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Abstract

The selection of penalty hyperparameters is a critical aspect in Nonnegative
Matrix Factorization (NMF), since these values control the trade-off between
the reconstruction accuracy and the adherence to desired constraints. In this
work, we focus on an NMF problem involving the Itakura-Saito (IS) diver-
gence, effective for extracting low spectral density components from spec-
trograms of mixed signals, enhanced with sparsity constraints. We propose
a new algorithm called SHINBO, which introduces a bi-level optimization
framework to automatically and adaptively tune the row-dependent penalty
hyperparameters, enhancing the ability of IS-NMF to isolate sparse, periodic
signals against noise. Experimental results showed SHINBO ensures pre-
cise spectral decomposition and demonstrates superior performance in both
synthetic and real-world applications. For the latter, SHINBO is particu-
larly useful, as noninvasive vibration-based fault detection in rolling bearings,
where the desired signal components often reside in high-frequency subbands
but are obscured by stronger, spectrally broader noise. By addressing the
critical issue of hyperparameter selection, SHINBO advances the state-of-
the-art in signal recovery for complex, noise-dominated environments.
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1. Introduction

Nonnegative Matrix Factorization (NMF) is a dimensionality reduction
technique that approximates a nonnegative data matrix as the product of
two (lower-dimensional) nonnegative matrices. A key challenge in NMF is
setting penalty coefficients when additional constraints, such as sparsity or
smoothness, are imposed [18]. These coefficients control the trade-off between
reconstruction accuracy and constraint adherence, but their optimal values
are highly dataset- and application-dependent, making the selection process
non-trivial. For example, [6] proposes a variant of NMF that incorporates
data-dependent penalties and introduces auxiliary constraints to enhance
performance in tasks such as face recognition. Additionally, [20] presents mul-
tiplicative algorithms for NMF that enforce non-negativity and flow preser-
vation constraints while introducing regularizations to ensure smoothness or
sparsity. Finally, [11] adapts a minimization scheme for functions with non-
differentiable constraints, known as PALM, to solve NMF problems, yielding
solutions that can be both smooth and sparse—two highly desirable prop-
erties. In this work, we rely on prior studies [8, 9] in which the penalized
problem is reformulated in a general form, and a strategy is proposed to tune
the penalty coefficient automatically.

Formally, let X P Rmˆn
` with m,n P N be a data matrix, NMF aims

to approximate it as the product of W P Rmˆr
` and H P Rrˆn

` with r ď

mintm,nu, so that X « WH . In our problem, we want to solve

pW ˚,H˚
q P argmin

Wě0,Hě0
DβpX,WHq ` P

`

DiagpλqH
˘

(1)

with the objective function Dβp¨, ¨q being the β-divergence [13, 19], assessing
the quality of the reconstruction WH in fitting X. We remind that the
β-divergence for matrices is defined as DβpA,Bq “

ř

i

ř

j dβpaij, bijq, where
the function dβ for each x, y P R is defined as

dβpx, yq “

$

’

’

&

’

’

%

1
βpβ´1q

pxβ ` pβ ´ 1qyβ ´ βxyβ´1q β P Rzt0, 1u;

x logpx
y
q ´ x ` y β “ 1;

x
y

´ logpx
y
q ´ 1 β “ 0.
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The function P : Rrˆn Ñ R is a penalty term on H that enforces a partic-
ular constraint. The vector λ P Rr

` in (1) contains a nonnegative penalty
hyperparameters rλ1, . . . , λrs associated to each row of H .

In this study, we are interested in a special case of the β-divergence.
When β “ 0, the β-divergence boils down to the Itakura-Saito (IS) divergence
which is a scale-invariant measure of dissimilarity, useful for extracting low
spectral density components from spectrograms of mixed signals. In many
practical applications, the desired components are located in a high frequency
subband and are often masked by much stronger and spectrally wider noisy
disturbances. This is the case of a noninvasive vibration-based fault detection
in rolling bearings [23, 24, 25]. The vibrational diagnostic signals measured
from faulty bearings on the laboratory test rig [16] are used in our study to
validate the proposed algorithm.

