can still be determined by aligning the 

experimental results with the theoretical plot, as demonstrated in Figure 4.26(b) and (c). A relative 

phase of 2.1 rad (b) and 5.6 rad (c) for the SM2 mode in the input PB can be precisely detected 

using this approach. These results highlight the feasibility of optically detecting phase variations 

in the input PB by monitoring the evolution of the output PB concerning the BCB power. This novel 

phase detection mechanism offers valuable insights, particularly for lengthy fibre setups, and 

presents an effective means of implementing phase detection at terminal ends. 

4.6� Conclusions 

In this chapter, the concept of counter-propagating nonlinear gratings is introduced in multimode 

systems. Unlike the mode rejection effect discussed in Chapter 3, this phenomenon occurs when 

there is a significant power difference between mutually injected beams. The theoretical 

framework underlying the multimodal interaction dynamics driven by this nonlinear grating is 

explored, along with experimentally investigations using various few mode fibres and multicore 

fibres. Through this exploration, two intriguing beam self-organization effects emerge: mode 

switching and power switching. 

Mode switching involves the conversion between transverse modes within the low-power forward 

PB, a process that can be all-optically tuned by adjusting the total power, mode composition, and 

polarization state of the counter-propagating high-power BCB. Adjustments to fibre length, 

geometry, and nonlinearity can alter the required BCB power for specific mode switching 

outcomes. Table 4.1 provides a summary of mode switching results observed in PM1550-xp, 

PMHN1, DCF, and TCF fibres. By using 0.4m-long fibres and a total peak power of ~6 – 12 kW for 

the BCB (0.5 ns pulses), tuneable switching between LP modes or supermodes is achieved with 

a mode conversion efficiency ranging from 20% to 90%. Experimental results agree well with 

theoretical calculations, both illustrating that complete switching from one mode to another 

mode can be obtained by using a BCB power of 10 kW, 2.05 kW, and 5 -10 kW for the PM1550-xp 

fibre, PMHN1 fibre, and DCF, respectively. The maximum mode switching is obtained with a co-

polarized PB and BCB configuration, and approximately 3 times higher BCB power is required for 

achieving similar mode switching result in orthogonally polarized configurations. In the fibres 

supporting more than two modes, such as the TCF, mode switching can occur among all 

supported modes or only between two modes, depending on the BCB mode composition. 

Table 4.1 Summary of the mode switching results for MMFs and MCFs 
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Fibre Theory  Experiments    

 
Switching 

period 
(*LNL) 

BCB power 
required for a 

switching period 
(kW) 

Fibre Length 
(m) 

Maximum 
BCB 

power 
(kW) 

Participating 
modes 

Mode 
conversion 
efficiency 

PM1550-
xp 3 10 0.4 12 LP01, LP11 30% - 90 % 

PMHN1 2.7 2.05 0.4 6 LP01, LP11 20% - 60% 

DCF 1.5 - 3 5 -10 0.4 11 SM1, SM2 40% - 90% 

TCF - - 0.4 7 
SM1, SM2, 

SM3 
20% - 50% 

Core-to-core power switching in MCFs arises from the supermode switching effect, where 

combinations of supermodes with varying relative powers and phases lead to variations in power 

distribution among individual cores. This phenomenon is theoretically described in this chapter. 

Experimental observations of power switching in DCF and TCF fibres are demonstrated by using 

0.4m-long fibres and a 0.5 ns pulsed BCB with peak powers of 7 – 10 kW. The dynamics of power 

switching are thoroughly investigated by adjusting the BCB power and the mode compositions of 

the BCB and input PB. The power within two cores of DCF and TCF can mutually switch when the 

BCB power is turned on. In an MCF containing more than two cores, power among the cores can 

be switched to focus to a single core or uniformly distributed among them. 

These findings lead to the demonstration of several conceptual devices capable of all-optical 

light-by-light manipulations, leveraging the mode switching and power switching effects in MMFs 

and MCFs. These devices encompass a range of applications, including all-optically tuneable 

mode converters, ultrafast tuneable power splitters, combiners and switches, as well as all-

optical phase detection at terminal ends. 

Notes: The results reported in this chapter have been selectively published (see LoP2, LoP4, and 

LoP6 in the List of Publications). LoP2 includes the main results of mode switching and power 

switching in multimode and multicore fibres that were demonstrated in this chapter. This paper 

is currently under the first-round revision at Nature Communications Journal. The experiments, 

simulations, co-development of derivations and code were my work; the 3-core fibre was 

fabricated by Ian Davidson from the Optoelectronics Research Centre; the dual-core fibres used 

in the experiments were fabricated by Jayanta Sahu from the Optoelectronics Research Centre; 

this project was supervised by Massimiliano Guasoni and David J. Richardson from the 

Optoelectronics Research Centre. LoP4 and LoP6 are conference papers where we introduce the 

concept of counter-propagating nonlinear grating and reconfigurable all-optical mode switching. 
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Chapter 5�Four-wave mixing and wavelength 

conversion in multicore fibres 

5.1� Introduction 

Optical parametric amplification in optical fibres generates radiation with new wavelengths and 

different spatial modes based on the four-wave mixing effect. Researchers have investigated 

parametric amplification in multimode fibres from various perspectives, including the 

wavelength, mode composition, and polarization of the pump, as well as fibre nonlinearity, 

length, design, and material. For instance, pump wavelengths at 532nm[136, 137], 1µm[138, 

139], and 1.55 µm[140-142] have been used to generate sidebands with different LP modes in 

few-mode fibres with lengths ranging from less than 1m to several kilometres. In parallel, 

intermodal four-wave mixing and parametric amplification have been investigated in a variety of 

fibre and waveguide types, including photonics crystal fibres[143], silicon core fibres[144], silicon 

waveguides[145], liquid-/gas-filled hollow core fibres[146], and multicore fibres[147, 148]. 

In the past decade, theoretical analyses of modulation instability and four-wave mixing in 

coupled MCFs have been presented by solving the couped NLSEs[149-152]. More recently, 

experimental demonstrations of four-wave mixing have been performed in a 2-core fibre[147, 

148]. However, most studies have considered the FWM in the individual MCF cores. Due to the 

similarity between the MMFs and coupled MCFs, FWM in MCFs can be studied as FWM between 

multiple supermodes. 

In this chapter, wavelength and supermode conversion based on intermodal four-wave mixing in 

coupled multicore fibres are demonstrated. Initially, the wave vector matching conditions 

involving different pairs of modes are described, which dictate the optimal circumstances under 

which FWM processes can effectively occur. Then, based on the analytical solutions to MMNLSEs 

(introduced in Chapter 2), theoretical estimations of FWM gain peaks and gain bandwidth is 

provided, considering various dispersion parameter conditions. The influence of various modes 

and frequencies, as well as of SRS, is investigated. Finally, FWM between the supermodes of 

several MCFs is explored both theoretically and experimentally. These MCFs include DCF, TCF, 

4-core fibre (4CF), and 7-core fibre (7CF), with varying core diameters and core separations. 
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5.2� Mechanisms of four-wave mixing in optical fibres 

5.2.1� Phase matching conditions 

As introduced in Chapter 2, nonlinear interactions in multimode systems involve various mode 

pairs and frequencies. Specifically, by considering three waves (pump, signal, and idler), Eqs. 

(2.3.24) and (2.3.25) describe the interaction between the m-th and k-th modes at three 

frequencies (ωp, ωs, and ωi). FWM requires specific phase matching conditions, including both 

frequency and wave vector matching. Effective FWM occurs when the phase mismatch is close 

to 0. Figure 5.1 illustrates the wave vector matching conditions for FWM between different mode 

pairs, corresponding to the different terms on the right-hand side of Eq. (2.3.24). The wave vector 

(propagation constant β) for different modes is plotted as a function of frequency, where the 

frequency matching condition is fulfilled (see Eq. (2.3.13)). 

 
Figure 5.1 Wave vector matching conditions for FWM between different pairs of modes. 

(a) The m-th mode at frequencies ωs and ωp, and the k-th mode at frequencies ωp and 

ωi. (b) The m-th mode at frequencies ωs, ωp, and ωi. (c) The m-th mode at frequencies 

ωs and ωp, and the k-th mode at frequencies ωs and ωp. 

In Figure 5.1(a), with the annihilation of two pump photons in the m-th mode and the k-th mode, 

the m-th and k-th modes are generated at signal and idler frequencies, respectively. The wave 

vector mismatch can be expressed as (see the terms containing Apm Aik
*Apk in Eq. (2.3.24)), 

 ∆𝛽I = ∆𝛽𝑚
(𝑠,𝑝)

+ ∆𝛽𝑘
(𝑖,𝑝)

 (5.2.1) 

Figure 5.1(b) represents the degenerate FWM process in single-mode fibres, where the signal and 

idler are generated in the same mode as the pump. The corresponding wave vector mismatch is, 

 ∆𝛽II = ∆𝛽𝑚
(𝑠,𝑝)

+ ∆𝛽𝑚
(𝑖,𝑝)

 (5.2.2) 

Lastly, in Figure 5.1(c), FWM involves only the pump and signal frequencies, with the m-th mode 

and k-th mode generated at the signal and pump frequencies, respectively. A similar process 



Chapter 5 

149 

exists involving only the pump and idler frequencies, as described by the terms containing Apm 

Apk
*Aik in Eq. (2.3.25). The wave vector mismatch for Figure 5.1(c) is, 

 ∆𝛽III = ∆𝛽𝑚
(𝑠,𝑝)

− ∆𝛽𝑘
(𝑠,𝑝)

 (5.2.3) 

The phase matching conditions require that the wave vector mismatch is close to 0. By expanding 

the propagation constant in a Taylor series around the pump frequency (see Eq. (2.2.2)), Eqs. 

(5.2.1)-(5.2.3) can be rewritten as follows, 

 
∆𝛽I = [𝛽1𝑚

(𝜔𝑝) − 𝛽1𝑘
(𝜔𝑝)

] (−∆𝜔) +
1

2
[𝛽2𝑚

(𝜔𝑝) + 𝛽2𝑘
(𝜔𝑝)

] (−∆𝜔)2

+
1

6
[𝛽3𝑚

(𝜔𝑝) − 𝛽3𝑘
(𝜔𝑝)] (−∆𝜔)3 +⋯ 

(5.2.4) 

 ∆𝛽II = 𝛽2𝑚
(𝜔𝑝)(∆𝜔)2 +

1

12
𝛽4𝑚
(𝜔𝑝)(∆𝜔)4 +⋯ (5.2.5) 

 
∆𝛽III = [𝛽1𝑚

(𝜔𝑝) − 𝛽1𝑘
(𝜔𝑝)

] (−∆𝜔) +
1

2
[𝛽2𝑚

(𝜔𝑝) − 𝛽2𝑘
(𝜔𝑝)

] (−∆𝜔)2

+
1

6
[𝛽3𝑚

(𝜔𝑝) − 𝛽3𝑘
(𝜔𝑝)] (−∆𝜔)3 +⋯ 

(5.2.6) 

where ∆ω = ωp - ωs = ωi - ωp, and βXm
(ωp) is the X-th order dispersion parameter for the m-th mode 

at the pump frequency ωp. 

Once the dispersion parameters at the pump frequency are determined, the phase-matching 

frequency separation of the signal or idler from the pump, ∆ω, can be estimated from Eqs. (5.2.4)-

(5.2.6) (here by retaining only the first two terms of the expansions): 

 ∆𝜔I =
2 [𝛽1𝑚

(𝜔𝑝) − 𝛽1𝑘
(𝜔𝑝)]

[𝛽2𝑚
(𝜔𝑝) + 𝛽2𝑘

(𝜔𝑝)
]

 (5.2.7) 

 ∆𝜔II = √
−12𝛽2𝑚

(𝜔𝑝)

𝛽4𝑚
(𝜔𝑝)

 (5.2.8) 

 ∆𝜔III =
2 [𝛽1𝑚

(𝜔𝑝) − 𝛽1𝑘
(𝜔𝑝)]

[𝛽2𝑚
(𝜔𝑝) − 𝛽2𝑘

(𝜔𝑝)]
 (5.2.9) 

These frequencies can be shifted due to the contributions of self-phase and cross-phase 

modulations[68], which depend on the pump power distribution across multiple modes and the 

Kerr coefficients (see the first term in Eq. (2.3.24)). Considering higher order dispersion 

parameters can also contribute to changes in the value of ∆ω. Among the three types of FWM 

processes, the intermodal FWM process illustrated in Figure 5.1(a) is most attractive since the 

zero-dispersion requirement for intramodal FWM is relaxed by selecting different pairs of modes, 

allowing several distinct ∆ωI values to be obtained using various modes in the same multimode 

fibre. 
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5.2.2� Theoretical estimation of FWM gain peak and bandwidth 

Table 5.1 Theoretical gain peak and bandwidth of FWM 

Intramodal 
FWM Gain peak (Ωpk) Gain bandwidth (ΩB) Gain (m-1) 

𝛽2𝑚
(𝜔𝑝) < 0 √

2𝛾𝑚𝑚𝑃

|𝛽2𝑚
(𝜔𝑝)|

 2√
𝛾𝑚𝑚𝑃

|𝛽2𝑚
(𝜔𝑝)|

 √(𝛾𝑚𝑚𝑃𝑚)
2 −

1

4
(2𝛾𝑚𝑚𝑃𝑚 + 𝛽2𝑚

(𝜔𝑝)(−∆𝜔)2)
2

 

Intermodal 
FWM Gain peak (Ωpk) Gain bandwidth (ΩB) Gain (m-1) 

D1 = 0, 
D2 < 0, 
D3 = 0 

√
−(

𝛾𝑚𝑚𝑃𝑚
+𝛾𝑘𝑘𝑃𝑘

)

𝐷2
 √

−(
4𝛾𝑚𝑘√𝑃𝑚𝑃𝑘 +

𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘
)

𝐷2
 

√4𝛾𝑚𝑘
2 𝑃𝑚𝑃𝑘 −

1

4
(
𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘 +

𝐷2(−∆𝜔)
2 )

2

 

D1 = 0, 
D2 > 0, 
D3 = 0 

0 √
−(

−4𝛾𝑚𝑘√𝑃𝑚𝑃𝑘 +

𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘
)

𝐷2
 

√4𝛾𝑚𝑘
2 𝑃𝑚𝑃𝑘 −

1

4
(
𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘 +

𝐷2(−∆𝜔)
2 )

2

 

D1 ≠ 0, 
D2 ≠ 0, 
D3 = 0 

−
𝐷1
2𝐷2

∓

√
  
  
  
  
  
 𝐷1

2

4𝐷2
2 −

(
𝛾𝑚𝑚𝑃𝑚
+𝛾𝑘𝑘𝑃𝑘

)

𝐷2

 

−
𝐷1
2𝐷2

±

√
  
  
  
  
  
  
  𝐷1

2

4𝐷2
2 −

(

𝛾𝑚𝑚𝑃𝑚
+𝛾𝑘𝑘𝑃𝑘

±4𝛾𝑚𝑘√𝑃𝑚𝑃𝑘

)

𝐷2

 
√4𝛾𝑚𝑘

2 𝑃𝑚𝑃𝑘 −
1

4
(

𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘 +

𝐷2(−∆𝜔)
2 + 𝐷1(−∆𝜔)

)
2

 

D1 ≠ 0, 
D2 ≠ 0, 
D3 ≠ 0 

𝛺𝑝𝑘,𝐿 =

−𝐷2±√𝐷2
2−4𝐷1𝐷3

2𝐷3
, 

𝛺𝑝𝑘,𝑁𝐿 =
−(𝛾𝑚𝑚𝑃𝑚+𝛾𝑘𝑘𝑃𝑘)

3𝐷3𝛺𝑝𝑘,𝐿
2 +2𝐷2𝛺𝑝𝑘,𝐿+𝐷1

, 
𝛺𝑝𝑘
= 𝛺𝑝𝑘,𝐿 + 𝛺𝑝𝑘,𝑁𝐿  

𝛺𝑝𝑘

±
4𝛾𝑚𝑘√𝑃𝑚𝑃𝑘𝛺𝑝𝑘,𝑁𝐿
(𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘)

 
√4𝛾𝑚𝑘

2 𝑃𝑚𝑃𝑘 −
1

4
(

𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘 +

𝐷3(−∆𝜔)
3 + 𝐷2(−∆𝜔)

2

+𝐷1(−∆𝜔)
)

2

 

To comprehensively explore the intermodal FWM process and achieve a theoretical estimation of 

FWM gain peaks and gain bandwidths, the matrix formalisation of coupled-amplitude equations 

(Eq. (2.3.29)) can be employed. Here, the Raman contribution is omitted by setting fR=0, and only 

the elements related to the m-th mode in the signal and the k-th mode in the idler are retained, 

leading to: 

 𝜕𝑧𝐯 = 𝐌𝐯, 𝐯 = [𝐴̅𝑠𝑚 𝐴̅𝑖𝑘
∗]𝑇 ,𝐌 = [

𝑗 [Δ𝛽𝑚
(𝑠,𝑝)

+ 𝛾𝑚𝑚𝑃𝑚] 𝑗2𝛾𝑚𝑘√𝑃𝑚𝑃𝑘

−𝑗2𝛾𝑘𝑚√𝑃𝑘𝑃𝑚 −𝑗 [Δ𝛽𝑘
(𝑖,𝑝)

+ 𝛾𝑘𝑘𝑃𝑘]
] (5.2.10) 

where γmk=γfmk is applied to simplify the expression. As indicated in Eq. (2.3.31), the FWM gain 

depends on the eigenvalues of M. Specifically, it is proportional to the real part of the 

eigenvalues[78], which can be expressed as: 
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 𝐺𝑎𝑖𝑛 ∝ [4𝛾2𝑓𝑚𝑘
2 𝑃𝑚𝑃𝑘 −

1

4
(𝛾𝑓𝑚𝑚𝑃𝑚 + 𝛾𝑓𝑘𝑘𝑃𝑘 + Δ𝛽𝑚

(𝑠,𝑝)
+ Δ𝛽𝑘

(𝑖,𝑝)
)
2
] (5.2.11) 

This relationship indicates the condition for achieving gain peaks: 

 (𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘 + Δ𝛽𝑚
(𝑠,𝑝)

+ Δ𝛽𝑘
(𝑖,𝑝)

) = 0 (5.2.12) 

By substituting Eq.(5.2.4) into it, a solvable equation for ∆ω can be obtained by considering up to 

the third order dispersion: 

 D3(−∆𝜔)
3 + D2(−∆𝜔)

2 +D1(−∆𝜔) + 𝛾𝑚𝑚𝑃𝑚 + 𝛾𝑘𝑘𝑃𝑘 = 0 (5.2.13) 

where D1= 𝛽1𝑚
(𝜔𝑝) − 𝛽1𝑘

(𝜔𝑝) , D2= 1

2
[𝛽2𝑚

(𝜔𝑝) + 𝛽2𝑘
(𝜔𝑝)] , and D3= 1

6
[𝛽3𝑚

(𝜔𝑝) − 𝛽3𝑘
(𝜔𝑝)] . The frequency 

separation (Ωpk) of the FWM gain peaks from the pump frequency can be obtain from Eq. (5.2.13), 

and the gain bandwidth (ΩB) can be determined by finding ∆ω that makes Eq.(5.2.11) equal to 0. 

This equation also illustrates the shift of the gain peak from ∆ωI (where ∆ωI makes the first three 

terms equal to 0) due to the contributions of γmmPm and γkkPk. The estimations of gain peak and 

gain bandwidth[78] under different conditions for the signs of D1, D2, and D3 are provided in Table 

5.1. To explain the shift of gain peaks due to the contribution of self- and cross-phase 

modulations, for example, the gain peak is modified from Eq. (5.2.7) due to the (γmmPm+γkkPk) term 

when D1≠0, D2≠0, and D3=0. 

5.2.3� Influence of various modes and frequencies 

Table 5.1 provides an overview of the predicted gain spectrum distribution when considering the 

m-th mode as the signal and the k-th mode as the idler. Variations in maximum gain and the 

corresponding frequencies can occur with changes in dispersion parameters, pump power, and 

Kerr coefficients. Moreover, the gain spectrum is influenced by the inclusion of additional modes 

and frequencies. For example, a bimodal fibre scenario is examined where 𝛽1,𝑚1
(𝜔𝑝)=4.906 ps/mm, 

𝛽1,𝑚2
(𝜔𝑝)=4.907 ps/mm, 𝛽2,𝑚1

(𝜔𝑝)=1 ps2/km, 𝛽2,𝑚2
(𝜔𝑝)=3 ps2/km, 𝛽3,𝑚1

(𝜔𝑝)=𝛽3,𝑚2
(𝜔𝑝)=0 ps3/km, γm1,m1= γm2,m2= 

γm1,m2= 3 W-1km-1, and Pm1= Pm2= 1 kW, with m1 and m2 representing two modes. By considering 

only the m1 mode in the signal (Asm1) and the m2 mode in the idler (Aim2), the normalized gain 

spectrum derived from Table 5.1 is depicted in Figure 5.2(a), showing two gain peaks at 

frequencies separated from the pump by ±0.97 THz and ±78.6 THz. However, when including both 

modes in signal and idler (Asm1, Asm2, Aim1, and Aim2), the matrix M in Eq. (2.3.29) becomes a 4 x 4 

matrix. Consequently, the eigenvalues of M differ from those in Eq.(5.2.10) at specific 

frequencies. For example, the gain peaks at the frequency of ±0.97 THz are absent, as illustrated 

in Figure 5.2(b). This variation in the FWM gain spectrum by incorporating additional modes and 
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frequencies suggests that sufficient considerations should be taken when estimating output 

spectral distributions for multimode systems. 

