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Generation of classical non-Gaussian states by squeezing a thermal state into
non-linear motion of levitated optomechanics
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We report on an experiment achieving the dynamical generation of non-Gaussian states of motion
of a levitated optomechanical system. We access intrinsic Duffing-like non-linearities by thermal
squeezing an oscillator’s state of motion through rapidly switching the frequency of its trap. We
characterize the experimental non-Gaussian state against expectations from simulations and give
prospects for the emergence of genuine non-classical features.

Introduction — Macroscopic quantum states are regarded
as ideal platforms to test for the existence of intrinsic
limitations in quantum formalism [I] and the effects of
gravity in quantum systems [2]. While various platforms
have been considered for generating such states [3], levi-
tated systems have emerged as a front-runner in light of
the possibility to achieve remarkable environmental isola-
tion [4] and embed control techniques in their dynamics.
Engineering non-classical states of levitated mechanical
systems is achieved by inducing non-linear dynamics to
sufficiently coherent initial states of motion [5, [6]. Ac-
cessing non-linearity by motional squeezing — sometimes
assisted by a dark trap — can be instrumental to prepar-
ing non-classical states [7]. The fundamental building
block of such operations, namely the squeezing of thermal
states of motion of levitated particles, has been demon-
strated by rapid (i.e. faster than the oscillation fre-
quency) switching between different trap frequencies [§],
as theoretically proposed by Janszky et al. [9], or using
cavities [10} [I1]. Such switches can be treated as pulses
applied to the particle’s spring constant and have been
used to drive a classical harmonic oscillator [12]. Re-
peated gentle squeezing pulses applied to the thermal mo-
tional state’s momentum can increase the particle’s os-
cillation amplitude, allowing it to explore the non-linear
flat extremities of the trapping potential while remain-
ing trapped. Correspondingly, the dynamics can pick up
Duffing-like non-linearities, as already demonstrated [13].
This scheme dynamically shapes the potential landscape
creating bi-stability. Classical effects have been discussed
before, applied in fields such as memory elements [14],
signal amplification via stochastic resonance [I5], non-
equilibrium physics [I6], nonlinear dynamics, synchro-
nization [I7], and active escape dynamics [I8]. It is also
predicted to enhance force sensing capabilities of levi-
tated mechanics [19).

In this paper, we experimentally demonstrate how a se-

quence of repeated pulses can be used to dynamically
produce a significantly non-Gaussian state of motion by
accessing intrinsic trapping-potential non-linearities and
controlling their effects. We show the time-trace, in phase
space, of the motional state resulting from the applica-
tion of our protocol to an initial thermal state, demon-
strating the emergence of non-trivial transient bimodal
distributions whose relaxation dynamics we character-
ize experimentally. Moreover, we provide a quantitative
perspective for the emergence of genuine quantum fea-
tures of motion from a sufficiently coherent initial state
of the particle [20H24]. We show how this would result in
negative phase-space distributions, thus unambiguously
demonstrating non-classicality, a key feature for quantum
information processing and fundamental tests of quan-
tum mechanics.

Theoretical model — We refer to the setting illustrated
in Fig. [TA, which depicts a nanoparticle trapped in an
optical tweezer in vacuum. In general, the particle mo-
tion occurs in all three spatial directions (z,y,z), in-
cluding cross coupling between orthogonal directions of
motion [I7] and possibly involving rotational motion as
well. However, our analysis is focused only at the x mo-
tion. We model the stochastically driven and damped
oscillatory motion of a levitated particle in a vacuum by
a one-dimensional Langevin-type equation for the time-
dependent position z(t) of the centre-of-mass motion of
the particle of mass m in the trap