The signal of interest (SOI) in this application is represented by a periodic
and impulsive signal. The observed signal should contain the SOI and other
perturbations, usually expressed by a strong independent and identically
distributed (i.i.d.) Gaussian noise. Applying NMF to the spectrogram of
the measured signal, we expect that the representative of the SOI will be
expressed by one of the temporal components of NMF, i.e., one row of matrix
H . This component, which presents a periodic spiky signal, is obviously very
sparse. The other components, which represent the noisy perturbations,
should not be sparse. To enforce NMF to search for the desired component,
we introduced the penalty for the rows of H using the term PpDiagpλqHq in
(1). The proposed bi-level approach should perform data-driven adaptation
of the hyperparameters (vector λ) to the desired nature of the estimated
components.

Contribution. The contribution of this work is two folded.

1. New model. In this work, we present a new model for minimizing the
Itakura-Saito divergence (Problem (1) with β “ 0) while penalizing
rows of H . In particular

• The penalty hyperparameter is not known in advance. This pa-
rameter is formulated as an optimization variable (in form of bi-
level optimization model) and is solved by a bi-level optimization
method.

• The penalty hyperparameter is row-dependent. Note that Prob-
lem (1) is not the standard penalized NMF [18], which applies the
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same penalty coefficient to all rows in the matrix H . In Prob-
lem (1) each row of H is penalized by its own penalty parameter.

2. New algorithm. For Problem (1), we present a new multiplicative up-
date (see Equation (12)), and a way to automatically tune the penalty
hyperparameter based on bi-level strategy (see details in Section 3).

Paper Organization. We introduce the problem and overall algorithm
framework in Section 2. In Section 3 we first review the bi-level optimization,
then we discuss the details of the bi-level approach proposed in this work for
solving the Problem 1 in Section 4. Experimental results on synthetic and
real datasets are presented in Section 5. We conclude the paper in Section 6,
giving an outline of possible future directions.

Notation. The symbol 0 denote the zero matrix, the symbol Eaˆb is all-one
matrix sizing a ˆ b with a, b P N. The notation v denotes a column vector
and the notation v means v is a row vector.

On matrix, AJ is the transpose of A, and A2 “ AA. The symbol
A d B refers to the Hadamard (element-wise) product between A and B
of conformal dimensions, and the symbol A m B with B ‰ 0 refers to the
Hadamard division, and we denote Adk as the Hadamard power-k of A.

Given n P N, we denote rns :“ t1, 2, . . . , nu. The symbols k, t P N indicate
iteration counters. The symbol Ak refers to the variable A at the iteration
k, Aij or aij is the pi, jq-th element of A. Lastly Ai: and A:j are the i-th and
j-th row and column of A, respectively.

2. The overall optimization framework of SHINBO

In this section, we discuss the main focus of the paper, Problem (1) and
the overall framework of the proposed algorithm.

The optimization problem. We focus on Problem (1) with β “ 0. As
P we chose a particular penalty function, effective in increasing sparsity,
that is the diversity measure J [7, 9]. In a particular case, if the matrix
is nonnegative, the diversity measure can be written in terms of the trace
operator as

JpAq “

n
ÿ

i“1

}Ai:}
2
1 “ TrpAEAJ

q, (2)
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where E is the squared matrix of ones. Thus, by properties of trace, Prob-
lem (1) becomes

pW ˚,H˚,λ˚
q P argmin

Wě0,Hě0
λě0

D0pX,WHq ` Tr
`

Diagpλq
2HEHJ

˘

. (3)

We remark that (3) is a nonconvex minimization problem, in which find-
ing global minima is NP-hard, therefore we are interested in finding local
minima for the triple pW ˚,H˚,λ˚q.

The proposed optimization algorithm SHINBO. We propose an algo-
rithm, called SHINBO, to find a local minima for Problem (3) as follows.

Algorithm 1: SHINBO

1 Input: X P Rmˆn
` and factorization rank r.

2 Initialize W 0 P Rmˆr
` , H0 P Rrˆn

` and λ0 P Rr
`

3 for k “ 1, 2, ... do
4 W k “ updatepX,W k´1,Hk´1q % classic MU-update
5 for l P rrs do

6 hk´1,0
l “ hk´1

l , λk´1,0
l “ λk´1

l % initialization
7 for t P rT s do

8 hk,t
l “ updatephk,t´1

l ,W k,X, λk
l q as in (12)

9
BR

Bλl

as in (10) % hypergradient

10 end
11 λk,T “ updatepλk,T ,∇λRpλqq % projected gradient update

12 end

13 end
14 Return W ,H ,λ at the last iteration.