 
Figure 5.2 Variations in the gain spectrum (centred around the pump frequency) when 

additional modes and frequencies are taken into account. (a) Gain spectrum when 

considering only the m1 mode in signal and the m2 mode in idler (Asm1+Aim2). (b) Gain 

spectrum when considering both the m1 and m2 modes in signal and idler 

(Asm1+Asm2+Aim1+Aim2). Note that gain around zero frequency disappears. 

 
Figure 5.3 Variations in the gain spectrum with the adjustments in dispersion 

parameters. (a) Gain spectra under varying second order dispersion values for the m2 

mode. (b) A specific instance of the gain spectrum with the second order dispersion of 

the m2 mode set to 30 ps2/km. 

The subsequent analysis investigates how the gain spectrum is affected by varying the dispersion 

parameters, specifically by adjusting the second-order dispersion for the m2 mode. Figure 5.3(a) 

illustrates how the gain spectrum changes as β2,m2 varies from 0 ps2/km to 70 ps2/km, while 

keeping other parameters consistent with those in Figure 5.2(b). In this scenario, the idler has 

gain in the m1 mode and the signal has gain in the m2 mode. As β2,m2 increases, the frequency 

corresponding to the gain peaks decreases, and simultaneously, the maximum gain at the gain 

peaks also decreases, as illustrated by the amplitude variations in Figure 5.3(a). Another 
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noteworthy observation is that the signal in the m1 mode also obtains gain with increasing β2,m2. 

For instance, Figure 5.3(b) demonstrates the gain spectrum when β2,m1=1 ps2/km and β2,m2=30 

ps2/km, where the signal has gain in both modes, while the idler only has gain in the m1 mode. 

However, achieving such a significant difference in the second order dispersion parameters 

between spatial modes is challenging in conventional optical fibres. This limitation explains why 

intermodal FWM processes usually involve a one mode in the signal and another mode in the idler. 

To validate the findings regarding variations in the FWM gain spectrum, numerical simulations of 

the MM-NLSEs are implemented using the parameters specified above and a fibre length of 1m. 

The gain spectra of two modes are compared between the numerical simulations and the 

analytical calculations, with different second order dispersion settings as described in the 

caption of Figure 5.4. The numerical results align with the analytical results in both cases. 

Methodology for obtaining these results is introduced in section 2.3.2, and discrepancy between 

numerical and analytical results around the pump frequency arises from the Lorentzian shape of 

the input spectra used in simulations. In Figure 5.4(a), with β2,m1=1 ps2/km and β2,m2=3 ps2/km, 

dominant gain occurs in the m1 mode for the idler and the m2 mode for the signal. In contrast, 

with β2,m1=1 ps2/km and β2,m2=30 ps2/km, the frequencies of idler and signal shift from ±78.6 THz 

to ±9.8 THz. Here, the m1 and m2 modes exhibit comparable gains in the signal, while the idler 

only obtains gain in the m1 mode, as shown in Figure 5.4(b). Additionally, the maximum gain is 

lower than that shown in Figure 5.4(a). 

 
Figure 5.4 Comparison between the gain spectrum obtained by numerical (red lines) 

and analytical (blue dots) methods for a bimodal fibre with different second order 

dispersion parameters: (a) β2,m1=1 ps2/km and β2,m2=3 ps2/km; (b) β2,m1=1 ps2/km and 

β2,m2=30 ps2/km. 
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5.2.4� Influence of Raman effect 

By adjusting parameters such as pump mode composition, pump power, Kerr coefficients, and 

dispersion parameters, the FWM gain spectrum can be modified in terms of gain peak frequency, 

maximum gain, and gain distributions among different modes. In the following analysis, the 

Raman effect is incorporated using the complete form of matrix M introduced in Eq. (2.3.30). 

Consequently, the eigenvalues of M are different due to the contribution of Raman effect, leading 

to variations in the FWM gain spectrum. Figure 5.5(a) illustrates the normalized gain spectrum 

when β2,m2 varies from -50 ps2/km to 50 ps2/km, with all other parameters identical to those in 

Figure 5.3(a). Here, negative frequencies represent the signal, and positive frequencies represent 

the idler. By focusing on the gain at the Raman gain peak (-13.2 THz), as highlighted with white 

dashed lines, the gain variation as a function of β2,m2 is depicted in Figure 5.5(b). Specifically, for 

the m1 mode, two local maxima at the Raman gain peak occur when β2,m2=-26.8 ps2/km and 

β2,m2=21.9 ps2/km, while for the m2 mode, local maxima are observed at β2,m2=-1 ps2/km and 

β2,m2=21.2 ps2/km. 

 
Figure 5.5 (a) Gain spectrum under varying second order dispersion values for the m2 

mode when including Raman effect. (b) The gain at the Raman gain peak (frequency=-

13.2 THz) for the m1 and m2 modes. (c), (d) Similar results to (a) and (b) when Raman 

effect is not considered. 
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Notably, these local maxima arise from the overlap of the Raman gain spectrum with the FWM 

gain spectrum. Figure 5.5(c) and (d) illustrate the FWM gain spectrum when the Raman effect is 

neglected. It is worth noting that the local maxima in FWM gain at the frequency of -13.2 THz occur 

at β2,m2 values close to those depicted in Figure 5.5(b). However, there are slight differences in the 

β2,m2 values corresponding to these gain maxima between Figure 5.5(b) and (d). This discrepancy 

arises because of the overlap between the narrow-bandwidth FWM gain spectrum and the 

broader-bandwidth Raman gain spectrum. 

5.3� Estimations of four-wave mixing in multicore fibres 

5.3.1� Fibre design and phase-matching conditions 

The modification of the FWM gain spectrum can be achieved by adjusting the dispersion 

parameters and Kerr coefficients, and phase-matching conditions of modes within single-core 

fibres. Techniques involving the control of core diameter and core-cladding refractive index are 

pivotal in multimode fibres. However, MCFs offer enhanced degrees of freedom for manipulating 

the FWM gain spectrum. This versatility is achieved by varying factors such as the number of 

cores, core diameter, and spatial arrangement of cores. In this section, the phase-matching 

conditions between different supermodes for several multicore fibres are calculated, including 

DCF, TCF, 4CF, and 7CF. These fibre designs are characterized by distinct core diameters of 5 µm 

and 4 µm, along with core spacings of 10 µm and 8 µm, respectively. The design parameters are 

constrained by the etched preform, maintaining a fixed ratio of 2 between core spacing and core 

diameter. Nevertheless, variations in core arrangement can significantly influence the 

corresponding phase-matching conditions and FWM gain spectra. 

 
Figure 5.6 (a) Cross section of the DCF. (b) Phase matching condition for the 

supermodes in the DCF. 
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Figure 5.6 depicts the phase-matching condition for the SM1 and SM2 modes in the DCF that is 

used in Chapter 3 and 4. The fibre features core diameters of 5 µm and a core spacing of 10 µm, 

as illustrated in Figure 5.6(a). Using pumps centred at a frequency of 288.5 THz (corresponding to 

a wavelength of 1040 nm), the vector mismatch approaches 0 among the four waves: signal in the 

SM2 mode, idler in the SM1 mode, and the pump coupled into 2 modes, represented by stars in 

Figure 5.6(b). The frequency separation between the signal/idler and the pump is ±6.7 THz, 

corresponding to ±24 nm centred around the wavelength of 1040 nm. 

 
Figure 5.7 Phase matching conditions for different pairs of supermodes in the TCFs with 

varying geometries: (a), (b) core diameter is 5 µm and core-to-core distance is 10 µm; 

(c), (d) core diameter is 4 µm and core-to-core distance is 8 µm. 

Similarly, phase-matching conditions for the supermodes in the TCF are calculated using a pump 

wavelength of 1040 nm. Figure 5.7 (b) presents the results when the core diameter is 5 µm and 

the core spacing equals 10 µm. Here the maximum frequency separation can be achieved using 

the SM1 mode and the SM3 mode for the FWM process. The idler in the SM1 mode and the signal 

in the SM3 mode can be obtained at a frequency separated from the pump by ±12 THz, leading to 

new wavelength generations at ~998 nm and ~1085 nm, respectively. 

Subsequently, phase-matching conditions are recalculated using a modified TCF with reduced 

core diameter (4 µm) and core spacing (8 µm), as demonstrated in Figure 5.7(c) and (d). This 
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adjustment in core geometry alters the propagation constants of supermodes, resulting in 

increased frequency separation for the signal/idler compared to the original TCF. For instance, 

the idler in the SM1 mode and the signal in the SM3 mode can be obtained at the frequencies 

separated from the pump by ±24 THz. This corresponds to new wavelength generations at ~960 

nm and ~1134 nm, respectively. 

 
Figure 5.8 Phase matching conditions for different pairs of supermodes in the 4CFs with 

varying geometries: (a), (b) core diameter is 5 µm and core-to-core distance is 10 µm; 

(d), (e) core diameter is 4 µm and core-to-core distance is 8 µm. (c) Near-field 

distributions for the four supermodes in 4CF, with white arrows denoting the 

polarization directions in each core. (e) Corresponding far-field distributions. 

Followingly, phase-matching conditions for 4CFs are investigated, as depicted in Figure 5.8. 

These 4CFs feature core diameters of 5 µm and 4 µm with core spacings of 10 µm and 8 µm, 

respectively, supporting the propagation of four distinct supermodes. The near-field and far-field 

intensity distributions of these four supermodes are provided in Figure 5.8(c) and (f), respectively. 

Figure 5.8(b) and (e) illustrate the phase-matching conditions between different pairs of 

supermodes with a pump wavelength of 1040 nm. The maximum frequency separation of the 

signal/idler from the pump is achieved by employing the SM1 and SM4 modes in the FWM process. 

In the 4CF with a core diameter of 5 µm and a core spacing of 10 µm, the signal in the SM4 mode 

and the idler in the SM1 mode can be generated at frequencies separated from the pump by ±20.5 

THz, corresponding to new wavelength generations at ~971 nm and ~1119 nm, respectively. 
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Conversely, the minimum frequency separation for the signal/idler is achieved when the FWM 

process involves the SM3 and SM4 modes, with a separation of ±4 THz from the pump frequency. 

Furthermore, using a 4CF with a core diameter of 4 µm and a core spacing of 8 µm, the maximum 

frequency separation for the signal/idler can be extended to ±31.5 THz, resulting in new 

wavelength generations at ~937 nm and ~1167 nm, respectively. Figure 5.8(e) illustrates 6 pairs 

of gain peaks obtained in various supermodes, spanning frequencies from ±7 to ±31.5 THz relative 

to the pump frequency. 

 
Figure 5.9 Phase matching conditions for different pairs of supermodes in the 7CFs with 

varying geometries: (a), (b) core diameter is 5 µm and core-to-core distance is 10 µm; 

(d), (e) core diameter is 4 µm and core-to-core distance is 8 µm. (c) Near-field 

distributions for the seven supermodes in 7CF, with white arrows denoting the 

polarization directions in each core. (e) Corresponding far-field distributions. 

Finally, the phase-matching conditions for 7CFs are investigated, where seven cores arranged in 

a hexagonal pattern, with core diameters of 5 µm and 4 µm and core spacings of 10 µm and 8 µm, 

respectively, as shown in Figure 5.9(a) and (d). These fibres support the propagation of seven 

supermodes, with the corresponding near-field and far-field intensity distributions presented in 

Figure 5.9(c) and (f), respectively. Theoretically, there are 21 pairs of FWM peaks achievable by 

selecting any two of the seven supermodes involved in the FWM process. Figure 5.9(b) and (e) 

provide examples of phase-matching conditions between the SM1 mode and other supermodes 

at a pump wavelength of 1040 nm. The maximum frequency separation between the signal/idler 

and the pump is achieved by using the SM1 and SM7 modes in the FWM process. In the 7CF with a 

core diameter of 5 µm and a core spacing of 10 µm, the signal in the SM7 mode and the idler in the 
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SM1 mode can be obtained at frequencies separated from the pump by ±28.5 THz, corresponding 

to new wavelength generations at ~946 nm and ~1154 nm, respectively. 

In contrast, using a 7CF with core diameter of 4 µm and a core spacing of 8 µm, the maximum 

frequency separation for the signal/idler can be increased to ±39 THz, resulting in new wavelength 

generations at ~916 nm and ~1202 nm, respectively. The larger frequency separation for the FWM 

gain peaks in MCFs with smaller core spacing is due to the increased differences in the 

intermodal first-order dispersion parameters (D1). With a similar value of D2, the increase in D1 

can shift the FWM gain peaks away from the pump frequency, as indicated in Table 5.1. 

5.3.2� Simulations and the impact of Raman scattering 

The analysis of phase-matching conditions discussed in section 5.3.1 indicates that four-wave 

mixing and wavelength conversion can effectively achieved in the MCFs. In this section, 

numerical simulations of the MM-NLSEs are conducted using the dispersion parameters and Kerr 

coefficients of supermodes in 1m-long MCFs. Here, the pump (wavelength 1040 nm) is evenly 

coupled into all supermodes with each mode containing a power of 2 kW. Background noise 

added to the input spectrum is amplified by FWM induced modulation instability. The gain spectra 

from numerical simulations and analytical results derived from Eq. (2.3.31) are compared. 

Detailed methodologies for obtaining the numerical and analytical gain are provided in section 

2.3.2. Additionally, the impact of Raman scattering on FWM processes is investigated by 

comparing simulations that exclude and include the Raman contribution. 

 
Figure 5.10 Comparison between the numerical and analytical gain spectra by solving 

the MM-NLSEs for a 1m-long DCF fibre, with Raman scattering neglected (a) and 

included (b). 

Figure 5.10(a) compares the numerical and analytical gain spectra for the DCF. The gain peak is 

centred around 6.5 THz for the SM1 mode and -6.5 THz for the SM2 mode, closely matching the 

predicted ±6.7 THz from the phase-matching condition calculations in Figure 5.6(b). The slight 

shift in the FWM gain peaks results from the contributions of self-phase modulation and cross-
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phase modulation, as discussed in section 5.2.2. When the Raman contribution is included, as 

shown in Figure 5.10(b), the gain spectrum appears as a superposition of the FWM gain spectrum 

and a Raman gain spectrum. The maximum gain remains similar regardless of the inclusion of the 

Raman contribution, owing to the effective separation of the FWM gain peaks and the Raman gain 

peaks. It is worth noting that the numerical results align well with the analytical results. 

 
Figure 5.11 Comparison between the numerical and analytical gain spectra by solving 

the MM-NLSEs for 1m-long TCF fibres: (a),(b) core diameter is 5 µm and core spacing is 

10 µm, and (c),(d) core diameter is 4 µm and core spacing is 8 µm, with Raman scattering 

neglected ((a),(c)) and included ((b),(d)). 

Followingly, Figure 5.11 presents the comparison between the numerical and analytical gain 

spectra for two TCFs with different core diameters and core spacings, demonstrating a good 

alignment between the numerical and analytical results in each case. Figure 5.11(a) shows the 

FWM gain spectrum of each supermode in the TCF with a core diameter of 5 µm and a core 

spacing of 10 µm. The SM1 mode shows four gain peaks at relative frequencies of ±12 THz and 

±4.7 THz. The SM2 mode has four gain peaks at relative frequencies of ±11.8 THz, 5.6 THz, and -

4.5 THz. The SM3 mode exhibits four gain peaks at relative frequencies of -12 THz, ±5.5 THz, and 

11.8 THz. These FWM gain peaks are close to the predictions shown in Figure 5.7(b), with slight 

frequency shifts due to the contribution of phase modulations. Another notable difference 

between the gain spectrum and the predictions in Figure 5.7(b) is the number of gain peaks. For 
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instance, the SM1 mode has gain at higher relative frequencies of 5.6 THz (12 THz) when only 

considering its FWM with the SM2 (SM3) mode in Figure 5.7(b). However, the gain spectra in Figure 

5.11(a) reveal that the SM1 mode actually has four gain peaks at both lower (-12 THz and -4.7 THz) 

and higher frequencies (12 THz and 4.7 THz) when considering the FWM processes involving all 

the three modes. This discrepancy indicates that the interactions among all the frequencies and 

modes can modify the FWM gain spectra, resulting in an output that differs from what would be 

expected if only two modes were considered independently. 

Similarly, using the TCF with a core diameter of 4 µm and a core spacing of 8 µm, six gain peaks 

are observed at frequencies of ±22.5 THz, ±12 THz, and ±9 THz for each supermode, as shown in 

Figure 5.11(c). These gain peaks closely align with the predictions in Figure 5.7(d) though with 

slight frequency shifts. The frequency separation in the gain spectrum is larger when using the 

fibre with a smaller core diameter and core spacing. When including Raman scattering, as shown 

in Figure 5.11(b) and (d), the gain spectrum exhibits noticeable changes, particularly at lower 

frequencies. The SM3 mode shows dominant gain around -12 THz among the three supermodes, 

indicating that the Raman scattering benefits this mode when its FWM gain spectrum overlaps 

with the Raman gain spectrum. Specifically, the SM3 mode exhibits FWM gain at the frequency of 

-12 THz due to interaction with the SM1 mode in Figure 5.11(b) and has FWM gain at this frequency 

when interacting with the SM2 mode in Figure 5.11(d). 

The gain spectra for the supermodes in two 4CFs are displayed in Figure 5.12. Figure 5.12(a) 

shows the FWM gain spectrum for the fibre with a core diameter of 5 µm and a core spacing of 10 

µm. Several gain peaks are obtained at relative frequencies of ±17 THz, ±13 THz, and ±7 THz 

across different modes, with the maximum frequency separation occurring in the SM1 mode at 17 

THz and the SM4 mode at -17 THz. By adding the Raman contribution, Figure 5.12(b) illustrates 

that the SM3 mode exhibits dominant gain among the four modes at the frequency around -13 

THz. This dominance results from the overlap between the Raman gain spectrum and the FWM 

gain of the SM3 mode when interacting with the SM1 mode. Figure 5.12(c) displays the gain 

spectrum for the 4CF with a core diameter of 4 µm and a core spacing of 8 µm. The FWM gain 

peaks are more widely separated compared to Figure 5.12(a), with gain peaks located at relative 

frequencies of ±31 THz, ±24.7 THz, ±16 THz, and ±6.1 THz. The maximum frequency separation 

occurs in the SM1 mode at 31 THz and the SM4 mode at -31 THz. In addition, Figure 5.12(d) shows 

that the SM4 mode has dominant gain among the four modes at the frequency around -16 THz, 

resulting from the overlap of the Raman gain spectrum and the FWM gain spectrum related to the 

interaction between the SM2 and SM4 modes. Consequently, the SM2 mode exhibits dominant 

gain among the four modes at a frequency of ~16 THz. 
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Figure 5.12 Comparison between the numerical and analytical gain spectra by solving 

the MM-NLSEs for 1m-long 4CF fibres: (a),(b) core diameter is 5 µm and core spacing is 

10 µm, and (c),(d) core diameter is 4 µm and core spacing is 8 µm, with Raman scattering 

neglected ((a),(c)) and included ((b),(d)). 

Lastly, the gain spectra for the supermodes in the 7CFs are compared in Figure 5.13. Figure 

5.13(a) shows the FWM gain spectrum for the fibre with a core diameter of 5 µm and a core 

spacing of 10 µm. Several gain peaks are obtained at relative frequencies of ±22.8 THz, ±20.5 THz, 

±17 THz, ±14 THz, ±7.6 THz, and ±4.7 THz across different modes. The maximum frequency 

separation occurs in the SM1 mode at 28 THz and in the SM7 mode at -28 THz. When the input 

pump power is equal across all supermodes, the output from the TCF shows maximum gain in 

the SM2 mode and SM3 mode at the frequency of 7.6 THz, and in the SM5 and SM4 modes at the 

frequency of -7.6 THz. By adding the Raman contribution, Figure 5.13(b) illustrates that the SM7 

mode exhibits dominant gain among the seven modes at the frequency around -14 THz. This 

dominance results from the overlap between the Raman gain spectrum and the FWM gain of the 

SM7 mode during its interaction with the SM2 and the SM3 modes. 

Figure 5.13(c) presents the gain spectrum for the 7CF with a core diameter of 4 µm and a core 

spacing of 8 µm. The FWM gain peaks are more widely separated compared to Figure 5.13(a), with 

gain peaks located at relative frequencies of ±39.1 THz, ±35.6 THz, ±31 THz, ±27 THz, ±17.8 THz, 

±13.5 THz, ±9.5 THz, and ±3.8 THz. The maximum frequency separation is observed in the SM1 
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mode at 39.1 THz and in the SM7 mode at -39.1 THz. The maximum gain occurs at frequencies of 

±17.8 THz in the SM2, SM3, SM4, and SM5 modes, where FWM interactions involve the SM2 and the 

SM5 modes as well as the SM3 and SM4 modes. Furthermore, Figure 5.13(d) indicates that the SM4 

and SM5 modes maintain dominant gain among the seven modes at the frequency around -18 

THz, even with the inclusion of Raman scattering. 

