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Abstract Nonlinearities in aerospace systems often induce self-sustaining os-
cillations known as Limit Cycle Oscillations (LCO), requiring costly analyses
for identification. A major challenge is the computational expense of generating
bifurcation diagrams, which limits the feasibility of nonlinear analysis in early
design phases. This restriction not only constrains design possibilities but also
impedes data-driven methods for nonlinear aeroelastic analysis, which rely on
efficient data collection—a growing focus in the aerospace sector. This work
proposes a computationally efficient numerical framework to predict LCO am-
plitudes and assess stability in nonlinear aeroelastic systems. The approach
integrates the Harmonic Balance Method (HBM) with the Hill method for
stability analysis. To address the sorting problem, a Koopman operator-based
data-driven method is employed. The framework is validated using numeri-
cal test cases with both smooth and nonsmooth nonlinearities, benchmarked
against results from MATCONT, COCO and time-domain simulations. Fi-
nally, experimental validation is performed by comparing the framework’s
predictions with LCO experimental data obtained through control-based con-
tinuation experiments.
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1 Introduction

With the increasing integration of lightweight materials and complex systems,
the study of nonlinearities in aerospace structures has become an important
area of research. These nonlinearities are typically classified into two cate-
gories: geometric nonlinearities, which manifest throughout the entire struc-
ture, and localised nonlinearities, which are confined to specific areas [49,45,
35]. Geometric nonlinearities often arise from large deflections induced by the
use of lightweight materials [46], while localised nonlinearities can stem from
factors such as friction within structural joints, becoming more prevalent as
complex novel systems are integrated [26,20]. The effects of these nonlineari-
ties on dynamics and control can be significant, altering flutter boundaries in
tiltrotor systems and shifting the aerodynamic centre of certain wings, thereby
affecting control strategies [38,50].

A common phenomenon resulting from both forms of nonlinearities is the
occurrence of self-sustaining oscillations known as Limit Cycle Oscillations
(LCO). Both theoretical analysis and experimental evidence indicate that close
to the linear flutter velocity of aeroelastic systems the formation of LCO oc-
cur [22,57]. These LCO often represent the maximum response of systems, with
significant implications for structural fatigue, making them crucial to track
[18]. Moreover, the stability of LCO is essential to consider, as stable LCO
signify real physical oscillations towards which the system can converge, while
unstable LCO indicates orbits where the perturbed response diverges [60].

However, determining LCO behaviour typically involves costly nonlinear
analysis, particularly through the generation of bifurcation diagrams. Both
generating these diagrams and determining stability can be resource-intensive,
leading to the neglect of nonlinear analysis in early design stages and constrain-
ing the potential design space [37]. Furthermore, this limitation hampers non-
linear aeroelastic analysis through data-driven approaches, which rely on effi-
cient gathering of training data and have garnered attention in the aerospace
industry [40,51,56]. Therefore, there is a demand for computationally efficient
methods to determine LCO behaviour in aeroelastic systems.

This study aims to propose a computationally efficient method for estimat-
ing LCO behaviour and determining their stability in aeroelastic systems. This
is accomplished by conducting LCO analysis solely in the frequency domain,
combining HBM continuation with Koopman operator based stability anal-
ysis. To validate the proposed method numerically, the comparison is made
with state-of-the-art time-domain solvers, namely MATCONT [14] and COCO
[3], in both smooth and nonsmooth nonlinear case studies. Additionally, the
framework is experimentally validated by comparing predicted LCO behaviour
with empirical LCO data.

The onset of LCO typically arises at a specific type of bifurcation known as
a Hopf bifurcation [54]. Both theoretical analyses and experimental investiga-
tions have demonstrated that Hopf bifurcations coincide with the flutter points
of aeroelastic systems [22,57]. The numerical continuation process leverages
previous solutions of the system and the equations of motion to accurately
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predict subsequent solutions with respect to a chosen continuation param-
eter. Various methods, primarily employing a predictor-corrector approach,
have been developed to provide rough estimates followed by refinement for
improved accuracy. Among these, methods such as arclength and pseudoar-
clength continuation have proved effective in tracing solutions beyond turn-
ing points, thereby revealing diverse system behaviours. Despite differences in
existing bifurcation software, the predominant tools rely on orthogonal collo-
cation methods for tracking and modelling LCO [8]. Orthogonal collocation,
a time-domain method, segments a periodic orbit into intervals, represents
unknown variables using polynomials on each interval, and collocates the gov-
erning equations at Gauss points [27]. Orthogonal collocation techniques are
integrated into widely used bifurcation software packages such as MATCONT,
AUTO, and COCO [15,17,12]. However, despite their accuracy, these methods
are seldom applied to larger systems due to substantial memory requirements,
leading to high computational costs.

