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Abstract—Multi-dimensional sparse channel state information
(CSI) acquisition is conceived for Orthogonal time frequency
space (OTFS) modulation-based millimetre wave (mmWave)
multiple input and multiple output (MIMO) systems. A compre-
hensive end-to-end relationship is derived in the delay-Doppler
(DDA) domain by additionally considering the angular param-
eters and a hybrid beamforming (HB) architecture. A time-
domain pilot model tailored for CSI estimation (CE) in the
DDA-domain is proposed, which exploits the inherent multi-
dimensional (4D) sparsity that emerges in the DDA-domain
during the CE process. An efficient low-complexity Bayesian
learning (LC-BL) technique is conceived to fulfil the objective
of CSI estimation in such systems. Subsequently, a compre-
hensive examination of the complexity of the algorithm under
consideration is also provided. It is worth noting that the
complexity of the BL scheme designed is similar to that of
popular orthogonal matching pursuit (OMP), but significantly
lower than that of the traditional expectation-maximization (EM)
based BL technique. Moreover, a single-stage transmit precoder
(TPC) and receiver combiner (RC) design is proposed. This
procedure aims for maximizing the directional gain of the RF
TPC/RC pair by optimizing their weights. Additionally, a series of
comprehensive simulations are conducted which incorporate the
use of a practical channel model and fractional Doppler shifts. In
light of the inherent trade-offs between complexity and estimation
algorithm performance, our proposed scheme, LC-BL, appears
suitable, especially considering the substantial enhancement in
the performance of CE compared to the existing benchmarks.

Index Terms—OTFS, MIMO, sparsity, channel estimation,
delay-Doppler-angular domain, high-mobility, mmWave, hybrid
precoding.
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I. INTRODUCTION

Next-generation (NG) communication systems are expected
to enhance the data rates and reduce the latency compared to
the existing 5G systems [1]. In such scenarios, the scarcity of
available bandwidth in the sub-6GHz regime naturally moti-
vates the migration to the high-frequency mm-wave spectrum
in the 30 to 300 GHz band, where wide frequency blocks are
readily available. Furthermore, the 4G and 5G communication
systems employ orthogonal frequency division multiplexing
(OFDM). This multicarrier modulation technique efficiently
handles frequency-selectivity [2] of the channel. However, the
most critical assumption to simplify signal processing is the
quasi-static envelope of the wireless channel’s fading over each
OFDM symbol duration. This assumption is however invalid,
in the face of Doppler spread, namely when the receiver (Rx)
and transmitter (Tx) are in relative motion with respect to each
other. Thus, in high or ultra-high mobility applications [3], [4],
a diverse and dynamic fading environment is a reality. In such
a scenario, more Doppler-resistant modulation schemes have
to be investigated. Thus, a novel technique proposed by Hadani
et al. [5]–[7] popularly known as orthogonal time frequency
space (OTFS) modulation, is ideally suited to deal with doubly
selective wireless channels. This new waveform in fact, can
also be realized by incorporating the symplectic fast Fourier
transform (SFFT) and its inverse into an OFDM transceiver
core [8], [9].

The combination of the potent mmWave and OTFS architec-
tures taps into rich bandwidth resources, for supporting high-
speed data transmission. While mmWave OTFS-based systems
offer an array of benefits, the practical realization of these
gains depends on finding the optimal mmWave architecture,
leading to hardware constraints. Other design challenges in-
clude their high propagation losses and signal blockages [10],
which must be overcome. Furthermore, higher frequencies
can cause significant Doppler impairments, making it difficult
to use in high-mobility scenarios. This challenge can be
addressed by employing transmit and receive antenna arrays,
allowing for integrating multiple antennas in a compact space
due to the shorter wavelengths [11]. Thus, it is imperative
to include the design of RF transmit beamformers/precoders
(TPC) and receiver combiners (RC) in the overall transceiver
design. Additionally, these components must have precise CE
in the DD-domain. This treatise focuses on these topics, and a
concise state-of-the-art available is presented in the following
section.
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A. State-of-the-art

In the preliminary research era of mmWave communication,
scholars focused on various aspects such as channel modelling
and propagation characteristics at different carrier frequencies
[10], [12], [13]. Furthermore, CE is a crucial area of research
considered by many authors, and they have employed various
techniques. In [14], [15], compressive sensing-based CE tech-
niques are studied wherein the sparse power angle profile and
training sequence-based design optimization are investigated,
respectively. A few of the latest papers on mmWave include the
use of deep learning-based compressive sensing [16], where
the channel is modelled using a neural network and it is trained
offline using simulated data.

Alkhateeb et al. proposed a multi-resolution codebook de-
sign for low-complexity sparse CE [17]. Ayach et al. [18]
exploited the sparse mmWave wireless channel structure for
formulating a constrained matrix reconstruction problem for
the hybrid MIMO architecture and solved it using a simul-
taneous OMP (SOMP)-based approach. Along similar lines,
Huang et al. [19] proposed a quad-phase iterative sparse
CE scheme. It initially employs a least squares estimation
and subsequently uses sparse message-passing (MP) detec-
tion for determining the non-zero CSI positions based on
the estimated sparsity ratio. The authors of [20], [21] also
exploited the mmWave MIMO channel sparsity and developed
an improved CE technique having a significantly reduced pilot
overhead employing the OMP and sparse Bayesian learning
(SBL) techniques, respectively. Furthermore Li et al. [22]
exploited the mmWave channel characteristics such as sparsity,
angular spreads over the angle of arrival(AoA), angle of
departure(AoD), and elevation domains to formulate a low-
rank structure, which necessitates a substantially lower number
of samples for CE. Similarly, AoA and AoD estimation for a
sparse system using the beam space (or virtual) model for
the MIMO channel is also investigated in [23]. Along similar
lines, [24] considers a 3-D structure for the AOA-AOD-delay
domain cluster of the channel that is imposed by the effect
of power leakage, angular spread, as well as cluster duration,
and proposes an extended approximate MP technique, together
with a nearest neighbour pattern learning algorithm.

The aforementioned contributions solely focus on estimating
a narrowband flat-fading channel, neglecting the key fact that
mmWave MIMO channels are typically frequency-selective.
In order to address this limitation, Venugopal et al. [25]
and Rodriguez et al. [26] propose the use of OMP and
SOMP algorithms for sparse CE in both single-carrier and
multicarrier-wideband mmWave MIMO systems. Their studies
focus on a mmWave MIMO OFDM system and leverage
the sparsity of the channel. The authors of [27] adopt the
Bayesian framework to develop mmWave CE schemes. They
propose a novel scheme that performs matrix factorization and
subsequently employs the variational Bayesian principle. The
study conducted in [28] proposes a time-domain CE technique
for a wideband mmWave MIMO OFDM system. The study
by Talaei et al. [29] focuses on resolving the issue of lim-
ited angular resolution in mmWave MMO OFDM scenarios.
They propose a method for recovering the continuous angular

spectrum.
However, these early contributions did not consider any mo-

bility. Gao et al. [30] investigated a doubly-selective mmWave
MIMO channel model that considers multipath delays and
Doppler shifts. In the initial stage, a training pattern is em-
ployed to detect the sparse delay domain channel taps using
an energy detector. Subsequently, a modified OMP algorithm
is utilised to address beamspace sparsity and to estimate
the beam direction. The authors of [31]–[33] investigated
the characteristics of a doubly-selective temporally-correlated
block-fading channel in wideband mmWave MIMO systems.
These contributions investigated the variability of the gains of
the multipath components over time to effectively track the
doubly-selective channel utilizing an SBL-based Kalman filter
(SBL-KF). A notable drawback of these doubly-selective CE
approaches is that they assume the channel in the TF-domain
to vary over the TF-grid, which calls for frequent CE and leads
to excessive overheads. Moreover, their performance suffers in
high-Doppler scenarios. In addition to the DD-domain sparsity,
the mmWave MIMO channel is also sparse in the angular
domain [10], which can be beneficially exploited for CE. This
calls for the development of efficient sparse learning strategies
that impose low-complexity and exhibit reliable convergence
properties.

