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Absiract—Large area tactile sensing for robotic manipula-
tors is an important capability to enable robots to perceive
interactions with environment around them and for intuitive
human-robot collaboration. In this paper, we introduce a
novel vision-based tactile sensing methodology that em-
ploys electroluminescent panels with a deformable soft
skin that modulates light intensity based on applied forces
to realize force localization and magnitude estimation for
multi-point contact scenarios. The tactile sensing module
is composed of a transparent rigid skeleton, a sensing skin
composed of a thin and flexible electroluminescent panel,
a deformable translucent elastomer layer with a pyramid
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pattern and an opaque outer layer. When a force is applied onto the skin, the deformable layer deforms modulating
the intensity of light passing through the transparent layer which is detected by a camera embedded inside the module.
We utilize image processing, camera models and statistical fitting to localize single and multiple touch points as well as
estimate the magnitude of the forces applied. Finally, the proposed algorithm is tested with five different indenters, and
the localization error and the intensity-force mapping are analyzed. A localization accuracy of 6.63mm has been achieved
and normal forces from 3.1N to 9.4N can be detected with an accuracy of 9.3-11.7% error range. This work provides a
simple and effective solution for the acquisition of position and force magnitude information in human-robot interaction

tasks such as guidance and demonstration.

Index Terms— Tactile sensing, vision-based, force localization, force magnitude

I. INTRODUCTION

ITH the growth of robots in the fields of medical
Wtreatment, nursing, and industrial processing, the de-
mand for interaction between humans and robots is increasing.
Robots are expected to have perception capabilities such as
vision and touch to enable versatile interactions with humans.
In recent years, although visual sensing has enabled robots
with observation capabilities similar to human eyes [1], the
acquisition of physical interaction data is still lacking. As
physical touch is an important form of information transfer
between humans and robots in shared environments and col-
laborative work, the ability to sense touch is important for
improving human-robot collaboration [2].

The development of large area tactile sensing technologies
for robots faces challenges such as the density of sensing
elements, detection accuracy and cost. Traditional tactile sen-
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sors are based on physical transduction phenomena, while
arrays formed of resistive sensors [3], capacitive sensors [4],
ToF (time-of-flight) sensors [5], pressure sensors [6], magnetic
sensors [7], etc. to detect or measure force/touch have been
employed. These electronic methods require a large number of
wires and analog-to-digital converters, which makes it difficult
to improve the spatial resolution or provide large-area tactile
sensing information for the robot. Miniaturizing the sensors
also diminishes the initial sensor values making the sensitivity
lower and the changes difficult to sense electronically [3].
Electrical impedance tomography (EIT) techniques that sense
in a continuous resistive sheet suffer from low sensitivity in
the regions sparsely populated with electrodes and require
complicated instrumentation and computation [8]. Electronic
sensors are also susceptible to environmental factors such as
temperature changes, and interference from external magnetic
fields limiting their application to industrial environments [9].

Introducing vision into tactile sensing tasks, by analyzing
rich image information and converting it into tactile infor-
mation, vision-based sensing achieves high spatial resolution
with ease of manufacture and low cost, and can acquire the
geometric or textural features of objects [10]. This also facil-
itates robots to have soft skins. The camera is placed inside
the sensor, and the contact information on the sensor surface



is separated from the camera, which makes the sensor more
robust. Different types of cameras can be selected according to
the size of the measurement area, and a large number of vision
algorithms can be utilized to make the manufacture of vision-
based tactile sensors more flexible and simple. In addition,
camera-based sensing is easy to integrate into robotic control
pipelines.

This study thus develops a soft tactile sensing based on
vision to locate the touch points and estimate the force
magnitude. The figure in abstract shows an operation scenario,
in which this information of physical contact with the robot
by a human hand is sensed and can be used to control the
robot’s movements. The main contributions of this work are
as follows:

1) A new principle of vision-based sensing in which in-
tensity modulation of light from flexible electroluminescent
panels is used to realize a thin tactile sensing skin. This also
enables replacing LEDs, avoiding the reflection effect of the
enclosure wall. The EL panel is directly embedded inside the
skin, and the skin area can be flexibly designed according to
the application needs.

2) An image processing algorithm based on monocular
vision using intensity as the detection index is developed to
realize the localization of the contact point and the estimate
the force magnitude.

This paper is structured as follows. Section II addresses the
related works. Section IIT describes the fabrication process of
the EL skin and the design of the whole system, followed
by the detailed presentation of the vision-based model in
section IV. A series of experiments for evaluation of the sensor
performance are shown in section V. Finally, conclusions and
future works are described in section VI.