F(z) n Frtuct (t)

m

Z(t) = —Tpa(t) + S(¢) , (1)

where, in the regime dominated by the background gas
pressure P, the damping rate can be written as [25]
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FIG. 1. Panel A: Schematic of experimental setup. A silica nanoparticle is trapped by an optical tweezers in vacuum. An
electro-optical modulator (EOM) controlled by a pulse generator modulates the power of the laser. The oscilloscope receives
the signal from the particle. Its acquisition is triggered by a synchronous signal from a pulse generator. Panel B: Experimental
time evolution of the standard deviation of the particle position as measured by the photodiode (Blue/red line). Green line is
the intensity modulation function S(t), see Eq.([I), applied to the trapping laser beam via the EOM. Panel C: Experimental
time-trace of the phase-space distribution of an initial thermal state of motion of the particle subjected to our protocol. The
first 12 snapshots of distribution are indicated as black dots in panel B. The last line depicts the thermalization occurring at a

longer time scale.

gas molecules at room temperature, while r and m is the
radius and mass of the trapped silica particle. The second
term in the right-hand side of Eq. is the position-
dependent restoring force originating from the interac-
tion with a Gaussian light beam in the Rayleigh regime.
In the large oscillation-amplitude limit, when the non-
linearity becomes effective, this force is given by
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with n,, and n, being the refractive index of the medium
and of the silica particle (here assumed to take the nom-
inal values of 1 and 1.44, respectively), n, = n,/n,, the
relative refractive index, ¢ the speed of light, and I the
intensity of the trapping laser beam. Eq. gives rise
to a nonlinear force directed along the gradient of the
optical potential U(x) such that F(z) = —9,U(z) [26-
28], which we control by modulating in time the power
of the trapping laser according to the function S(t) in
Eq. and as illustrated in Fig. [8]. The last term
in the right-hand side of Eq. describes the driving
of the harmonic motion by random background gas colli-
sions, which are modelled as the time-dependent stochas-
tic force Friuet(t) = V2 kpTn(t). Here, kp is the
Boltzmann’s constant and 7" the temperature of the gas
surrounding the oscillating particle [29], while n(¢) is a

zero-mean, delta-correlated Gaussian white noise such
that (n(t)n(t')) = d(t —t’). We have integrated Eq.
numerically using the Euler-Maruyama method [30] and
sampling the initial values of position and momentum
of the particle from a thermal state. The results of our
analysis are shown as the phase-space probability distri-
butions in Fig. PJA-C showing that our one-dimensional
description of the dynamics is sufficient to produce the
main features of experimental data.

Ezperiment — The experimental setup is illustrated in
Fig. [JA. We use a parabolic mirror to focus light at the
wavelength of 1550 nm to a diffraction-limited spot of
the diameter of 1um. A pulse generator (Berkeley BNC
525) and an electro-optical modulator (EOM, Jenoptik
AM1550b) are used to modulate the laser intensity as
a square-wave with high and low levels of 80 mW and
57mW respectively, to trap a silica particle of close to
spherical shape (460 nm diameter) from a spray in the
focal point. We monitor the centre-of-mass motion of the
trapped particle by detecting a small fraction of Rayleigh
back-scattered light from the trapping field with a single
photodiode detector (see Ref. [31] for technical details).
An iris is mounted on top of the parabola to suppress
unwanted light reflected from the flat edges of the mirror
and make sure that all the detected signal comes from the
particle only. This guarantees the reliable assessment of



the particle’s center-of-mass position with only negligible
distortions by the bandpass filtering process, as analysed
in more detail in the Supplemental Material (SM) Sec. A.
Calibration of motional amplitudes and the mass of the
trapped particle was done assuming perfect equilibrium
of the particle with the background gas at 5 mbar by fit-
ting a Lorentzian to the trap frequency peak [31].

To prepare bimodal states of motion the pressure is fur-
ther reduced to 1 x 1072 mbar and the particle resonance
frequency w/2m = T77kHz is evaluated from the spec-
trum of the signal at the high-power level. Next, thermal
squeezing is achieved modulating the scale of the restor-
ing force term of Eq. (1)) as S(¢) with

S(t) = {(l)fn
(4)