Note that SHINBO is composed by two main parts: one devoted to the
update of W (reviewed in the following) and the other one based on bi-level
strategy to optimize simultaneously on H and λ.

Update on W. The update of W can be done simply by the following
Multiplicative Update [12] as W “ W d pXHJq m pWHHJq.

The next section introduces the update on H and λ by a bi-level method,
which is the main contribution of the paper.
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3. Bi-level Optimization for the subproblem

In this section, we discuss the steps for updating H and λ in Algorithm 1.
Given a fixed W k, we have the following optimization subproblem

pH˚,λ˚
q P argmin

Hě0,λě0
D0pX,WHq ` Tr

`

Diagpλq
2HEHJ

˘

. (4)

The core idea of this paper is to solve Problem (4) as a bi-level problem, in
which we incorporate the problem of tuning hyperparameter λ simultane-
ously into the update of H . To do so, first we review the general theory of
bi-level optimization and its application to Problem (4).

Section organization and general overview of the approach.
Under a fixed and given W k, the goal is to obtain an updated version of H
and λ that approximately solves Problem (4). The bi-level approach has the
following steps:

1. First we replace the constrained optimization problem (4) by a bi-level
optimization problem for phl, λlq, with l P rrs, see (5).

2. The inner problem (IP) in Problem (5) is then approximated by the
solution of a dynamical system. See Problem (IVP-Φ).

3. We then solve Problem (IVP-Φ) to obtain a solution for hl, and also
the hypergradient at the last time point T . See (hypergrad).

4. Lastly we use the hypergradient to obtain the solution λ by a gradient
descent approach. See (6).

We now proceed to discuss each of the steps below.

1. Bi-level formulation. In Algorithm 1, the update of H and λ is
performed in r steps, where each step is aimed to update the l-th component
phl, λlq. This is achieved by solving the following bi-level problem

min
λlě0

$

’

&

’

%

rpλlq “ inf
hlpλlq

D2

`

X,R ` wlhlpλlq
˘

(OP)

s.t. hlpλlq P argmin
uPRn

`

D0pX,R ` wluq ` λ2
l }u}

2
1 (IP)

,

/

.

/

-

,

(5)
where the matrix R is the residual obtained isolating in WH the l-th com-
ponent of wl P Rm (column of W ) and hl P Rn (row of H), which is

R “ X ´
ÿ

j‰ℓ

wjhj.
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The function r : R Ñ R is called Response function of the outer problem
related to hl. In the outer problem, the objective D2 is the β-divergence
with β “ 2, which is the Frobenius norm. The inner problem is represented
by the β-divergence with β “ 0, which is the Itakura-Saito divergence D0,
regularized by the row-wise diversity measure defined in (2).

Remark 1. Note that the squared ℓ1-norm in the inner problem on u can
be seen as a non-smooth regularization term and therefore proximal gradient
descent can be applied on u (see [10] and [1, Lemma 6.70]), however, their
approach is applied to convex objective function, where here in (5) the ob-
jective function (the IS-divergence) is possibly nonconvex [12] thus proximal
gradient descent do not have convergence guarantee.

2. Dynamical system approach on H. An approach to solve the bi-
level Problem (5) over H is to replace the inner problem with a dynamical
system [14, 15, 22] and compute an approximation solution.
We now omit the k index in hk,t

l , due to the fact that the update focuses on
the iteration over t under a constant k.
Given h0

l (which depends implicitly on λl), we build a dynamical system
(IVP-Φ) in the form of a discrete initial value problem as

#

ht
l “ Φtph

t´1
l , λlq, t P rT s

h0
l “ Φ0pλlq

(IVP-Φ)

where Φt : Rn ˆ R Ñ Rr is a smooth map for t P rT s.
The idea of the bi-level optimization strategy is to use the IVP-Φ to ap-

proximate the solution of the Problem (5). We do so by solving the following
minimization

λ˚
l “ argmin

λl

rpλlq

s.t. ht
l “ Φtph

t´1
l , λlq for t P rT s

(6)

in which we approximate the solution of the inner problem with the solution
of the dynamical system. This is possible because problem (6) satisfies the
existence and convergence theorems as proved in [8].