The recently introduced multicarrier modulation scheme
OTFS can offer substantial benefits in the context of com-
munication over a doubly-selective channel. Briefly, OTFS
enables input data to be mapped to a delay-Doppler (DD)-
domain grid [5], [43], with the transformed DD-domain chan-
nel being relatively static over an extended observation interval
[5], [44]. This renders CE more tractable in comparison to
other multi-carrier modulation techniques. The pertinent input-
output model is elucidated in [34], [36], [45]. In the context of
OTFS CE, the initial efforts involve transmitting pilots either
in the form of impulse-based signals or embedding them in
data over a single frame at fixed locations [46]. Although these
approaches succeed in mitigating the interference between the
pilots and data, they result in a significant spectral efficiency
reduction. The authors in [47] establish an end-to-end DD-
domain relationship for OTFS modulation employing perfect
bi-orthogonal and practical rectangular pulse waveforms. This
work additionally investigates the different types of interfer-
ence, and explicitly determines the inter-Doppler, inter-carrier,
and inter-symbol interference components that arise, when the
assumption of an ideal pulse shape is relaxed. Additionally,
it proposes an iterative message passing (MP) based signal
detection and interference cancellation technique. The recent
treatises [35], [37], [48] exploit the DD-domain sparsity for
achieving a superior CE performance. A high pilot overhead
is one of the downsides of DD-domain CE, and emerges
because a DD-domain guard interval is required for avoiding
interference with data symbols in the same OTFS frame. This
approach creates significant hurdles in MIMO-OTFS systems,
since numerous guard intervals must be set up at each transmit
antenna. In order to reduce the pilot overhead, the authors of
[38], [49] suggest a new method that utilizes TF-domain pilots
by transmitting the pilot symbols on a shared TF resource
block for all the transmit antennas.
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TABLE I
HB-MMWAVE MIMO OTFS CE: A TABULAR LITERATURE REVIEW

[34] [35] [36] [37] [38] [39] [40] [41] [42] Proposed
MIMO OTFS system ✓ ✓ ✓ ✓ ✓ ✓ ✓
mmWave hybrid design ✓ ✓ ✓
Delay-Doppler-angular channel ✓ ✓ ✓ ✓
4-Dimensional sparsity ✓ ✓
Practical pulse shape ✓ ✓ ✓ ✓ ✓ ✓ ✓
Flexible pilot overhead ✓ ✓ ✓ ✓
Time domain pilots ✓ ✓ ✓ ✓
DD-domain pilots R R R R NR R R NR NR NR
Fractional Dopplers ✓ ✓ ✓ ✓ ✓
Bayesian learning (BL) scheme ✓ ✓ ✓ ✓ ✓ ✓
Low complexity BL scheme ✓
Single-stage precoder design ✓
Requirement of DD-guards R R R R NR NR NR NR NR NR
R: Required, NR: Not required

While a comprehensive understanding of OTFS has been
developed in the extensive body of research discussed earlier, it
is important to note that these previous studies do not consider
the unique features of the high-frequency mmWave spectrum.
To address this issue, the performance of a mmWave SISO
OTFS system has been investigated in the seminal studies [5],
[50]. Additionally, in reference [42], the authors conducted
an in-depth study of mmWave MIMO OTFS systems, which
plays a pivotal role in attaining inreased data rates under high-
mobility conditions. Their research develops SBL and block-
SBL algorithms for mmWave-analog beamforming (AB) and
mmWave-hybrid beamforming (HB) assisted MIMO OTFS
systems, respectively. Although the framework is innovative,
it does not take advantage of the angular domain sparsity,
which could significantly enhance its performance. The related
work [40] also suggests an EM-based block SBL scheme for
CE, which considers the transmission of pilots in both the
TD and DD-domain, but this substantially increases the pilot
overhead. The high complexity of traditional BL schemes,
such as EM-based SBL, is due to the matrix inversion re-
quired for computing the covariance term in the E-step, which
presents a significant challenge. Moreover, in literature, several
authors have proposed diverse alternative methodologies to
mitigate complexity [51]–[54] encountered in BL approaches.
However, applying these approaches to the estimation of
sparse multidimensional channels is not direct and demands
a substantial amount of effort. Thus, it is desirable to con-
ceive pragmatic CE schemes with specific emphasis on their
practical implementation, which forms the focus of this paper.
Table I presents a comprehensive overview and highlights the
differences between our contributions and the state-of-the-art
in this area. The following section provides a clear itemized
description of the various contributions of this paper.

B. Contributions of the paper

1) In this study, the end-to-end relationship of OTFS-based
mmWave-HB MIMO systems is derived within the DD
domain, which enables the transmission of several con-
current data streams for spatial multiplexing. OTFS mod-
ulation and demodulation are described at each RF chain,

followed by deriving a comprehensive system model
constructed for facilitating signal detection.

2) A 4D-sparse CE problem is formulated via conceptual-
ization of the channel model in the delay-Doppler-angular
(DDA) domain, wherein the characteristics of each multi-
path component are defined by its delay, Doppler, angle of
arrival (AoA), and angle of departure (AoD) parameters.

3) A formulation based on sparse signal recovery has been
conceived for estimating the complex path gains of the
multipath components, including their respective delay
and Doppler shifts. Subsequently, a single-step method
has been devised for designing the TPC/RC waveforms.
This procedure optimizes the weights of the RF TPC/RC
pair to maximize their directional gains.

4) While the performance of the traditional BL scheme
is significantly improved compared to the conventional
OMP technique harnessed for sparse recovery, the former
traditionally suffers from an excessive complexity due to
matrix inversion. To overcome this, we develop a low-
complexity BL (LC-BL) CE procedure, for a mmWave-
HB MIMO OTFS system. This is achieved using a se-
quential approach based on the Type-II estimation frame-
work and on a stochastic maximum likelihood objective.

5) A detailed analysis of the complexity of the proposed
low-complexity BL (LC-BL) algorithm is also presented,
which is compared to that of the conventional OMP
and EM-based BL algorithms. The results demonstrate
that the complexity of the propounded LC-BL method
is comparable to that of the OMP algorithm, despite
yielding a significantly improved performance.

C. Organization of the work

The structure of this document is as follows:
The comprehensive model of an OTFS-based mmWave-HB
MIMO system is expounded upon in Section II. This is then
followed by presenting the proposed 4D-sparse CE in Section-
III. This section also describes in detail our low-complexity BL
scheme, referred to as the LC-BL. Subsequently, its complex-
ity comparison with the competing OMP and EM-based BL
methods is provided in Section-IV. Additionally, this section
includes the convergence analysis for the proposed LC-BL.
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The design pertaining to the RF TPC/ RC is elaborated upon
in Section-V. The subsequent sections, namely Section-VI and
Section-VII, present our simulation findings and conclude the
paper, respectively.

D. Notation

Matrices are represented by uppercase boldface letters A
and vectors by lowercase boldface letters a. A diagonal
matrix is identified by the notation diag(a0, a1, · · · aN−1)),
with a0, a1, · · · aN−1 denoting the elements on the principal
diagonal. On the other hand, the N th-order identity matrix is
represented by IN , while vec(A) transforms a matrix A into a
vector via serial stacking of its columns. Conversely, vec−1(a)
performs the inverse operation. A noteworthy property namely
vec (ABC) =

(
CT ⊗A

)
vec (B), is used at various places

in this paper, where ⊗ denotes the matrix Kronecker product.
Finally, δ(·) represents the Dirac-delta function.

II. MMWAVE HYBRID BEAMFORMING MIMO OTFS
SYSTEM MODEL

Consider the system model depicted in Fig.1. This system
comprises of Nt transmitter antennas (TAs), Nr receiver
antennas (RAs), and NRF radio frequency (RF) chains. These
parameters are related by obeying NRF << min(Nt, Nr)
[10]. A transmit precoder (TPC) FRF ∈ CNt×NRF is utilized
to map the symbols of the NRF RF chains to the Nt TAs,
where NRF ̸= Nt. In a similar way, the receiver employs a
receiver combiner (RC) matrix WRF ∈ CNr×NRF to map the
symbols received from the Nr RAs to the NRF RF chains,
with NRF ̸= Nr. The TPC and RC obey

|FRF(i, j)| =
1√

NtNRF

, 1 ≤ i ≤ Nt, 1 ≤ j ≤ NRF ,

|WRF(k, l)| =
1√

NrNRF

, 1 ≤ k ≤ Nr, 1 ≤ l ≤ NRF . (1)

Within the context of this framework, the variables M repre-
sent the dimension of the symbol grid along the delay axis,
and N represents the dimension along the Doppler axis. In
addition, let ∆F and T denote the subcarrier spacing and the
symbol duration, respectively, which satisfy the fundamental
property of T∆F = 1. The following section presents the
modulation and demodulation steps that are executed indepen-
dently for each transmit and receive RF chain in the hybrid
MIMO architecture.