Il. RELATED WORKS

Tactile sensors have, in the past, been embedded in robot
fingertips, links of manipulators, arms and chest of humanoid
robots, etc., to complete detection [3], grasping [11], environ-
mental assessment [5] and other interactive tasks. Vision-based
tactile sensors, which estimate contact information by visual-
izing the deformation of soft bodies/skin using cameras, are
becoming popular because they offer high spatial resolution
and rich contact information. They have attracted widespread
attention in various robotic applications for contact detection,
localization and force magnitude estimation [2].

A. Shape detection and force estimation in robotic
fingertips

Some vision-based tactile sensors can acquire shape features
of interacting objects which can then be used to perform
subsequent grasping or classification tasks. The research on
the localization and force magnitude is a further study on the
basis of detection, which is of great significance in informing
the action of the robot.

GelSight sensor [12] employed red, green and blue colors
illuminating a clear surface. When there is a force applied,
the surface deformation is recorded by a camera, visible dots
are also marked on the surface to estimate the shape of

the contact surface. Dong et al. [13] improved GelSight for
3D reconstruction of objects. Calandra et al. [14] imitated
two human fingers by using two GelSight sensors to obtain
grasping images, and built a neural network of tactile images
and grasping states to predict grasping results. She et al.
[15] proposed GelFlex based on GelSight, and designed two
fingered grippers; each finger contains two fisheye cameras to
detect the shape of objects and classify them. Patel et al. [16]
mimicked human fingertips to find and classify objects in sand
with improved GelSight. [17] presented a F-Touch sensor by
adding an internal elastic structure on the basis of GelSight to
realize estimation of three-axis force components, which was
further extended to six-axis force/torque components [18] and
shape recognition [19].

Tactip sensor [20] simulated the structure of the human
fingertip, designed the silicone outer skin as a curved surface,
and continuously reduced the size of the curved surface, to
achieve object manipulation, contact sensing, pressure sensing
and shear force detection. Winstone et al. [21] estimated force
using two Tactip sensors. James et al. [22] distinguished slid-
ing and stationary objects using Tactip and machine learning
algorithms. Polic et al. [23] combined Tactip and CNN neural
network to complete plant processing tasks such as pruning
and picking.

GelSlim sensor [24] tuned the camera position to enlarge
the illumination area, and improve the durability and contact
signal strength of the gel. GelSlim focuses on shape and
texture reconstruction of the contact objects, and it is usually
used to finish peg-in-hole and dense packing tasks [25]. Ma
[26] reconstructed the contact force distribution to propose a
new version of the tactile sensor GelSlim 2.0.

In addition, other studies on shape detection and force
estimation have been conducted. Shimonomura et al. [27] built
a three-camera vision system in the grasping operation to
calculate the distance and estimate the shape of the object
through stereo matching. Ruijia et al. [28] applied particle
image velocimetry to the field of vision-based tactile sensors
for shape reconstruction and tracking. Vlack et al. [29] de-
scribed GelForce, which uses vector distribution to calculate
the force magnitude. Yamaguchi [30] designed a transparent
finger vision system, which uses a camera for each finger to
complete tasks such as contact force estimation. Mclnroe et
al. [31] fabricated a haptically actuated, controllable stiffness
device SOFTcell, to measure contact forces and moments.
Referring to bionics, Kent et al. [32] provided a tactile sensor
with a whisker array to discriminate inertial force, airflow, and
contact force.

B. Vision-based tactile sensing for manipulator links

Tactile sensing for robot manipulator links is useful for
obstacle detection and estimation in contact tasks as well
as for human-robot interaction. The real-time estimation of
the contact position and force magnitude is helpful for the
robot to estimate the human intention [33], which is essential
for many collaborative tasks. In contrast to robotic fingertips,
manipulator links are large with curvatures making camera
placement, lighting and image capture challenging. Although



some successful tactile sensors have been developed, there
are significant limitations in localization and force magnitude
estimation.

