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Generation of classical non-Gaussian states by squeezing a thermal state into nonlinear
motion of levitated optomechanics
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We report on an experiment achieving the dynamical generation of non-Gaussian states of motion of a levitated
optomechanical system. We access intrinsic Duffing-like nonlinearities by thermal squeezing of an oscillator’s
state of motion by rapidly switching the frequency of its trap. We characterize the experimental non-Gaussian
state versus expectations from simulations and give prospects for the emergence of genuine nonclassical features.
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I. INTRODUCTION

Macroscopic quantum states are regarded as ideal plat-
forms to test the existence of intrinsic limitations in quantum
formalism [1] and the effects of gravity in quantum systems
[2]. While various platforms have been considered for gen-
erating such states [3], levitated systems have emerged as a
front-runner in light of the possibility to achieve remarkable
environmental isolation [4] and embed control techniques in
their dynamics. Engineering nonclassical states of levitated
mechanical systems is achieved by inducing nonlinear dy-
namics to sufficiently coherent initial states of motion [5,6].
Accessing nonlinearity by motional squeezing—sometimes
assisted by a dark trap—can be instrumental to preparing
nonclassical states [7]. The fundamental building block of
such operations, namely, the squeezing of thermal states
of motion of levitated particles, has been demonstrated by
rapid (i.e., faster than the oscillation frequency) switching
between different trap frequencies [8], as theoretically pro-
posed by Janszky and Yushin [9], or using cavities [10,11].
Such switches can be treated as pulses applied to the parti-
cle’s spring constant and have been used to drive a classical
harmonic oscillator [12]. Repeated gentle squeezing pulses
applied to the thermal motional state’s momentum can in-
crease the particle’s oscillation amplitude, allowing it to
explore the nonlinear flat extremities of the trapping potential
while remaining trapped. Correspondingly, the dynamics can
pick up Duffing-like nonlinearities, as already demonstrated
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[13]. This scheme dynamically shapes the potential landscape,
creating bistability. Classical effects have been discussed be-
fore in relation to fields such as memory elements [14], signal
amplification via stochastic resonance [15], nonequilibrium
physics [16], nonlinear dynamics, synchronization [17], and
active escape dynamics [18]. It is also predicted to enhance
force sensing capabilities of levitated mechanics [19].

In this paper, we experimentally demonstrate how a se-
quence of repeated pulses can be used to dynamically produce
a significantly non-Gaussian state of motion by accessing
intrinsic trapping-potential nonlinearities and controlling their
effects. We show the time trace, in phase space, of the mo-
tional state resulting from the application of our protocol to an
initial thermal state, demonstrating the emergence of nontriv-
ial transient bimodal distributions whose relaxation dynamics
we characterize experimentally. Moreover, we provide a quan-
titative perspective for the emergence of genuine quantum fea-
tures of motion from a sufficiently coherent initial state of the
particle [20–24]. We show how this would result in negative
phase-space distributions, thus unambiguously demonstrating
nonclassicality, a key feature for quantum information pro-
cessing and fundamental tests of quantum mechanics.

II. THEORETICAL MODEL

We refer to the setting illustrated in Fig. 1(a), which
depicts a nanoparticle trapped in an optical tweezer in vac-
uum. In general, the particle motion occurs in all three
spatial directions (x, y, z), including cross coupling between
orthogonal directions of motion [17] and possibly involving
rotational motion as well. However, our analysis focuses only
on the x motion. We model the stochastically driven and
damped oscillatory motion of a levitated particle in a vac-
uum using a one-dimensional Langevin-type equation for the
time-dependent position x(t ) of the center-of-mass motion of
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FIG. 1. (a) Schematic of the experimental setup. A silica nanoparticle is trapped by optical tweezers in vacuum. An electro-optical
modulator (EOM) controlled by a pulse generator modulates the power of the laser. The oscilloscope receives the signal from the particle.
Its acquisition is triggered by a synchronous signal from a pulse generator. (b) Experimental time evolution of the standard deviation of the
particle position as measured by the photodiode (blue and red line). The green line is the intensity modulation function S(t ) [see Eq. (1)]
applied to the trapping laser beam via the EOM. (c) Experimental time trace of the phase-space distribution of an initial thermal state of
motion of the particle subjected to our protocol. The first 12 snapshots of the distribution are indicated as black dots in (b). The last line depicts
the thermalization occurring at a longer timescale.