A. OTFS modulation

Consider the DD-domain data input matrix at the uth trans-
mit RF chain given by XDD,u ∈ CM×N , 1 ≤ u ≤ NRF. The
equivalent transformed TF-domain symbol matrix XTF,u ∈
CM×N is obtained by applying the inverse symplectic finite
Fourier transform (ISFFT) operation to XDD,u. Consider the
discrete Fourier transform (DFT) matrices of orders M and
N , respectively, denoted by FM and FN . Therefore, the
expression XTF,u can be written as [47], [55]

XTF,u = FMXDD,uF
H
N , (2)

The time-domain (TD) symbol su(t) is obtained by employing
the Heisenberg transform followed by the transmit pulse shape
filtering at each RF chain [5] given as

su(t) =

M−1∑
m=0

N−1∑
n=0

XTF,u(m,n)gtx(t− nT )ej2πm∆F (t−nT ),

(3)
where XTF,u(m,n) represents the (m,n)th element in the TF-
domain matrix XTF and gtx is transmit pulse shaping filter. The
TD samples can be obtained by sampling su(t) at the Nyquist
rate M

T , with the pth TD sample su(p), 0 ≤ p ≤ MN − 1,
described as su(p) = su(t)|t= pT

M
. Thus, the TD sample matrix

Su ∈ CM×N and its vector representation su ∈ CMN×1 for
the uth RF chain is given by

Su = GtxF
H
MXTF,u = GtxXDD,uF

H
N ,

su = vec (Su) =
(
FH

N ⊗Gtx
)
xDD,u, (4)

where Gtx ∈ CM×M is the matrix of transmit pulse samples
obtained from sampling the pulse ξtx(t), and defined as Gtx =

diag
{
ξtx

(
pT
M

)}M−1

p=0
. Additionally, xDD,u = vec (XDD,u).

The system model adopted utilizes a cyclic prefix (CP)-aided
approach [55], similar to OFDM systems, where a CP of
length L is appended to the transmitted symbol vector su to
eliminate interblock interference. This time-domain signal is
communicated over the DDA-domain channel that is modeled
as described in the next sub-section.

B. DDA-domain channel model for mmWave-HB MIMO OTFS
systems

The wireless channel in the DDA domain, represented by
the matrix H ∈ CNr×Nt , can be characterized as a function
of the delay (τ ), Doppler shift (ν), angle of arrival (AoA) (θ),
and angle of departure (AoD) (ϕ). This relationship can be
expressed succinctly as [10], [56]

H(τ, ν, θ, ϕ) =

P∑
p=1

αpar (θ)a
H
t (ϕ)

δ(τ − τp)δ(ν − νp)δ(θ − θp)δ(ϕ− ϕp), (5)

where P is the number of dominant multipath components,
αp denotes the path gain, νp is the Doppler-shift associated
to the pth multipath component given by νp =

kp

NT , with
kp = round(kp) + ψνp , where

∣∣ψνp

∣∣ < 1
2 , denotes fractional-

Doppler. Furthermore, as described in [36], [47], [56], [57]
the delay resolution of ∆τ = 1

M∆f for a typical wide-
band system is generally very fine. For instance, consider a
system with parameters M = 32 and ∆f = 50 kHz; the
resultant delay resolution is ∆τ = 1

M∆f = 0.625µs, for
M = 64 and ∆f = 40 kHz ∆τ = 1

M∆f = 0.39µs which is
reasonably small. Consequently, the delay shifts are assumed
to be an integer multiple of this delay resolution, denoted as
τp = lp∆τ . Moreover, in the case of an under-spread wireless
channel, it can be observed that kmax = max (kp) << N and
lmax = max (lp) << M , as discussed in [36], [47], [55]. The
transmitter array steering vectors at (ϕp) ∈ CNt×1 and re-
ceiver array steering vectors ar (θp) ∈ CNr×1, corresponding
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Fig. 1. Building blocks of the hybrid mmWave MIMO OTFS system.

to the AoD ϕp and AoA θp, respectively, are given as [10],
[56]

at (ϕp) =
1√
Nt

[
1, e−j 2π

λ dt cos(ϕp), · · · , e−j 2π
λ dt(Nt−1) cos(ϕp)

]
,

ar (θp) =
1√
Nr

[
1, e−j 2π

λ dr cos(θp), · · · , e−j 2π
λ dr(Nr−1) cos(θp)

]
.

(6)

The symbol λ denotes the wavelength of the signal, whereas
dt and dr represent the distances between consecutive TAs and
RAs, respectively. Consequently, in response to the transmitted
input signal s(t) ∈ CNRF×1 the output r(t) ∈ CNRF×1 obtained
is given by

r(t) =

P∑
p=1

αpW
H
RFar (θp)a

H
t (ϕp)FRF

s(t− τ)ej2πνp(t−τp) + w̃(t), (7)

where w̃(t) = WH
RFw(t) ∈ CNRF×1 and w(t) ∈ CNr×1 is

the additive white Gaussian noise (AWGN).
Furthermore, the received TD signal r(t), it is sampled

at the rate of fs = M
T followed by the CP removal, which

leads to the following model for the received samples r(q) =
r(t)|t= qT

M
, 0 ≤ q ≤MN − 1,

r(q) =

P∑
p=1

WH
RF Hp FRF

s
(
[q − lp]MN

)
ej2π

kp(q−lp)

MN +w(q), (8)

where Hp = αpar (θ)a
H
t (ϕ) ∈ CNr×Nt denotes the pth

dominant reflector between each TA-RA pair, while αp =√
NtNr

P hp, and w(q) = WH
RFw̃(t)|t= qT

M
denotes the sampled

noise vector. One can determine the complex path gain matrix
H̃p ∈ CNRF×NRF associated to the pth multipath component as

H̃p = WH
RFHpFRF. (9)

Moreover, the mmWave-HB MIMO OTFS system performs
modulation and demodulation at each transmit and receive
RF chain, respectively. The received symbol vector de-
noted by rv ∈ CMN×1 for the vth receive RF chain,
is obtained by stacking the received symbol rv(q) from
(8) for 0 ≤ q ≤ MN − 1, which is given by rv =
[rv(0), rv(1), · · · , rv(MN − 1)]

T
. Thus, the received symbol

vector rv can be expressed as

rv =

NRF∑
u=1

Hv,usu +wv, (10)

where su is the transmitted TD vector given by (4). The
channel matrix Hv,u ∈ CMN×MN between the vth receive
RF chain and uth transmit RF chain for 1 ≤ v ≤ NRF ,
1 ≤ u ≤ NRF can be formulated as

Hv,u =

P∑
p=1

h̃p,v,u (Π)
lp ∆p, (11)

where h̃p,v,u is obtained from (9) by using h̃p,v,u = H̃p(v, u).
Furthermore, Π is a permutation matrix of size MN ×MN
which performs forward cyclic shift operation and ∆p ∈
CMN×MN is a diagonal matrix defined as

∆p =


diag

{
1, ωp, · · · , ω

MN−lp−1
p , ω

−lp
p , · · · , ω−1

p

}
if lp ̸= 0,

diag
{
1, ωp, · · · , ωMN−1

p

}
, if lp = 0,

(12)
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where ωp = ej2π
kp
MN .