Isabella et al. [34] outlined a tactile sensor composed of a
hemispherical film and a depth camera to correct and follow
human finger movements. Zhang et al. [35] built a cylindrical
tactile sensor similar to the human arm based on a fisheye
lens, and used optical flow method to track markers on a soft
substrate and detect the location of the applied force. Force
estimation is challenging to achieve in that setup because the
change in pixel position of markers in a thin skin is hard
to accurately obtain. Yoshigi et al. [36] described a conical
cylindrical sensor using two fisheye lenses to calculate the
position and the depth of the sensor deformation based on the
contact image.Duong et al. first promoted a sensing approach
which could detect markers deflection [37], and then intro-
duced TacLink [38] which used two cameras binocular vision
to detect the changes in location of white markers in a black
silicone pressurized structure to locate the point, and estimate
the magnitude of the external force. However, it is challenging
to achieve high spatial resolution and force sensitivity. As the
silicone structure is a hollow shell, a force applied causes a
large region of the shell to deform. This makes it challenging
to obtain a high spatial resolution for multi-point detection.
In addition, the internal pressure should be set to a low value
(such as 0 or 0.5kPa) to achieve significant deformations in the
structure to be captured by the camera. Under such internal
pressure, the load bearing capability of the link is low and
the force sensitivity decreases with increasing load-bearing
capability. In addition, the soft link is pressurized and the
force sensitivity varies across the length of the link. At the
same time, tactile sensing based on stereo-camera has only
been implemented for soft pressurized manipulators which do
not have a rigid body and undergo significant deformations. On
the basis of [38], [39] changed the skin to a polymer dispersed
liquid crystal film, which can switch between the opaque and
the transparent state, to collect tactile and proximity perception
data in two modes. Luu et al. [40] proposed a pipeline named
SimTacLS to analyze the dataset captured by the visual tactile
sensor in the TacLink device in order to carry out tactile-
driven robotics tasks. In these studies, the internal lighting
system plays a crucial role in detecting the markers accurately.
The material of the transparent parts should be selected or
engineered carefully to remove any light reflections or other
artifacts.

In our study, we develop a vision-based tactile sensor
that uses a skin with its own light source to localize the
contact position and estimate the force magnitude based on
the intensity of light transmitted through a translucent layer.
This sensor addresses the requirements of single point contact
and multipoint contact estimation for human-robot interaction.

[1l. DESIGN AND FABRICATION
A. ElTac sensing design

Fig.1 illustrates the detailed structure of the ELTac sensing
module, which is a cylindrical sensor with the ability to
detect multi-point touch on the cylindrical outer surface and
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estimate the magnitude of forces applied. The ELTac sensing
module consists of a rigid transparent acrylic cylinder of
outer diameter 80mm and inner diameter 76mm, mounted
on a 3d-printed base that acts as a holder for the cylinder
and can be used as a coupling to integrate with a robot
arm. This acrylic cylinder acts as the skeleton of the sensor
module and provides a rigid surface for the attachment of the
electroluminescent skin. The holder houses a wide-angle USB
camera (ELP_USBFHDO4H_L21, ELP, China).

We develop soft deformable skin segments using off-the-
shelf electroluminescent (EL) panels (EL Wire Craft, 70mm
x 110mm, 0.31mm thickness, UK). EL panels are composed
of two conductive layers, one of which is transparent to allow
light transmission, sandwiching a semiconductor layer, that
emits light when an alternating current is applied. These panels
are flexible and can also be cut into desired shapes. EL pancls
are commercially available in many sizes (A6, AS, A4, A3,
A2 and Al) and multiple colours. The thickness of a typical
panel is about 300 um. Each EL panel employed in the tactile
sensing skin is powered by using only two electrical wires
attached to the panel at one corner of the sheet and provides
a large area for tactile sensing. Utilizing LEDs placed at
different locations inside the tactile sensing module as a light
source makes uniform illumination of the tactile sensing area
difficult and sometimes causes interference due to reflection of
LED light off the rigid surface supporting the elastomer skin.
In contrast, embedding the EL panel inside the skin helps to
achieve a uniform light environment throughout the tube. We
use an inverter to convert 6.5V DC to 65V and 815Hz AC
voltage and power the electroluminescent panel. We embed the
EL panel inside silicone rubber, to form a soft skin (§80mm x
120mm). Four segments of electroluminescent deformable EL
skin are attached circumferentially onto the cylinder which act
as the transducers that convert external force into a change in
transmitted light intensity. The outer and top of the cylinder are
covered with a thin layer of black elastomer to block external
light from entering the sensor module. When an external force
is applied to the ELTac surface, black soft skin and EL Skin
are simultaneously pressed and the pyramidal structures on the



EL Skin deform due to pressure. The distance between the EL
panel located inside the EL skin and the transparent acrylic
tube at the point of force application becomes shorter, and the
transmitted light intensity increases. The pixels corresponding
to the deformed pyramids in the camera image get brighter.
Finally, the magnitude of the applied force is calculated
according to the experimentally mapped relationship between
the fitted light intensity and force magnitude.