 
Figure 5.13 Comparison between the numerical and analytical gain spectra by solving 

the MM-NLSEs for 1m-long 7CF fibres: (a),(b) core diameter is 5 µm and core spacing is 

10 µm, and (c),(d) core diameter is 4 µm and core spacing is 8 µm, with Raman scattering 

neglected ((a),(c)) and included ((b),(d)). 

5.4� FWM and wavelength conversion in homemade multicore fibres 

5.4.1� Experimental setup and homemade MCFs 

An experimental investigation of four-wave mixing and wavelength conversion in multicore fibres 

was conducted using several homemade multicore fibres, designed as detailed in section 5.3.1. 

Figure 5.14(a) illustrates the experimental setup used to measure wavelength and supermode 

conversion in the MCFs, with the cross-sections of the homemade fibre presented in Figure 

5.14(b). The pump source for the MCFs was the same MOPA system employed in Chapters 3 and 
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4, operating at a wavelength of 1040 nm with 500 ps pulses at an 800 kHz repetition rate. The input 

power, polarization state, and mode composition of the pump were controlled using HWPs and 

an SLM. Amplified spontaneous emission (ASE) and background noise beside the pump 

wavelength act as probes, which can be amplified by FWM or Raman gain during propagation 

through the MCFs. The output beam was directed to a power meter, and a sample was monitored 

with a camera and an optical spectrum analyser (OSA) to measure intensity profiles and spectra, 

respectively. A tuneable bandpass filter was used to filter the output at specific wavelengths. 

Mode decomposition over the supermodes was performed for the pump, signal, and idler based 

on the far-field intensity profiles. 

 
Figure 5.14 (a) Schematic of experimental setup to measure the four-wave mixing and 

wavelength conversion in MCFs. HWP: half-wave plate; ISO: isolator; PBS: polarization 

beam splitter; SLM: spatial light modulator; PM: power meter; BPF: bandpass filter; BS: 

beam splitter; OSA: optical spectrum analyser. (b) Cross-sections of homemade MCFs. 

The homemade MCFs were fabricated from the same preform used for the DCF and TCF. 

Therefore, the MCFs have similar core-to-cladding refractive index difference. Table 5.2 provides 

details about these fibres, including the TCF, 4CF, and 7CF, which were fabricated with different 

core diameters and core spacings to explore variations in FWM as predicted by simulations. The 

core diameters and core spacings were measured by launching light from a white-light source 

(Bentham WLS100) into one end of the fibre and then imaging the other end with a microscope. 

The coupled MCFs reported here have core arrangements and relative core separations (the ratio 

between core spacing and core diameter) similar to those reported in optical transmission 

experiments[153-155]. It is worth mentioning that the TCF, 4CF, and 7CF were fabricated from a 

single fibre preform using the stack and draw technique[156], as they have cores arranged in a 

similar pattern. The fibre preform consists of three segments, each containing 3, 4, and 7 core 

rods, respectively. Consequently, each 1/3rd portion of the preform results in fibre configurations 
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with 3, 4, and 7 cores, respectively. The additional benefit to this fabrication approach is that all 

three fibre configurations are drawn from the same preform, the cores are naturally aligned and 

the fibre outside diameter will be consistent across the configurations, and hence inter-

configuration splicing can be relatively easily achieved. 

Table 5.2 Information of the homemade MCFs 

  
Core diameter 

(µm) 
Core spacing 

(µm) 
Cladding 

diameter (µm) 

DCF A1664 5.0±0.1 9.4 140.2 

TCF S01 5.0±0.15 9.4 137.9 

 S1 4.6±0.14 7.4 110.5 

4CF S5 4.8±0.04 9.3 138.6 

 S3 4.0±0.13 7.4 111.5 

7CF S7 4.7±0.05 9.4 137.9 

 S9 4.4±0.1 7.4 111 

5.4.2� Wavelength and supermode conversion in DCF 

The wavelength and supermode conversion in the DCF were measured by using a 1m-long DCF 

at a pump power of ~6 kW. Figure 5.15(a) displays the input and output spectra when the pump 

is coupled only into the SM2 mode. In this case, Raman scattering is the dominant nonlinear 

process compared to FWM, with the Raman peak (Pa at the wavelength of 1087 nm) exhibiting a 

similar mode composition to the pump, mainly in the SM2 mode, as shown by the beam profiles. 

When the pump is coupled with a combination of modes, FWM becomes more prominent than 

Raman scattering. Figure 5.15(b) presents the input and output spectra when the pump is 

coupled with ~30% SM1 mode and ~70% SM2 mode, as determined by mode decomposition of 

the pump. Two peaks appear at wavelengths of 1016 nm (Pb) and 1064 nm (Pc), resulting from 

intermodal FWM between the SM1 and SM2 modes. By inserting a bandpass filter with a 3 dB 

bandwidth of ~2 nm, the beam profiles at Pb and Pc were measured. In agreement with the 

theoretical predictions, the SM1(SM2) mode turns out to be dominant at 1016 nm (1064 nm), as 

confirmed by the measured beam profiles. This demonstrates that different supermodes are 

amplified in the signal and idler, enabling wavelength-dependent supermode conversion. It is 

worth noting that the experiments fit well with the simulations of the MM-NLSEs using the 

experimental parameters, including pulse width, peak power, fibre length, and pump mode 
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composition. Figure 5.15 (a) and (b) illustrate that the relative strength between intermodal FWM 

and Raman scattering can be adjusted by controlling the mode composition of the pump. 

 
Figure 5.15 Raman and FWM processes measured in the DCF. (a) Raman scattering 

when pumping with a single supermode: the input and output spectra of a 1m-long DCF 

with the associated beam profiles. (b) FWM between two supermodes: the input and 

output spectra of a 1m-long DCF coupled with a combination of modes, in the 

comparison with the simulation. The below intensity profiles are the output of the overall 

spectrum and at two FWM peaks (Pb and Pc). 

5.4.3� Wavelength and supermode conversion in TCF 

The wavelength and supermode conversion in the TCF were investigated using a 3m-long TCF at 

a peak power of ~2 kW. The TCF used in the experiments is cut from S1 (see Table 5.2) and 

features a core spacing of ~8 µm. Figure 5.16 presents various output spectra and filtered beam 

profiles under different pump coupling conditions. In these experiments, the input beam is 

selectively coupled into one of the three cores of the TCF to excite a combination of supermodes 

in the pump. By moving or bending the fibre at different positions, the pump coupling conditions 

could be adjusted. In Figure 5.16(a), FWM peaks are observed at wavelengths of 1004 nm and 

1077 nm, along with their cascaded peaks at 944 nm, 972 nm, 1119 nm, and 1158 nm. The beam 

profiles measured at 1004 nm and 1077 nm correspond to the SM1 mode and the SM2 mode of the 

TCF, respectively (see Figure 3.23). The frequency difference between the pump and the 

signal/idler is ±10 THz, which closely aligns with the estimated ±9 THz frequency separation for 

FWM between the SM1 and SM2 modes in Figure 5.11(c). The slight discrepancy between the 

experimental and simulation can be attributed to changes in the phase-matching conditions due 

to variations in fibre geometry or coiling of the fibre. 
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Figure 5.16 FWM and wavelength conversion in the TCF under different pump coupling 

conditions, along with the output beam profiles after a tuneable bandpass filter. (a) 

Output spectrum from a 3m-long TCF at a peak power of 2.25 kW, with two FWM peaks 

(filtered out using the BPF) centred at wavelengths of 1004 nm and 1077 nm. (b) Output 

spectrum from the same TCF at a peak power of 2 kW, with two FWM peaks centred at 

wavelengths of 997 nm and 1087 nm. (c) Output spectrum from the same TCF with four 

FWM peaks at wavelengths of 999 nm, 1003 nm, 1077 nm, and 1087 nm. 

Figure 5.16(b) displays the results of another measurement where the pump mode composition 

was altered. FWM peaks are observed at wavelengths of 997 nm and 1087 nm, along with their 

cascaded peaks at 957 nm and 1138 nm. The beam profiles measured at 997 nm and 1077 nm 

correspond to the SM2 mode and the SM3 mode of the TCF, respectively. The frequency separation 

from the pump frequency is ±12.5 THz, closely aligning with the estimated ±12 THz for FWM 

between the SM2 and SM3 modes in Figure 5.11(c). 

Subsequently, further adjustment of the pump coupling conditions demonstrates wavelength-

dependent conversion to different supermodes from the same pump in the TCF, as shown in 

Figure 5.16(c). The SM1 mode emerges at the wavelength of 1003 nm, the SM2 mode is observed 

at 1077 nm and 999 nm, and the SM3 mode appears at 1087 nm, as indicated by the filtered beam 

profiles. However, FWM between the SM1 and SM3 modes, which is estimated to have a relative 

frequency of ±22.5 THz, is not observed in the experiments. This could be attributed to ineffective 

pump coupling over these two modes. 

5.4.4� Wavelength conversion in 4-core and 7-core fibres 

With MCFs featuring more cores, the nonlinearity decreases due to increasing mode field 

effective areas. Consequently, longer fibres are used to measure wavelength and supermode 

conversion for the 4CF and 7CF. Figure 5.17 presents the measurements obtained using 4m- and 

10m-long 4CFs with a core spacing of ~8 µm (cut from S3 in Table 5.2). Figure 5.17(a) summarizes 

the output spectra, displaying several FWM peaks under different pump coupling conditions. 
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Similar to the TCF experiments, the pump coupling conditions are modified by selectively 

coupling the input beam into one of the four cores of the 4CF or by manipulating the fibre’s 

position or bending it. The observed FWM peaks are at wavelengths of 953 nm and 1145 nm (±26.3 

THz frequency separation from the pump), 956 nm and 1139 nm (±25.2 THz), 996 nm and 1088 

nm (±12.7 THz), 1016 nm and 1065 nm (±6.7 THz), and 985 nm and 1102 nm (±16.1 THz). 

Specifically, Figure 5.17(b) shows the FWM peaks observed at wavelengths of 1016 nm and 1065 

nm, along with their cascaded peaks at 995 nm and 1089 nm. The beam profiles measured at 

1016 nm and 1065 nm resemble the SM3 mode and the SM4 mode of the 4CF, respectively, as 

inferred from the supermode distribution in Figure 5.8. The corresponding frequency separation 

from the pump, ±6.7 THz, closely matches the simulation result of ±6.1 THz for FWM between the 

SM3 and SM4 modes, as shown in Figure 5.12(c). Followingly, by adjusting the pump coupling 

condition, FWM peaks at 953 nm and 1145 nm are measured, with the beam profile at 1145 nm 

shown in Figure 5.17(c). The filtered output at 1145 nm resembles the SM4 mode, aligning with the 

simulation in Figure 5.12(c), which indicates the largest frequency separation in the FWM process 

involving the SM1 mode at a shorter wavelength and the SM4 mode at a longer wavelength. The 

beam profile at 953 nm is not provided due to the limited tuning range of the BPF. 

 
Figure 5.17 FWM and wavelength conversion in the 4CF with core spacing of ~8 µm. (a) 

Output spectra from a 4m-long and a 10m-long 4CF under different pump coupling 

conditions. (b) Output spectrum from the 4CF at a peak power of 1.75 kW, with two FWM 

peaks centred at wavelengths of 1016 nm and 1064 nm and the associated beam 

profiles after a tuneable bandpass filter. (c) Output spectrum from the 4CF and the 

filtered output beam profiles at the peak around 1145 nm. 

In comparison, Figure 5.18 illustrates measurements conducted using a 5m-long 4CF with a core 

spacing of ~10 µm, cut from S5 as listed in Table 5.2. By adjusting the pump coupling conditions, 

several FWM peaks are observed at wavelengths of 995 nm, 1000 nm, 1012nm, and 1070 nm, 

corresponding to frequency separations from the pump by -13 THz, -11.5 THz, and ±8 THz. These 

values closely align with simulations depicted in Figure 5.12(a). The FWM peaks at relative 
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frequencies of ±17 THz were not observed during the experiments, which could be attributed to 

challenges in effectively exciting specific combinations of supermode. Specifically, some 

supermodes may not have been sufficiently excited when coupling the pump light into individual 

fibre cores. Additionally, linear mode coupling, induced by fibre macro-bending, may have further 

influenced the supermode excitation process. However, due to the challenges in effectively 

exciting supermodes through pump coupling into individual fibre cores, FWM peaks with relative 

frequencies of ±17 THz are not observed during the experiments. 

 
Figure 5.18 FWM and wavelength conversion in a 5m-long 4CF with a core spacing of 

~10 µm under different pump coupling conditions at a peak power of 1.25 kW. 

 
Figure 5.19 FWM and wavelength conversion in a 7m-long 7CF with a core spacing of 

~10 µm under different pump coupling conditions at a peak power of 2.5 kW. 

Followingly, FWM and wavelength conversion in 7CFs are investigated using 7m-long 7CFs with 

core spacings of ~10 µm (cut from S7 in Table 5.2) and ~8 µm (cut from S9 in Table 5.2). Figure 

5.19 shows two results obtained under different pump coupling conditions at a peak power of 2.5 

kW. FWM peaks are observed at wavelengths of 1009 nm, 1024 nm, 1057 nm, and 1073 nm, 

corresponding to frequency separations from the pump by ±4.6 THz and ±8.9 THz. Additionally, a 

Raman peak at 1088 nm and a peak at 996 nm generated by FWM between the pump and the 

Raman peak are also observed. It is worth noting that these experimental results are consistent 

with the simulations shown in Figure 5.13(a) and (b), where dominant FWM gains occur at relative 

frequencies of ±4.7 THz and ±7.6 THz for each supermode. In addition, the random excitation of 

supermodes when light is coupled into one of the seven cores may result in insufficient excitation 
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of some supermodes, thereby hindering clear observation of FWM results. Achieving precise 

control over supermode excitation for the pump is crucial to reliably obtain desired FWM peaks. 

Figure 5.20 demonstrates the output spectra from a 7CF with a core spacing of ~8 µm under 

various pump coupling conditions at a peak power of 4.5 kW. The pump is coupled with different 

mode compositions, as illustrated by the FF beam profiles for the overall spectra. However, 

throughout all instances, the dominant features are the Raman peak at 1089 nm and the peak at 

995 nm resulting from FWM between the Raman peak and the pump. The filtered FF and NF beam 

profiles around 1089 nm indicate changes in mode composition at the Raman peak, aligning 

closely with one of the individual supermodes (as compared with the supermode distributions in 

Figure 5.9), denoted by “SMX” next to the beam profiles in Figure 5.20. This observation suggests 

that in these measurements, the Raman gain exceeds the FWM gain. Notably, FWM peaks at 

other wavelengths or frequencies are not observed due to low FWM gains resulting from 

insufficient excitation of the corresponding supermodes in the pump. Additionally, advanced 

coupling techniques can be employed to improve efficient coupling into specific supermode 

combinations. For instance, a space-division multiplexer provided by Cailabs can offer high 

extinction-ratio (>20 dB) coupling into individual spatial modes[157]. 

 
Figure 5.20 Wavelength and supermode conversion in the 7CF with a core spacing of 

~8 µm under different pump coupling conditions at a peak power of 4.5 kW. Raman 

scattering and its FWM with the pump are dominant in each case, with below beam 

profiles showing the overall output and the filtered output around the Raman peak. 
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5.5� Conclusions 

In this chapter, four-wave mixing and wavelength conversion in MCFs are investigated. Starting 

with a review of the mechanisms governing FWM in optical fibres, the phase-matching conditions 

and theoretical calculations are introduced to estimate key parameters such as FWM gain peaks 

and bandwidth, considering the diverse dispersion characteristics inherent to different fibres. An 

important focus of this study is the exploration of how the involvement of multiple modes and 

frequencies influences the dynamics of FWM processes. Both theoretical analyses and 

numerical simulations confirm that the FWM gain spectra can be significantly modified by the 

inclusion of additional modes and frequencies. By adjusting the pump mode composition, pump 

power, Kerr coefficients, and dispersion parameters, the FWM gain spectrum can be tailored in 

terms of gain peak frequency, maximum gain, and gain distributions across various modes. In 

addition, the impact of the Raman effect on FWM processes is explored, particularly when the 

Raman gain spectrum overlaps with the FWM spectrum. 

Followingly, the theoretical estimation of FWM gain peaks in several MCFs is demonstrated by 

calculating the phase-matching conditions between supermodes in different fibre designs, 

including DCF, TCF, 4CF, and 7CF. Simulations of the FWM gain spectra in these MCFs are 

presented, along with comparisons when the Raman scattering effect is considered. Finally, 

these MCFs are fabricated with diverse core diameters and core spacings, enabling experimental 

investigation of FWM and wavelength conversion using a pump wavelength at 1040 nm. Table 5.3 

summarizes the main results achieved, with comparisons between simulation predictions and 

experimental results across different fibres. Generally, the experiments are consistent with 

simulations in terms of the relative frequencies of FWM peaks and the corresponding involved 

modes. These outcomes indicate the feasibility of achieving specific wavelength conversions or 

wavelength-dependent mode conversions through tailored fibre designs. Indeed, control over 

phase-matching conditions among supermodes can be achieved by adjusting parameters such 

as the number of cores, core diameters, and core spacings in these fibres. 

Table 5.3 Summary of the FWM results for MCFs 

Fibre  
Relative frequency (THz) and 
the corresponding modes for 

FWM peaks 

With a pump wavelength of 
1040 nm 

  Simulation Experiment 

DCF Core spacing=10µm ±6.5 (SM1 and SM2) ±6.5 (SM1 and SM2) 

TCF core spacing=8µm 
±9 (SM1 and SM2), 
±12 (SM2 and SM3), 

±10 (SM1 and SM2), 
±12.5 (SM2 and SM3), 
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±22.5 (SM1 and SM3)  

4CF Core spacing=10µm 
±7 (SM2 and SM4), 
±13 (SM1 and SM3), 
±17 (SM1 and SM4) 

±8, 
-11.5, 
-13 

 Core spacing=8µm 

±6.1 (SM3 and SM4), 
±16 (SM2 and SM4), 
±24.7 (SM1 and SM3), 
±31 (SM1 and SM4) 

±6.7 (SM3 and SM4), 
±12.7, 
±16.1, 
±25.2, ±26.3 

7CF Core spacing=10µm 

±4.7 (SM4 and SM7, SM5 and 
SM7), 
±7.6 (SM2 and SM5, SM3 and 
SM4), 
±14, ±17, 
±20.5 (SM1 and SM6), 
±22.8 (SM1 and SM7) 

±4.6, 
±8.9, 
 
 
 

 Core spacing=8µm 

±3.8 (SM5 and SM6), 
±9.6, ±13.5, 
±17.8 (SM2 and SM5, SM3 and 
SM4), 
±27, 
±30.9(SM1 and SM4, SM1 and 
SM5), 
±35.5 (SM1 and SM6), 
±39.1 (SM1 and SM7) 

 

Notes: The results reported in this chapter have been selectively published (see LoP3 and LoP10 

in the List of Publications). These two paper are conference papers where we reported the 

wavelength conversion in coupled multicore fibres. The main results of this chapter have not 

been published yet, and we are working on the manuscript. For the content in this chapter, the 

experiments, simulations, development of derivations and code were my work; the 3-core, 4-

core, and 7-core fibres were fabricated by Ian Davidson from the Optoelectronics Research 

Centre; the dual-core fibres used in the experiments were fabricated by Jayanta Sahu from the 

Optoelectronics Research Centre; this project was supervised by Massimiliano Guasoni and 

David J. Richardson from the Optoelectronics Research Centre. 
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Chapter 6�Reconfigurable spatial beam shaping from a 

multicore fibre amplifier 

6.1� Introduction 

Structured light[47], defined by spatially controlled distributions of amplitude, phase, and 

polarization, has become an attractive tool in a wide range of applications, including optical 

communications[158], optical trapping[159], environmental optics[160], and super-resolution 

microscopy[161, 162]. This is due to the additional degrees of freedom it offers in shaping the 

polarization state, phase, and amplitude. In particular, higher-order Poincaré sphere (HOPS) 

beams [163] with spatially variable polarization and orbital angular momentum (OAM) states are 

of great interest [47, 164]. The two poles of the HOPS represent the orthogonally circularly 

polarized vortex beams carrying OAM with opposite topological charges, while the other points 

on the HOPS can be represented as coherent superpositions of these, including cylindrical vector 

(CV) beams with spatially varying polarization states (e.g., radial and azimuthal polarization). 

Various methods have been developed to generate HOPS beams by incorporating appropriate 

spatial mode shapers either inside or outside of a laser cavity [165-168]. For instance, CV beams 

can be generated by using inhomogeneous birefringent optics[165] or by the controllable 

superposition of two orthogonally polarized beams[168]. OAM beams can usually be formed by 

conversion from fundamental Gaussian beams using an external beam-shaping element, such 

as a q-plate (QP)[166], geometric phase plate[167], meta surface device[169], or SLM[49]. 