C. OTFS demodulation

The signal r(t) ∈ CNRF×1 received at the output of the RC
undergoes initial processing through a filter designed to match
the receiver pulse grx(t), of duration T . The processed signal
Y(f, t) obtained can be expressed as

Y(f, t) =

∫
t′
r(t′) g∗rx(t

′ − t) e−j2πf(t′−t)dt′. (13)

The received signal Y(f, t) undergoes sampling at inter-
vals that are integer multiples of the subcarrier spacing
∆F and symbol duration T . Thus the demodulated symbol
YTF,v(m,n) corresponding to the vth receive RF chain is
formulated as YTF,v(m,n) = Yv(f, t)|f=m∆F,t=nT , 0 ≤
m ≤ M − 1, 0 ≤ n ≤ N − 1. It is important to note that
the above relationship can be equivalently interpreted using
the discrete Wigner transform [5], [47]. Thus, the TF-domain
demodulated symbol matrix YTF,v ∈ CM×N at the vth receive
RF chain is given by

YTF,v = FMGrxRv, (14)

where similar to the transmit pulse shaping matrix, the re-
ceived pulse matrix Grx ∈ CM×M is obtained by sampling

ξrx(t) and it is given as Grx = diag
{
ξrx

(
pT
M

)}M−1

p=0
as

in [55] and Rv = vec−1(rv) ∈ CM×N . Subsequently, the
DD-domain demodulated signal YDD,v ∈ CM×N obtained
by applying the SFFT transform over the TF-domain signal
YTF,v , and its vector representation yDD,v ∈ CMN×1, are
given as

YDD,v = FH
MYTF,vFN = GrxRvFN ,

yDD,v = vec (YDD,v) = (FN ⊗Grx) rv. (15)

Thus, to obtain the DD-domain relationship between the
transmitted signal xDD,u from the uth transmit RF chain and
the received signal yDD,v of the vth receive RF chain, one can
substitute rv from (10), Hv,u from (11), and su from (4) into
(15), which yields

yDD,v = (FN ⊗Grx)

NRF∑
u=1

Hv,usu + (FN ⊗Grx)wv

=

NRF∑
u=1

HDD,v,uxDD,u + w̃DD,v, (16)

where w̃DD,v = (FN ⊗Grx)wDD,v ∈ CMN×1 and the DD-
domain channel matrix HDD,v,u ∈ CMN×MN between the vth
receive RF chain and uth transmit RF chain is given by

HDD,v,u =

P∑
p=1

(FN ⊗Grx)
[
h̃p,v,u (Π)

lp ∆p

] (
FH

N ⊗Gtx
)
.

(17)

Subsequently, upon stacking the demodulated signal vectors
yDD,v, 1 ≤ v ≤ NRF from (16), one obtains yDD ∈

CMNNRF×1. Therefore, the DD-domain end-to-end relation-
ship can be modeled as

yDD =

[
yT

DD,1,y
T
DD,2, · · · ,yT

DD,NRF

]T
= HDDxDD + w̃DD. (18)

The quantities x̄DD ∈ CMNNRF×1 and w̃DD ∈ CMNNRF×1

represent, respectively, the transmitted vector and the noise
vector for all the receiver RF chains, which can be represented
as

xDD =
[
xT

DD,1, · · · ,xT
DD,NRF

]T
, w̃DD =

[
w̃T

DD,1, · · · , w̃T
DD,NRF

]T
,

while, HDD ∈ CMNNRF×MNNRF is the equivalent DD-domain
channel matrix for the mmWave-HB MIMO OTFS system.
HDD is defined as

HDD =


HDD,1,1 HDD,1,2 · · · HDD,1,NRF

HDD,2,1 HDD,2,2 · · · HDD,2,NRF

...
...

. . .
...

HDD,NRF,1 HDD,NRF,2 · · · HDD,NRF,NRF


= (INRF ⊗ FN ⊗Grx)

[
P∑

p=1

H̃p ⊗
(
Πlp∆p

)]
(
INRF ⊗ FH

N ⊗Gtx
)
. (19)

The system model obtained in (18) can be further employed
for data detection. The linear minimum mean square error
(LMMSE) detector can be easily formulated for this model
as

xMMSE
DD =

(
HH

DDR̃
−1
w,DDHDD + IMNNRF

)−1

HH
DDR̃

−1
w,DDyDD,

(20)

where the covariance matrix of the noise is R̃w,DD =
E
[
w̃DDw̃

H
DD

]
= σ2

[ (
WH

RFWRF
)
⊗ IN ⊗

(
GrxG

H
rx

) ]
∈

CMNNRF . One of the critical phases prior to detection is the
estimation of CSI, which is the focus of the subsequent section.
Thus, a sparse DDA-domain CE model is developed next.

III. PROPOSED 4D SPARSE CE

Consider the DDA-domain mmWave-HB MIMO channel
given by (5). To develop a 4D-sparse representation of the
channel, it is necessary to take into account the dimensions of
the DDA-domain grid. These are given as Mτ for the delay
axis, Nν for the integer-spaced Doppler axis or Gν for the
fractionally spaced Doppler axis, Gr for the angle of arrival
(AOA) axis, and Gt for the angle of departure (AOD) axis.
For a typical under-spread wireless channel, Mτ denotes the
maximum delay-spread, while Nν , and Gν are the maximum
Doppler-spreads for integer and fractional scenarios, respec-
tively, which satisfy lmax < Mτ << M , kmax < Nν << N
and Gν >> Nν [58]. Here νj = jNν

GνNT , 0 ≥ j ≥ Gν − 1,
represents the Doppler-shift in Hz corresponding to the jth
Doppler-grid point. More precisely, one can define the delay
grid points M(τ) = {τi : τi = i

M∆f }
Mτ−1
i=0 , Doppler grid

points M(ν) = {νj : νj = j
NT }

Gν−1
j=0 , AoA grid points

M(θ) = {θk : θk = k π
Gr
}Gr

k=1, and AoD grid points
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M(ϕ) = {ϕl : ϕl = l π
Gt
}Gt

l=1. Let βi,j,k,l denote the complex-
valued dominant path gain corresponding to the ith delay, jth
Doppler, kth AoA and lth AoD-index, respectively. The DDA-
domain channel of (5) can be expressed as

H(τ, ν, θ, ϕ) =

Mτ−1∑
i=0

Gν−1∑
j=0

Gr∑
k=1

Gt∑
l=1

βi,j,k,lar (θ)a
H
t (ϕ)

δ(τ − τi)δ(ν − νj)δ(θ − θk)δ(ϕ− ϕl). (21)

One can represent the DDA-domain channel Hi,j,k,l ∈
CNr×Nt between the tth TA and rth RA at the (i, j, k, l)th
grid-point as

Hi,j,k,l = βi,j,k,lar (θk)a
H
t (ϕl) . (22)

Furthermore, the equivalent DDA-domain channel between
the RF RC and TPC is given by

H̃i,j,k,l = WH
RFHi,j,k,lFRF ∈ CNRF×NRF . (23)

For each of the NRF RF chains, a set of Np pilot symbols
is directly transmitted within the TD. Each frame consti-
tutes NpNRF symbols, and Q such frames are sequentially
transmitted to accurately estimate the DDA-domain channel.
Let sP,u,q ∈ CNp×1, 1 ≤ q ≤ Q denote the pilot vector
transmitted by the uth transmit RF chain in the qth frame
duration. The pilot output rP,v,q at the vth receive RF chain
for the qth frame duration after discarding the L length CP,
can be formulated using (10) and(11) as

rP,v,q =

NRF∑
u=1

[
P∑

p=1

h̃p,v,u
(
Π
)ip

∆ip,jp

]
sP,u,q +wP,v,q.