The difference from other works [35] [38] is threefold: first,
in contrast to using the reflection of LED light by markers
to detect marker locations, we use flexible EL panels as a
light source and utilize the changes in the transmitted light
intensity through a translucent medium. This removes the issue
of reflection of LED light by the transparent acrylic tube
and causing artifacts in the camera images. Second, although
we use only a single camera in this study, this technique
also allows one to safely use two cameras to improve spatial
resolution without additional considerations about blocking
light from being directly incident on the camera aperture.
It not only saves the space of the light sources, but also
simplifies the overall structure of the sensor, and the size and
position of the electroluminescent sensing skin can be flexibly
set according to the needs. Third, the force magnitude can be
estimated directly from the intensity of the light transmitted
from the specific point of interest and does not require two
cameras and algorithms to compute deformations which can
be computationally expensive. In this work, we use a single
wide-angle USB camera, from which the light intensity of
taxels is detected and the localization and force estimation
are conducted. This is a localization method based on a
monocular camera, which saves hardware costs and simplifies
the computational complexity of image processing algorithms.
To the best of our knowledge, this is the first application
of electroluminescent skin to large area vision-based tactile
sensing.

B. Fabrication of tactile skin based on EL panels

The EL skin is composed of four layers: the inner opaque
black layer with apertures, a translucent middle layer, a flexible
EL panel, and an opaque black outer layer (shown in Fig. 2).
The middle translucent layer has pyramid shaped structures
that project outward through the apertures in the inner opaque
black layer. These structures act as stationary markers with
variable brightness when viewed from the camera. The black
inner layer has 8x12 holes, corresponding to 96 markers on
the transparent middle layer. The EL panel is between the
middle layer and the black bottom layer. We show the detailed
process on how to prepare the EL skin in Fig. 3, which
includes four steps.

1) Mold design. Three molds are designed, namely Mold
1, Mold 2 and Mold 3 in Fig. 4, and 3d printed with PLA
material. The three molds are used to make three layers of
silicone elastomer skin.

2) Black upper layer and black bottom layer. The upper
layer is a black layer with holes, and the bottom layer is
to cover the EL panel. Mix part A and part B of Silicone
(Ecoflex0030, Smooth-On, Inc. USA) in a ratio of 1:1. Mix
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well after adding 1 drop of black paint, and use the vacuum
pump to evacuate the air bubbles in the mixing. Pour into mold
1 and mold 2 and get skin 1 and skin 2 after four hours.

3) Transparent middle layer and markers. Place skin 1
inside mold 3 to make sure the holes are aligned. Then, mix
Ecoflex0030 (15g part A+15¢g part B) without any color, after
vacuuming, pour it into mold 3 where skin 1 is placed. After
four hours, skin 3 with transparent pyramid markers and black
gap is obtained, the size and the height of the pyramid is 6mm
and 3mm, and the distance between the pyramids is 10mm.
This design can avoid interference of edge intensity changes
on the contact point.

4) Finally, place the EL panel on top of skin 2, and skin 3 on
top of the EL panel. Use a small amount of mixed transparent
silicone as glue and apply it between the three layers. After
curing, the fabrication of the EL skin is completed.

The whole tactile sensor contains four EL skins and the
entire cylindrical surface is then covered by a black soft skin,
and the top of the tube is also covered by the black soft skin.
The cylindrical structure with the EL skins is installed on a
3d printed base with a camera. This completes the fabrication
of the ELTac, which is shown in Fig. 2.

IV. VISION-BASED MODEL
A. Principle of vision-based model

The schematic diagram of the imaging system of the ELTac
sensor is shown in Fig. 4. In the figure, the coordinates
of a point on the sensor surface in the world coordinate



system are M (Xns, Yar, Zar), the coordinates in the image
coordinate system are m (2, Y ), and the coordinates in the
pixel coordinate system are (u,v). The distance between the
focal point and the imaging plane is the focal length f. The
distance between the focal point and the X-Y plane of the
world coordinate system is d. We use cylindrical coordinates
to represent the world coordinate system,

Xy = Rcos6
Y]w :Rsin9 (1)
YAVEIEAY

where R is the radius of the acrylic tube with a value of
40mm, and 6 is the angle between the point M and the X axis.
We use the polar coordinate system to represent the imaging
coordinate system,