a particle of mass m in the trap,

ẍ(t ) = −�mẋ(t ) + S(t )
F (x)

m
+ Ffluct (t )

m
, (1)

where, in the regime dominated by the background gas pres-
sure P, the damping rate can be written as [25]

�m = 64r2P

mvgas
, (2)

with vgas being the root-mean-square thermal velocity of
the gas molecules at room temperature and r and m be-
ing the radius and mass of the trapped silica particle. The
second term on the right-hand side of Eq. (1) is the position-
dependent restoring force originating from the interaction
with a Gaussian light beam in the Rayleigh regime. In the
large oscillation-amplitude limit, when the nonlinearity be-
comes effective, this force is given by

F (x) = 2πnmr3

c

(
n2

r − 1

n2
r + 2

)
∂I

∂x
, (3)

with nm and np being the refractive indices of the medium and
of the silica particle (here assumed to take the nominal values
of 1 and 1.44, respectively), nr = np/nm being the relative
refractive index, c being the speed of light, and I being the
intensity of the trapping laser beam. Equation (3) gives rise
to a nonlinear force directed along the gradient of the optical
potential U (x) such that F (x) = −∂xU (x) [26–28], which we
control by modulating in time the power of the trapping laser
according to the function S(t ) in Eq. (1) and as illustrated in
Fig. 1(b) [8]. The last term on the right-hand side of Eq. (1)
describes the driving of the harmonic motion by random
background gas collisions, which are modeled as the time-
dependent stochastic force Ffluct (t ) = √

2�mkBT η(t ). Here,
kB is Boltzmann’s constant, and T is the temperature of the
gas surrounding the oscillating particle [29], while η(t ) is
a zero-mean, δ-correlated Gaussian white noise such that

〈η(t )η(t ′)〉 = δ(t − t ′). We have integrated Eq. (1) numeri-
cally using the Euler-Maruyama method [30] and by sampling
the initial values of the position and momentum of the particle
from a thermal state. The results of our analysis are shown as
phase-space probability distributions in Figs. 2(a)–2(c), which
show that our one-dimensional description of the dynamics is
sufficient to produce the main features of experimental data.

III. EXPERIMENT

The experimental setup is illustrated in Fig. 1(a). We use
a parabolic mirror to focus light at a wavelength of 1550 nm
to a diffraction-limited spot of the diameter of 1 µm. A pulse
generator (Berkeley BNC 525) and an electro-optical modula-
tor (EOM, Jenoptik AM1550b) are used to modulate the laser
intensity as a square wave with high and low levels of 80 and
57 mW, respectively, to trap a silica particle with a close
to spherical shape (460 nm diameter) from a spray in the
focal point. We monitor the center-of-mass motion of the
trapped particle by detecting a small fraction of Rayleigh
backscattered light from the trapping field with a single pho-
todiode detector (see Ref. [31] for technical details). An iris
is mounted on top of the parabola to suppress unwanted
light reflected from the flat edges of the mirror and make
sure that all the detected signal comes from only the parti-
cle. This guarantees the reliable assessment of the particle’s
center-of-mass position with only negligible distortions by
the bandpass filtering process, as analyzed in more detail in
Sec. A of the Supplemental Material (SM) [32]. Calibration
of motional amplitudes and the mass of the trapped particle
was done assuming perfect equilibrium of the particle with the
background gas at 5 mbar by fitting a Lorentzian to the trap
frequency peak, see Supplemental Material for details [31,32].

To prepare bimodal states of motion the pressure is fur-
ther reduced to 1 × 10−2 mbar, and the particle resonance
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FIG. 2. Comparisons between simulations (red lines) and exper-
imental reconstructions (blue lines) of the phase-space distributions
associated with paradigmatic states of motion of the levitated parti-
cle. (a) and (d) Initial thermal state. (b) and (e) Initial non-Gaussian
bimodal state. (c) and (f) The initial distribution is that of the mo-
tional state achieved by stopping the dynamical protocol. Such a state
will eventually relax back to a thermal configuration. (g)–(i) show the
projection of the phase-space distribution, with px being the position
probability function for the three initial states described above.