(24)

The matrix Π denotes a permutation matrix of order Np×Np

and ∆i,j ∈ CNp×Np is a diagonal matrix, defined as

∆i,j

=


diag

{
1, ω̄j , · · · , (ω̄j)

Np−i−1, (ω̄j)
−i, · · · , (ω̄j)

−1
}
,

if i ̸= 0,

diag
{
1, ω̄j , · · · , (ω̄j)

Np−1
}
, if i = 0,

where ω̄m = ej2π
mNν

GνMN . In the above expression (24) (i, j) =
(ip, jp) represents the delay and Doppler grid points associated
with pth path, while wP,v,q ∈ CNp×1 denotes the noise vector
at the vth receive RF chain. Similar to (9), h̃p,v,u represents
the pth multipath component corresponding to vth receive RF
chain and uth transmit RF chain. The expanded version of the
pilot output rP,v,q can be obtained as

rP,v,q =

NRF∑
u=1

Mτ−1∑
i=0

Gν−1∑
j=0

Gr∑
k=1

Gt∑
l=1

[
h̃i,j,k,l,v,u

(
Π
)i
∆i,j

]
sP,u,q

+wP,v,q, (25)

where h̃i,j,k,l,v,u = H̃i,j,k,l(v, u) represents the complex path
gain that corresponds to the ith delay-grid point, jth Doppler-
grid point, kth AOA grid point, and lth AOD grid point for
the communication link between vth receive RF chain and uth

transmit RF chain. Subsequently, one can develop a compact
model for the pilot output from (25) as follows

rP,v,q =

NRF∑
u=1

HP,v,usP,u,q +wP,v,q, (26)

where the equivalent channel matrix HP,v,u ∈ CNp×Np

between the vth receive RF chain and the uth transmit RF
chain given by

HP,v,u =
∑
i,j,k,l

h̃i,j,k,l,v,u
(
Π
)i
∆i,j . (27)

After stacking the received output signals from all the receive
RF chains, the vectorized pilot output rP,q ∈ CNpNRF×1 can
be expressed as

rP,q =

[
rTP,1,q, r

T
P,2,q · · · , rTP,NRF,q

]T
.

Thus, the equivalent vectorized system model for the qth frame
duration can be derived as

rP,q = HP sP,q +wP,q, (28)

where the stacked pilot and noise vectors are given as

sP,q =
[
sTP,1,q, · · · , sTP,NRF,q

]T ∈ CNpNRF×1,

wP,q =
[
wT

P,1,q, · · · ,wT
P,NRF,q

]T ∈ CNpNRF×1,

and the equivalent channel matrix HP,q can be constructed as

HP =


HP,1,1 HP,1,2 · · · HP,1,NRF

HP,2,1 HP,2,2 · · · HP,2,NRF

...
...

. . .
...

HP,NRF,1 HP,NRF,2 · · · HP,NRF,NRF


= blkmtx

(
{HP,v,u}NRF,NRF

v=1,u=1

)
∈ CNpNRF×NpNRF . (29)

By substituting HP,v,u from (27) into the above equation,
and further utilizing the relationships given in (22), (23), the
quantity HP can be expressed as

HP =
∑
i,j,k,l

βi,j,k,l
[(
wH

RFar (θk)a
H
t (ϕl)FRF

)
⊗
(
Π̄i∆̄i,j

)]
.

(30)

Thereafter, upon substituting HP into (28), we obtain

rP,q =
∑
i,j,k,l

ωi,j,k,l,q βi,j,k,l +wP,q, (31)

where the quantity ωi,j,k,l,q ∈ CNpNRF×1 is given by

ωi,j,k,l,q =
[(
wH

RF ar (θk)a
H
t (ϕl)FRF

)
⊗
(
Π̄i∆̄i,j

)]
sP,q.

The equivalent CE model can be constructed as the 4D-sparse
signal recovery problem

rP,q = Ωqβ +wP,q. (32)

It is evident that only a few, i.e., P coefficients out of the
total MτGνGrGt elements are non-zero in the vector β ∈
CMτGνGrGt×1. Thus P << MτGνGrGt, which renders β a
sparse vector. The dictionary matrix Ωq ∈ CNpNRF×MτGνGrGt
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Algorithm 1: OMP-based sparse CE
Input: Ω, yP
Initialization: Residue r−1 = 0NpNRFQ×1, r0 = yP ,

β̂OMP = 0MτGνGrGt×1,Ω
I = [ ],

i = 0, Set S = [ ]

Output: β̂OMP

1 while ∥ri∥2 > σ2NpNRFQ do

2 i← i+ 1

3 l = arg max
k=1,··· ,MτGνGrGt

∣∣ΩH(:, k)ri−1

∣∣
4 S = S ∪ l

5 ΩS = Ω(:,S)

6 β̂
i

LS =
(
ΩS
)†

yP

7 ri = yP −ΩSβ̂
i

LS

8 β̂OMP (I) = β̂
i

LS

is comprised of ωi,j,k,l,q as its column vectors. Using the end-
to-end concatenated pilot outputs from all the Q frames as
[rP,1, rP,2, · · · , rP,Q] ∈ CNpNRFQ×1, one can construct the
sparse CE model for the 4-D sparse mmWave-HB MIMO
OTFS system as

yP = Ωβ +wP , (33)

where Ω ∈ CNpNRFQ×MτGνGrGt is the concatenated dictio-
nary matrix Ω =

[
ΩT

1 ,Ω
T
2 , · · · ,ΩT

Q

]T
. The aforementioned

problem of sparse estimation can be effectively addressed
by applying well-established methods, such as the OMP or
BL methodology, where a clear perfromance vs. complexity
correlation exists. Explicitly, the former design exhibits lower
complexity than the latter but it also demonstrates inferior
performance. This inspires us to improve the BL scheme to
compete with the complexity of the OMP algorithm, while
offering enhanced performance for a 4D-sparse scenario. For
comparison, Algorithm 1 outlines the popular OMP method for
addressing a 4D-sparse signal recovery problem. The proposed
low-complexity BL (LC-BL)-based sparse recovery scheme
(Algorithm 2) is discussed in the next subsection. To determine
the appropriate sparsity level, an effective approach is to mon-
itor the residual norm during the iterative process. When the
residual norm falls below a certain threshold, it indicates that
the estimated signal is a close approximation of the original,
suggesting that the effective sparsity level has been achieved,
as illustrated in Algorithm 1. Alternatively, in the case of a
sequential approach like OMP or the proposed LC-BL scheme,
one can choose a support set K larger than the number of
non-sparse values and iterate K times, progressively refining
the solution, as demonstrated in Algorithm 2. Another method
involves using information-theoretic techniques [59], which
maximize the mutual information between the measurements
and the sparse representation providing a statistically sound
basis for identifying the optimal sparsity level during recovery.

Algorithm 2: LC-BL-based sparse CE
Input: Ω, yP ,K
Initialization: λ̂ = 0,Σ−1

y = 1
σ2 I, i = 0, Set S = ∅

Output: β̂LC-BL = µ̂β

1 while i < K do

2 i = i+ 1

3 Compute ai and bi,∀i /∈ S

4 l = max
{

|ai|2
bi
, 1
}

,

5 λ̂l = max
{

|al|2−bl
b2l

, 0
}
; Rank 1 update Σ−1

y

6 S = S ∪ l

7 Compute posterior mean, µ̂β , and covariance, Σ̂β

A. LC-BL based sparse CE

Let us consider the sparse estimation problem described by
equation (33). The BL procedure commences by assigning the
Gaussian prior to the channel coefficients β follows as

f(β;λ) =

MτGνGtGr−1∏
i=0

1

(2πλi)1/2
exp

(
−|β(i)|

2

2λi

)
. (34)

The unknown hyperparameter for the i-th component
of the vector β is denoted as λi. By stacking all
these hyperparameters, the vector is expressed as λ =
[λ1, λ2, . . . , λMτGνGtGr ]

T . The corresponding hyperparame-
ter matrix is Λ = diag[λ] ∈ RMτGνGtGr×MτGνGtGr [8],
[58], where the diag operator converts the vector into a diag-
onal matrix by placing its elements along the diagonal. The
parameter λ can be estimated using the maximum likelihood
framework formulated as

λ̂ = argmax
λ

log p(yP ;λ, σ
2)

=argmax
λ

log

(
1

(2π)
MτGνGtGr

2 |Σy|
1
2

exp

(
−

yH
PΣ−1

y yP

2

))

=argmax
λ

(
−
yH
PΣ−1

y yP

2
− 1

2
log|Σy| −

MτGνGtGr

2
log2π

)
= argmax

λ
L(λ), (35)

where we have Σy = ΩΛΩH + σ2INpNRFQ. The above
problem can be expressed as

λ̂ = argmin
λ

(
yH
PΣ−1

y yP + log|Σy|
)
. (36)

The second term log|Σy| above is a non-convex function
in Λ, which makes the hyperparamter estimation problem
intractable. Thus, the likelihood maximization above can be
achieved via the iterative EM algorithm. However, the com-
plexity of using such a method is excessive.
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Thus a low-complexity variant can be obtained by decom-
posing Σy in terms of the hyperparameter λi i.e., by separating
the contribution of ith column to the cost function as