Here t' = ¢ mod (Tjow + Thign). Each pulse is timed
so that the particle completes a quarter of an oscilla-
tion at the high-power level, Thign = 7/2w = 3.25 s,
and another quarter of an oscillation at the low-power
level, T = /2wy S = 3.48 us. The duration at the
low-power level is slightly longer due to the re-scaling of
dynamics by the relative decrease of power. One pulse

for t' =0 or t’ € [Tiow: Tiow + Thigh,
for t' € [0, Tiow].
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FIG. 2. Comparisons between simulations (red lines) and
experimental reconstructions (blue lines) of the phase-space
distributions associated with paradigmatic states of motion of
the levitated particle. Panels A and D: Initial thermal state;
Panels B and E: initial non-Gaussian bimodal state; Panel C
and F: The initial distribution is that of the motional state
achieved by stopping the dynamical protocol. Such state will
eventually relax back to a thermal configuration. Panels G-I
show the projection of the phase-space distribution, with p,
the position probability function for the three initial states
described above.

sequence consists of a train of 55 pulses as constructed on
the pulse generator to prepare the bimodal state. Data
acquisition by the oscilloscope was synchronised with the
pulse generator and 689 pulse sequences are acquired
with 518 ms between successive sequences which is about
25 times longer than the extracted 20 ms relaxation time,
in good agreement with Eq.7 allowing the particle to
relax back to the thermal state between consecutive runs.
We experimentally characterize a Duffing non-linearity
¢ = —0.1 um~2 for our parabolic mirror trapping poten-
tial, U(x) = w?x? + w2z, as described in more detail
in Ref. [13].

Results and Discussion — The trap non-linearity gener-
ating the non-Gaussian state is small in typical exper-
imental conditions [25]. Taylor expansion of the gra-
dient force up to third order shows that the inverse of
the Duffing parameter is proportional to the square of
the beam’s waist. Considering it as a measure for the
range of nonlinearity, we note that it is larger than the
spread of the thermal state oipermai = \/ksT/k, where
k is the optomechanical spring constant and T' the mo-
tional temperature. This means that the particle hardly
visits the nonlinear part of the potential. By squashing
the motional state, we induce sufficient elongation such
that the vertexes of the state are eventually extended to
nonlinear parts of the potential well and the non-linear
effect dominates the dynamics. In these regions, the par-
ticle’s dynamics is slower due to a softer effective spring
constant making the tip of the ellipse lag behind com-
pared to the faster harmonic behaviour near the centre.
In the course of sufficiently many weak pulses, the state
changes its shape, steadily transforming it from the ini-
tial circular thermal Gaussian to a squashed ellipsoidal
and eventually to curved spiral where probability mass
starts to accumulate, forming a multi-modal state. We
emphasize that in general at very large motions a self-
homodyne detection might become substantially nonlin-
ear, potentially affecting the phase-space distributions.
Possibilities to avoid these effects is to cool the motion
to ensure the homodyne detection stays linear [I4] and to
benchmark homodyne detection against heterodyne mea-
surements to rule out non-linearities in the detection [32].
To quantify the non-Gaussianity of the resulting sim-
ulated and experimentally obtained states, we adopt a
non-dimensional measure of bi-modality [33],
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or

Ap 1 — pal, (5)

where 11 o are the positions of the peaks of the distri-

bution and o7 = /327, 02 is defined in terms of the
individual peak’s variances o1 [cf. Fig. 2H]. By curve
fitting a double Gaussian function to our experimental
and simulated data we find the values of AR? = 3.95
and A%i™ = 3.32 in good agreement with 12% deviation

which we identify to be originated by a small difference



in the shape of the real trapping potential from the sim-
ulated one. The influence of the potential’s non-linearity
is understood to be negligible in the linear section near
the trap centre and to become dominating towards the
asymptotically flat edges of the optical trap. Despite
knowing general features of the non-linearity of the po-
tential well, its exact profile is not experimentally known.
As such, simulations assuming an ideal sharp beam pro-
file were found to deviate more from the experimental
results. We also find that the experimental thermal state
has some outlier points that overextend the tails of Gaus-
sian distribution, which are not included in the simula-
tions and contribute to a softening of the potential and a
larger value for A7”. We explain outliers by a build-up
of amplitude as a net effect from multiple collisions by
background gas particles or other perturbations affecting
the trap.
Perspectives for quantum experiment — To investigate
nonlinear squeezing effects provided by the protocol for
a quantum system, we consider the system Hamiltonian
2
H(t) = 2= — S(t)Uge™>/3, (6)