As a preview, we will derive Φtph
t´1
l , λlq in Section 4.
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3. Hypergradient. To find the solution λ˚ for Problem (4), we solve the
problem formed by joining all the Response functions rpλlq in (5) as

argmin
λPRr

`

#

Rpλq :“
ÿ

j

rpλlq

+

. (7)

We would like to compute the hypergradient, i.e. the gradient of R with
respect to λ, in order to use a gradient descent approach on λ. The hyper-
gradient ∇λR, by using chain rule, is

BR

Bλl

“
Br

Bλl

`
Br

BhT
l

¨
dhT

l

dλl

, l P rrs. (hypergrad)

Note that hT
l denotes the row-vector hl at the time T .

It is well known that the computation of the hypergradient can be done
using Reverse-Mode Differentiation (RMD) or Forward-Mode Differentiation
(FMD). Since RMD requires storing specific variables across all iterations
and indices in memory, in this work we use FMD, making it more suitable
for scenarios where the total quantity of interest is small. For details we refer
the reader to [8, 15].

Forward-Mode. FMD computes the differentiation in (hypergrad) using
the chain rule. Function Φt for t P rT s depends on λl explicit and on ht´1

l

implicitly, then we have the derivative

dht
l

dλl

“
BΦtph

t´1
l , λlq

Bht´1
l

¨
dht´1

l

dλl

`
BΦtph

t´1
l , λlq

Bλl

.

Let st “
dht

l

dλl

, then each FMD iterate behaves as

#

st “ Ats
t´1 ` bt, t P rT s

s0 “ b0
(8)

where At “
BΦtph

t´1
l , λlq

Bht´1
l

P Rnˆn and bt “
BΦtph

t´1
l , λlq

Bλl

P Rn. Now
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(hypergrad) can be expressed as

BR

Bλl

“ xgT , sT y P R where gT
“

Br

Bhl

P Rn. (9)

We note that gT is denoting the row-vector g at the time T . Lastly, the
solution of Problem (8) solves the following equation

BR

Bλl

“
Br

BhT
l

˜

bT `

T´1
ÿ

t“0

ˆ T
ź

s“t`1

As

˙

bt

¸

. (10)

4. Update of λ. Given all the components hT
1 ,h

T
2 , . . . ,h

T
r at the last

time point of the dynamic system and the hypergradient (discussed previ-
ously), we update λ with a projected gradient descent approach as λ “
“

λ ´ α∇λRpλq
‰

`
, for a pre-defined stepsize α ą 0.

4. Derivation of the algorithm SHINBO

We now introduce the overall bi-level optimization approach, discussed in
the previous section, to the Subproblem (4). We use the method of partial
Lagrangian multiplier, which is applied only on H . First, let Ψ P Rrˆn

` be the
matrix of Lagrangian multipliers associated to the nonnegative constraints
of H , then the expression of the (partial) Lagrangian of Subproblem (4) is

LpHq “ D0pX,WHq ` Tr
`

Diagpλq
2HEHJ

˘

` Tr
`

ΨHJ
˘

.

Recall that Md2 denotes the Hadarmard power of M , then the partial
derivative of L with respect to H is

BL

BH
“ W J

´

pWHq
d´2

pWH ´ Xq

¯

` 2Diagpλq
2HE ` Ψ.

Now denote Hij the pi, jq-th element of the matrix H , and recall that d is
the Hadarmard product, then by the complementary slackness ΨijHij “ 0 in
the KKT conditions, we get

”

W J
´

pWHq
d´2

dpWH´Xq

¯ı

ij
Hij `2

”

Diagpλq
2HE

ı

ij
Hij `ΨijHij “ 0.
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These equations lead to the multiplicative update

Hij “ Hij

”

W J
pWHq

d´2X
ı

ij

N

”

W J
pWHq

d´1
` 2Diagpλq

2HE
ı

ij
, (11)

where the division is performed element-wise as the Hadamard division m.
By fixing l P t1, . . . , ru, the update in row-wise format for the l-th row of H
can be rewritten equivalently as

ht
l “ ht´1

l d

´

W JpWHqd´2X
¯t´1

l:
´

W J d pWHqd´1
¯

l:
` 2pλt´1

l q2}ht´1
l }1El:

. (12)

We remark that Equation (12) is one of the main contribution of this paper.