Σy = ΩΛΩH + σ2INpNRFQ

= σ2INpNRFNQ
+
∑
m̸=i

λ−1
m ΞmΞH

m + λ−1
i ΞiΞ

H
i

= Σy,m̸=i + λ−1
i ΞiΞ

H
i . (37)

where m = [1, 2, · · · ,MτGνGtGr] and Ω =
[Ξ1,Ξ2 · · · ,ΞMτGνGtGr

] . The quantities |Σy| and Σ−1
y can

be computed from (37) as

|Σy| = |Σy,m ̸=i|
∣∣∣1 + λ−1

i ΞH
i Σ−1

y,m ̸=iΞi

∣∣∣ ,
Σ−1

y = Σ−1
y,m ̸=i −

Σ−1
y,m ̸=iΞiΞ

H
i Σ−1

y,m ̸=i

λ−1
i +ΞH

i Σ−1
y,m̸=iΞi

. (38)

Substituting |Σy| and Σ−1
y in (35) yields (39) as shown at the

top of the next page. Here, we calculate the marginal likelihood
by excluding the contribution of Ξi given by L (λm ̸=i), and
the contribution of Ξi is given by ℓ (λi). Furthermore, ℓ (λi)
in (39) can be simplified as

ℓ (λi) = −
1

2

[
− |ai|

2

λi + bi
+ log

(
1 + λ−1

i bi
)]
, (40)

where ai and bi are given as

ai = ΞH
i Σ−1

y,m̸=iyP ,

bi = ΞH
i Σ−1

y,m ̸=iΞi. (41)

Minimizing ℓ (λi) with respect to λi yields

λopt
i = max

{
|ai|2 − bi

b2i
, 0

}
. (42)

Upon substituting λopt
i into (40), yields

ℓ
(
λopt
i

)
=

{
log |ai|2

bi
− |ai|2

bi
+ 1 if |ai|2 > bi

0 if |ai|2 ≤ bi.
(43)

Note that the above function ℓ
(
λopti

)
is monotonic non-

increasing. Moreover, since λprev,i = 0, it follows that
∆ℓ (λi, λprev,i) = ℓ (λi)−ℓ (λprev,i) = ℓ (λi) ∀i /∈ S. Thus, in
order to determine the column to be added in S, one computes

l = argmin
i/∈S

min
λi≥0

ℓ (λi)

= argmin
i/∈S

min
λi≥0

∆ℓ (λi, λprev,i)

= max

{
|ai|2

bi
, 1

}
. (44)

Updates of ai and bi:
In order to reduce the complexity, we take advantage of the
fact that each iteration adds one column of Ω and updates Σ−1

y

using the column selected in S. Let l[k] represent the index of
the column of Ω that will be added in the kth iteration given

by Ξl[k]. The quantity
(
Σ[k+1]

y

)−1

can be obtained using (38)
as (

Σ[k+1]
y

)−1

=
(
Σ[k]

y

)−1

−
c[k]

(
c[k]
)H

λ̂−1
l[k] + b

[k]
l[k]

, (45)

where Σ[k]
y includes the contribution of all the columns in S,

except for the column corresponding to index l[k + 1] of Ω,

while λ̂l[k] = max

{ ∣∣∣a[k]

l[k]

∣∣∣2−bl[k]

(b
[k]

l[k]
)2

, 0

}
, c[k] and b[k]l[k] are defined

as

c[k] =
(
Σ[k]

y

)−1

Ξl[k],

b
[k]
l[k] = ΞH

l[k]

(
Σ[k]

y

)−1

Ξl[k]. (46)

Thus, one can update
(
a
[k]
i , b

[k]
i

)
using (41) and (45) to obtain(

a
[k+1]
i , b

[k+1]
i

)
as

a
[k+1]
i = ΞH

i

(
Σ[k+1]

y

)−1

yP

= a
[k]
i −

ΞH
i c[k]

λ̂−1
l[k] + b

[k]
l[k]

a
[k]
l[k], (47)

b
[k+1]
i =ΞH

i

(
Σ[k+1]

y

)−1

Ξi

=b
[k]
i −

∣∣∣ΞH
i c[k]

∣∣∣2
λ̂−1
l[k] + b

[k]
l[k]

. (48)

Thus, the posterior mean µ̂β and covariance matrix Σ̂β can
be estimated as

µ̂β =Λ̂ΩH
(
ΩΛ̂ΩH + σ2I

)−1

yP = Λ̂a[K+1], (49)

where a[K+1] =
[
a
[K+1]
1 , . . . , a

[K+1]
MτGνGrGt

]T
. Note that we

have λ̂i ̸= 0 only for i ∈ S, demonstrating that the above
equation provides a sparse solution. Also, the diagonal entries
of Σ̂β can be readily obtained as follows[

Σ̂β

]
i,i

= λ̂i − λ̂2iΞ
H
i

(
ΩΛ̂ΩH + σ2I

)−1

Ξi

= λ̂i − λ̂2i b
[K+1]
i , (50)

which is similarly non-zero only for i ∈ S.

Computation of c[k]:
Substituting

(
Σ[k]

y

)−1

from (45) into (46) and expressing it

in terms of
(
Σ[k−1]

y

)−1

one obtains

c[k] =
(
Σ[k−1]

y

)−1

Ξl[k] −
c[k−1]

(
c[k−1]

)H
Ξl[k]

λ−1
l[k−1] + b

[k−1]
l[k−1]

(51)

=
(
Σ[1]

y

)−1

Ξl[k] −
k−1∑
k̃=1

c[k̃]
(
c[k̃]
)H

Ξl[k]

λ−1

l[k̃]
+ b

[k̃]

l[k̃]

, (52)
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L(λ) = −
yH
PΣ−1

y yP

2
− 1

2
log|Σy| −

MτGνGtGr

2
log2π

=− 1

2

[
yH
PΣ−1

y,m ̸=iyP − yH
P
Σ−1

y,m ̸=iΞiΞ
H
i Σ−1

y,m̸=i

λ−1
i +ΞH

i Σ−1
y,m ̸=iΞi

yP + log
∣∣∣Σ−1

y,m ̸=i

∣∣∣+ log
(
1 + λ−1

i ΞT
i Σ

−1
y,m ̸=iΞi

)
+MτGνGtGr log 2π

]

=−
yH
PΣ−1

y,m ̸=iyP

2
− 1

2
log
∣∣∣Σ−1

y,m ̸=i

∣∣∣− MτGνGtGr

2
log 2π︸ ︷︷ ︸

L(λ)m ̸=i

−1

2

[
−
|ΞH

i Σ−1
y,m ̸=iyP |2

λ−1
i +ΞH

i Σ−1
y,m ̸=iΞi

+ log
(
1 + λ−1

i ΞH
i Σ−1

y,m ̸=iΞi

)]

=L (λm ̸=i) + ℓ (λi) . (39)

where
(
Σ[1]

y

)−1

= 1/σ2I. Algorithm 2 succinctly presents
the sequence of steps that constitute the LC-BL scheme. The
next section delves into the computational complexity of the
proposed scheme in comparison to both that of the OMP
scheme in Algorithm 1 and to the conventional EM-based BL
approach [42].

IV. COMPUTATIONAL COMPLEXITY AND CONVERGENCE
ANALYSIS

The assessment of complexity for these algorithms is based
on the number of multiplication as well as division opera-
tions, and the step-wise complexity analysis is presented in
Table 2. From the table, it can be observed that the overall
complexity of the proposed LC-BL algorithm is on the order
of O(NpNRFQMτGνGrGt), which is comparable to the
complexity of OMP algorithm and is much lower compared to
the conventional EM-based BL algorithm complexity which is
of order O(M3

τG
3
νG

3
rG

3
t ). This analysis reveals that the com-

plexity of LC-BL is similar to that of the OMP scheme, while
its performance is significantly superior to the conventional
OMP scheme, as it will be shown by the simulation results
of Section VI. Another important aspect of the proposed LC-
BL algorithm is its convergence analysis, which is presented
below.