@)

Ty = 7 COSH
Ym = TrSind

where 7 is the distance from m to the origin of the imaging
coordinate system. The axes of the image coordinate system
are aligned with those of the world coordinate system, and the
angle 6 for a giving point in the world coordinate system is the
same as that of its corresponding point in the image coordinate
system. According to the principle of pinhole imaging, the
relationship between point M in the world coordinate system
and the imaging coordinate system can be obtained,

r_f 3

R d+Zy )
Besides, the relationship between the imaging coordinate
system and the pixel coordinate system is,

{xm—u—cm @
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where (¢, c,) is the coordinate of the principal point in the
pixel coordinate system. After calculating the pixel coordinates
of the contact point from the two-dimensional image, the
coordinate of the imaging coordinate system can be obtained,
and then r and 6 can be calculated,

; s)

arctan 2 (Ym, Trm)
f and d are obtained by calibration, and R is a known
constant, so Z,; can be calculated according to (3), and then
the coordinates of the point in the world coordinate system
can be obtained using (1) to realize localization.

B. Model calibration

The transformation from the image plane to the world
coordinate system is valid for a camera with a lens without
distortion. However, most lenses have radial distortion. First,
we calibrate the camera’s internal parameters using Zhang’s
calibration method [41] and obtain the distortion parameters.
The internal parameters are calculated by Camera Calibrator
Toolbox in MATLAB as f, = 976.4,f, = 976.6,c, =
647.6,c, = 357.5, k1 = —0.4171, ks = 0.2501. The images
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Fig. 4. The schematic diagram of the image system.

captured by the camera are then corrected according to the
internal parameters using the following equation:

T =
Ym =

where x,, and v, are the corrected coordinates, z and ¥
are the coordinates in the captured image, and 7 is the
corresponding radial coordinate in the captured image. In order
to obtain f and d in (3), we selected 15 points on the sensor
inner surface, measured the Zj, value of each point, calculated
the pixel coordinates of each point, and further obtained r by
using (5) and (6). Since R is known, the optimal f and d can
be calculated according to the least squares method, which are
784.7 and -38.21, respectively.

T

2 4
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C. Force detection, localization and magnitude
estimation

We developed methods for localizing either single point or
multi-point contacts. In single point contact estimation, the
location with maximum force application is localized while
in multi-point contact localization, all the regions with force
application are displayed. Fig. 5 shows the flow chart for the
detection and localization of the contact point by the ELTac
Sensor.

First, we obtain a video frame and save it as the initial
frame f;. We subtract the subsequent frames from f; to
obtain the frame difference df. As the color of the EL panel
used in our work is light blue, we extract the Green and
Blue components of df in the RGB color space and add
them together to get the intensity value fr. At this time, it
is necessary to determine whether single point detection or
multipoint detection is required. For single point detection, we
apply a smoothing filter to the image fr and find the maximum
intensity and the corresponding pixel coordinate (u,v). The
corresponding coordinate in the world coordinate system is
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then calculated according to the method in section IV.B. For
multi-point detection, i.e., to display all the points with the
force applied, we use the region growth algorithm to obtain
the connected domain area in fr. When the connected domain
area is larger than a threshold value P (400 in the experiment),
the centroid point of this connected domain is considered to be
the contact point, and the mean light intensity of the connected
domain is calculated. Same as the single point detection, the
corresponding coordinates of the barycentric points in the
world coordinate system are then obtained according to the
method in section IV.B.

V. EXPERIMENTS AND RESULTS
A. Experiment setup

We assembled a test rig for experimental data collection as
well as evaluation of sensor performance. A structure made of
aluminum profiles is assembled to house a lead screw drive
mounted horizontally. A load cell (FX29K0-100A_0010_L,
TE Connectivity Sensors, US) with an indenter attached is
mounted on the moving bed of the lead-screw drive to apply
forces on the surface of the EL skin and record the force

Sensor data visualization
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Fig. 7.
original image, (c) original binary image, (d) pressed point in the
captured image, (e) pressed point in the binary image, (f) sensor data
visualization.