© 2m
where Z and p, are the position and momentum oper-
ators. The potential of the system, represented by the
second term, is an inverted Gaussian as that used in the
classical simulation with its gradient corresponding to
Eq. . Here, Uy sets the energy scale (the depth) of the
potential and S(t) is the control given by Eq. . We as-
sume that the experiment is performed in a low-pressure,
cryogenic environment, such that it is possible to perform
scattering-free experiment runs [34]. In this regime, the
dynamics of the system follows the von-Neumann master
equation, p(t) = —L[H,(t), p(t)] — A[#, [2, p]], where the
second term describes the decoherence due to photon re-
coils [35].

For a typical opto-levitating experiment, the size of the
quantum system is way smaller than that of the trap-
ping potential. Therefore, the challenge of this quan-
tum experiment is to expand the quantum system to
the spread (FWHM) of the potential approximated by
the focus beam waist wy before complete decoherence,
so that systems like the one reported above can exhibit
non-classical features such as negativity in the Wigner
distribution N(¢). The negativity N(t) is defined by in-
tegrating the Wigner distribution over the region of the
phase space Y_ where it attains negative values, that is

N(t) = / /Z dadp, W () M)

For a highly focused Gaussian beam, the beam waist
can be reduced to wy ~ 750nm (the Duffing parameter
¢ ~ —0.3um™2). We assume that the quantum system
can be expanded by a factor of ( = 100 through a fast
squeezing protocol [35]. This means that we need to pre-
pare an initial quantum system of size Axy =~ 7.5nm.

This is difficult, as the zero-point fluctuation of the mo-
tion is approximately Ax,,r = y/hi/2mw = 0.01 nm for
a nanoparticle of R = 50nm (p = 2200 kg/m?) trapped
at frequency w/2m = 50 kHz. Indeed, this bottlenecks all
the schemes to prepare large mass non-classical states —
the mismatch between the scale of the beam trap and the
coherence length of a massive quantum system.

One way to approach this issue is by considering a smaller
nanoparticle and preparing the n-th Fock state as the
initial state. Indeed, a smaller particle yields a smaller
decoherence rate and a larger quantum state. Con-
sider a nanoparticle of R = 4nm trapped at frequency
w/2m = 80kHz. The decoherence constant A depends on
the particle size (and other experimental details), and we
estimate it with the equation [36] [37]

 Tmey (€VE)\? 5
A= Som ( 27 > Ro ®)

where ¢y is the vacuum permittivity, e =
3(e—1)/(e+2) with € being the relative dielectric
constant of the nanoparticle. V is the volume of the
nanoparticle, kg = 27/A, and Ey = \/4P0/71'50 cwiA A,
where Py is the tweezer power, wg is the beam waist, A,
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FIG. 3. Simulations of the nonlinear protocol for quan-

tum systems. Panel A shows the oscillating potentials with
Uo/hw = 100 energy levels. Panels B and E are the Wigner
distribution for the initial thermal state pin and the initial
blurred Fock state pi'g2°, and Panels C and F are those of
the final state at wt = 11/4. Panel D shows the population
distribution P(n) for the initial states. Panel G shows the
increment of negative Wigner distribution AN over 3 oscilla-
tions. Panel H and I shows the marginal Wigner distribution
Wz of the initial and final systems. Here the blue line rep-
resents the thermal state p, and the red line represents the
blurred Fock state pirg2°.



and A, are the asymmetry factor and c is the speed of
light. Taking the values in Ref. [38], the decoherence con-
stant A is estimated to be A ~ 3.28 x 109 Hz-m~2. The
corresponding decoherence rate I' = AAzgpf ~ 5.8 Hz,
such that I'/w ~ 1.16 x 107°. On the other hand,
the n-th Fock state has the standard position variance
Az™ = /(2n + 1)h/2mw, such that Az!% ~ 6nm for
the state |[n = 100). Based on the estimation from Sec. G
in SM, the initial system |n = 100) can be expanded by
a factor of ¢ = 100 and reach Az!® | 1.4 ~ 600 nm with
remaining system purity P ~ 0.9.