The proposed sequential algorithm iteratively optimizes the
likelihood function by selecting a column or basis vector from
the dictionary that maximizes the marginal-likelihood at each
step. This is done by isolating the contribution of column i
as l(λi) from the overall likelihood function L(λ), as shown
in equation (40). Notably L(λ) has a unique maximum with
respect to λi. The selection of the column l is based on a
closed-form expression derived in equation (44), where the
l(λopt

i ) is defined in equation (43). Consequently, the algorithm
either increases or maintains the log-likelihood value upon
each iteration, making it a non-decreasing function. This,
in turn, results in a non-increasing negative log-likelihood,
ensuring convergence to a stationary point for the optimal
set of hyperparameters. It is important to emphasize that the
algorithm is guaranteed to increase the marginal likelihood
at each step until it reaches a local maximum. Although it
may seem that basis vectors are being ”added” upon each
iteration, in reality, the algorithm simultaneously maintains
posterior statistics for all basis vectors (all elements of Σ and

µ corresponding to ‘out of model’ basis vectors are trivially
zero).

The proposed LC-BL algorithm differs from the EM-BL
algorithm in the following aspects. EM-BL operates by simul-
taneously updating all hyperparameters γj across the entire
dictionary matrix Φ. This comprehensive approach ensures
that all components of the model are adjusted in concert, which
can lead to improved convergence to the global minimum of
the negative log-marginal likelihood. However, the simultane-
ous update strategy is computationally expensive due to the
need for repeated inversion of large matrices.

LC-BL, on the other hand, updates the hyperparameters λj
sequentially, focusing on a single component at a time. This
is done by exploring the properties of the likelihood function
L(λ). To elaborate, the proposed sequential algorithm itera-
tively optimizes the likelihood function by selecting a column
or basis vector from the dictionary matrix Φ that maximizes
the marginal-likelihood at each step. While this significantly
reduces the computational complexity, it can potentially lead to
suboptimal updates in certain iterations, as the algorithm may
get trapped in local minima. The sequential update may not
fully capture the interactions between different components
of the model, which can lead to a less accurate estimation
of the hyperparameters compared to EM-BL. However, the
convergence to local minima also ensures a sparse solution
[51], at a lower complexity.

It is important to emphasize that the proposed scheme is
particularly relevant for MIMO systems because the dictio-
nary size increases with the number of transmit and receive
antennas in the MIMO scenario. This significantly exacer-
bates the complexity of the problem, especially when using
standard approaches like the EM algorithm, which involves
the inversion of high-dimensional matrices. In the proposed
LC-BL algorithm the presence of a MIMO system impacts
both the formulation of the dictionary matrix, which depends
on the number of transmit and receive antennas, and the
selection of hyperparameters. Since LC-BL does not optimize
all the hyperparameters simultaneously, the complexity is
lower. However, in each iteration of this sequential approach, a
hyperparameter is chosen from a set of size (MτGνGtGr) us-
ing equation (43) to minimize the cost function and maximise
the marginal likelihood. The process is iteratively repeated,
focusing on the remaining hyperparameters, until the number
of iterations matches the size of the support set. This support
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TABLE II
COMPUTATIONAL COMPLEXITY COMPARSION

Steps LC-BL Steps OMP Steps EM-BL [42] [58]

Iteration NpNRFQMτGνGrGt + 2(NpNRFQ)p+ Projection NpNRFQMτGνGrGt Σ(i) M3
τG3

νG3
rG

3
t

2
− 3M2

τG2
νG2

rG
2
t

2
+

i+ 1 MτGνGrGt +NpNRFQ+ step M2
τG

2
νG

2
rG

2
tNpNRFQ

2(MτGνGrGt − i) + (MτGνGrGt − i)

Solution NpNRFQ(3K − 1) + 2K LS step 1
2
i3 + 5

2
i2 + i2NpNRFQ+ µ(i) M2

τG
2
νG

2
rG

2
t+

iNpNRFQ MτGνGrGtNpNRFQ

Residue iNpNRFQ γ(i) MτGνGrGt

step
Complexity O(NpNRFQMτGνGrGt) O(NpNRFQMτGνGrGt O(M3

τG
3
νG

3
rG

3
t )

set is chosen to have a size larger than the number of non-zero
values or can be determined using sparse estimation techniques
such as the OMP. The next section presents the proposed RF
TPC/RC design.

V. RF PRECODER/ COMBINER DESIGN FOR MMWAVE-HB
MIMO OTFS SYSTEMS

This treatise proposes a single-stage RF TPC FRF ∈
CNt×NRF and RC WRF ∈ CNr×NRF strategy, which is based
on selecting the dominant path gains from the estimated
channel and using these gains to construct the RF TPC and
RC. Hence our design maximizes the directional beamform-
ing gain. The strategy leverages the correlation between the
received pilots and the array response vectors corresponding
to the dominant paths. After the sparse CE, the array response
vector corresponding to the NRF dominant paths yields the
optimal precoder and combiner. These correspond to the NRF
indices of the combining beams ar(θk) in the codebook AR

that exhibit strong correlation with the received pilots yP,q .
Consider the set B be constructed as B = {b1, b2, · · · , bNRF},
where b1, b2, · · · , bNRF denote the positions corresponding to
the NRF dominant gains, and let the AOA set K and AOD
set L corresponding to the aforementioned position set B be
defined as

K = {k1, k2, · · · , kNRF} ,L = {l1, l2, · · · , lNRF} ,

where the elements of the sets K and L represent the Doppler
and delay indices corresponding to the NRF dominant path-
gain positions given in the set B. The optimal RF RC WRF,opt
and TPC FRF,opt are therefore given by

WRF,opt = AR (:, K) ∈ CNr×NRF , (53)

FRF,opt = AT (:, L) ∈ CNt×NRF . (54)

It is important to note that the proposed methodology is not
optimal in terms of the sumrate, since it considers equal
power allocation. The subsequent section characterizes the
performance of the system relying on the proposed algorithm.

VI. SIMULATION RESULTS

This section presents an empirical evaluation of the multi-
dimensional (4D) sparse CSI acquisition methodology within
the context of HB-mmWave OTFS systems. In this framework,
three distinct systems, termed System 1, System 2 and System
3 are considered. For System 1, the channel is constructed

TABLE III
SYSTEM 1,2,3 DESIGN SPECIFICATIONS

Parameters System1 System 2 System 3
fc in GHz 24 32 32
∆f in KHz 25 50 40
M ×N 32× 16 32× 32 64× 32
Max. Doppler spread Mτ 8 10 12
Max. delay spread Nν 8 10 12
# of RF chains NRF 3 3 3
Nr ×Nt 4× 4 4× 4 4× 4
Gr ×Gt 6× 6 6× 6 6× 6
# of pilots Np 128 256 256
# of frames Q 1, 2 1, 2 1, 2
# of clusters Cl - - 2
# of dominant scatterers P 5 9 10 per Cl
Modulation scheme 8-PSK 8-PSK BPSK
Pulse-shape Rectangular Rectangular Rectangular

using a uniform power delay profile. By contrast, for System
2, the 3GPP-EVA (Extended Vehicular A) channel model [60]
is employed, considering a maximum velocity of 500 Km/h.
The delay profile for the EVA channel model is given in Table
IV. The details of the parameters used for System 1, 2 and 3
are presented in Table III for reference.

The fractional Doppler indices considered in System 1 have
a maximum Doppler spread of Nν = 8, where the integer part
is generated for each path using a random integer between 0
and Nν−1, while the fractional part having two decimal places
is generated using a uniform distribution over the interval
[0, 0.5). The delay parameters considered are generated via
the permutation of the P indices between 0 to Mτ − 1. Note
that these values change for every Monte Carlo iteration and
these scenarios allow us to comprehensively investigate the
performance of our proposed 4D sparse CE technique under
various conditions and configurations. The metrics chosen
for evaluating the performance of the two systems under
investigation are the normalized mean square error (NMSE)
and the symbol error rate (SER).