Single point detection results, (a) experiment scenario, (b)

magnitude through a microcontroller (Arduino Uno Rev3,
ELEGOOQO, China), as shown in Fig. 6(a). The lead-screw
can be controlled using a RS PRO bipolar hybrid stepper
motor and programmed using the microcontroller through a
TB6600 stepper motor driver. The aluminum profile structure
can be adjusted to place the lead-screw drive at different
heights and positions to indent different locations on the sensor
surface. Five types of indenters (Fig.6(b), a 5mm conical tip
and hemispherical tips of diameters Smm, 10mm, 15mm and
20mm) are set in front of the force sensor (Fig. 6(c)), to
touch the ELTac sensor. We use MATLAB to implement the
algorithm on a laptop with Intel (R) Core (TM) i7_9750H
@2.6 GHz 2.59GHz, 16.0 GB RAM, NVIDIA GeForce RTX
2070 with Max-Q Design, to verify the performance of ELTac
Sensor.

B. Contact localization

When an external force is applied on the ELTac sensor,
the intensity of the markers on the EL skin will increase. The
position of the force on the captured image is obtained through
the detection algorithm proposed in section IV C. Then, the
coordinate values in the world coordinate system are visualized
on the simulated ELTac sensor. Fig. 7 shows an example of
single point contact force detection. When a concentrated force
was applied on the surface of the sensor, the brightness of
the corresponding markers increased and the brighter region
was segmented based on the procedure in section IV.C (Fig.
7(b)). The barycenter of this connected region was transformed
to the world coordinate system and was plotted on a mesh
visualizing the sensor surface (Fig. 7(c)). Fig. 8 shows the
results of multi-point force detection in which the force was
applied at two different points on the surface simultaneously.
The 3D positions of these two forces were displayed on the
sensor geometry in Fig. 8(b).

In order to measure the accuracy of force localization
and the robustness to the shape of the object applying the
force, we tested the sensor with five different indenters at
12 arbitrarily chosen locations on the sensor surface in a
total of 42 sets of data, and recorded the detected coor-
dinate values (Xys,Yas, Zas) in the world coordinate sys-
tem. At the same time, we manually measured the height
Znr wun Of the contact point and the angle 6,4 between
the point and the X axis, and calculate the real coordinate
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Fig. 8.  Multipoint point detection results, (a) experiment scenario,
(b) original image, (c) original binary image, (d) pressed point in the
captured image, (e) pressed point in the binary image, (f) sensor data
visualization.
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(XM wuth, » YM truth » Z0 wuh ). We then calculated the Eu-
clidean distance between the detected coordinate and the real
coordinate as the localization error, as shown in Fig. 9. Among
the five indenters, the average localization error of indenterl
is the smallest (6.22mm), while the average localization error
of indenter5 is the largest (7.19mm). The average localization
error of indenter 2 to indenter 4 is 6.47mm, 6.37mm, 6.90mm,
respectively. The average localization error is 6.63mm, which
is comparable to the distance between consecutive pyramids
in the EL skin which is 10mm. This points to a potential
approach for improving the localization error by reducing the
distance between the pyramids.

C. Force estimation

The best-fit curve for relationship between applied force and
the marker intensity was generated from the complete dataset
covering a wide range of force data using indenter2, indenter3,
and indenter4 with numerous data measuring points. The char-
acteristic of the force and intensity relation was represented
by a quadratic equation F(I) = p;I? + poI + p3. For each
measuring point, three different forces 3000mN, 5000mN, and
9000mN were applied to measure the corresponding intensity
of the ELTAc sensor to cover the full range of the data set.
Ten arbitrary measuring points, as shown in Fig. 10, were
selected on the ELTAc surface to characterize the relation of
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pixel intensity to the force applied. Points 1-8 are directly on
the top of the pyramid, whereas points 9-10 are between two
pyramids. Indenter 3 with a tip radius of 10mm was considered
to ensure consistency in the experiment. The force measured
directly from the load cell was compared with the calculated
one obtained from the best-fit curve, as shown in Fig. 11. The
coefficients are p; = 0.117, ps = 4.171, p3 = 599.9.