Generating such beams directly from a laser cavity [170-173] allows achieving higher power 

scaling and efficiency. A few approaches have been implemented to generate HOPS beams with 

flexible mode selection and high mode purity in solid-state lasers; however, the power scalability 

is limited by the power-handling performance of the optical mode-selective elements used within 

the cavity[49]. Alternatively, adaptive spatial beam-shaping techniques have been demonstrated 

in multimode and multicore fibres [51, 52] based on the MOPA configuration. The adaptive beam-

shaping elements are placed prior to the final power amplifier, allowing the amplified beam to be 

shaped into the desired beam intensity profile without exposing the beam-shaping elements to 

high power levels. In addition, the coherent combination of multiple parallel fibre lasers has been 

proposed as a promising way to achieve reconfigurable structured beams with high output 

powers and has been investigated both theoretically and experimentally[174-176]. Coherent 

beam combination (CBC) from an MCF amplifier has been demonstrated as an effective way to 

generate the structured beams[40, 46, 50, 177]. With all uncoupled cores embedded in a single 

fibre, the MCF amplifier offers many advantages with respect to an array of separate fibre 
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amplifiers, e.g., the use of a common pump beam for all cores and reduced phase drift between 

cores due to the shared spatial/thermal environment, leading to more compact and stable 

systems. Nevertheless, the behaviour in the pulsed regime has not yet been properly 

investigated, where the coherence length of the light is much smaller. 

In this chapter, spatial beam shaping is explored in a linear regime. A 6-core Yb-doped MCF is 

fabricated and employed as the gain medium in the final power amplifier stage in a picosecond 

pulsed MOPA system. A flexible beam shaper based on a reflective phase-only SLM is employed 

to adaptively adjust the wavefront and polarization states of the multiple beamlets incident on 

the individual MCF cores and to achieve the desired complex beam amplitude in the far-field of 

the MCF output by coherently combining the amplified multiple beamlets. The generation of ps-

pulsed LP mode-like beams and HOPS beams (i.e., CV and OAM beams) are experimentally 

demonstrated with a high mode purity and a high peak power of ~10-14 kW. 

6.2� Principle and system design 

6.2.1� Coherent beam combination of multicore fibres 

An uncoupled N-core MCF behaves as a bundle of single-core fibres where the cores are 

sufficiently separated to ensure negligible individual mode overlap, and the total electric field at 

the fibre output can be seen as the sum of the independent beams (under the single-mode 

approximation): 

 𝐸(𝑥, 𝑦, 𝑧) =∑ 𝒂𝑗
𝑁

𝑗=1
𝑒𝑥𝑝 [−

(𝑥 − 𝑥𝑗)
2
+ (𝑦 − 𝑦𝑗)

2

𝑤0
2 ] (6.2.1) 

where 𝒂𝑗 = 𝑎𝑥𝑗𝑒𝑥𝑝(𝑖𝜑𝑥𝑗)𝒙̂ + 𝑎𝑦𝑗𝑒𝑥𝑝(𝑖𝜑𝑦𝑗)𝒚̂  is the complex amplitude of the fundamental 

Gaussian beam of the j-th core, in which 𝒙̂  and 𝒚̂  are unit vectors, 𝑎𝑥(𝑦)𝑗  and 𝜑𝑥(𝑦)𝑗  are the 

amplitude and phase of the x(y) component in the j-th core, respectively. 𝑥𝑗 and 𝑦𝑗  are the centre 

position of the j-th core, and 𝑤0  is the effective mode field radius of the individual cores. The 

electric field in the far-field of this MCF is determined by the interference between the individual 

beamlets. By properly tailoring the amplitude, phase and polarization of each beamlet from the 

MCF output, beams with various spatial modes can be shaped in the far-field in a tiled-aperture 

configuration. For instance, different scalar LP mode beams can be generated when the specific 

phase relationship is applied to each beamlet, and the most general case is a Gaussian-shape 

(LP01 mode) beam that arises from the in-phase coherent combination of all beamlets, as is 

shown in Figure 6.1(a). HOPS beams can be synthesized by controlling the relative polarization 

state and the relative phase of each beamlet. For example, an OAM beam (Figure 6.1(c)) with the 

topological charge of ℓ can be formed by the superposition of N beamlets when the relative phase 
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of the j-th beamlet is set to be 2𝜋ℓ(1 − 𝑗)/𝑁 under the same polarization state, and this beam has 

a helical phase structure (phase term 𝑒𝑥𝑝(𝑖ℓ𝜑), where 𝜑 is the azimuthal angle). In addition, a CV 

mode beam (Figure 6.1(d)) can be generated in the far-field when each beamlet has a linear 

polarization state which rotates by an angle of 2𝜋(1 − 𝑗)/𝑁 from a reference orientation. 

 
Figure 6.1 CBC from a 6-core fibre. The near-field phase and polarization distributions 

(a/b/c/d-1) with the corresponding combined intensity distributions (a/b/c/d-2) and 

phase/polarization distributions (a/b/c/d-3) in the far-field. 

6.2.2� Yb-doped 6-core fibre 

 
Figure 6.2 (a) Microscopic image of fibre cross-section. (b) Refractive index profile of the 

fabricated preform. (c) ASE spectrum of the MCF. 

A cross-sectional microscope image of the Yb-doped 6-core MCF used in this work is shown in 

Figure 6.2(a). Starting from a flat-topped step-index Yb-doped fibre preform co-doped with 

aluminium (Al) and phosphorus (P), the MCF has been fabricated in-house by the stack-and-draw 

technique. By adding co-dopants such as Al and P, the absorption and emission properties of the 
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Yb ions can be efficiently controlled [178, 179]. The refractive index profile was measured with a 

preform analyser, and the refractive index difference between the core and the cladding was 

measured to be ~0.002, as shown in Figure 6.2(b). The MCF consists of six step-index circular 

cores in a hexagonal arrangement, and the core-to-core distance is ~50 µm. Each core has a 

diameter of 12.5 µm with a numerical aperture (NA) of ~0.076; the outer diameter of the fibre is 

~220 µm. A low-index acrylate polymer coating was used to provide a double-clad fibre structure. 

The fibre absorption coefficient was measured to be ~19.7 dB/m at 975 nm, and the ASE spectrum 

was measured. The ASE spectrum of a 1.3m-long Yb-MCF had an emission peak around 1027 nm 

with a 3 dB bandwidth of ~29 nm, as shown in Figure 6.2(c). 

6.2.3� Experimental setup 

A schematic of the experimental setup is depicted in Figure 6.3. A gain-switched laser diode 

operating at a wavelength of 1035 nm and emitting ~90 ps pulses at a repetition rate of 2.95 MHz, 

is used as the seed, which is pre-amplified to an average power of ~600 mW. The pre-amplified 

Gaussian-shaped beam is then split into six beamlets, which are coupled into the individual cores 

of the Yb-MCF via a beam-shaper consisting of a reflective SLM (Holoeye PLUTO-2-NIR-149) and 

some polarization diversity optics, which enables independent control of the amplitude, phase, 

and polarization state of the seed light launched into the individual cores of the MCF. The input 

beam is collimated by a lens with a focal length of 40 mm and then is divided into two beams with 

orthogonal polarization states using a PBS. A half-wave plate placed in front of the PBS is used to 

control the relative power ratio between the two orthogonally linearly polarized beams, and a 

second half-wave plate is used to align the polarization orientations of the two beams to the SLM. 

The area of the SLM is divided into two halves to display the phase masks, which split each input 

beam into six independent Gaussian-shaped beamlets with controlled phase and amplitude. The 

phase mask represents a multiplex of six independent blazed gratings with the grating period 

determined by the relative position of the MCF cores. Another half-wave plate and a PBS are used 

to recombine these orthogonally polarized beams to form six individual Gaussian-shaped 

beamlets with user-defined polarization, amplitude, and phase in the Fourier plane of a focusing 

lens. 

The shaped input beamlets are first demagnified by a factor of 2 with a pair of lenses (focal length 

of 1 m and 500 mm), and then passed through an in-house-made free-space polarization-

independent isolator with a clear aperture of 8 mm, which prevents any backward-propagating 

light from damaging the SLM. The isolator consists of two birefringent beam displacers, a Faraday 

rotator, and a half-wave plate, which was carefully aligned to have a negligible displacement for 

beams with two orthogonal polarization components at the isolator output, thus ensuring a very 

low polarization-dependent coupling loss to the MCF. A lens with a focal length of 19 mm is used 
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to couple the six individual beamlets into the individual cores of the Yb-MCF. This fibre is ~1.3 m 

long and was coiled with a diameter of ~7 cm on an aluminium cylinder to induce high excess 

losses for the higher-order modes so that each core could effectively act as a single-mode fibre 

(V number=2.89), ensuring that the output beam of each core maintains a Gaussian shape. Both 

ends of the Yb-MCF were spliced to silica coreless fibre endcaps with a length of ~1.4 mm and a 

diameter of ~400 µm to suppress potential parasitic lasing. The input end facet was 

perpendicularly cleaved for high-quality beam excitation, while the output end facet was polished 

with an angle of ~8° to suppress unwanted back-reflection. The multimode pump beam 

(wavelength=975 nm) was free space coupled into the MCF through a dichroic mirror. The 

insertion loss of the beam-shaper and of the isolator was characterized by means of a passive 

seven-core MCF having cores arranged in a hexagonal pattern with the same core-to-core 

distance (50 µm). The passive MCF features an extra core in the centre, and each core has a mode 

field diameter of ~10 µm with an NA of ~0.12, which is slightly different from the active fibre. 

Nevertheless, it can be used to assess the insertion loss of the devices. The total insertion loss of 

the beam-shaper and isolator (measured from the input PM-SMF to the output facet of the 

passive MCF) was measured to be ~7.6-11.6 dB with some variation between the cores, which is 

mainly due to imperfect coupling conditions. It is worth mentioning that the beam-shaper was 

constructed based on a specially designed compact architecture with most of the optical 

components glued to the mechanics in a Mach-Zehnder interferometer configuration. The 

coupling efficiency of the individual beamlets into the MCF is quite stable over periods of several 

hours. 

 
Figure 6.3 Schematic of the experimental setup. AMP: amplifier; PM: polarization-

maintaining; SMF: single-mode fibre; PBS: polarization beam splitter; λ/2: half-wave 

plate; ISO: isolator; DM: dichroic mirror; MLA: microlens array; BS: beam splitter; CCD: 

charge-coupled device; QWP: quarter-wave plate; QP: q-plate. 

The output beam from the Yb-MCF amplifier was first magnified by a factor of 10 to achieve a 

separation of ~500 µm between the neighbouring beamlets to match the lens pitch of the 

microlens array (MLA). The MLA has a hexagonal arrangement with a focal length of 50 mm, and 
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it collimates the individual beamlets with a beam spot diameter of ~430 µm. Note that the use of 

MLA can increase the near-field filling factor of the output beamlets; hence, this significantly 

improves the beam combination efficiency in a tiled-aperture configuration [41, 50]. A spherical 

lens with a focal length of 200 mm was placed behind the MLA to achieve the CBC, thereby 

enabling the generation of different spatial beams in the far-field. Afterward, the coherently 

combined beam is collimated and magnified using a pair of lenses, with a fraction (~2%) imaged 

on a CCD camera, and a replica beam from the beam splitter passed through a mode correlation 

filter in order to characterize the quality of the combined beam. A q-plate in combination with two 

quarter-wave plates and a linear polarizer were used to form the correlation filter for the HOPS 

beam generation [46, 172]. When the collimated combined beam passes through the correlation 

filter, the on-axis intensity in the far-field is proportional to the power of the beam within the target 

mode. The resulting correlation signal is detected by coupling the light into an SMF and measuring 

the corresponding coupled power. This information is fed back to the computer, and an iterative 

optimization process (conjugate gradient algorithm [180]) is used to adjust the complex 

amplitude and polarization of the seed light injected into the individual cores of the MCF via the 

beam shaper (see Ref. [46] for a more detailed description). The bandwidth of the feedback loop 

is 4 Hz, determined by the time required to allow the SLM to update the phase mask, to measure 

the correlation signal, and to perform the associated software-based data processing. 

It is worth mentioning that the coherently combined beams were stable and repeatable in the 

laboratory environment. The system typically took ~10 min to achieve the target beams in the 

experiments once the correlation filter is properly set and well aligned. Once the optimization 

process has completed, the generated beam could be well-preserved for at least 10 min with a 

fixed phase mask on the SLM. However, a certain degree of optical and mechanical drift over time 

was observed, requiring manual adjustments of specific mounts to optimal optical alignment 

every few tens of minutes. 

6.2.4� Characterization of the MCF amplifier 

In a preliminary experiment, the Yb-MCF amplifier was first characterized without implementing 

any adaptive beam shaping. Figure 6.4(a) shows the measured near-field beam intensity profile 

of the MCF output with a 10x magnification. The discrepancy in the amplification of each core 

results from the nonuniform pump absorption and unavoidable seed power variations, as 

mentioned in the previous section. The differential gain among individual cores is between 0.84 

dB and 1.46 dB at different pump powers when sequentially launching light into each core. Figure 

6.4(b) displays the average output power of the MCF amplifier (measured before the MLA) as a 

function of the launched pump power. A maximum output power of ~21.6 W was obtained with a 

launched pump power of ~35.1 W, corresponding to a slope efficiency of ~71.8% and a gain of 
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~25.6 dB. The measured spectra of the seed and the output beam at an output power of ~12.3 W 

(corresponding to a pump power of ~23.3 W) are provided in Figure 6.4(c), with a resolution of 0.5 

nm and 0.02 nm, respectively. The output signal has an optical signal to noise ratio (OSNR) of ~26 

dB. The 3 dB bandwidth was measured to be ~0.14 nm, and it contains ~70% of the total pulse 

energy, which is nearly equivalent to that of the seed laser. The FWHM pulse duration of the seed 

laser was measured to be ~92 ps, and the temporal shape was preserved in the output laser 

beam, as shown in Figure 6.4(d). It is worth noting that the coherent beam combination 

experiments were conducted at varying MCF output powers by gradually increasing the pump 

power. However, the system exhibited relatively high instability when the MCF output power 

exceeded ~12.3 W. Consequently, the controlled generation of different spatial modes was 

conducted at the MCF output power of ~12.3 W. 

 
Figure 6.4 Yb-MCF amplifier characterization. (a) Measured near-field intensity 

distribution of the MCF output. (b) Average output power versus the launched pump 

power. (c) Measured spectra of the seed and the amplified output at an average output 

power of ~12.3 W, with a resolution of 0.5 nm (upper) and 0.02 nm (lower). (d) Temporal 

pulse shapes of the seed and the amplified output at ~12.3 W. 
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6.3� Controlled generation of linear-polarized modes 

6.3.1� Polarization and phase control 

When the phase control is not in place, the output beam of the MCF amplifier exhibits severe 

distortion in the far-field, as shown in Figure 6.5(a). A linear polarizer in combination with an SMF 

forms the spatial mode correlation filter that provides the correlation signal for the merit function. 

This finally results in a linearly polarized Gaussian-shaped beam within the main lobe via in-phase 

CBC, as illustrated in Figure 6.5(b). 

 
Figure 6.5 Generation of linearly polarized Gaussian beams. (a) Far-field beam profiles 

without beam shaping. (b) Simulated far-field intensity distribution when all cores are 

in-phase. (c), (d) Experimentally measured far-field Gaussian beam profiles at the peak 

power of ~8.14 kW with orthogonal polarization states. 

Figure 6.5(c) and (d) demonstrate the corresponding measured beam intensity profiles with a 

seed signal of ~60 mW and a pump power of ~23.3 W. Figure 6.5(c-1), (c-2) and (d-1), (d-2) show 

the intensity distributions when the output beams pass through a rotatable linear polarizer, which 

clearly indicates the linear polarization state. The PER was measured to be ~10 dB. The 2D 

correlation coefficients [74] of the measured intensity profiles with respect to the theoretical 

intensity distributions (within the area marked with dashed white lines) are ~98.4% and ~98.1% 

in Figure 6.5(c) and (d), respectively. The measured beam combining efficiency was ~37.4 % 

(defined as the ratio of the power contained within the mode region marked with dashed white 

lines with respect to the total beam power), whereas the corresponding theoretical estimation is 

~49%. The discrepancy results from the optical aberrations induced by the slight misalignment 

of the composite elements in the beam-combining system [46]. The average output power behind 

the wedge (see Figure 6.3) was ~5.9 W, resulting in an average output power of ~2.2 W, with a peak 

power of ~8.14 kW for the combined beams (marked region). The power loss from the MCF output 
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to the wedge is mainly due to reflections from the uncoated MLA and wedge as well as the slight 

mismatch between the MCF output and the MLA. 

6.3.2� Generation of the LP modes 

The experimental Gaussian-shape beam profiles highly resemble the simulations, indicating that 

the complex amplitude and polarization of the individual beamlets can be optimized as expected. 

When a phase-plate is inserted in the correlation filter, different LP mode-like beams can be 

generated in the far-field. When three adjacent beamlets are in-phase and have a π phase 

difference with the other three beamlets, a LP11 mode-like beam can be obtained, as illustrated 

in Figure 6.6(a)-(c). In the case of LP21 mode generation, only four MCF cores are seeded with light 

and with specific relative phases, as shown in Figure 6.6(d). Consequently, the output beam 

profile in the far-field resembles the LP21 mode, as indicated by simulation and experimental 

results presented in Figure 6.6(e) and (f), respectively. The linear polarization of the generated LP 

modes was confirmed with a PER measurement of ~10 dB. The 2D correlation coefficients of the 

measured beam profiles in comparison with the simulated profiles are ~97.3% and ~92.0% for 

the LP11 and LP21 modes, respectively. The lower correlation of the LP21 mode is most likely due to 

unwanted ASE from the two unemployed cores of the MCF amplifier, which could distort the 

combined beams. The beam combining efficiencies for the LP11 and LP21 modes, defined as the 

ratio of the power contained within the squared region with respect to the total beam power, were 

~42% and ~48%, respectively, compared to the theoretical values of ~59% and ~75%, 

respectively. 

 
Figure 6.6 Generation of LP mode-like beams. (a) Relative phase distribution among the 

beamlets for the generation of LP11 mode, and the corresponding simulated far-field 

intensity distribution in (b). (d) Phase distribution among the beamlets for the generation 

of LP21 mode (the dashed circle indicating unused cores), and the corresponding 

simulated far-field intensity distribution in (e). (c), (f) Experimentally measured output 

beam profiles in the far-field. 
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6.4� Controlled generation of higher-order Poincaré sphere modes 

The generation of HOPS beams was investigated with correlation filters formed by a pair of QWPs 

and a QP (charge q=1/2, 1), with specific orientations in combination with an SMF. The correlation 

filter is used to convert HOPS beams to a linearly polarized Gaussian beam, with an input-to-

output relation described by [163, 172]: 

 𝐸OUT = 𝑈QWP(𝜃𝛽)𝑈QP(𝜃𝛾, ℓ)𝐸HOPS(𝜃𝛾, 𝜃𝛽 , ℓ) = cos 2𝜃𝛽|H⟩ + sin 2𝜃𝛽|𝑉⟩ (6.4.1) 

 
𝐸HOPS = cos (

𝜋

4
+ 𝜃𝛽) exp[−𝑖(𝜃𝛾 − 𝜃𝛽)] exp(−𝑖|ℓ|𝜑|𝐿⟩)

+ sin (
𝜋

4
+ 𝜃𝛽) exp[𝑖(𝜃𝛾 − 𝜃𝛽)] exp(𝑖|ℓ|𝜑|𝑅⟩) 

(6.4.2) 

where the circular polarization basis is applied and a global phase factor is discarded; EOUT is the 

output state of the correlation filter; EHOPS denotes the polarization state of the HOPS beam; UQWP 

and UQP represent the Jones matrix of QWP and QP[172], respectively; θβ and θγ are the rotation 

angles of the QWP2 (see Figure 6.3) and of the q-plate with respect to the orientation of the linear 

polarizer, respectively; and ℓ  is the topological charge ( |ℓ| = 2𝑞 ) with |𝐿⟩ , |𝑅⟩ , |𝐻⟩ , and |𝑉⟩ 

representing the left and right circular, horizontal and vertical polarization states. θβ and θγ 

determine the position of the generated target beam on the Poincaré sphere, and any HOPS beam 

can be obtained by suitably adjusting the rotation of the QWP2 and the q-plate. 

6.4.1� Generation of cylindrical vector modes 

Cylindrical vector beams can be obtained when the fast axis of the QWP2 is aligned with the 

horizontal axis (θβ=0°), including the radially polarized beam (θγ=0°) and the azimuthally polarized 

beam (θγ=90°). Figure 6.7(a) shows the calculated intensity distribution of coherently combined 

beams when the polarization state of each core is aligned with radial orientation (blue arrows) 

and azimuthal orientation (yellow arrows), as illustrated in Figure 6.7(b), resulting in a radially 

polarized beam and an azimuthally polarized beam, respectively. Figure 6.7(c) and (d) show the 

measured beam intensity profiles for the coherently combined radially polarized beam and 

azimuthally polarized beam, respectively, exhibiting a pronounced doughnut shape. The 

measured average output power within the white circle was ~3.1 W and ~2.7 W (measured with 

an iris diaphragm at a total output power of ~5.9 W for all lobes), corresponding to a beam 

combining efficiency of ~51.9% and ~46% and a peak power of ~11.4 kW and ~10 kW for the radial 

and azimuthal polarization, respectively. The theoretical combining efficiency of the CV beam is 

~60%; note this is higher than that of the fundamental Gaussian beam, which can be attributed 

to a greater intensity overlap between the combined CV beams and the input beamlet array. 
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The polarization states of the combined beams were confirmed by passing the beams through a 

rotatable linear polarizer. As expected (see Figure 6.7), in the case of the radially (azimuthally) 

polarized beam, a two-lobe beam pattern parallel (orthogonal) to the transmission axis of the 

rotatable linear polarizer was systematically observed. The 2D correlation coefficients of the 

measured intensity profiles with respect to the theoretical intensity distribution (within the area 

of the doughnut-shaped beam) were ~96.1% and ~96.8% for the radially and azimuthally 

polarized beams, respectively. The slight beam distortion of the doughnut-shaped intensity 

profiles is most likely due to the nonuniform power distribution of the individual beamlets. The 

generated CV beams have high mode purity, and the mode extinction ratio was measured to be 

~14.1 dB by the vector mode decomposition approach described in Refs. [181, 182]. 