Remark 2. The key idea in this methodology is that Φtph
t´1
l , λlq in the dy-

namical system (IVP-Φ) is the right hand side of the update (12).

4.1. The implementation of the bi-level approach in SHINBO

Following the procedure and the discussion in Section 3, we consider
Φtph

t´1
l , λlq in the dynamical system (IVP-Φ) (represented by the multi-

plicative update (12)) and we compute At “
BΦt

Bht´1
l

and bt “
BΦt

Bλl

for t P rT s

required for the FMD.

• The computation of At “
BΦt

Bht´1
l

gives a diagonal matrix

At
jj “

Nlj

Dlj

´ hlj

¨

˚

˚

˚

˚

˝

2
n

ÿ

i

w2
il

xij

pWHq3ij
Dlj ´ Nlj

n
ÿ

i

w2
il

pWHq2lj
` 2λ2

lNlj

D2
lj

˛

‹

‹

‹

‹

‚

,

where the derivative is computed with respect to the pl, jq-th element
of H , and

Nlj “
`

W J
pWHq

d´2X
˘

lj
, Dlj “

`

W J
pWHq

d´1
`2Diagpλq

2HE
˘

lj
.
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• The vector bt is given by
BΦt

Bλl

“ ´4λlh
2
lj

Nlj

D2
lj

.

Finally, having chosen as an outer problem the Frobenius norm, gT in (9)

for computing (hypergrad) is gT “ ´2wJ
l pX ´ R ´ wlhlq.

5. Experimental Results

In this section, we present the numerical results of comparing the pro-
posed algorithm SHINBO with the multiplicative update (MU) algorithm
[12]. We also compare SHINBO with the penalized MU, which is the update
(12) under a fixed penalty hyperparameter λ with λ1 “ λ2 “ . . . “ λr for
every row of H . We summarize their difference in the table below.

Table 1: The method compared in the experiment.

Algorithm λ λ setting
MU [12] 0 constant
Penalized MU 0.1 constant for each column
Penalized MU 0.5 constant for each column
SHINBO not required automatically optimized,

different penalization for each column

Datasets. We evaluate the algorithms on two datasets: one generated syn-
thetically, and the other one obtained by processing real vibrational signals
measured in a laboratory condition from damage rolling bearing elements.

• The synthetic dataset is generated starting from a full-rank decompo-
sition X « WH , where the factor matrix W contains 10% nonzeros
in the mr entries and the factor matrix H contains 70% nonzeros in
the rn entries. In this dataset, we have pm,n, rq “ p100, 7, 3q.

• The vibrational signals were measured on the test rig presented in
Fig. 1. The platform is equipped with an electric motor, gearbox, cou-
plings, and two bearings. One of the latter was deliberately damaged.
Diagnostic signals were measured with the accelerometer (KISTLER
Model 8702B500), stacked horizontally to the shaft bearing. The 40-
second-long vibration signal was recorded with the sampling rate of
50 kHz. For easier visualization, one second excerpt was selected, and
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then transformed to a spectrogram using the 128-window length, 100
sample overlapping, and 512 frequency bins. The raw observed signal
and its spectrogram are shown in Fig. 2. Assuming r “ 4 (four main
components of the mixed signal), we have pm,n, rq “ p257, 1782, 4q.

Figure 1: The test rig used in the experiment [16].

5.1. Experimental setup

Initialization. To ensure a fair comparison, all algorithms were initialized
using the same initial factor matrices, which were generated from an unpenal-
ized MU-based NMF warm start, that is initialized via nonnegative double
singular value decomposition (NNDSVD) of the matrix X [4].

Simulation. We perform 100 Monte Carlo simulations, where each run uses
a different random data matrix. At the start of each run, the initial value of
λ0 was selected randomly following a uniform distribution Ur0, 1s.

Normalization. We perform a normalization step on each column of W ,
wk for all k “ 1, . . . , r:

wk “ wk{ maxpwkq; hk “ hk ˚ maxpwkq.

12



Figure 2: Recorded vibration signal and its spectrogram.