A. NMSE performance analysis

The NMSE versus SNR trend is a crucial metric character-
istic that quantifies the accuracy of CE and signal recovery in
our hybrid mmWave OTFS system. A lower NMSE indicates
better estimation and signal recovery performance, reflecting
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Fig. 2. Performance analysis of 4D-sparse HB-mmWave MIMO OTFS modulated System 1 and 2
(a) NMSE vs. SNR for System 1 with M = 32, N = 16, Np = 128 and using 8-PSK (b) SER vs. SNR for System 1 using 8-PSK
(c) NMSE vs. SNR for System 2 with M = 32, N = 32, Np = 256 and using 8-PSK (d) SER vs. SNR for System 2 using 8-PSK
(e) NMSE vs. SNR for M = 64, N = 64, Np = 64 with different values of Q using BPSk
(f) NMSE vs. Number of pilots for M = 64, N = 64, Q = 1 using BPSK.

the ability to mitigate the effects of noise and channel impair-
ments as the SNR improves. The NMSE is defined as

NMSE =
||ĤDD −HDD||

2

F

||HDD||2F
. (55)

The NMSE performance of System 1 is depicted in Figure
2(a), while that of System 2 is shown in Figure 2(c). This study
is focused on assessing the efficiency of the proposed LC-
BL scheme through a comparison with established methods,
including OMP [61], FOCUSS [62], and MMSE. In all of
these methods, we set the number of frames to Q = 2.
Additionally, we also showcase the performance of the LC-
BL scheme when Q = 1.

The results presented in the figures demonstrate that
the LC-BL estimation performance surpasses that of other
estimation schemes, namely of OMP, FOCUSS, and MMSE,
in our HB-mmWave MIMO OTFS system. Furthermore, it
is worth noting that the performance of the LC-BL, when
utilising a single frame (Q = 1), surpasses that of other
schemes employing two frames (Q = 2). The performance of
LC-BL for Q = 2 is superior to that of LC-BL with Q = 1

due to the larger size of the dictionary matrix, because the
increased number of pilots results in a more accurate CE.
The suboptimal performance of the OMP method can be
primarily attributed to its inherent reliance on the stopping
parameter, which is prone to vulnerabilities. Conversely, it is
imperative to underscore that the efficacy of FOCUSS [62]
is notably encumbered by issues related to convergence, thus
impeding its ability to deliver consistent results due to its
susceptibility to the choice of the regularization parameter.
The conventional MMSE technique fails to exploit the
inherent sparsity of the CSI in the DDA-domain. Hence it
exhibits the poorest NMSE performance. Consequently, it is
evident that non-Bayesian sparse estimation methodologies,
exemplified by OMP and FOCUSS, exhibit an inferior
performance compared to the BL approach. Again, this can
be attributed to the above deficiencies. The LC-BL method
shows a remarkably improved performance in comparison
to the other sparse estimation schemes. Additionally, the
performance of LC-BL is close to that of the Bayesian
Cramer-Rao lower bound (BCRLB). Furthermore, it is worth
noting that it does not require prior knowledge regarding
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Fig. 3. Performance analysis of 4D-sparse HB-mmWave MIMO OTFS modulated System 3
(a) NMSE vs. SNR for System 3 with M = 64, N = 32, Np = 256 and using BPSK
(b) Delay vs. Doppler ’Heatmap’ representation for original channel coefficient matrix and estimated channel coefficient matrix with Pilot SNR = 20dB
(c) SER vs. SNR for System 3 using BPSK.

the sparse channel. Thus, the LC-BL exhibits convenient
compatibility with practical OTFS systems, particularly in
scenarios wherein no prior information is available.

Additionally, Fig. 2(e) shows the NMSE vs. SNR plot for
different values of the parameter Q, considering the LC-
BL scheme, where NMSE is computed using matrix HP
in (30) The figures clearly demonstrate that as the value
of Q increases, the NMSE decreases. This trend can be
attributed to the transmission of a higher number of pilots,
which directly stems from an augmentation in the number of
frames. Furthermore, this observation supports our perception
that increasing Q beyond the maximum number of frames
Q = 2 yields negligible NMSE performance improvement. In
Fig. 2(f), we delve into the impact of the number of pilots
in each frame on the NMSE for different SNR values in the
set {10, 20, 30}dB. Once again, we observe similar results,
reinforcing the conclusion that increasing the number of pilots
tends to decrease the NMSE. Moreover, it is essential to
highlight that the trend observed in this context is consistent
with the previous results. The following subsection illustrates
the SER performance of the various schemes discussed before.

B. SER performance analysis for System 1 and 2

The SER performance of our technique conceived for HB-
mmWave MIMO OTFS systems is characterized by Figures
2(b) and 2(d). The various simulation settings for System 1
and System 2 are consistent with those provided in Table III.
The SER is evaluated for receivers using the CSI acquired
from the aforementioned estimation schemes. We assess the
SER performance by comparing it to an ideal receiver having
perfect CSI. Notably, the BL-based schemes LC-BL of Q = 1
and Q = 2, outperform the non-BL schemes, such as OMP and
FOCUSS. This can be attributed to the improved accuracy of
CE, as supported by the NMSE plots shown in Figures 1(a)
and 1(b). Furthermore, it is evident that the LC-BL scheme

using Q = 2 consistently exhibits superior performance, with
its SER closely approaching that of the hypothetical detector
having perfect CSI.

C. NMSE and SER performance analysis for System 3

In System 3, a clustered channel model is under considera-
tion having fc = 32GHz, ∆f = 40KHz, M = 64, N = 32,
Np = 256, Mτ = 12, Nν = 12, Gν = 48 and assuming the
presence of two scattering clusters within the angular range
of [−90◦, 90◦]. Each cluster consists of 10 sub-paths, with
an angular spread of ±5◦. The delays and Doppler shifts are
uniformly distributed.

Figure 3(a) shows the NMSE versus SNR performance
for System 3, while Fig. 3(b) presents a ’heatmap’ of the
channel coefficient matrix, visually comparing the estimated
CSI obtained using the LC-BL method with perfect CSI
(PCSI) in the presence of fractional Doppler. This plot is
intended to assess the accuracy of the system’s delay and
Doppler estimate. Fig. 3(c) illustrates the SER versus SNR
performance with convolutional channel coding having Con-
straint Length C = 7, Generator Polynomials G1 = 171,
G2 = 133. The results in Fig. 3(a) and 3(c) align with the
performance of Systems 1 and 2; also, Fig 3(b) indicates that
the proposed LC-BL scheme accurately estimates both the
delay and Doppler coefficients reinforcing the efficiency of the
proposed algorithm. The proposed algorithm is well-suited for
practical scenarios, including the popular EVA and CDL-A/B
models. While practical models like EVA and CDL-A/B are
only approximately sparse, the proposed LC-BL continues to
perform satisfactorily regardless of the specific channel model
employed, with only a slight degradation in performance. Even
when incorporating the cluster model, the LC-BL consistently
delivers superior performance. This highlights the efficiency
of our LC-BL-based channel estimation in the 4D-sparse
delay-Doppler-angular (DDA) domain mmWave MIMO OTFS
system under consideration.
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TABLE IV
THE EVA CHANNEL MODELS DELAY PROFILE

Excess tap delay (ns) 0 30 150 310 370 710 1090 1730 2510
Relative power (dB) 0.0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12.0 -16.9

VII. SUMMARY AND CONCLUSION

We established the input-output relationship for mmWave-
HB MIMO systems based on OTFS modulation within the
DD-domain. The CE problem was reformulated as a sparse
estimation challenge, accommodating the inherent 4D-sparse
structure. In this approach, a channel model was conceived in
the Delay-Doppler-Angular (DDA) domain, based on charac-
terizing each multipath component by its delay, Doppler, angle
of arrival (AoA), and angle of departure (AoD) components.
To address CE we developed a low-complexity BL CSI
estimation scheme, termed LC-BL, for a mmWave-HB MIMO
OTFS system. Furthermore, a detailed complexity analysis of
the proposed LC-BL algorithm was presented, and compared
to the conventional OMP and EM-based BL algorithms. The
results demonstrated that even though the complexity of the
method conceived is low and comparable to that of the OMP
algorithm, it exhibited a superior performance, similar to that
of the BL technique. Moreover, a single-step method has been
devised to design RF TPC/RC waveforms, where the weights
of the RF TPC/RC pair are optimized for maximizing the
directional gains. Finally, the judicious balance between the
complexity and performance of our proposed LC-BL scheme
makes it feasible for practical implementation.
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