frequency ω/2π = 77 kHz is evaluated from the spectrum of
the signal at the high-power level. Next, thermal squeezing is
achieved by modulating the scale of the restoring force term
of Eq. (1) as S(t ), with

S(t ) =
{

1 for t ′ = 0 or t ′ ∈ [τlow, τlow + τhigh],
0.71 for t ′ ∈ [0, τlow]. (4)

Here, t ′ = t mod (τlow + τhigh ). Each pulse is timed so that
the particle completes a quarter of an oscillation at the high-
power level, τhigh = π/2ω = 3.25 µs, and another quarter
of an oscillation at the low-power level, τlow = π/2ω

√
S =

3.48 µs. The duration at the low-power level is slightly longer
due to the rescaling of dynamics by the relative decrease of
power. One pulse sequence consists of a train of 55 pulses
as constructed on the pulse generator to prepare the bimodal
state. Data acquisition by the oscilloscope is synchronized
with the pulse generator, and 689 pulse sequences are ac-
quired, with 518 ms between successive sequences, which is
about 25 times longer than the extracted 20 ms relaxation
time, in good agreement with Eq. (2), allowing the particle
to relax back to the thermal state between consecutive runs,
see Supplemental Material Sec. G for details [32]. We exper-
imentally characterize a Duffing nonlinearity ξ = −0.1 µm−2

for our parabolic mirror trapping potential, U (x) = ω2x2 +
w2ξx4, as described in more detail in Ref. [13]. See Supple-
mental Material for more details [32].

IV. RESULTS AND DISCUSSION

The trap nonlinearity generating the non-Gaussian state
is small under typical experimental conditions [25]. Taylor
expansion of the gradient force up to third order shows that
the inverse of the Duffing parameter is proportional to the
square of the beam’s waist. Considering it to be a measure
for the range of nonlinearity, we note that it is larger than
the spread of the thermal state σthermal = √

kBT/k, where k
is the optomechanical spring constant and T is the motional
temperature. This means that the particle hardly visits the non-
linear part of the potential. By squashing the motional state,
we induce sufficient elongation such that the vertexes of the
state are eventually extended to nonlinear parts of the potential
well and the nonlinear effect dominates the dynamics. In these
regions, the particle’s dynamics is slower due to a softer effec-
tive spring constant making the tip of the ellipse lag behind
compared to the faster harmonic behavior near the center. In
the course of sufficiently many weak pulses, the state changes
its shape, steadily transforming it from the initial circular
thermal Gaussian to a squashed ellipsoidal and eventually to a
curved spiral in which probability mass starts to accumulate,
forming a multimodal state. We emphasize that in general, for
very large motions self-homodyne detection might become
substantially nonlinear, potentially affecting the phase-space
distributions. Possible ways to avoid these effects are to
cool the motion to ensure the homodyne detection stays
linear [14] and to benchmark homodyne detection against
heterodyne measurements to rule out nonlinearities in the
detection [33].

To quantify the non-Gaussianity of the resulting simulated
and experimentally obtained states, we adopt a nondimen-
sional measure of bimodality [34],

AD =
√

2

σT
|μ1 − μ2|, (5)

where μ1,2 are the positions of the peaks of the distribution

and σT =
√∑2

i=1 σ 2
i is defined in terms of the individual

peak’s variances σ1,2 [see Fig. 2(h)]. By curve fitting a double
Gaussian function to our experimental and simulated data we
find the values Aexp

D = 3.95 and Asim
D = 3.32, in good agree-

ment with 12% deviation, which we identify to originate from
a small difference in the shape of the real trapping potential
compared with the simulated one. The influence of the poten-
tial’s nonlinearity is understood to be negligible in the linear
section near the trap center and to become dominant towards
the asymptotically flat edges of the optical trap. Despite us
knowing the general features of the nonlinearity of the po-
tential well, its exact profile is not experimentally known. As
such, simulations assuming an ideal sharp beam profile were
found to deviate more from the experimental results. We also
find that the experimental thermal state has some outlier points
that overextend the tails of Gaussian distribution, which are
not included in the simulations and contribute to a softening
of the potential and a larger value for Aexp

D . We explain outliers
as a buildup of amplitude as a net effect of multiple collisions
by background gas particles or other perturbations affecting
the trap. See Supplemental Material for details [32].
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V. PERSPECTIVES FOR QUANTUM EXPERIMENT