Termination. All the algorithms were allowed to run a maximum number
of iterations of 500 for the synthetic dataset and 100 for the real one, with
an early termination tolerance of 10´6 on the relative fitting error using the
IS-divergence D0, defined as

ˇ

ˇD0pX,W k`1Hk`1
q ´ D0pX,W kHk

q
ˇ

ˇ

L
ˇ

ˇD0pX,W kHk
q
ˇ

ˇ ď 10´6,

where k indicates the iteration of the outer loop of the algorithm. For the
inner loop of the bi-level approach on iteration counter t, we stop at the
maximum number of (inner) T “ 4 iterations.

Evaluation. We evaluate the algorithms according to different criteria on
synthetic and real-world datasets. For both datasets, we plot the convergence
of the algorithms by looking at the behavior of the Response function.

For the synthetic dataset, we evaluate the quality of the factorization
with respect to the identification problem for the synthetic dataset using the
Signal-to-Interference Ratio (SIR) measure [5] between the estimated sig-
nals and the true signals. This is a log-scale similarity measure (expressed in
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decibels), often used in signal processing applications, and its higher value in-
dicates a higher similarity level. To highlight the effectiveness of the proposed
method, we conduct a statistical comparison of SIR values across algorithms
using the Kruskal-Wallis test, followed by a post-hoc multiple comparison
based on the Mann-Whitney test [21] with Benjamini-Hochberg (BH) cor-
rection [2], maintaining a significance level of α “ 0.05. We also investigate
the sparsity of the results obtained for the synthetic dataset using the fol-
lowing measure of sparsity for a generic matrix A P Rmˆn:

SppAq :“
`

1 ´ }A ´ 10´6E}0{mn
˘

100%,

where } ¨ }0 denotes the number of non-zeros elements. To demonstrate the
advantages of the proposed method, we analyze sparsity values across al-
gorithms using the same statistical test as for the evaluation of the SIR
(Kruskal-Wallis test, post-hoc Mann-Whitney test with BH and α “ 0.05).

On real-world dataset we check the goodness of the factorization by quan-
tifying the impulsive and cyclic behavior of the signal under analysis, using a
modified envelope spectrum based indicator (ENVSI) [17, 3] on time profiles.
ENVSI can be expressed as spectrum based indicator (SBI), defined as:

SBI :“
M1
ÿ

i“1

AIS2
i

O

M2
ÿ

k“1

S2
k,

where AISi is the magnitude of the i-th harmonic of the estimated signal in
the frequency domain, Sk is the magnitude in the k-th frequency bin in the
spectrum of the time profile, M1 is the number of harmonics to be analyzed
(assuming a periodic signal), and M2 is the number of frequency bins to
calculate the total energy.

SBI is zero if there are no impulsive components in the time profile,
whereas a larger SBI occurs when the impulses in the time profile are stronger
(which corresponds to the amplitudes in the spectrum) and the noise is
weaker. In the experiments, the number of harmonics M1 is set to 6, and
it was experimentally found to be sufficient for demonstrating the impulsive
and period behavior of the SOI representing time profile in the analyzed
application. To demonstrate the superiority of the proposed method, we sta-
tistically compare ENVSI values across algorithms using a Kruskall-Wallis
test and a post-hoc multiple comparison based on Mann-Whitney test with
a BH correction, with a statistical significance level set at α “ 0.05.
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Computer. All the experiments were conducted in MATLAB 2021a and
executed on a machine with an i7 octa-core processor and 16GB of RAM.

5.2. Results on synthetic dataset

Refers to Figure 3, the proposed algorithm demonstrates superior per-
formance in terms of convergence rate of Response function compared to
the other methods. We remark that, despite SHINBO exhibited similar and
rapid convergence as unpenalized MU for the first 450 iterations (on average),
the obtained decompositions have a different SIR value. See the discussion
below.

100 200 300 400 500

10-4

10-2

100

102
Median over 100 runs

Figure 3: Behavior of the Response function (outer problem) for the synthetic dataset.

Refers to Figure 4, we can see that SHINBO obtain the best SIR values on
both matrices and the higher sparsity on H compared to the other methods.
On average, SHINBO achieved 10% better SIR and 5% better sparsity on H
than other algorithms.

These results are also confirmed by the statistical comparisons. The
Kruskall-Wallis tests present p-values lesser that 10´14 and the details of
the pair-wise comparison with a BH comparison are presented in the tables
2 and 3.