 
Figure 6.7 Generation of CV beams. (a) Simulated far-field intensity distribution when 

the polarization orientation of the six beamlets are set as per the arrow directions in (b). 

(c) Experimentally measured radially polarized output beam profile with a peak power of 

~11.4 kW, and the two-lobe patterns when the beam is passed through a linear polarizer 

at different orientations (see white arrows in c-1 to c-4). (d) Experimentally measured 

azimuthally polarized beam profile (at ~10 kW) and the two-lobe patterns after passing 

through the linear polarizer (d-1 to d-4). 

6.4.2� Generation of OAM beams 

Subsequently, the OAM beams (|ℓ|=1,2) with opposite handedness of helical phase front were 

successfully generated. Figure 6.8(a) and (d) show the generated first-order OAM beams (|ℓ|=1). 

According to Eqs.(6.4.1) and (6.4.2), a left circularly polarized OAM beam with left handedness 

can be obtained when the fast axis of the QWP2 (see Figure 6.3) is rotated at -45° with respect to 

the horizontal axis. The QWP1 with the fast axis rotated at -45° was used to convert this beam to 

a horizontally polarized OAM beam. A right-handedness OAM beam in the vertical polarization 

state can be generated with the fast axes of the QWP1 and QWP2 both rotated at 45°. The 
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polarization states of the OAM beams were confirmed by passing the beams through a rotatable 

linear polarizer, as shown in Figure 6.8(a-1), (a-2) and (d-1), (d-2), and the PER was measured to 

be ~7 dB and ~9 dB, respectively. The helicity was also analysed by interfering the beam with a 

reference spherical wavefront beam, and the characteristic spiral fringes with the opposite 

rotation directions, as shown in Figure 6.8(b) and (e), indicating beams with a topological charge 

of ±1, respectively. Figure 6.8(c) and (f) plot the 1D intensity profiles across the beam centre 

(marked with the red dashed lines in Figure 6.8(a) and (d)). The experimental 1D intensity profiles 

were fitted by an incoherent superposition of the LP01 mode and the OAM mode. It turns out that 

the LP01 mode accounts for only ~8% of the total power in these two beams, which proves the high 

modal purity of the generated OAM modes. In addition, the 2D correlation coefficients of the 

measured intensity profiles with respect to the theoretical intensity distribution (Figure 6.7(a)) 

were ~96%. The combining efficiency of the two OAM beams was ~46% (Figure 6.8(a)) and ~48% 

(Figure 6.8(d)), respectively, resulting in an output power of ~2.9 W with a peak power of ~10.7 kW 

for the combined OAM beams. 

 
Figure 6.8 Generated OAM beams (first order). (a), (d) Experimentally measured output 

beam profiles with a peak power of ~10.7 kW and the topological charge of ±1, 

respectively, as well as the corresponding intensity distributions after the beam was 

passed through a rotatable linear polarizer (a-1,2 and d-1,2). (b), (e) Measured spiral 

interference fringes for the generated OAM beams shown in (a) and (d). (c), (f) 1D 

intensity profiles across the beam centre fitted with an incoherent superposition of the 

LP01 mode and the OAM mode. 

Finally, the second-order OAM beams (|ℓ|=2) are generated by setting an appropriate correlation 

filter using a QP with a charge of q=1. In this case, the relative phase of the j-th beamlet is set to 

be 4𝜋(𝑗 − 1)/6, as shown in Figure 6.9(b), which corresponds to a petal-like intensity distribution 

shown in Figure 6.9(a). It is worth noting that the petal-like intensity profile is due to the large 

relative phase (4π/6) among adjacent cores. By smoothing the relative phase with a large number 
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N of cores, a doughnut-shaped beam could be formed. Figure 6.9(c) and (d) present the measured 

intensity profiles for the orthogonally linearly polarized OAM beams generated in the far-field, 

which are close to the theoretical calculation, indicating that the phases and polarizations of the 

individual beamlets were well controlled. The PER was measured to be ~8 dB. Figure 6.9(e) and (f) 

demonstrate the interference patterns of the combined beams with a reference spherical 

wavefront beam, confirming that the beams have a helical phase front with a topological charge 

of ±2, respectively. The correlation coefficients of the measured intensity profiles with respect to 

the theoretical intensity distribution were ~95%. The discrepancy can be attributed to the slight 

power difference and residual phase shift between the individual beamlets. The average power of 

the combined beams within the white circle, as shown in Figure 6.9(c) and (d), was ~3.92 W with 

a peak power of ~14.4 kW, which corresponds to a combining efficiency of ~70% with respect to 

a theoretical value of 78%. 

 
Figure 6.9 Generation of OAM beams (second order). (a) Simulated far-field distribution 

when the relative phase of the six beamlets is set to the value given in (b). (c), (d) 

Experimentally measured beam profiles with a peak power of ~14.4 kW and the 

topological charge of ±2, respectively, as well as the corresponding intensity 

distributions after passing through a rotatable linear polarizer. (e), (f) Measured spiral 

interference fringes for the generated OAM beams shown in (c) and (d). 

6.4.3� Factors affecting coherent beam combination efficiency and beam shape 

In order to understand the difference between the experimental results and theoretical 

calculations, various factors affecting the quality of the coherently combined beams are 

numerically analysed. First, the alignment and collimation condition in the CBC setup determine 

the beam-combining efficiency. Figure 6.10(a) shows the theoretical combining efficiency of the 

first-order OAM beams when each beamlet is composed of in-phase LP01 and LP11 modes with 

variable power weight w. The combining efficiency is plotted as a function of the defocus of the 



Chapter 6 

186 

MLA (z/f-1, where z is the distance between the MLA and the beam waist in the near-field of the 

MCF output, and f is the focal length of the MLA). The divergent (z/f<1) or convergent (z/f>1) 

beamlets in a tiled-aperture arrangement can result in increased electric field components 

having higher spatial frequencies in the far-field, leading to a reduced combining efficiency in the 

central target beams. The combining efficiency will decrease by ~10% when the defocus is ±0.25, 

and each beamlet is mainly in the LP01 mode (w>0.64). The optimal beam combination is achieved 

with a defocus of -0.05 to 0, resulting from the interaction of defocus and non-negligible 

diffraction loss when the beam diameter of each beamlet is close to the clear aperture of the 

microlens. Figure 6.10(b) illustrates the combining efficiency of the combined beams with 

different MLA shifts (δx/DMLA, where δx is the shift of the MLA with respect to the optical axis, and 

DMLA is the clear aperture of the MLA), showing that the efficiency decreases by ~10% with an MLA 

shift of 0.2. 

 
Figure 6.10 Numerical analysis on the factors affecting the combining efficiency and 

far-field beam shape. (a) Calculated combining efficiency of the first-order OAM as a 

function of MLA defocus with different mode composition (weight w of LP01 mode) of the 

MCF output. (b) Combining efficiency of the combined Gaussian and OAM beams with 

different MLA shifts in the CBC setup. (c) Combining efficiency of the combined beams 

with different power distributions of the MCF beamlets. (d) Near-field and far-field 

intensity profiles under different power distributions (A-D shown in (c)). 

Second, the power distribution uniformity of the beamlets determines the spatial shape of the 

combined beams. When each beamlet has a different power distribution from the others, the 

OAM beams in the far-field will deviate from an ideal doughnut/petal shape, where the Gaussian-
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shaped beam can be relatively well preserved, as shown in Figure 6.10(d), respectively. The 

variation of the beam-combining efficiency (defined as the power ratio within the white dashed 

circle) was calculated when the relative power in the selected beamlets is different (1c: 1 beamlet 

has a different power from the other five beamlets; 2c: two nonadjacent beamlets have the same 

power but different from the other four beamlets; 3c: three nonadjacent beamlets have the same 

power but different from the residual beamlets), as shown in Figure 6.10(c). The beam-combining 

efficiency is quite stable even when the mode shape is fully distorted, and the variation in 

combining efficiency is less than 10%. 5%, and 1% for the Gaussian beam, the first- and second-

order OAM beam, respectively. These analyses support the experimental observations that the 

slightly distorted OAM beam shape arises from the nonuniform power distribution in the MCF 

beamlets, whereas the lower combining efficiency is mainly related to the misalignment and 

collimating condition in the CBC setup. 

6.5� Conclusions 

In this chapter, the controllable generation of ps-pulsed HOPS beams from a coherently 

combined 6-core Yb-doped MCF amplifier is demonstrated. With the SLM offering adaptive 

wavefront shaping and polarization control on the seed light to the MCF amplifier, the complex 

amplitude of the amplified signal can be fully controlled, enabling various spatial modes to be 

obtained in the far-field. The linearly polarized Gaussian beams, LP mode-like beams, CV beams, 

and linearly polarized first- and second-order OAM beams were efficiently generated with a high 

mode purity. The generated HOPS beams exhibit an average output power of ~2.7-3.9 W with a 

peak power of ~10-14 kW and a pulse duration of ~92 ps. The MCF architecture offers a much 

simpler, more scalable, and more stable beam-shaping procedure compared with other CBC 

techniques based on multiple independent fibre amplifiers. Increasing the core count would 

allow for the generation of OAM beams with much higher-order topological charge. The capability 

to flexibly generate various spatial modes with high peak powers should provide advantages in 

many applications in optical communications, laser material processing, and biomedical 

imaging. It is worth noting that the approach for generating high-peak-power structured light can 

be applied to the generation of the control beam (or pump) introduced in previous chapters. The 

control beam (discussed in Chapters 3 and 4) and the pump (in Chapter 5) serve as key control 

parameters for achieving mode rejection, nonlinear gratings, and multiple wavelength 

conversion. 

Notes: The results reported in this chapter have been selectively published (see LoP7 and LoP8 

in the List of Publications). LoP7 includes the main results of controlled generated of high-peak-

power structured light beams that were demonstrated in this chapter. This is a co-authored paper 
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published in Photonics Research: the experiments, simulations, co-development of derivations 

and code were my work; the code used to control the feedback system connecting the power 

meter and SLM was developed by Joel Carpenter from The University of Queensland; the fibre 

preform was provided by Yoshimichi Amma from the Fujikura Ltd.; the 6-core active fibre was 

fabricated by Ian. Davidson and Siyi Wang from the Optoelectronics Research Centre; this project 

was supervised by Di Lin and David J. Richardson from the Optoelectronics Research Centre. 
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Chapter 7� Conclusions and future work 

7.1� Conclusions 

In summary, this thesis investigated mode control and beam shaping in multimode and multicore 

fibres by exploring multimode nonlinear dynamics in homemade coupled-core MCFs and 

commercial MMFs, as well as by coherently combining the output from an MCF amplifier with 

uncoupled cores. 

Mode rejection and control in multimode counter-propagating systems were proposed and 

investigated using several FMFs and homemade DCF and TCF. Mode rejection of a specific LP 

mode (in FMFs) or supermode (in MCFs) was successfully observed in the output forward signal 

when the input BCB is coupled to the same mode with comparable intense power as the forward 

signal, using 0.4-1m long fibres with a total peak power of 4-16 kW for the counter-propagating 

beams with 0.5ns pulses at a wavelength of 1040 nm. The factors affecting the efficiency of mode 

rejection, such as launched power, fibre nonlinearity, and polarization state, were investigated. 

By adjusting the input BCB launch conditions, mode control was explored, showing that the 

output counter-propagating beams can be spatiotemporally controlled in an all-optical manner. 

By introducing a substantial power difference between the counter-propagating beams in 

multimode systems, the concept of counter-propagating nonlinear gratings was introduced. 

Differently from the mode rejection effect, here, the input BCB power is significantly higher than 

the forward probe beam. The BCB generates a multimode nonlinear grating, which can be 

exploited to implement all-optical mode switching and core-to-core power switching. Mode 

switching in FMFs and MCFs was successfully observed using 0.4m-long fibres with a BCB power 

of 6-12 kW in 0.5 ns pulses at a wavelength of 1040 nm. Core-to-core power switching in DCF and 

TCF was measured using 0.4m-long fibres with a BCB power of 7-10 kW. Stemmed from these 

observations, several conceptual devices capable of all-optical light-by-light manipulations were 

demonstrated, including all-optically tuneable mode converters, ultrafast tuneable power 

splitters, combiners, and switches, as well as all-optical phase detection at terminal ends. 

Wavelength and mode conversions in MCFs were investigated followingly by exploring FWM 

between supermodes in coupled MCFs. Efficient FWM and supermode conversion were 

successfully observed with a pump wavelength of 1040 nm in several homemade MCFs, 

including DCF, TCF, 4CF, and 7CF. By selectively exciting different intermodal FWM processes in 

MCFs, specific wavelength conversions and wavelength-dependent mode conversions were 

demonstrated, and the phase-matching conditions between supermodes were controlled by 
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adjusting the fibre design in terms of core count, core diameters, and core spacings. These 

results highlight the potential of using MCFs for efficient wavelength conversion in a bespoke 

wavelength range. 

Finally, spatial beam shaping in MCFs was investigated in a linear regime. Controllable generation 

of ps-pulsed structured beams was successfully demonstrated using a coherently combined 6-

core Yb-doped MCF amplifier. With the SLM adaptively shaping the seed light to the MCF 

amplifier, the amplified output signal was fully controlled, enabling various spatial modes to be 

obtained in the far-field. The linearly polarized Gaussian beams, LP mode-like beams, CV beams, 

and linearly polarized OAM beams were efficiently generated with peak powers of ~10-14 kW and 

pulse durations of ~92 ps at the wavelength of 1035 nm. 

By investigating mode control and beam shaping in terms of spatial, temporal, and spectral 

behaviours for MMFs and MCFs, this work could lead to all-optical light manipulations that is 

useful in many applications such as optical communications, data transmission, and laser 

material processing. 

7.2� Future work 

Although remarkable outcomes have been achieved in this thesis, there still exist many research 

opportunities related to topics and novel nonlinear phenomena raised here, described below: 

1.�Mode rejection and control based on feedback cavity or systems. The mode rejection and 

mode control experiments demonstrated in this thesis involve the coupling into the fibres 

at the opposite ends. However, the backward control beam can be replaced with a 

feedback cavity or system to provide spatiotemporal control over the forward signals. This 

would require specific cavity and system design, fibre couplers, or free-space coupling 

solutions. Exploring mode rejection and control with feedback systems would benefit 

many applications including intelligent beam shaping, efficient beam combination 

solutions, and beyond. 

2.�Core-to-core power switching in MCFs leveraging different wavelengths /temporal 

shapes /fibre lengths. The core-to-core power switching experiments demonstrated in 

Chapter 4 involve probe beam and backward control beam in the same wavelength and 

same pulse duration. It is worthy to explore the probe beam evolution when the counter-

propagating beams are different, in terms of wavelength, pulse width, and repetition rate. 

Different fibre lengths can be used to obtain different temporal evolutions for the probe 

especially when the probe is in the CW state. These will contribute to the many 

applications requiring ultrafast mode or power switching. 
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3.�Multiline, multimode optical parametric oscillator based on MCFs. The results reported 

in Chapter 5 shows that Four-wave mixing in MCFs provides solutions to generate 

wavelengths on demand by appropriate fibre designs with different core numbers, core 

size, and core arrangement. By using MCFs as the gain fibre, a multiline and multimode 

optical parametric oscillator can be built for new frequency laser generations with high 

efficiency. 
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Appendix A� Mode decomposition in MCFs based on 

other methods 

A.1� Mode decomposition in MCFs based on off-axis holography 

method 

Mode decomposition in multimode fibres is a technique used to determine the relative power and 

phase of each eigenmode by analysing the output beam. Off-axis holography [183] is a wavefront 

measurement technique where the multimode beam interferes with a tilted reference beam. 

Figure A.1 illustrates the principle of off-axis holography method, using the example of analysing 

the SM7 mode of 7CF. 

 
Figure A.1 Principle of off-axis holography method, with the SM7 mode of 7CF 

demonstrated as an example. 

The reference beam is a plane wave at the same wavelength with a highly tilted phase distribution, 

resulting in interference between the SM7 mode (denoted as the target wave) and the reference 

beam. The interference pattern can be expressed as, 

 
𝐼𝑖𝑛𝑡(𝑥, 𝑦) = [𝐸𝑡𝑎𝑟𝑔𝑒𝑡(𝑥, 𝑦) + 𝐸𝑟𝑒𝑓(𝑥, 𝑦)][𝐸𝑡𝑎𝑟𝑔𝑒𝑡

∗ (𝑥, 𝑦) + 𝐸𝑟𝑒𝑓
∗ (𝑥, 𝑦)] 

= |𝐸𝑡𝑎𝑟𝑔𝑒𝑡(𝑥, 𝑦)|
2
+ |𝐸𝑟𝑒𝑓(𝑥, 𝑦)|

2
+ 𝐸𝑟𝑒𝑓(𝑥, 𝑦)𝐸𝑡𝑎𝑟𝑔𝑒𝑡

∗ (𝑥, 𝑦) + 𝐸𝑡𝑎𝑟𝑔𝑒𝑡(𝑥, 𝑦)𝐸𝑟𝑒𝑓
∗ (𝑥, 𝑦) 

(A.1.1) 

where Iint is the intensity distribution of the interference pattern, and Etarget and Eref represent the 

electric fields of the target and reference waves, respectively. The first two terms in the last line 

of Eq. (A.1.1) are the zero-order terms, while the last two terms are the ±1-orders components, 

which carry the information of the target wave. The three orders can be separated in the Fourier 
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domain when the reference beam is adjusted to suitable angles, as shown in Figure A.1. By using 

a bandpass filter in the Fourier domain (see the red circle in Figure A.1), one of the ±1-order terms 

can be isolated, such as the -1 order term shown in Figure A.1. Since the reference wave only 

contributes to shifting the target wave to different positions in the Fourier domain, the filtered -1 

order term can be shifted to the centre of the Fourier domain to retrieve the information of Etarget. 

Consequently, the intensity and phase of the target beam can be recovered by performing an 

inverse Fourier transform on the filtered Fourier spectrum. 

Off-axis holography method can be used to obtain the phase distribution of an unknown electric 

field, which can be utilised for the mode decomposition of a multimode beam by projecting the 

recovered target electric fields onto the eigenmodes of MMFs[183]. Recently, the off-axis 

holography method has been demonstrated in MCFs[129], which can be used for mode 

decomposition of MCFs. In this appendix, an experimental demonstration of off-axis holography 

method using the TCF is provided. The experimental setup is illustrated in Figure A.2, where the 

signal and reference beam are split from the same laser source, ensuring coherence between 

them. The signal beam is selectively coupled into different supermodes of the TCF using a SLM, 

while the reference beam is collimated with a beam diameter of ~7 mm. The output signal is 

imaged onto the camera with a magnification of 36x using a pair of lenses with focal lengths of 

13.86 mm and 500 mm. The reference beam is directed at an angle onto the camera to produce 

the interference pattern. The optical path difference between the signal and reference arms is 

precisely controlled by an optical delay line, ensuring clear interference fringes can be measured. 

 
Figure A.2 Experimental setup implementing off-axis holography method for MCFs. 

Figure A.3 displays the experimental results of the recovered electric fields of the TCF output 

based on the off-axis holography method. Following the procedures outlined in Figure A.1, the 
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intensity and phase of three outputs, resembling the three theoretical supermodes in the near 

field (see Figure 3.23(b)), are recovered from the interference patterns. The results are shown in 

the last two columns of Figure A.3., denoted as “SM3(2,1) mode-like”. The recovered phases in the 

three cores closely match the theoretical phases of supermodes in the near field. Specifically, for 

the SM3 mode-like output, the relative phases are 3.1 rad, 0.33 rad, and 0 rad in core1, core2, and 

core3, respectively, corresponding to the theoretical values of π rad, 0 rad, and 0 rad, respectively. 

For the SM2 mode-like output, the relative phases in core2 and core3 are 0 rad and 3.89 rad, 

respectively, closely matching the theoretical π rad phase difference between them. While for the 

SM1 mode-like output, the relative phases in the three cores are 0 rad, 0.37 rad, and 0.75 rad, in 

line with the theoretical 0 rad phase differences among them. 

 
Figure A.3 Experimental results for measuring TCF outputs based on off-axis holography 

method. The near-field phase information within the individual cores is calculated from 

the interference pattern that is generated by the interference between a reference beam 

with the fibre output. 