We perform simulations with a smaller quantum system
to demonstrate the effects of the protocol (details
reported in Sec. H in SM) and show the results in Fig.
The system considered here has Uy/hw = 100 energy
levels in the potential, as shown by Fig. BJA. We take
two kinds of initial state with roughly the same energy
— the thermal state py, [39] and the blurred Fock state
pre20 (which is the Gaussian mixture centered at the
Fock state |n = 20), defined by Eq. (S11) in SM) as an
example of the aforementioned quantum experiment.
Their population distribution P(n) is shown by Fig.
and their Wigner distribution is shown by Fig. BB and
BE. We simulate the nonlinear protocol with these two
initial states for oscillation time wt = 11/4 and the
decoherence rate I'/w = 107°, and show the Wigner
distribution for the final states in Fig. BIC and [F.
The marginal Wigner distributions W, for the initial
and final states are shown by Fig. and B[, and the
increment of the Wigner negativity AN = N(t) — N(0)
is recorded in Fig. BIG.

From the outcomes, we draw the following conclusions.
Firstly, taking the thermal state p, as the initial state,
we retrieve a similar behavior as in the classical experi-
ment (Gaussian to bimodal distribution) although work-
ing at a much lower energy. However, due to the mixture
of the Fock states, we observe no increment of negative
Wigner distribution when taking this initial state.

Secondly, taking the mixed Fock state ﬁ’b’FZZO as the ini-
tial state (see SM, Sec. I for other initial states), we still
see the nonlinear effect of the protocol (in terms of the in-
creasing separation of two peaks in the marginal Wigner
distribution) as well as the increment of the Wigner
negativity. This protocol shows the potential of gen-
erating non-Gaussian states with non-classical features
(Figs. 3G-I) by coherently expanding the initial quantum
state enough to access the nonlinearity of the potential.

However, generating such Fock states at current ex-
perimental conditions is challenging. The requirements
can be potentially relaxed in a more sophisticated ex-
periment. Introducing extrinsic nonlinearity [40], that
can reduce the requirement on expansion rate ¢ through
enhancing the Duffing parameter £. For example, actu-
ating on the system, either externally [41] or parametri-
cally, conditioned on real-time position measurement has
the potential to modify the effective dynamics. Another

measure is reducing the photon recoil rate I' by taking
zero-information measurement [42] with implementation
ideas for levitated systems [43] [44]). Such improvements
could potentially facilitate the initiation of this protocol
from a low-energy thermal state, enabling the generation
of a bimodal distribution while likely preserving quantum
coherence.

Finally, we note that, optomechanical state tomogra-
phy has been successfully demonstrated in the classical
regime for clamped [45] and levitated [46] systems, with
several proposals extending the technique to the quan-
tum regime [47H49], including approaches utilizing neu-
ral networks [50]. However, a specific quantum procedure
to extract Wigner negativity for levitated optomechanics
systems has yet to be fully developed and requires further
research.

Conclusion — We have shown experimentally that the
controlled access of intrinsic trap non-linearities can be
used for the generation of non-Gaussian classical states.
We show theoretically that, if the motional state is ini-
tially prepared to a Fock state, taking fast squeezing
protocol allows the system to access the intrinsic trap
non-linearities with high remaining purity. Experimen-
tal improvements can be realized to achieve non-Gaussian
states in smaller length scales, thus diminishing decoher-
ence effects. For instance, using stronger non-linearities,
such as those from engineered potentials [6] and deploy-
ing quantum control methods of thermodynamic inspi-
ration [51], which will be the focus of forthcoming work.
Then, our scheme can be used to generate bimodal states
with a genuinely non-classical character, as witnessed by
significantly negative Wigner distributions. We remark
the experimental realization of a very similar protocol
for squeezing in nonlinear mechanical quantum system
in the GHz regime with the result of negativity [52]. Pe-
riodically driving mechanical motion as in our squeezing
protocol is also predicted to enhance force sensing capa-
bilities of levitated mechanics [19].
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