The comparative analysis between measured force and es-
timated force is shown in Table I. We use E = 100(F'L —
Fe¢)/(FL) to calculate the absolute force estimation error.
Here, FL and Fc are the measured force from the load cell
and the estimated force, respectively. F10 indicates the average
value of the estimated force from the last ten image frame. F5,
F3, and FI indicate the average values of the last five, three
and one iterations, respectively. The average error obtained
by the last three iterations (E3) is 9.3%, the smallest among
all. The maximum error produced by the E/, which is 11.7%,
is in an acceptable range. The average force estimation error
is 10.45%. The standard deviation falls in 7.6 - 8.2% range,
which also looks consistent in error generation. It is also
observed that the force estimation is much more accurate in
the central zone of the sensor than in the edge region, such
as data points 1, 2, and 10. We expect that improving the
attachment of the ELTAc sensor with the acrylic tube would
improve the performance. Besides this, the ELTAc sensor was



TABLE |
FORCE ESTIMATION RESULTS
Data Measured Estimated force from Absolute Force
measuring force best-fit curve Fc (mN) estimation error (%)
points FL (mN) | F10 F5 F3 F1 EI0 [ E5 E3 El
3053 2750 | 2646 | 2649 | 2445 | 9.9 | 133 | 13.2 | 19.9
3 5270 5631 | 5568 | 5423 | 5616 | 6.8 5.6 29 6.6
8001 7388 | 7541 | 7633 | 7807 | 7.7 5.7 4.6 2.4
3053 3040 | 3017 | 3095 | 3154 | 0.4 1.2 1.4 33
4 5110 5013 [ 5004 | 5036 | 4868 | 1.9 2.1 1.5 4.7
8239 8053 | 8030 | 8024 | 7691 | 2.3 2.5 2.6 6.7
3092 2943 [ 2893 | 2949 | 2850 | 4.8 6.4 4.6 7.8
5 5007 4788 | 4850 | 4958 | 5471 | 44 31 1 9.3
8021 7086 | 7225 | 7348 [ 7865 | 11.7 | 9.9 8.4 1.9
3035 2339 [ 2397 | 2514 | 2445 | 229 | 21 17.2 | 19.5
6 5053 4512 | 4499 | 4529 | 4473 | 10.7 11 104 | TL.5
8197 7604 | 7610 | 7749 | 7348 | 7.2 7.2 55 | 104
3067 3393 [ 3470 | 3503 | 3440 | 10.6 | 13.1 | 142 | 12.2
7 5170 5253 [ 5207 | 5249 [ 5423 | 1.6 0.7 1.5 4.9
8178 7326 | 7416 | 7365 | 6796 | 104 | 9.3 9.9 | 169
3160 2454 | 2474 | 2587 | 2504 | 22.4 | 21.7 | 18.1 | 20.7
8 5192 4371 | 4491 | 4376 | 4346 | 15.8 | 13.5 | 15.7 | 16.3
8400 5942 5942 | 5947 [ 5568 | 29.3 | 29.3 | 29.2 | 33.7
4100 3335 [ 3514 | 3691 | 3589 | 18.7 | 14.3 10 12.5
9 5110 4976 | 4895 | 4913 | 4734 | 2.6 4.2 39 7.4
9367 7405 [ 7576 | 7558 | 7749 [ 209 | 19.1 | 193 | 17.3
Average error 10.6 | 102 | 9.3 | 11.7
Standard deviation 8.2 7.7 7.6 7.8
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Fig. 12. Repeatability test (force vs intensity).

fabricated by combining several EL panels. Using a single
large EL panel will also make the sensor more homogeneous
and improve the overall force estimation accuracy further.

D. Repeatability and hysteresis test

A repeatability experiment was performed to investigate the
robustness of the developed ELTAc sensor. The variation of
pixel intensity to applied force was measured five times by
indenting point 5 using indenter3. The interval between any
two consecutive trials was at least one hour. A wide range
of forces from 2000 to 9000mN were applied keeping other
parameters constant. The force vs intensity data points for the
five trials are shown in Fig. 12. We can find that the sensor
has good repeatability.

As elastomer materials show time-dependent elastic be-
haviour, it is essential to calculate the hysteresis loss of the
ELTAc sensor. Therefore, the same loading and unloading
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Fig. 13. Hysteresis test (force vs displacement).
TABLE Il
ENERGY LOSS CALCULATION DUE TO HYSTERESIS
Indenter speed (mm/s) 0.1 0.5 1 2 4
Hysteresis loss (%) 2827 | 25.68 | 2327 | 21.62 | 23.84

cycle (0 to 4mm) was applied to the sensor at different
indenter speeds to evaluate the hysteresis loss. Throughout the
experiment, indenter3 was used to apply forces to measuring
point 4 at different indenter speeds varying from O.1mm/s
to 4mm/s precisely controlled using a stepper motor driver.
Fig. 13 shows the hysteresis loops for different indenter
speeds. The sensor offers a certain amount of hysteresis as
the response did not follow the same path during loading and
unloading. However, the sensor’s performance is consistent in
terms of energy loss, as shown in Table II. The hysteresis
losses for all the 5 speeds are within 30% with no significant
differences within this speed range.