For a specific output, the recovered intensity and phase can be used for mode decomposition to 

determine the content and relative phase of different supermodes. The mode content and relative 

phase can be obtained using an equation similar to Eq.(3.3.1), where Eretrieved and ELPmn are 

replaced with Erec and ESMx, respectively. Here, Erec represents the recovered electric field obtained 

from off-axis holography, and ESMx represents the complex amplitude of the SMx mode of MCFs in 

the near-field. Figure A.4 demonstrates two mode decomposition results using this method. 
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Figure A.4(a) shows the mode content and relative phase of the three supermodes in the TCF for 

the SM3 mode-like output given in Figure A.3. The calculated SM3 mode content is 92.2%, 

confirming the dominancy of this mode. By synthesizing the supermodes using the MD results, 

the synthesized intensity and phase distributions are compared with the recovered distributions 

obtained via off-axis holography. Both the high 2D correlation coefficients (97.6%) and the small 

differences between the synthesized and recovered distributions illustrate the validity of 

implementing mode decomposition for MCFs based on the off-axis holography method. 

 
Figure A.4 Mode decomposition results of the TCF based on off-axis holography method. 

(a), (c) Mode content and relative phase of each supermode. (b), (d) The intensity and 

phase distributions synthesized by MD results (denoted as “Intensity-MD” and “Phase-

MD”) are compared with the recovered distributions obtained by off-axis holography 

(denoted as “Intensity-rec” and “Phase-rec”). (a) and (b) are the results of the SM3 

mode-like output, and (c) and (d) are the results of the SM1 mode-like output. 

A.2� Mode decomposition of MCFs based on matrix formalism method 

The matrix formalism mode decomposition method is a non-iterative algorithmic method based 

on intensity measurements without using reference beams. This method was initially proposed 

for few-mode fibres, offering high-performance mode decomposition with a processing time of 

tens of microseconds[67]. The key to this method is the creation of a transformation matrix T, 
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which is used to determine the MD coefficients (mode content and relative phase) from a single 

intensity profile I. Considering an image consisting of M x M pixels, the 2D intensity profile can be 

written as an M2 x 1 vector: 

 𝐼(𝑚) =∑∑𝐶𝑘𝐶𝑗
∗𝐸𝑘

(𝑚)
𝐸𝑗
∗(𝑚)

𝑗𝑘

, 𝑚 = 1,2,… ,𝑀2; 𝑘, 𝑗 = 1,2,… ,𝑁. (A.2.1) 

where Ck(j) are the complex modal coefficients for the k(j)-th mode, and N is the number of modes. 

The complex amplitude of the k(j)-th mode is also written in the form of an M2 x 1 vector, and Ek(j)
(m) 

is the complex amplitude at the m-th pixel. By defining an M2 x N(N+1)/2 matrix T that only contains 

the Ek(j)
(m) terms and a N(N+1)/2 x 1 vector V that only contains the Ck(j) terms, Eq. (A.2.1) can be 

written in the matrix form as: 

 𝐼 = 𝑇𝑉 (A.2.2) 

 𝑇 =

[
 
 
 
 𝐸1

(1)𝐸1
(1)⋯𝐸𝑁

(1)𝐸𝑁
(1) 2𝐸1

(1)𝐸2
(1)⋯2𝐸1

(1)𝐸𝑁
(1) ⋯ 2𝐸𝑁−1

(1) 𝐸𝑁
(1)

𝐸1
(2)𝐸1

(2)⋯𝐸𝑁
(2)𝐸𝑁

(2) 2𝐸1
(2)𝐸2

(2)⋯2𝐸1
(2)𝐸𝑁

(2) 2𝐸𝑁−1
(2) 𝐸𝑁

(2)

⋮ ⋮ ⋱ ⋮

𝐸1
(𝑀2)

𝐸1
(𝑀2)

⋯𝐸𝑁
(𝑀2)

𝐸𝑁
(𝑀2)

2𝐸1
(𝑀2)

𝐸2
(𝑀2)

⋯2𝐸1
(𝑀2)

𝐸𝑁
(𝑀2)

⋯ 2𝐸𝑁−1
(𝑀2)

𝐸𝑁
(𝑀2)

]
 
 
 
 

 (A.2.3) 

 𝑉 = [𝐶1𝐶1
∗⋯𝐶𝑁𝐶𝑁

∗
𝐶1𝐶2

∗ + 𝐶2𝐶1
∗

2
⋯
𝐶1𝐶𝑁

∗ + 𝐶𝑁𝐶1
∗

2
⋯

𝐶𝑁−1𝐶𝑁
∗ + 𝐶𝑁𝐶𝑁−1

∗

2
]
𝑇

 (A.2.4) 

The vector V can be solved from V=T-1I with T-1 as a pseudoinverse matrix of T, and the mode 

content (ck) and relative phase (θk) of the k-th mode can be determined from Eq. (A.2.4): 

 𝑐𝑘 = √𝑉(𝑘), 𝑘 = 1,2, … ,𝑁 (A.2.5) 

 𝜃𝑘 = acos [
𝑉(𝑁 + 𝑘 − 1)

𝑐1𝑐𝑘
] , 𝑘 = 1,2,… ,𝑁 (A.2.6) 

This method can be applied for mode decomposition of MCFs by substituting the complex 

amplitude of supermodes for specific MCFs into Eq. (A.2.3). It is worth noting that mode 

decomposition for MCFs based on intensity measurements is preferably implemented in the far-

field, as illustrated in Figure 3.27. A simulation result for a multimode output from the 7CF is 

demonstrated in Figure A.5(b-1)-(b-4) using this method, labelled as “Ref[66]”. However, the 

calculated mode content and phase exhibit significant deviations from the set values, and the 

reconstructed intensity and phase profiles differ from the target profiles, as shown in Figure A.5(a-

1) and (a-2). This discrepancy arises because the terms Ek(j)
(m) in Eq. (A.2.1) are complex numbers 

for the supermodes in the far-field. Consequently, Ek
(m)Ej

*(m) differs from Ej
(m)Ek

*(m), which is the 

approximation used in Eq. (A.2.3) when rewriting Eq. (A.2.1) into the form of Eq. (A.2.2). Therefore, 

Eqs. (A.2.3) and (A.2.4) need to be modified for mode decomposition of MCFs in the far-field. The 

new transformation matrix Tnew is an M2 x N2 matrix and the new vector Vnew is an N2 x 1 vector: 
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 𝑇𝑛𝑒𝑤 =

[
 
 
 
 𝐸1

(1)
𝐸1
∗(1)

⋯𝐸1
(1)
𝐸𝑁
∗(1)

𝐸2
(1)
𝐸1
∗(1)

⋯𝐸2
(1)
𝐸𝑁
∗(1)

⋯ 𝐸𝑁
(1)
𝐸1
∗(1)

⋯𝐸𝑁
(1)
𝐸𝑁
∗(1)

𝐸1
(2)
𝐸1
∗(2)

⋯𝐸1
(2)
𝐸𝑁
∗(2)

𝐸2
(2)
𝐸1
∗(2)

⋯𝐸2
(2)
𝐸𝑁
∗(2)

𝐸𝑁
(2)
𝐸1
∗(2)

⋯𝐸𝑁
(2)
𝐸𝑁
∗(2)

⋮ ⋮ ⋱ ⋮

𝐸1
(𝑀2)

𝐸1
∗(𝑀2)

⋯𝐸1
(𝑀2)

𝐸𝑁
∗(𝑀2)

2𝐸2
(𝑀2)

𝐸1
∗(𝑀2)

⋯2𝐸2
(𝑀2)

𝐸𝑁
∗(𝑀2)

⋯ 2𝐸𝑁
(1)
𝐸1
∗(1)

⋯2𝐸𝑁
(1)
𝐸𝑁
∗(1)

]
 
 
 
 

 (A.2.7) 

 𝑉𝑛𝑒𝑤 = [𝐶1𝐶1
∗⋯𝐶1𝐶𝑁

∗ 𝐶2𝐶1
∗⋯𝐶2𝐶𝑁

∗ ⋯ 𝐶𝑁𝐶1
∗⋯𝐶𝑁𝐶𝑁

∗ ]𝑇 (A.2.8) 

Similarly, the vector Vnew can be solved from Vnew=Tnew
-1I with Tnew

-1 as a pseudoinverse matrix of 

Tnew, and the mode content (ck) and relative phase (θk) of the k-th mode can be determined from 

Eq. (A.2.8): 

 𝑐𝑘 = √𝑉𝑛𝑒𝑤(𝑁(𝑘 − 1) + 𝑘), 𝑘 = 1,2,… ,𝑁 (A.2.9) 

 𝜃𝑘 = acos [
𝑉𝑛𝑒𝑤(𝑘) + 𝑉𝑛𝑒𝑤(𝑁(𝑘 − 1) + 1)

2𝑐1𝑐𝑘
] , 𝑘 = 1,2,… ,𝑁 (A.2.10) 

For the same target intensity profile, Eqs. (A.2.9) and (A.2.10) yield lossless mode decomposition 

results, as illustrated in Figure A.5(c-1) and (c-2). 

 
Figure A.5 Mode decomposition of MCFs based on the matrix formalism method, 

demonstrated with the simulation of 7CF. (a-1), (a-2) Target intensity and phase of the 

multimode state formed by the combination of seven supermodes with the mode 

content and phase illustrated with blue bars (see ‘set’) in (b-1) and (b-2). (b-3),(b-4) 

Reconstructed intensity and phase based on the method proposed in Ref[67], with the 

calculated mode content and phase plotted in red bars in (b-1) and (b-2). (c-1)-(c-4) 

Mode decomposition results and the reconstructed intensity and phase based the 

matrix formalism method introduced in this thesis. 

This matrix formalism method can achieve high accuracy mode decomposition for MCFs. It is 

necessary to assess the impact of intensity noise on this method. Figure A.6 presents simulation 

results for mode decomposition of four different MCFs used in this thesis, including the DCF, TCF, 
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4CF, and 7CF. In each simulation depicted in Figure A.6, the target intensity profile is generated 

by combining all supermodes with random mode contents and relative phases specific to each 

MCF. Uniformly distributed random intensity noise, characterized by a signal-to-noise ratio (SNR) 

ranging from 10 dB to 30 dB, is added to the target intensity profile. Figure A.6 illustrates how 

varying levels of intensity noise affect the accuracy of mode decomposition of these MCFs. 

 
Figure A.6 Analyses of the impact of intensity noise on the mode decomposition 

accuracy for different MCFs, with comparisons between the method in Ref[67] and the 

method in this thesis. (a), (d) Mode content error versus SNR. (b), (e) Mode phase error 

versus SNR. (c), (f) Correlation coefficient versus SNR. 

In Figure A.6(a) and (d), the mode content error at specific SNR values is determined by averaging 

the differences between the calculated mode contents and the set values across 10 simulation 

instances for different supermodes. Correspondingly, Figure A.6(b) and (e) shows the mode 

phase error at various SNR values, and Figure A.6(c) and (f) displays the correlation coefficients 

between the reconstructed intensity profile (using MD results) and the target intensity profile at 

different SNR values. Figure A.6(a)-(c) present results obtained using Eqs. (A.2.3)-(A.2.6) (Ref[67]), 

while Figure A.6(d)-(f) correspond to results obtained from Eqs. (A.2.7)-(A.2.10) (this thesis). The 

simulation results illustrate the following: by using the modified matrix formalism method, the 

mode content error is less than 0.05 for the DCF and TCF when the SNR of the measured intensity 

profile is higher than 10 dB; the mode content error can be controlled below 0.05 for the 4CF and 

7CF when SNR is higher than 21 dB and 27 dB, respectively; the mode phase error can be 

controlled to less than 0.2 rad for the DCF, TCF, and 4CF when SNR is higher than 10 dB, 13 dB, 

and 24 dB, respectively; the correlation coefficients are higher than 90% for the DCF, TCF, and 

4CF when SNR is higher than 10 dB, 11 dB, and 21 dB, respectively. These findings demonstrate 
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that the modified matrix formalism method could provide robust mode decomposition results for 

various MCFs under different levels of intensity noise. 

A.3� Details of Comsol simulations for the fibres used in this thesis 

The fibres used in this thesis were simulated using Comsol Multiphysics software. The 

“Electromagnetic Waves, Frequency Domain (emw)” physics model and the “Mode Analysis” 

study were employed to model various fibres, including PM1550-xp, PMHN1, PM2000, SMF28, 

and MCFs with core numbers ranging from 2 to 7. The fibre geometry consists of core and cladding, 

with additional stress rods included for the panda type PM-fibres (PM1550-xp and PM2000). The 

refractive index of the cladding was defined from the Sellmeier equation (see Eq.(2.2.1)), while 

the refractive index of the stress rods was based on measured refractive index profiles (see 

Section 3.3.2 for details). For the fibre core, the refractive index of PM-fibres was determined 

through interpolation of measured index profiles around the core region, whereas MCFs were 

simulated using a step-index configuration. 

 
Figure A.7 Comsol modelling of PM1550-xp fibre and DCF. (a) Cross section of the 

PM1550-xp fibre showing core, stress rod, and cladding. (b) Refractive index of the 

PM1550 xp fibre along the fast (green dashed line) and slow (blue solid line) axes. (c) 

Cross section of the DCF. (d) Refractive index of the DCF along the slow axis. 

The modelling details for these fibres are similar; thus, examples of the PM1550-xp fibre and DCF 

are provided for reference. Scattering Boundary Conditions were applied at the perimeter of the 

cladding, and free triangular meshes with a predefined extra fine size were used to ensure the 

accuracy and stability of the simulations. It is worth noting that, to account for fabrication errors, 
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the shape of the fibre cores was defined as an ellipse with a diameter ratio of 1.01 along two 

orthogonal axes. 

When calculating the dispersion coefficients for these fibres (see Table 3.1 for PM1550-xp, Table 

3.2 for PMHN1, Table 3.3 for PM2000, Table 3.5 for SMF28, and Table 3.7 for DCF and TCF), the 

“Parametric Sweep” function was used to perform a frequency sweep. The sweep step was set 

to 0.1 THz, corresponding to a wavelength step of ~0.4 nm around a 1 µm wavelength. Followingly 

the frequency sweep, the propagation constants for all supported spatial modes at different 

frequencies were evaluated. The finite difference approximation was then applied to estimate the 

derivatives of the propagation constant for various spatial modes at consecutive frequency steps. 

 



List of Publications 

201 

List of Publications 

[LoP1]. K. Ji. "Mode decomposition for multicore fibers based on far-field intensity 

measurements." Optics Letters 50, 1045-1048 (2025). 

[LoP2]. K. Ji, D. J. Richardson, S. Wabnitz, and M. Guasoni. "Sub-nanosecond all-optically 

reconfigurable photonics in optical fibres." arXiv preprint arXiv:2409.15929 (2024). 

[LoP3]. K. Ji, M. I. M. Abdul Khudus, I. Davidson, L. Xu, and M. Guasoni, "Wavelength and 

Supermode Conversion based on Four-Wave Mixing in Coupled Multicore Fibres," in CLEO 2024, 

paper SF2Q.2 (2024). 

[LoP4]. K. Ji, I. Davidson, J. Sahu, D. J. Richardson, S. Wabnitz, and M. Guasoni "Mode 

rejection and counter-propagating all-optical gratings in multimode waveguides", Proc. SPIE 

PC12871, Laser Resonators, Microresonators, and Beam Control XXVI, PC128710H (2024) 

[LoP5]. K. Ji, I. Davidson, J. Sahu, D. J. Richardson, S. Wabnitz, and M. Guasoni “Mode 

attraction, rejection and control in nonlinear multimode optics”, Nat Commun 14, 7704 (2023). 

[LoP6]. K. Ji, I. Davidson, J. Sahu, Y. Jung, D. J. Richardson, and M. Guasoni, "All-optical, 

reconfigurable mode switcher integrated in multicore fibers with a counter-propagating 

configuration," in CLEO 2023, paper SM4L.3 (2023). 

[LoP7]. K. Ji, D. Lin, I. Davidson, S. Wang, J. Carpenter, Y. Amma, Y. Jung, M. Guasoni, and D. 

J. Richardson, "Controlled generation of picosecond-pulsed higher-order Poincaré sphere beams 

from an ytterbium-doped multicore fiber amplifier," Photon. Res. 11, 181-188 (2023) 

[LoP8]. K. Ji, D. Lin, I. Davidson, S. Wang, J. Carpenter, Y. Amma, Y. Jung, and D. J. 

Richardson, "Generation of High-power Picosecond Optical Vortex beams from a Yb-doped 

Multicore Fiber Amplifier," in CLEO 2022, paper ATh2C.1 (2022). 

[LoP9]. J. Haines, P. U. Naik, K. Ji, V. Vitali, Y. Franz, P. Petropoulos, and M. Guasoni, 

"Subwavelength and broadband on-chip mode splitting with shifted junctions," Opt. Express 32, 

24072-24080 (2024) 

[LoP10]. M. I. M. A. Khudus, K. Ji, L. Xu, A. Halder, and M. Guasoni, "Wavelength-Selectable 

Inter- and Intra-modal Four Wave Mixing in Elliptical Core Fibers," in CLEO 2024, paper JW2A.7 

(2024). 



List of Publications 

202 

[LoP11]. S. Jain, K. Ji, M. M. A. Núñez-Velázquez, I. Davidson, J. Sahu, J. Fatome, D. J. 

Richardson, S. Wabnitz, and M. Guasoni, "Observation of Light Self-Organization and Mode 

Attraction in a Multimode Optical Fiber," in CLEO 2022, paper STu4P.5 (2022). 

[LoP12]. S. Jain, K. Ji, J. Sahu, David.J.Richardson, J. Fatome, S. Wabnitz, and M. Guasoni, 

"Multicore fibers: a novel platform for a robust and reconfigurable self-organization of light," in 

CLEO 2021, paper ef_4_6 (2021). 

 



Bibliography 

203 

Bibliography 

[1]. R. D. Maurer, P. C. Schultz. Fused silica optical waveguide. United States patent US 
3,659,915., 1972. 

[2]. D. Keck, P. Schultz. Method of producing optical waveguide fibers. United States patent US 
3,711,262., 1973. 

[3]. E. E. Basch, R. A. Beaudette, H. A. Carnes. Optical Transmission for Interoffice Trunks. IEEE 
Transactions on Communications. 26(7):1007-1014, 1978. 

[4]. D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nature 
Photonics. 7(5):354-362, 2013. 

[5]. S. W. Harun, H. Arof. Current developments in optical fiber technology: BoD–Books on 
Demand. 2013. 

[6]. I. Cristiani, C. Lacava, G. Rademacher, B. J. Puttnam, R. S. Luis, C. Antonelli, et al. Roadmap 
on multimode photonics. Journal of Optics. 24(8), 2022. 

[7]. S. Berdague, P. Facq. Mode Division Multiplexing in Optical Fibers. Applied Optics. 
21(11):1950-1955, 1982. 

[8]. W. Chen, L. Yuan, B. Zhang, Q. Yu, Z. Lian, Y. Pi, et al., editors. Applications and 
Development of Multi-Core Optical Fibers. Photonics. 11(3), 2024. 

[9]. S. Inao, T. Sato, S. Sentsui, T. Kuroha, Y. Nishimura, editors. Multicore optical fiber. Optical 
Fiber Communication Conference. 1979. 

[10]. B. J. Puttnam, G. Rademacher, R. S. Luís. Space-division multiplexing for optical fiber 
communications. Optica. 8(9):1186-1203, 2021. 

[11]. T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto. Dense Space Division Multiplexed 
Transmission Over Multicore and Multimode Fiber for Long-haul Transport Systems. Journal of 
Lightwave Technology. 34(6):1484-1493, 2016. 

[12]. T. Mizuno, Y. Miyamoto. High-capacity dense space division multiplexing transmission. 
Optical Fiber Technology. 35:108-117, 2017. 

[13]. A. Méndez, T. F. Morse. Specialty optical fibers handbook. Amsterdam ; Boston: Academic 
Press. 2007. 

[14]. T. Sakamoto, K. Saitoh, S. Saitoh, Y. Abe, K. Takenaga, A. Urushibara, et al. 120 Spatial 
Channel Few-mode Multi-core Fibre with Relative Core Multiplicity Factor Exceeding 100. 2018 
European Conference on Optical Communication (ECOC). 2018. 

[15]. Q. Wang, Y. Liu. Review of optical fiber bending/curvature sensor. Measurement. 130:161-
176, 2018. 

[16]. I. Ashry, Y. Mao, A. Trichili, B. W. Wang, T. K. Ng, M. S. Alouini, et al. A Review of Using Few-
Mode Fibers for Optical Sensing. Ieee Access. 8:179592-179605, 2020. 

[17]. C. Caucheteur, J. Villatoro, F. Liu, M. Loyez, T. Guo, J. Albert. Mode-division and spatial-
division optical fiber sensors. Advances in Optics and Photonics. 14(1):1-86, 2022. 

[18]. J. R. Guzman-Sepúlveda, R. Guzmán-Cabrera, A. A. Castillo-Guzmán. Optical Sensing 
Using Fiber-Optic Multimode Interference Devices: A Review of Nonconventional Sensing 
Schemes. Sensors. 21(5), 2021. 