To investigate nonlinear squeezing effects provided by
the protocol for a quantum system, we consider the system
Hamiltonian

Ĥs(t ) = p̂2
x

2m
− S(t )U0e−2x̂2/w2

0 , (6)

where x̂ and p̂x are the position and momentum operators.
The potential of the system, represented by the second term,
is an inverted Gaussian like that used in the classical simu-
lation, with its gradient corresponding to Eq. (3). Here, U0

sets the energy scale (the depth) of the potential, and S(t )
is the control given by Eq. (4). We assume that the experi-
ment is performed in a low-pressure, cryogenic environment,
such that it is possible to perform scattering-free experiment
runs [35]. In this regime, the dynamics of the system follows
the von Neumann master equation, ˙̂ρ(t ) = − i

h̄ [Ĥs(t ), ρ̂(t )] −
�[x̂, [x̂, ρ̂]], where the second term describes the decoherence
due to photon recoils [36].

For a typical optolevitating experiment, the size of the
quantum system is way smaller than that of the trapping po-
tential. Therefore, the challenge of this quantum experiment
is to expand the quantum system to the spread (FWHM) of
the potential approximated by the focus beam waist w0 before
complete decoherence, so that systems like the one reported
above can exhibit nonclassical features such as negativity in
the Wigner distribution N (t ). The negativity N (t ) is defined
by integrating the Wigner distribution over the region of the
phase space 
−, where it attains negative values, that is,

N (t ) =
∫∫


−
dx dpx Wx,px (t ). (7)

For a highly focused Gaussian beam, the beam waist can
be reduced to ω0 ≈ 750 nm (the Duffing parameter ξ ≈
−0.3 µm−2). We assume that the quantum system can be
expanded by a factor of ζ = 100 through a fast squeezing
protocol [36]. This means that we need to prepare an initial
quantum system of size �x0 ≈ 7.5 nm. This is difficult, as the
zero-point fluctuation of the motion is approximately �xzp f =√

h̄/2mω = 0.01 nm for a nanoparticle of R = 50 nm (ρ =
2200 kg/m3) trapped at frequency ω/2π = 50 kHz. Indeed,
this bottlenecks all the schemes to prepare large mass non-
classical states—the mismatch between the scale of the beam
trap and the coherence length of a massive quantum system.

One way to approach this issue is to consider a smaller
nanoparticle and prepare the nth Fock state as the initial state.
Indeed, a smaller particle yields a smaller decoherence rate
and a larger quantum state. Consider a nanoparticle of R =
4 nm trapped at frequency ω/2π = 80 kHz. The decoherence
constant � depends on the particle size (and other experimen-
tal details), and we estimate it with the equation [37,38]

� = 7πε0

30h̄

(
εcV E0

2π

)2

k5
0, (8)

where ε0 is the vacuum permittivity and εc =
3(ε − 1)/(ε + 2), with ε being the relative dielectric constant
of the nanoparticle. V is the volume of the nanoparticle,
k0 = 2π/λ, and E0 =

√
4P0/πε0 c w2

0AxAy, where P0 is the
tweezer power, w0 is the beam waist, Ax and Ay are the

FIG. 3. Simulations of the nonlinear protocol for quantum sys-
tems. (a) shows the oscillating potentials with U0/h̄ω = 100 energy
levels. (b) and (e) are the Wigner distribution for the initial thermal
state ρ̂th and the initial blurred Fock state ρ̂n=20

bF , and (c) and (f)
are those of the final state at ωt = 11/4. (d) shows the population
distributions P(n) for the initial states. (g) shows the increment of
negative Wigner distribution �N over three oscillations. (h) and (i)
show the marginal Wigner distribution Wx of the initial and final
systems. Here, the blue line represents the thermal state ρ̂th, and the
red line represents the blurred Fock state ρ̂n=20

bF .

asymmetry factors, and c is the speed of light. Taking the
values in Ref. [39], the decoherence constant � is estimated to
be � ≈ 3.28 × 1019 Hz m−2. The corresponding decoherence
rate � = ��x2

zp f ≈ 5.8 Hz, such that �/ω ≈ 1.16 × 10−5.
On the other hand, the nth Fock state has the standard position
variance �xn = √

(2n + 1)h̄/2mω, such that �x100 ≈ 6 nm
for the state |n = 100〉. Based on the estimation in Sec. G in
the SM [32], the initial system |n = 100〉 can be expanded by
a factor of ζ = 100 and can reach �x100

expanded ≈ 600 nm, with
remaining system purity P ≈ 0.9.