VI. DISCUSSION

To compare with other related works on vision-based large
area tactile sensing, we summarize various methodology in-
formation and performance indicators in Table III - image
capture, image resolution, light source, sensor function, lo-
calization error range and force estimation error range. As
can be seen from the table, our work is the only one that
does not use LEDs. Placement of LEDs is crucial to achieve
uniform illumination and reduce interference caused due to
reflection of light from internal surfaces of the sensing module.
Our methodology based on embedding EL panels into the
soft skin not only helps to achieve uniform illumination
but also introduces attenuated light through the acrylic tube
removing interference and need for complex image processing
techniques. For image capture, two-camera systems and the
triangulation principle for localization are typical in the large
area tactile sensing studies. In this work, the force at a point
is directly related to the intensity of the corresponding pixels
in the image removing the need for marker tracking in a 3d
coordinate system that requires two cameras. The localization
error in our work is 6.22—7.19mm. This range is comparable



TABLE IlI
COMPARISON WITH OTHER WORKS

Force estimation
error range

Localization
error range

Tmage -
Reference | Image capture & Light source |  Sensor function
resolution

Two fish-cyc Detect each

Duong [37] © fish-c 640x480 LEDs  petect each - -
cameras marker's deflection
— Two fish-eye - Detect the Detection accuracy
Yoshigi [36] cameras. 360x360 LEDs ion area | (94.55% to 98.18%) -
Two fish-eye - Tocalization and Mesh size of Below 0.7mm
Duong [38] cameras 640x480 LEDs force i 18mm % 9.5mm depth error
T22mm depth error
Luu [39] T“'c‘:"ﬁ?:afy" 640x480 LEDs CZT{?;ZSZE’“ - at Smm’s contact
: stima depth case
Two fish-eye Contact detection
Luu [40] O e 640x480 - e laior 4.86-7.19mm -
- Tocalization
One lish-eye

Zhang [35] camera 1640x1232 LEDs and mimic - -

human actions

One wide-angle
camera

Localization and

This work
force

1280x720 EL Panels 6.22-7.19mm 9.3-11.7%

to that in Luu et al. [40] and to the mesh size of 18mm X
9.5mm employed for localization in Duong et al. [38] . To the
best of our knowledge, very few studies in literature focused
on force estimation in large area tactile sensing. In [38], a
finite element model (FEM) method was developed to convert
marker displacements obtained by image processing into force
estimation in a soft internally pressurized structure. When the
internal pressure is 0 kPa, the predicted results are very close
to the ground truth with the absolute errors corresponding to
5% full scale. As the internal pressure increases, the force
estimation error also increases with the absolute error reaching
about 70%. In comparison, our approach does not have such
interdependence, and the error range of force estimation is
smaller at 9.3-11.7%. To the best of our knowledge, there is
no shear force estimation in large area tactile sensing modules.
The methodology in this paper is limited to normal force
estimation and is not suitable for shear force sensing. In
contrast, the other methodologies based on marker tracking
[35-40], in principle, allow for complete mapping of the
deformation field and hence the potential for directional and
shear forces. In summary, the ELTac sensing module offers
high localization and force estimation accuracies as well as
multi-point contact detection capabilities all enabled by a
single camera.

VIlI. CONCLUSION

In this paper, we designed a novel vision-based tactile sensor
ELTac, by using one camera, to realize contact localization
and force magnitude information. We use EL panels that
can be freely selected in shape and can be cut arbitrarily
instead of LEDs to provide the light source, which avoids the
problem of reflection off the inner transparent tube surfaces. A
localization method based on a monocular camera is presented.
By obtaining the intensity change between different frames
and calculating the contact position, the minimum average
localization error of the five indenters is 6.63mm. The de-
tection algorithm realizes single point contact force detection
and multi-point detection, which could be used for various
human-robot interaction applications. Finally, the intensity-
force mapping relationship at different positions on the sensor
surface is analyzed. The average error of force detection falls
in 9.3-11.7% range. Repeatability and hysteresis tests show
that the ELTac skin can be a reliable and promising candidate
for large area tactile sensing. In our future work, we will focus
on monolithic EL skin fabrication for continuous large area

coverage and improved homogeneity, as well as methods to
improve the sensor’s spatial resolution. We will also explore
integration of the sensor with robotic manipulators for human-
robot collaborative tasks.
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