Bibliography 

204 

[19]. K. Wang, X. C. Dong, M. H. Kohler, P. Kienle, Q. Bian, M. Jakobi, et al. Advances in Optical 
Fiber Sensors Based on Multimode Interference (MMI): A Review. IEEE Sensors Journal. 21(1):132-
142, 2021. 

[20]. H. L. Zhang, Z. F. Wu, P. P. Shum, R. X. Wang, X. Q. Dinh, S. N. Fu, et al. Fiber Bragg gratings 
in heterogeneous multicore fiber for directional bending sensing. Journal of Optics. 18(8), 2016. 

[21]. S. Zhou, B. Huang, X. W. Shu. A multi-core fiber based interferometer for high temperature 
sensing. Measurement Science and Technology. 28(4), 2017. 

[22]. M. Plöschner, T. Tyc, T. Cizmár. Seeing through chaos in multimode fibres. Nature 
Photonics. 9(8):529-535, 2015. 

[23]. N. Borhani, E. Kakkava, C. Moser, D. Psaltis. Learning to see through multimode fibers. 
Optica. 5(8):960-966, 2018. 

[24]. A. M. Caravaca-Aguirre, R. Piestun. Single multimode fiber endoscope. Optics Express. 
25(3):1656-1665, 2017. 

[25]. B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser. Multimode optical fiber 
transmission with a deep learning network. Light-Science & Applications. 7, 2018. 

[26]. L. Q. Wu, J. Zhao, M. H. Zhang, Y. Z. Zhang, X. Y. Wang, Z. Y. Chen, et al. Deep Learning: 
High-quality Imaging through Multicore Fiber. Current Optics and Photonics. 4(4):286-292, 2020. 

[27]. N. Stasio, C. Moser, D. Psaltis. Calibration-free imaging through a multicore fiber using 
speckle scanning microscopy. Optics Letters. 41(13):3078-3081, 2016. 

[28]. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, O. Katz. Widefield lensless imaging 
through a fiber bundle via speckle correlations. Optics Express. 24(15):16835-16855, 2016. 

[29]. D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and 
future perspectives. Journal of the Optical Society of America B-Optical Physics. 27(11):B63-B92, 
2010. 

[30]. M. N. Zervas, C. A. Codemard. High Power Fiber Lasers: A Review. IEEE Journal of Selected 
Topics in Quantum Electronics. 20(5), 2014. 

[31]. K. S. Abedin, M. F. Yan, T. F. Taunay, B. Y. Zhu, E. M. Monberg, D. J. DiGiovanni. State-of-the-
art multicore fiber amplifiers for space division multiplexing. Optical Fiber Technology. 35:64-71, 
2017. 

[32]. S. Jain, C. Castro, Y. Jung, J. Hayes, R. Sandoghchi, T. Mizuno, et al. 32-core 
erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed 
transmission system. Optics Express. 25(26):32887-32896, 2017. 

[33]. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast 
fiber lasers [Invited]. Optics Express. 26(8):9432-9463, 2018. 

[34]. Y. M. Jung, S. U. Alam, D. J. Richardson, S. Ramachandran, K. S. Abedin. Multicore and 
multimode optical amplifiers for space division multiplexing. Optical Fiber Telecommunications 
Vii.301-333, 2020. 

[35]. L. Sirleto, M. A. Ferrara. Fiber Amplifiers and Fiber Lasers Based on Stimulated Raman 
Scattering: A Review. Micromachines. 11(3), 2020. 

[36]. G. Nemova. Brief Review of Recent Developments in Fiber Lasers. Applied Sciences-Basel. 
14(6), 2024. 



Bibliography 

205 

[37]. B. Fu, C. Shang, H. Y. Liu, S. Z. Fan, K. J. Zhao, Y. L. Zhang, et al. Recent advances and future 
outlook in mode-locked lasers with multimode fibers. Applied Physics Reviews. 10(4), 2023. 

[38]. A. Klenke, C. Jauregui, A. Steinkopff, C. Aleshire, J. Limpert. High-power multicore fiber 
laser systems. Progress in Quantum Electronics. 84, 2022. 

[39]. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthelemy, A. Popp, 
et al. 19-cores Yb-fiber laser with mode selection for improved beam brightness. Applied Physics 
B-Lasers and Optics. 100(4):859-864, 2010. 

[40]. A. Klenke, M. Muller, H. Stark, F. Stutzki, C. Hupel, T. Schreiber, et al. Coherently combined 
16-channel multicore fiber laser system. Optics Letters. 43(7):1519-1522, 2018. 

[41]. V. E. Leshchenko. Coherent combining efficiency in tiled and filled aperture approaches. 
Optics Express. 23(12):15944-15970, 2015. 

[42]. F. Prevost, L. Lombard, J. Primot, L. P. Ramirez, L. Bigot, G. Bouwmans, et al. Coherent 
beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier. Optics 
Express. 25(9):9528-9534, 2017. 

[43]. K. H. Ji, T. R. Hou, J. B. Li, L. Q. Meng, Z. G. Han, R. H. Zhu. Fast measurement of the laser 
beam quality factor based on phase retrieval with a liquid lens. Applied Optics. 58(11):2765-2772, 
2019. 

[44]. K. H. Ji, D. Lin, I. A. Davidson, S. Y. Wang, J. Carpenter, Y. Amma, et al. Controlled generation 
of picosecond-pulsed higher-order Poincare sphere beams from an ytterbium-doped multicore 
fiber amplifier. Photonics Research. 11(2):181-188, 2023. 

[45]. I. Fsaifes, L. Daniault, S. Bellanger, M. Veinhard, J. Bourderionnet, C. Larat, et al. Coherent 
beam combining of 61 femtosecond fiber amplifiers. Optics Express. 28(14):20152-20161, 2020. 

[46]. D. Lin, J. Carpenter, Y. Feng, S. Jain, Y. Jung, Y. Feng, et al. Reconfigurable structured light 
generation in a multicore fibre amplifier. Nature Communications. 11(1):3986, 2020. 

[47]. A. Forbes. Structured Light from Lasers. Laser & Photonics Reviews. 13(11), 2019. 

[48]. M. Piccardo, V. Ginis, A. Forbes, S. Mahler, A. A. Friesem, N. Davidson, et al. Roadmap on 
multimode light shaping. Journal of Optics. 24(1), 2022. 

[49]. S. Ngcobo, I. Litvin, L. Burger, A. Forbes. A digital laser for on-demand laser modes. Nature 
communications. 4, 2013. 

[50]. L. P. Ramirez, M. Hanna, G. Bouwmans, H. El Hamzaoui, M. Bouazaoui, D. Labat, et al. 
Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier. Optics Express. 
23(5):5406-5416, 2015. 

[51]. R. Florentin, V. Kermene, J. Benoist, A. Desfarges-Berthelemot, D. Pagnoux, A. Barthelemy, 
et al. Shaping the light amplified in a multimode fiber. Light-Science & Applications. 6, 2017. 

[52]. D. Lin, J. Carpenter, Y. T. Feng, Y. M. Jung, S. U. Alam, D. J. Richardson. High-power, 
electronically controlled source of user-defined vortex and vector light beams based on a few-
mode fiber amplifier. Photonics Research. 9(5):856-864, 2021. 

[53]. J. W. Sun, J. C. Wu, N. Koukourakis, L. C. Cao, R. Kuschmierz, J. Czarske. Real-time complex 
light field generation through a multi-core fiber with deep learning. Scientific Reports. 12(1), 2022. 

[54]. O. Tzang, A. M. Caravaca-Aguirre, K. Wagner, R. Piestun. Adaptive wavefront shaping for 
controlling nonlinear multimode interactions in optical fibres. Nature Photonics. 12(6):368-374, 
2018. 



Bibliography 

206 

[55]. T. Sylvestre, E. Genier, A. N. Ghosh, P. Bowen, G. Genty, J. Troles, et al. Recent advances in 
supercontinuum generation in specialty optical fibers [Invited]. Journal of the Optical Society of 
America B-Optical Physics. 38(12):F90-F103, 2021. 

[56]. L. Chang, S. T. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nature 
Photonics. 16(2):95-108, 2022. 

[57]. A. Zadok, H. H. Diamandi, Y. London, G. Bashan. Forward Brillouin scattering in standard 
optical fibers: single-mode, polarization-maintaining, and multi-core: Springer Serious in Optical 
Sciences. 2022. 

[58]. A. Picozzi, G. Millot, S. Wabnitz. NONLINEAR OPTICS Nonlinear virtues of multimode fibre. 
Nature Photonics. 9(5):289-291, 2015. 

[59]. R. Guenard, K. Krupa, R. Dupiol, M. Fabert, A. Bendahmane, V. Kermene, et al. Kerr self-
cleaning of pulsed beam in an ytterbium doped multimode fiber. Optics Express. 25(5):4783-4792, 
2017. 

[60]. K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthelemy, G. Millot, et al. Spatial beam 
self-cleaning in multimode fibres. Nature Photonics. 11(4):237-241, 2017. 

[61]. F. O. Wu, A. U. Hassan, D. N. Christodoulides. Thermodynamic theory of highly multimoded 
nonlinear optical systems. Nature Photonics. 13(11):776-782, 2019. 

[62]. L. G. Wright, F. O. Wu, D. N. Christodoulides, F. W. Wise. Physics of highly multimode 
nonlinear optical systems. Nature Physics. 18(9):1018-1030, 2022. 

[63]. M. Ferraro, F. Mangini, Y. Leventoux, A. Tonello, M. Zitelli, T. Mansuryan, et al. Multimode 
Optical Fiber Beam-By-Beam Cleanup. Journal of Lightwave Technology. 41(10):3164-3174, 2023. 

[64]. C. Antonelli, A. Mecozzi, M. Shtaif. Raman amplification in multimode fibers with random 
mode coupling. Optics Letters. 38(8):1188-1190, 2013. 

[65]. E. N. Christensen, J. G. Koefoed, S. M. M. Friis, M. A. U. Castaneda, K. Rottwitt. Experimental 
characterization of Raman overlaps between mode-groups. Scientific Reports. 6, 2016. 

[66]. N. Andermahr, C. Fallnich. Optically induced long-period fiber gratings for guided mode 
conversion in few-mode fibers. Optics Express. 18(5):4411-4416, 2010. 

[67]. E. S. Manuylovich, V. V. Dvoyrin, S. K. Turitsyn. Fast mode decomposition in few-mode 
fibers. Nature communications. 11(1), 2020. 

[68]. G. P. Agrawal. Nonlinear Fiber Optics (Sixth Edition): Academic Press. 2019. 

[69]. H. Sakr, Y. Chen, G. T. Jasion, T. D. Bradley, J. R. Hayes, H. C. H. Mulvad, et al. Hollow core 
optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm. Nature 
communications. 11(1):1-10, 2020. 

[70]. R. W. Boyd, A. L. Gaeta, E. Giese. Nonlinear optics: Springer Handbook of Atomic, Molecular, 
and Optical Physics. 2008. 

[71]. C. Jauregui, C. Stihler, J. Limpert. Transverse mode instability. Advances in Optics and 
Photonics. 12(2):429-484, 2020. 

[72]. M. Paurisse, L. Leveque, M. Hanna, F. Druon, P. Georges. Complete measurement of fiber 
modal content by wavefront analysis. Optics Express. 20(4):4074-4084, 2012. 

[73]. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, M. Duparre. Mode analysis with a spatial light 
modulator as a correlation filter. Optics Letters. 37(13):2478-2480, 2012. 



Bibliography 

207 

[74]. R. Bruning, P. Gelszinnis, C. Schulze, D. Flamm, M. Duparre. Comparative analysis of 
numerical methods for the mode analysis of laser beams. Applied Optics. 52(32):7769-7777, 
2013. 

[75]. L. J. Huang, S. F. Guo, J. Y. Leng, H. B. Lu, P. Zhou, X. Cheng. Real-time mode decomposition 
for few-mode fiber based on numerical method. Optics Express. 23(4):4620-4629, 2015. 

[76]. Y. An, L. J. Huang, J. Li, J. Y. Leng, L. J. Yang, P. Zhou. Deep Learning-Based Real-Time Mode 
Decomposition for Multimode Fibers. Ieee Journal of Selected Topics in Quantum Electronics. 
26(4):1-6, 2020. 

[77]. F. Poletti, P. Horak. Description of ultrashort pulse propagation in multimode optical fibers. 
Journal of the Optical Society of America B-Optical Physics. 25(10):1645-1654, 2008. 

[78]. M. Guasoni. Generalized modulational instability in multimode fibers: Wideband 
multimode parametric amplification. Physical Review A. 92(3), 2015. 

[79]. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier. Beam cleanup in a self-aligned gradient-
index Brillouin cavity for high-power multimode fiber amplifiers. Optics Letters. 31(2):158-160, 
2006. 

[80]. B. Steinhausser, A. Brignon, E. Lallier, J. P. Huignard, P. Georges. High energy, single-mode, 
narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. Optics 
Express. 15(10):6464-6469, 2007. 

[81]. N. B. Terry, T. G. Alley, T. H. Russell. An explanation of SRS beam cleanup in graded-index 
fibers and the absence of SRS beam cleanup in step-index fibers. Optics Express. 15(26):17509-
17519, 2007. 

[82]. Q. L. Gao, Z. W. Lu, C. Y. Zhu, J. H. Zhang. Mechanism of beam cleanup by stimulated 
Brillouin scattering in multimode fibers. Applied Physics Express. 8(5), 2015. 

[83]. K. Krupa, A. Tonello, A. Barthelemy, T. Mansuryan, V. Couderc, G. Millot, et al. Multimode 
nonlinear fiber optics, a spatiotemporal avenue. APL Photonics. 4(11), 2019. 

[84]. A. G. Kuznetsov, S. I. Kablukov, E. V. Podivilov, S. A. Babin. Brightness enhancement and 
beam profiles in an LD-pumped graded-index fiber Raman laser. OSA Continuum. 4(3):1034-1040, 
2021. 

[85]. C. C. Fan, Y. An, T. F. Yao, H. Xiao, L. J. Huang, J. M. Xu, et al. Seeing the beam cleanup effect 
in a high-power graded-index-fiber Raman amplifier based on mode decomposition. Optics 
Letters. 46(17):4220-4223, 2021. 

[86]. Y. Z. Chen, T. F. Yao, L. J. Huang, H. Xiao, J. Y. Leng, P. Zhou. 2 kW high-efficiency Raman 
fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation. 
Optics Express. 28(3):3495-3504, 2020. 

[87]. L. G. Wright, Z. W. Liu, D. A. Nolan, M. J. Li, D. N. Christodoulides, F. W. Wise. Self-organized 
instability in graded-index multimode fibres. Nature Photonics. 10(12):771-776, 2016. 

[88]. E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, et 
al. Kerr beam self-cleaning on the LP11 mode in graded-index multimode fibers. Osa Continuum. 
2(4):1089-1096, 2019. 

[89]. E. Deliancourt, M. Fabert, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, et 
al. Wavefront shaping for optimized many-mode Kerr beam self-cleaning in graded-index 
multimode fiber. Optics Express. 27(12):17311-17321, 2019. 



Bibliography 

208 

[90]. W. T. He, S. X. Peng, F. L. Hu, Z. H. Wang, Q. B. Zhang, P. X. Lu. Cascaded Kerr beam self-
cleaning in graded-index multimode fibers. Optics and Laser Technology. 171, 2024. 

[91]. K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Shalaby, A. Bendahmane, et al. 
Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of 
Multimode Waves. Physical Review Letters. 116(18), 2016. 

[92]. Z. W. Liu, L. G. Wright, D. N. Christodoulides, F. W. Wise. Kerr self-cleaning of femtosecond-
pulsed beams in graded-index multimode fiber. Optics Letters. 41(16):3675-3678, 2016. 

[93]. M. F. E. Deliancourt, A. Tonello, K. Krupa, A. Desfarges-Berthelemot, V. Kermene, A. 
Barthelemy, D. Modotto, G. Millot, S. Wabnitz, and V. Couderc. Modal attraction on low order 
modes by Kerr effect in a graded refractive index multimode fiber. Advanced Photonics Congress, 
2018. 

[94]. A. Niang, T. Mansuryan, K. Krupa, A. Tonello, M. Fabert, P. Leproux, et al. Spatial beam self-
cleaning and supercontinuum generation with Yb-doped multimode graded-index fiber taper 
based on accelerating self-imaging and dissipative landscape. Optics Express. 27(17):24018-
24028, 2019. 

[95]. M. Fabert, M. Sapantan, K. Krupa, A. Tonello, Y. Leventoux, S. Fevrier, et al. Coherent 
combining of self-cleaned multimode beams. Scientific Reports. 10(1), 2020. 

[96]. F. Mangini, M. Gervaziev, M. Ferraro, D. S. Kharenko, M. Zitelli, Y. Sun, et al. Statistical 
mechanics of beam self-cleaning in GRIN multimode optical fibers. Optics Express. 30(7):10850-
10865, 2022. 

[97]. J. Laegsgaard. Spatial beam cleanup by pure Kerr processes in multimode fibers. Optics 
Letters. 43(11):2700-2703, 2018. 

[98]. M. Ferraro, F. Mangini, M. Zitelli, S. Wabnitz. On spatial beam self-cleaning from the 
perspective of optical wave thermalization in multimode graded-index fibers. Advances in 
Physics-X. 8(1), 2023. 

[99]. Z. L. Chen, J. Hou, P. Zhou, Z. F. Jiang. Mutual injection-locking and coherent combining of 
two individual fiber lasers. IEEE Journal of Quantum Electronics. 44(5-6):515-519, 2008. 

[100]. J. Q. Cao, Q. S. Lu, J. Hou, X. J. Xu. Self-organization of arrays of two mutually-injected fiber 
lasers: theoretical investigation. Optics Express. 17(9):7694-7701, 2009. 

[101]. J. Q. Cao, Q. S. Lu, J. Hou, X. J. Xu. Dynamical model for self-organized fiber laser arrays. 
Optics Express. 17(7):5402-5413, 2009. 

[102]. P. L. Cheo, A. Liu, G. G. King. A high-brightness laser beam from a phase-locked multicore 
Yb-doped fiber laser array. Ieee Photonics Technology Letters. 13(5):439-441, 2001. 

[103]. E. J. Bochove, P. K. Cheo, G. G. King. Self-organization in a multicore fiber laser array. Optics 
Letters. 28(14):1200-1202, 2003. 

[104]. Y. M. Huo, P. K. Cheo, G. G. King. Fundamental mode operation of a 19-core phase-locked 
Yb-doped fiber amplifier. Optics Express. 12(25):6230-6239, 2004. 

[105]. I. S. Chekhovskoy, M. A. Sorokina, A. M. Rubenchik, M. P. Fedoruk, S. K. Turitsyn. On 
Demand Spatial Beam Self-Focusing in Hexagonal Multicore Fiber. IEEE Photonics Journal. 10(1), 
2018. 

[106]. A. V. Andrianov, N. A. Kalinin, M. Y. Koptev, O. N. Egorova, A. V. Kim, A. G. Litvak. High-
energy femtosecond pulse shaping, compression, and contrast enhancement using multicore 
fiber. Optics Letters. 44(2):303-306, 2019. 



Bibliography 

209 

[107]. H. Tunnermann, A. Shirakawa. Self-focusing in multicore fibers. Optics Express. 
23(3):2436-2445, 2015. 

[108]. A. M. Rubenchik, I. S. Chekhovskoy, M. P. Fedoruk, O. V. Shtyrina, S. K. Turitsyn. Nonlinear 
pulse combining and pulse compression in multi-core fibers. Optics Letters. 40(5):721-724, 2015. 

[109]. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, M. Haelterman. Polarization and modal 
attractors in conservative counterpropagating four-wave interaction. Europhysics Letters. 
70(1):88-94, 2005. 

[110]. S. Pitois, G. Millot, S. Wabnitz. Nonlinear polarization dynamics of counterpropagating 
waves in an isotropic optical fiber: theory and experiments. Journal of the Optical Society of 
America B-Optical Physics. 18(4):432-443, 2001. 

[111]. P. Y. Bony, M. Guasoni, P. Morin, D. Sugny, A. Picozzi, H. R. Jauslin, et al. Temporal spying 
and concealing process in fibre-optic data transmission systems through polarization bypass. 
Nature communications. 5, 2014. 

[112]. G. Millot, S. Wabnitz. Nonlinear polarization effects in optical fibers: polarization attraction 
and modulation instability [Invited]. Journal of the Optical Society of America B-Optical Physics. 
31(11):2754-2768, 2014. 

[113]. S. Pitois, J. Fatome, G. Millot. Polarization attraction using counterpropagating waves in 
optical fiber at telecommunication wavelengths. Optics Express. 16(9):6646-6651, 2008. 

[114]. J. Fatome, S. Pitois, P. Morin, G. Millot. Observation of light-by-light polarization control and 
stabilization in optical fibre for telecommunication applications. Optics Express. 18(15):15311-
15317, 2010. 

[115]. V. V. Kozlov, J. Nuno, S. Wabnitz. Theory of lossless polarization attraction in 
telecommunication fibers. Journal of the Optical Society of America B-Optical Physics. 28(1):100-
108, 2011. 

[116]. J. Fatome, P. Morin, S. Pitois, G. Millot. Light-by-Light Polarization Control of 10-Gb/s RZ 
and NRZ Telecommunication Signals. IEEE Journal of Selected Topics in Quantum Electronics. 
18(2):621-628, 2012. 