We performed simulations with a smaller quantum system
to demonstrate the effects of the protocol (details are reported
in Sec. H in the SM [32]) and show the results in Fig. 3.
The system considered here has U0/h̄ω = 100 energy levels
in the potential, as shown by Fig. 3(a). We take two kinds
of initial states with roughly the same energy, the thermal
state ρ̂th [40] and the blurred Fock state ρ̂n=20

bF [which is
the Gaussian mixture centered at the Fock state |n = 20〉,
defined by Eq. (S11) in the SM [32]], as an example of
the aforementioned quantum experiment. Their population
distributions P(n) are shown in Fig. 3(d), and their Wigner
distributions are shown by Figs. 3(b) and 3(e). We simulate the
nonlinear protocol with these two initial states for oscillation
time ωt = 11/4 and decoherence rate �/ω = 10−5 and show
the Wigner distributions for the final states in Figs. 3(c) and
3(f). The marginal Wigner distributions Wx for the initial and
final states are shown by Figs. 3(h) and 3(i), and the increment
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of the Wigner negativity �N = N (t ) − N (0) is recorded in
Fig. 3(g).

From the outcomes, we draw the following conclusions.
First, taking the thermal state ρ̂th as the initial state, we retrieve
a behavior similar to that in the classical experiment (Gaussian
to bimodal distribution), although it works at a much lower
energy. However, due to the mixture of the Fock states, we
observe no increment of negative Wigner distribution when
taking this initial state.

Second, taking the mixed Fock state ρ̂n=20
bF as the initial

state (see Sec. I in the SM for other initial states [32]), we
still see the nonlinear effect of the protocol (in terms of the
increasing separation of two peaks in the marginal Wigner
distribution) as well as the increment of the Wigner negativity.
This protocol shows the potential of generating non-Gaussian
states with nonclassical features [Figs. 3(g)–3(i)] by coher-
ently expanding the initial quantum state enough to access the
nonlinearity of the potential.

However, generating such Fock states at current experi-
mental conditions is challenging. The requirements can be
potentially relaxed in a more sophisticated experiment. Intro-
ducing extrinsic nonlinearity [41] can reduce the requirement
for the expansion rate ζ by enhancing the Duffing parameter
ξ . For example, actuating the system, either externally [42]
or parametrically, conditioned on real-time position measure-
ment, has the potential to modify the effective dynamics.
Another measure is reducing the photon recoil rate � by
taking a zero-information measurement [43], with implemen-
tation ideas for levitated systems [44,45]. Such improvements
could potentially facilitate the initiation of this protocol from
a low-energy thermal state, enabling the generation of a
bimodal distribution while likely preserving quantum coher-
ence.

Finally, we note that optomechanical state tomography was
successfully demonstrated in the classical regime for clamped
[46] and levitated [47] systems, with several proposals extend-
ing the technique to the quantum regime [48–50], including
approaches utilizing neural networks [51]. However, a specific
quantum procedure to extract Wigner negativity for levitated
optomechanics systems has yet to be fully developed and
requires further research.

VI. CONCLUSION

We showed experimentally that controlled access of in-
trinsic trap nonlinearities can be used for the generation

of non-Gaussian classical states. We showed theoretically
that, if the motional state is initially prepared as a Fock
state, using the fast squeezing protocol allows the system
to access the intrinsic trap nonlinearities with high remain-
ing purity. Experimental improvements can be realized to
achieve non-Gaussian states on smaller length scales, thus
diminishing decoherence effects, for instance, using stronger
nonlinearities, such as those from engineered potentials [6],
and deploying quantum control methods of thermodynamic
inspiration [52], which will be the focus of forthcoming
work. Then, our scheme can be used to generate bimodal
states with a genuinely nonclassical character, as witnessed
by significantly negative Wigner distributions. We note the ex-
perimental realization of a very similar protocol for squeezing
in the nonlinear mechanical quantum system in the gigahertz
regime with the result of negativity [53]. Periodically driv-
ing mechanical motion as in our squeezing protocol is also
predicted to enhance force sensing capabilities of levitated
mechanics [19].
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