Harmonic balance methods (HBM) offer a computationally efficient alter-
native for identifying the maximum response of LCO. In HBM, the periodic
motion of LCO is approximated using Fourier series coefficients in the fre-
quency domain. The Alternative Frequency Time scheme (AFT) is imple-
mented so different types of nonlinear forces can be evaluated in the fre-
quency domain [9]. Unlike time-domain methods, where a set of coordinates
with corresponding time values must be stored to characterise the response,
HBM requires storing only a set number of coefficients. The method is tai-
lored for analysing periodic responses in systems with strong nonlinearities,
particularly when time-domain simulations become computationally expen-
sive. Key challenges in its application include ensuring convergence, managing
computational costs for higher harmonic orders, and accurately modelling non-
smooth nonlinearities. Previous studies [23,52] have demonstrated that HBM
can achieve a high level of accuracy compared to alternative methods like the
shooting method while being significantly less computationally expensive. In a
comparison between HBM and orthogonal collocation on nonlinear mechanical
systems, Karkar found HBM to exhibit better convergence on certain systems
and to be "very robust” [27]. However, the literature lacks comprehensive re-
search comparing HBM to current alternatives, particularly in the context of
aeroelasticity [13,27]. Existing studies are mostly confined to low-harmonics
or focus on forced non-autonomous systems [30]. Although the NLvib package
implements HBM, its primary focus is on nonlinear mechanical systems, and
it does not include stability analysis purely in the frequency domain [28].

The conventional estimation of LCO stability typically involves time do-
main methods, such as Floquet analysis, as highlighted in Ref [53]. However,
as frequency domain methods gain prominence in LCO analysis, there is a
growing interest in techniques that directly compute stability in the frequency
domain. Guillot et al. [24,32] demonstrated the use of the Hill’s matrix for
computing the stability of LCO modeled by Fourier series through eigenvalue
analysis. Lazarus and Thomas demonstrated the method’s accuracy on a forced
Duffing oscillator system [31]. While effective, this method tends to be compu-
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tationally demanding, especially when dealing with large numbers of harmonic
orders necessary for modelling complex nonlinear systems, leading to extended
computation times. For large-scale scenarios, stability analysis using the Hill
method can be more numerically costly than computing periodic motion [29,
48]. The applications of Koopman operator methods to limit cycling systems
have been explored for stability analysis [39,42]. Additionally, they have been
applied to jet engine instabilities with the advent of data-driven methods [43].
In recent developments, the Koopman operator has been employed to derive
the monodromy matrix directly from Hill’s matrix, as elucidated by Bayer
and Leine [6]. In the Koopman framework, the dynamical system is charac-
terised by the evolution of functions on the state space over time. This method
elevates the problem to a higher-dimensional space where the system demon-
strates more predictable behaviour. This innovative approach significantly re-
duces the number of eigenvalues needed for stability computation, aligning
it with the number of degrees of freedom in the system. Consequently, this
advancement holds promise for enhancing the efficiency of stability analysis
in the frequency domain. However, it has not been applied and validated to
nonlinear smooth dynamical systems.

This paper presents the methodology for a general aeroelastic frequency
domain solver for LCO. The methodology encompasses a detailed explana-
tion of the HBM continuation scheme and frequency domain stability anal-
ysis. The preliminary numerical findings of this research were showcased at
the conference [41]. This paper comprehensively outlines the HBM methodol-
ogy, incorporating Koopman operator based stability analysis for predicting
LCO behaviours. Subsequently, the methodology is applied to a numerical
test case, incorporating both smooth and nonsmooth nonlinearities. The test
case results are then validated by comparison with outcomes from MATCONT
and COCO software. Following numerical validation, the framework’s results
are juxtaposed with LCO experimental data obtained through Control Based
Continuation (CBC) experiments [7]. Ultimately, conclusions are drawn based
on the numerical and experimental validation of the proposed framework.

2 Methodology

In this section, the computational framework based on HBM and Koopman op-
erator based stability analysis is presented. First, the standard mathematical
format is introduced, laying out the basic principles behind HBM continuation
based on the work in Ref [16]. The AFT procedure is then outlined, as it is
essential to all steps of this methodology. Finally, two methods of determin-
ing LCO stability in the frequency domain are described: the standard Hill’s
method and Koopman operator based analysis.
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2.1 General equation of motion

The methods outlined here revolve around mathematical models that can be
formulated into the second-order differential equation depicted in Equation
1. Nonlinear aeroelastic systems can be organised in this manner under the
assumption that structural forces counterbalance aerodynamic forces.