[117]. J. Fatome, S. Pitois, P. Morin, E. Assemat, D. Sugny, A. Picozzi, et al. A universal optical all-
fiber Omnipolarizer. Scientific Reports. 2:938, 2012. 

[118]. M. Guasoni, P. Morin, P. Y. Bony, S. Wabnitz, J. Fatome. [INVITED] Self-induced polarization 
tracking, tunneling effect and modal attraction in optical fiber. Optics and Laser Technology. 
80:247-259, 2016. 

[119]. M. Guasoni, V. V. Kozlov, S. Wabnitz. Theory of polarization attraction in parametric 
amplifiers based on telecommunication fibers. Journal of the Optical Society of America B-
Optical Physics. 29(10):2710-2720, 2012. 

[120]. M. Guasoni, V. V. Kozlov, S. Wabnitz. Theory of modal attraction in bimodal birefringent 
optical fibers. Optics Letters. 38(12):2029-2031, 2013. 

[121]. T. Hellwig, K. Sparenberg, C. Fallnich. Analytical model for transverse mode conversion at 
all-optically induced, transient long-period gratings: from continuous-wave to ultrafast. Applied 
Physics B-Lasers and Optics. 122(9), 2016. 

[122]. T. Hellwig, T. Walbaum, C. Fallnich. Optically induced mode conversion in graded-index 
fibers using ultra-short laser pulses. Applied Physics B-Lasers and Optics. 112(4):499-505, 2013. 



Bibliography 

210 

[123]. T. Hellwig, M. Schnack, T. Walbaum, S. Dobner, C. Fallnich. Experimental realization of 
femtosecond transverse mode conversion using optically induced transient long-period gratings. 
Optics Express. 22(21):24951-24958, 2014. 

[124]. T. Walbaum, C. Fallnich. Theoretical analysis of transverse mode conversion using 
transient long-period gratings induced by ultrashort pulses in optical fibers. Applied Physics B-
Lasers and Optics. 115(2):225-235, 2014. 

[125]. M. Schnack, T. Hellwig, M. Brinkmann, C. Fallnich. Ultrafast two-color all-optical transverse 
mode conversion in a graded-index fiber. Optics Letters. 40(20):4675-4678, 2015. 

[126]. G. M. Fernandes, A. M. Rocha, M. Facao. Mode switching using optically induced long-
period gratings: a theoretical analysis. Optics Express. 29(10):14601-14614, 2021. 

[127]. G. M. Fernandes, A. M. Rocha, M. Facao. Core Switch Using Optically Induced Long-Period 
Gratings. Photonics. 9(11), 2022. 

[128]. A. Hofstrand, P. Jakobsen, J. V. Moloney. Bidirectional shooting method for extreme 
nonlinear optics. Physical Review A. 100(5), 2019. 

[129]. N. A. Kalinin, E. A. Anashkina, O. N. Egorova, S. G. Zhuravlev, S. L. Semjonov, A. V. Kim, et 
al. Controlled Excitation of Supermodes in a Multicore Fiber with a 5 x 5 Square Array of Strongly 
Coupled Cores. Photonics. 8(8), 2021. 

[130]. K. H. Ji, I. Davidson, J. Sahu, D. J. Richardson, S. Wabnitz, M. Guasoni. Mode attraction, 
rejection and control in nonlinear multimode optics. Nature Communications. 14(1), 2023. 

[131]. L. Huo, R. X. Wang, M. Tang, Q. Wu, S. N. Fu, D. M. Liu. Reconfigurable Inter-Core Signal 
Switching Within Multicore Fibers Based on Long-Period Gratings. Journal of Lightwave 
Technology. 37(24):6025-6032, 2019. 

[132]. C. Deakin, M. Enrico, N. Parsons, G. Zervas. Design and Analysis of Beam Steering 
Multicore Fiber Optical Switches. Journal of Lightwave Technology. 37(9):1954-1963, 2019. 

[133]. C. Melo, D. Arroyo, E. S. Gómez, S. P. Walborn, G. Lima, M. Figueroa, et al. A new 
architecture for high speed core-selective switch for multicore fibers. arXiv preprint 
arXiv:2411.17641. 2024. 

[134]. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. S. Smith. Femtosecond Switching in 
a Dual-Core-Fiber Nonlinear Coupler. Optics Letters. 13(10):904-906, 1988. 

[135]. Y. Yan, J. Toulouse. Nonlinear inter-core coupling in triple-core photonic crystal fibers. 
Optics Express. 17(22):20272-20281, 2009. 

[136]. H. Pourbeyram, E. Nazemosadat, A. Mafi. Detailed investigation of intermodal four-wave 
mixing in SMF-28: blue-red generation from green. Optics Express. 23(11):14487-14500, 2015. 

[137]. M. Kwasny, P. Mergo, M. Napierala, K. Markiewicz, U. A. Laudyn. An Efficient Method for the 
Intermodal Four-Wave Mixing Process. Materials. 15(13), 2022. 

[138]. J. Demas, G. Prabhakar, T. He, S. Ramachandran. Broadband Wideband Parametric Gain 
via Intermodal Four-Wave Mixing in Optical Fiber. 2017 Conference on Lasers and Electro-Optics 
(CLEO). 2017. 

[139]. S. Perret, G. Fanjoux, L. Bigot, J. Fatome, G. Millot, J. M. Dudley, et al. Supercontinuum 
generation by intermodal four-wave mixing in a step-index few-mode fibre. APL Photonics. 4(2), 
2019. 



Bibliography 

211 

[140]. R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, et al. 
Experimental Investigation of Inter-Modal Four-Wave Mixing in Few-Mode Fibers. Ieee Photonics 
Technology Letters. 25(6):539-542, 2013. 

[141]. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, et al. Inter-
modal four-wave mixing study in a two-mode fiber. Optics Express. 24(26):30338-30349, 2016. 

[142]. O. F. Anjum, M. Guasoni, P. Horak, Y. M. Jung, P. Petropoulos, D. J. Richardson, et al. 
Polarization-Insensitive Four-Wave-Mixing-Based Wavelength Conversion in Few-Mode Optical 
Fibers. Journal of Lightwave Technology. 36(17):3678-3683, 2018. 

[143]. J. H. Yuan, Z. Kang, F. Li, G. Y. Zhou, X. Z. Sang, Q. Wu, et al. Polarization-dependent 
intermodal four-wave mixing in a birefringent multimode photonic crystal fiber. Optics Letters. 
42(9):1644-1647, 2017. 

[144]. D. Wu, L. Shen, H. N. Ren, M. Huang, C. Lacava, J. Campling, et al. Four-Wave Mixing-Based 
Wavelength Conversion and Parametric Amplification in Submicron Silicon Core Fibers. Ieee 
Journal of Selected Topics in Quantum Electronics. 27(2), 2021. 

[145]. S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, et al. Intermodal 
four-wave mixing in silicon waveguides. Photonics Research. 6(8):805-814, 2018. 

[146]. T. L. Courtney, C. Chester, C. Keyser. Optical parametric generation in liquid- and gas-filled 
hollow core fibers. Optical Waveguide and Laser Sensors. 11405, 2020. 

[147]. A. D. Szabó, V. Ribeiro, C. B. Gaur, A. A. I. Ali, A. Mussot, Y. Quiquempois, et al. Dual-
Polarization C plus L-Band Wavelength Conversion in a Twin-Core Highly Nonlinear Fibre. 2021 
Optical Fiber Communications Conference and Exposition (OFC). 2021. 

[148]. V. Ribeiro, A. D. Szabo, A. M. Rocha, C. B. Gaur, A. A. I. Ali, Y. Quiquempois, et al. Parametric 
Amplification and Wavelength Conversion in Dual-Core Highly Nonlinear Fibers. Journal of 
Lightwave Technology. 40(17):6013-6020, 2022. 

[149]. J. H. Li, K. S. Chiang, K. W. Chow. Modulation instabilities in two-core optical fibers. Journal 
of the Optical Society of America B-Optical Physics. 28(7):1693-1701, 2011. 

[150]. V. Ribeiro, M. Karlsson, P. Andrekson. Parametric amplification with a dual-core fiber. 
Optics Express. 25(6):6234-6243, 2017. 

[151]. J. H. Li, T. T. Sun, Y. Q. Ma, Y. Y. Chen, Z. L. Cao, F. L. Xian. The effects of fourth-order 
dispersion on modulation instabilities in two-core optical fibers with asymmetric CW state. 
Physica Scripta. 95(11), 2020. 

[152]. M. J. Shi, V. Ribeiro, A. M. Perego. Parametric amplification based on intermodal four-wave 
mixing between different supermodes in coupled-core fibers. Optics Express. 31(6):9760-9768, 
2023. 

[153]. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, K. Nakajima. Fiber Twisting- 
and Bending-Induced Adiabatic/Nonadiabatic Super-Mode Transition in Coupled Multicore Fiber. 
Journal of Lightwave Technology. 34(4):1228-1237, 2016. 

[154]. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, K. Nakajima. Strongly-coupled 
multi-core fiber and its optical characteristics for MIMO transmission systems. Optical Fiber 
Technology. 35:8-18, 2017. 

[155]. T. Hayashi, T. Sakamoto, Y. Yamada, R. Ryf, R. J. Essiambre, N. Fontaine, et al. Randomly-
Coupled Multi-Core Fiber Technology. Proceedings of the IEEE. 110(11):1786-1803, 2022. 

[156]. P. Russell. Photonic crystal fibers. Science. 299(5605):358-362, 2003. 



Bibliography 

212 

[157]. CAILABS. https://www.cailabs.com/en/products/proteus. 2021. 

[158]. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, et al. Terabit free-space data 
transmission employing orbital angular momentum multiplexing. Nature Photonics. 6(7):488-496, 
2012. 

[159]. M. Padgett, R. Bowman. Tweezers with a twist. Nature Photonics. 5(6):343-348, 2011. 

[160]. Y. Li, L. Yu, Y. X. Zhang. Influence of anisotropic turbulence on the orbital angular 
momentum modes of Hermite-Gaussian vortex beam in the ocean. Optics Express. 
25(11):12203-12215, 2017. 

[161]. R. Chen, K. Agarwal, C. J. R. Sheppard, X. D. Chen. Imaging using cylindrical vector beams 
in a high-numerical-aperture microscopy system. Optics Letters. 38(16):3111-3114, 2013. 

[162]. G. Bautista, J. P. Kakko, V. Dhaka, X. R. Zang, L. Karvonen, H. Jiang, et al. Nonlinear 
microscopy using cylindrical vector beams: applications to three-dimensional imaging of 
nanostructures. Optics Express. 25(11):12463-12468, 2017. 

[163]. G. Milione, H. I. Sztul, D. A. Nolan, R. R. Alfano. Higher-Order Poincare Sphere, Stokes 
Parameters, and the Angular Momentum of Light. Physical Review Letters. 107(5), 2011. 

[164]. Y. J. Shen, X. J. Wang, Z. W. Xie, C. J. Min, X. Fu, Q. Liu, et al. Optical vortices 30 years on: 
OAM manipulation from topological charge to multiple singularities. Light-Science & Applications. 
8, 2019. 

[165]. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jacket. Efficient extracavity generation of 
radially and azimuthally polarized beams. Optics Letters. 32(11):1468-1470, 2007. 

[166]. B. Piccirillo, V. D'Ambrosio, S. Slussarenko, L. Marrucci, E. Santamato. Photon spin-to-
orbital angular momentum conversion via an electrically tunable q-plate. Applied Physics Letters. 
97(24), 2010. 

[167]. M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus. Radially polarized optical vortex 
converter created by femtosecond laser nanostructuring of glass. Applied Physics Letters. 98(20), 
2011. 

[168]. S. Z. Chen, X. X. Zhou, Y. C. Liu, X. H. Ling, H. L. Luo, S. C. Wen. Generation of arbitrary 
cylindrical vector beams on the higher order Poincare sphere. Optics Letters. 39(18):5274-5276, 
2014. 

[169]. H. Sroor, Y. W. Huang, B. Sephton, D. Naidoo, A. Valles, V. Ginis, et al. Generation of 
arbitrary Higher-Order Poincare beams from a visible metasurface laser. Laser Resonators, 
Microresonators, and Beam Control Xxii. 11266, 2020. 

[170]. I. A. Litvin, S. Ngcobo, D. Naidoo, K. Ait-Ameur, A. Forbes. Doughnut laser beam as an 
incoherent superposition of two petal beams. Optics Letters. 39(3):704-707, 2014. 

[171]. H. L. Li, D. B. Phillips, X. Y. Wang, Y. L. D. Ho, L. F. Chen, X. Q. Zhou, et al. Orbital angular 
momentum vertical-cavity surface-emitting lasers. Optica. 2(6):547-552, 2015. 

[172]. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, et al. Controlled 
generation of higher-order Poincare sphere beams from a laser. Nature Photonics. 10(5):327-+, 
2016. 

[173]. D. Lin, N. Baktash, S. U. Alam, D. J. Richardson. 106 W, picosecond Yb-doped fiber MOPA 
system with a radially polarized output beam. Optics Letters. 43(20):4957-4960, 2018. 

https://www.cailabs.com/en/products/proteus


Bibliography 

213 

[174]. D. Zhi, T. Y. Hou, P. F. Ma, Y. X. Ma, P. Zhou, R. M. Tao, et al. Comprehensive investigation 
on producing high-power orbital angular momentum beams by coherent combining technology. 
High Power Laser Science and Engineering. 7, 2019. 

[175]. H. X. Chang, Q. Chang, J. C. Xi, T. Y. Hou, R. T. Su, P. F. Ma, et al. First experimental 
demonstration of coherent beam combining of more than 100 beams. Photonics Research. 
8(12):1943-1948, 2020. 

[176]. T. Y. Hou, Y. An, Q. Chang, P. F. Ma, J. Li, L. J. Huang, et al. Deep-learning-assisted, two-
stage phase control method for high-power mode-programmable orbital angular momentum 
beam generation. Photonics Research. 8(5):715-722, 2020. 

[177]. J. Lhermite, E. Suran, V. Kermene, F. Louradour, A. Desfarges-Berthelemot, A. Barthelemy. 
Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light 
modulator. Optics Express. 18(5):4783-4789, 2010. 

[178]. A. El Sayed, S. Pilz, J. Scheuner, H. Najafi, T. Feurer, V. Romano. Properties of Yb doped 
silica fibers with different Al and P co-dopants concentrations produced by the Sol-Gel based 
granulated silica method. Micro-Structured and Specialty Optical Fibres V. 10681, 2018. 

[179]. S. Unger, A. Schwuchow, J. Dellith, J. Kirchhof. Optical properties of ytterbium/aluminium 
doped silica glasses. Optical Materials Express. 10(4):907-925, 2020. 

[180]. ALGLIB. https://www.alglib.net/. 

[181]. B. Ndagano, R. Bruning, M. McLaren, M. Duparre, A. Forbes. Fiber propagation of vector 
modes. Optics Express. 23(13):17330-17336, 2015. 

[182]. D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, et al. Radially 
and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal 
shaping. Optics Letters. 42(9):1740-1743, 2017. 

[183]. M. Lyu, Z. Q. Lin, G. W. Li, G. H. Situ. Fast modal decomposition for optical fibers using 
digital holography. Scientific Reports. 7, 2017. 

 

https://www.alglib.net/

	Abstract
	Table of Contents
	Table of Tables
	Table of Figures
	Research Thesis: Declaration of Authorship
	Acknowledgements
	Definitions and Abbreviations
	List of symbols
	Chapter 1 Introduction
	1.1 Multimode and multicore fibres
	1.2 Recent progresses on applications of MMFs and MCFs
	1.2.1 Short- and long-distance communications with MMFs and MCFs
	1.2.2 Optical sensing with MMFs and MCFs
	1.2.3 Image transmission and imaging through MMFs and MCFs
	1.2.4 Multimode/Multicore fibre lasers and amplifiers
	1.2.5 Beam shaping of multimode and multicore fibre lasers
	1.2.6 Multimodal nonlinear effects in MMFs and MCFs

	1.3 Motivation and key achievements
	1.4 Thesis outline

	Chapter 2 Theory and review of nonlinear spatial control processes in multimode systems
	2.1 Introduction
	2.2 Optical fibres and fibre modes
	2.2.1 Optical fibres
	2.2.2 Fibre modes and mode decomposition

	2.3 Nonlinear processes in multimode laser beam propagation
	2.3.1 Multimode nonlinear Schrödinger equations
	2.3.2 Intramodal and intermodal nonlinear effects

	2.4 Review of nonlinear spatial control processes in multimode systems
	2.4.1 Spatial beam clean-up through dissipative nonlinear process
	2.4.2 Kerr beam self-cleaning in highly multimode fibres
	2.4.3 Beam self-organization in multimode gain media
	2.4.4 Polarization and mode attractors in counter-propagating beams
	2.4.5 Optically induced long period gratings in multimode fibres

	2.5 Conclusions

	Chapter 3 Mode rejection and control in multimode and multicore fibres
	3.1 Introduction
	3.2 Mode rejection dynamics
	3.2.1 Theory
	3.2.2 Simulations

	3.3 Rejection of LP modes in multimode fibres
	3.3.1 Experimental setup and mode decomposition of multimode fibres
	3.3.1.1 Experimental setup
	3.3.1.2 Mode decomposition of LP modes

	3.3.2 Mode rejection in polarization-maintaining fibres
	3.3.2.1 Mode rejection in PM1550-xp
	3.3.2.2 Mode rejection in PMHN1
	3.3.2.3 Mode rejection in PM2000

	3.3.3 Mode rejection in isotropic fibres
	3.3.4 Conclusion on the rejection of LP modes in multimode fibres

	3.4 Rejection of supermodes in multicore fibres
	3.4.1 Homemade multicore fibres and experimental setup
	3.4.2 Characterization and mode decomposition of MCFs
	3.4.3 Mode rejection in dual-core fibres
	3.4.3.1 Impact of control beams
	3.4.3.2 Variation of forward signals
	3.4.3.3 Robustness of mode rejection

	3.4.4 Mode rejection in tri-core fibres
	3.4.5 Mode conversion dynamics of the BCB

	3.5 From mode rejection to mode control
	3.6 Conclusions

	Chapter 4 Counter-propagating nonlinear gratings in multimode and multicore fibres
	4.1 Introduction
	4.2 Dynamics of counter-propagating nonlinear gratings
	4.2.1 Theory
	4.2.2 Simulations
	4.2.2.1 Mode switching driven by counter-propagating nonlinear gratings
	4.2.2.2 All-optical power switching in multicore fibres
	4.2.2.3 Comparison between linear and nonlinear probe beam regime


	4.3 All-optical switching of LP modes in multimode fibres
	4.3.1 Experimental setup
	4.3.2 Mode switching in PM1550-xp and PMHN1

	4.4 Supermode switching and power switching in multicore fibres
	4.4.1 Supermode switching in DCF and TCF
	4.4.2 Power switching between MCF cores

	4.5 Applications: conceptual devices for all-optical light-by-light manipulation
	4.5.1 0-100% All-optically tuneable mode converters
	4.5.2 All-optically ultrafast tuneable power splitters, combiners, and switches
	4.5.3 All-optical phase detection at terminal ends

	4.6 Conclusions

	Chapter 5 Four-wave mixing and wavelength conversion in multicore fibres
	5.1 Introduction
	5.2 Mechanisms of four-wave mixing in optical fibres
	5.2.1 Phase matching conditions
	5.2.2 Theoretical estimation of FWM gain peak and bandwidth
	5.2.3 Influence of various modes and frequencies
	5.2.4 Influence of Raman effect

	5.3 Estimations of four-wave mixing in multicore fibres
	5.3.1 Fibre design and phase-matching conditions
	5.3.2 Simulations and the impact of Raman scattering

	5.4 FWM and wavelength conversion in homemade multicore fibres
	5.4.1 Experimental setup and homemade MCFs
	5.4.2 Wavelength and supermode conversion in DCF
	5.4.3 Wavelength and supermode conversion in TCF
	5.4.4 Wavelength conversion in 4-core and 7-core fibres

	5.5 Conclusions

	Chapter 6 Reconfigurable spatial beam shaping from a multicore fibre amplifier
	6.1 Introduction
	6.2 Principle and system design
	6.2.1 Coherent beam combination of multicore fibres
	6.2.2 Yb-doped 6-core fibre
	6.2.3 Experimental setup
	6.2.4 Characterization of the MCF amplifier

	6.3 Controlled generation of linear-polarized modes
	6.3.1 Polarization and phase control
	6.3.2 Generation of the LP modes

	6.4 Controlled generation of higher-order Poincaré sphere modes
	6.4.1 Generation of cylindrical vector modes
	6.4.2 Generation of OAM beams
	6.4.3 Factors affecting coherent beam combination efficiency and beam shape

	6.5 Conclusions

	Chapter 7  Conclusions and future work
	7.1 Conclusions
	7.2 Future work

	Appendix A Mode decomposition in MCFs based on other methods
	A.1 Mode decomposition in MCFs based on off-axis holography method
	A.2 Mode decomposition of MCFs based on matrix formalism method
	A.3 Details of Comsol simulations for the fibres used in this thesis

	List of Publications
	Bibliography