5.3. Results on real-world dataset

As shown in Figure 5, the proposed algorithm outperforms other methods
in terms of the convergence of the Response function. From Figure 6, we
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Figure 4: Results of sparsity and SIR on the factor matrices on the synthetic dataset. Left
two columns are the sparsity of W (left) and H (right) of the four algorithms: from the
left to right are MU with λ “ 0, MU with λ “ 0.1, MU with λ “ 0.5 and SHINBO. The
right two columns are the SIR of W (left) and H (right) of the four algorithms: from the
left to right are MU with λ “ 0, MU with λ “ 0.1, MU with λ “ 0.5 and SHINBO.

Table 2: p-values results of pairwise comparisons for SIR coefficients on (W , H). In the
table ϵ “ 10´16.

MU MU λ “ 0.1 MU λ “ 0.5
MU λ “ 0.1 8.1 ¨ 10´5, 6.3 ¨ 10´10 - -
MU λ “ 0.5 ă 2ϵ,ă 2ϵ ă 2ϵ,ă 2ϵ -

SHINBO 0.14,0.0042 5.4 ¨ 10´5, 1.2 ¨ 10´9 ă 2ϵ, ă 2ϵ

Table 3: p-values results of pairwise comparisons for sparsity coefficients on pW ,Hq.

MU MU λ “ 0.1 MU λ “ 0.5
MU λ “ 0.1 0.00036, 0.0075 - -
MU λ “ 0.5 ă 2ϵ, ă 2ϵ ă 2ϵ,ă 2ϵ -

SHINBO 0.023, ă 2ϵ 3.12 ¨ 10´6, ă 2ϵ ă 2ϵ,ă 2ϵ

observe that SHINBO achieves the highest ENVSI on H . A higher value of
the ENVSI score (above 0.77) and a lower number of outliers confirm that
the proposed algorithm finds the SOI in the observed diagnostic signal, which
is consistent with our prior knowledge about the physical state of the tested
rolling bearing.
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Figure 5: Behavior of the Response function (outer problem) for the real dataset.
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Figure 6: The ENVSI score of H of the four algorithms: from the left to right are MU
with λ “ 0, MU with λ “ 0.1, MU with λ “ 0.5 and SHINBO.

These results are also confirmed by the statistical comparisons. The
Kruskall-Wallis tests present p-values lesser than the fixed significant level
(0.04) and the details of the pair-wise comparison with a BH comparison are
presented in Table 4.

The concept is that SHINBO is designed to effectively identify which
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Table 4: p-values results of pairwise comparisons for ENVSI coefficients.

MU MU λ “ 0.1 MU λ “ 0.5
MU λ “ 0.1 0.98 - -
MU λ “ 0.5 0.98 0.98 -

SHINBO 0.04 0.04 0.04

components of λ are associated with noise and which are linked to the true
sparse signal. The goal is to apply greater penalization to certain compo-
nents, thereby filtering out the noise while preserving the component rep-
resenting the SOI. The results indicate that SHINBO performs very well in
this context, as it successfully isolates and preserves the meaningful signal
while suppressing irrelevant noise.

6. Conclusion

In this work, we addressed the critical challenge of selecting penalty hy-
perparameters in NMF by introducing SHINBO, a novel algorithm that em-
ploys a bi-level optimization framework to adaptively tune row-dependent
penalties. By focusing on the IS divergence, SHINBO proves highly effective
for extracting low spectral density components in spectrograms, particularly
in the presence of noise. The ability of the algorithm to enforce sparsity con-
straints and dynamically adjust penalties ensures a more precise separation
of meaningful signals from noisy disturbances.

Through experiments on both synthetic and real-world datasets, SHINBO
demonstrated its superior performance compared to traditional NMF meth-
ods. For real-world applications, such as noninvasive vibration-based fault
detection in rolling bearings, SHINBO excelled at isolating sparse, periodic
signal components in high-frequency subbands, even when heavily masked
by broader noise.

The results highlight SHINBO’s potential to significantly enhance sig-
nal recovery in complex, noise-dominated environments. By tackling the
hyperparameter selection problem with an adaptive, data-driven approach,
SHINBO not only advances the field of NMF but also provides a robust tool
for applications requiring precise spectral decomposition and noise suppres-
sion. Future work will explore the scalability of SHINBO for larger datasets
and its adaptability to other domains with similar challenges.
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