Mz + Dt + Kz + qnifay = A% + Bt + Cx (1)

Degrees of freedom of the system are denoted as x, while M, D, and K repre-
sent the structural mass, damping, and stiffness matrices, respectively. Matri-
ces A, B, and C characterise the encountered aerodynamic force, with a size
of N x N, where N is the number of degrees of freedom of the system. The
nonlinear function f,,; captures various types of nonlinearities encountered in
aeroelastic systems. The N x 1 vector q,; incorporates the nonlinear equa-
tions affecting the degrees of freedom. The standard differential equation is
restructured into a first-order state equation, as shown in Equation 2:

X = Qx + q,, ful (2)
Where:

& (M —A)"Y(B—-D)(M-A)"(C-K) —(M — A)" g
X = Q = an =

T Onxn InxnN Onx1

(3)

The matrix Q will be denoted as the linear matrix, as it completely represents
the linear dynamics of the system. This structural arrangement facilitates the
conduct of linear analysis to identify the flutter point through the following
procedure. By focusing solely on the linear aspect of the system, Equation
2 can be expressed as the eigenvalue problem x — Qx = 0. Assuming an
oscillatory response x = x,e¥?, the eigenvalue problem is formulated as:

[Q—Iyi]p=0 (4)

Where ;; are eigenvalues in the conjugate pair

Vij = —CGijwij +iwiin/1 — Gy (5)

The undamped natural frequencies are denoted by w;;, while (;; represents
the damping ratios. Matrix ¢ encompasses the corresponding eigenvectors.
Flutter manifests as unstable, negatively damped oscillations. Based on this
characterisation, it becomes evident that if any of the real parts of Equation
5 are positive, the system exhibits dynamic instability [61].
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2.2 Harmonic Balance Method

Incorporating nonlinearities alters this behavior. In nonlinear systems, the loss
of linear stability typically leads to the emergence of LCO at a hopf bifurcation
point. While linear analysis can pinpoint hopf bifurcation points, numerical
continuation from such points often reveals the presence of LCO solutions even
before the loss of linear stability.

Assuming that the system’s dynamic response after a hopf bifurcation is
an LCO, we can represent the time response of x and & using the Fourier
series. The system can then be expressed through multi-harmonic response
and solved in the frequency domain:

l
z(t) = Xo + 2 Xk,s sin kwt + X, . cos kwt (6)
k=1

The variable [ denotes the harmonic order of the response, while Xy, Xy s,
and X}, . represent Fourier coefficients. This assumed response is fundamental
to HBM, facilitating the transformation of the system from the time domain
to the frequency domain. Instead of necessitating a time integration process
spanning potentially hundreds to thousands of time steps, only N x (21 + 1)
steps are required to characterise the dynamic behaviour of the system.

An additional step is necessary to model the nonlinear force component of
Equation 2. Nonlinear forces are typically depicted as nonlinear time functions.
Since they do not adhere to linearity with respect to states or represent explicit
functions of time, direct transformation to the frequency domain is impractical
[9]. However, the nonlinear force response can be transformed to the frequency
domain via the AFT procedure, facilitating the determination of Fy, F}, s, and
Fy o as:

l
fri(t) = Fo + Z F s sin kwt + Fy, . cos kwt (7)
k=1

The predicted values of Xg, Xj s, Xi,, and w are utilised in Equation 6 to
derive the time domain response over a period. Subsequently, the time do-
main nonlinear force response f,;(t) is determined. A fast Fourier transform
algorithm (FFT) is then applied to estimate Fourier coefficients based on the
time domain nonlinear force response. This is commonly known as the AFT
procedure, laid out in Figure 1. Leveraging these relationships, the equation
of motion depicted in Equation 2 can be reformulated into a set of algebraic
residual equations, which are solved numerically. Accuracy can be assessed
through convergence studies and benchmarking against numerical tools such
as COCO and MATCONT. A converged HBM result with respect to [ can
generally be assumed to be reliable for the system under consideration, in the
absence of such comparisons.
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equation
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Fig. 1: AFT procedure

2.3 Continuation scheme

A continuation scheme is formulated based on the principles of HBM. Its aim
is to determine the amplitude and frequency of LCO, along with their corre-
sponding values of a chosen continuation parameter. Given the uncertainty in
the shape of the bifurcation diagram, both the continuation parameter A and
LCO frequency w are treated as unknowns in this scheme. Typically, in an
aeroelastic system, velocity is used as the continuation parameter. It is worth
noting that the linear system matrix Q is often dependent on the continuation
parameter. The equations of motion in the nonlinear degrees of freedom are
denoted as follows:

i’nl(t) = (Q)u,pr + (Q)u,uinl(t) + (Q)uwxnl(t) + (Qn)ufnl(t) (8)

Linear Fourier coefficients, denoted by x1, = [X0, X s, Xk ], are obtained by
solving only the linear components of the system. Here, the linear degrees of
freedom or modes are labeled as p, while the nonlinear degrees of freedom and
modes are designated as u and v, respectively. Substituting Equation 6 into
Equation 8 yields the set of N x (2] 4+ 1) residual equations:

Ry = (Q)u,pYO + (Q)u,vXO + (Qn)uFO
Rk,s = *k2w2Xk,s - (Q)u,pyk,s - (Q)u,ukWXk,c - (Q)u,vXk,s - (qn)qu,s
Rk,c = _k2W2Xk:,c - (Q)u,pyk,c + (Q)u,ukWXk,s - (Q)u,vXk,c - (qn)qu,c
(9)

In scenarios involving multiple nonlinear degrees of freedom, a set of IV x
(21 + 1) residual equations are derived for each nonlinear degree of freedom.
Incorporating A and w as unknowns necessitates formulating two additional
residual equations. A common constraint imposed on the scheme is related
to pseudo-arclength continuation [4,11]. Using point j as the reference in the
continuation, a prediction for j + 1 is generated utilising tangential direction
vectors. It is assumed that the converged solution for j + 1 is orthogonal to
the initial prediction, imposing the following constraint in the corrector stage
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during the numerical continuation:

dX dw d\
Royr0 = (Xj+1*Xj+1,o)gj+(wj+1*%‘H,O)Ej+()\j+1*>\j+1,0)£j (10)

Through this constraint, direction vectors (% where s denotes the non-
dimensional arc-length) for the next continuation step are also obtained.

Another widely used constraint is based on the principle of orthogonality
between the phase of degrees of freedom and their rates of change [27,21]. This
assumption can be used to derive a relationship between j** Fourier coefficients
and the 5 + 1 points:

l

Roiys = Z —k(Xk,e)i (Xn,s )1 + B(Xk,s)j (Xke)jr1 (11)
k=1

Both of these constraints are commonplace in continuation methods and
are also employed in time-domain methods. Further details on each can be
found in Ref [16,12]. With an equal number of residual equations and un-
knowns [Xo, Xk.s, Xk,c,w, A] (for k =1,...,1), the system can be numerically
solved at each point in the continuation.

The system can be solved iteratively typically through the Newton—Raphson
procedure [16]. This involves linking displacements to rates of change through
the Jacobian matrix J = dx/dx via x = Jx. While the Jacobian can be nu-
merically evaluated through finite difference methods, this approach can be
computationally demanding, particularly for large-scale systems [55]. Alterna-
tively, the analytical Jacobian can be incorporated by defining it via a Fourier
transform [13].

l
J(t)=Jy + Z JIk,s sin kwt + J, . cos kwt (12)
k=1

From Equations 1 and 6 we can derive the Jacobi for each Harmonic order as:

JO_Q+qn<aF>
0

oxX
oF
Jis =Q+aq, (8X>k (13)
oF
Jie = —
" Q+qn ((}X)k,c
Approximations for (%I;) y (g—i)k o and (g—)i)kc can be achieved by ana-

lytically transforming the time-domain derivation %(t) into the frequency

domain using the inverse Fast Fourier Transform procedure.

dfu . (OF L/ oF _ oF
d—x(t) = (é’X)O + Z (&X)k,s sin kwt + <6X>k70 cos kwt (14)

k=1
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This necessity arises solely within the nonlinear degrees of freedom. An added
advantage is that the Fourier coefficients of the Jacobian can be utilised to
directly assess the stability of the response in the frequency domain, as elab-
orated in the subsequent section.

2.4 Frequency domain stability determination

Once a converged solution including LCO amplitude, frequency, and continu-
ation parameter is achieved in the frequency domain, the stability of the oscil-
lation must be determined. A stable LCO solution describes behavior where,
following an initial perturbation, the system’s response is drawn towards the
LCO. Conversely, with an unstable LCO, the response moves away from the
unstable cycle [47].

Time-domain analysis is used as a reference in the study, which relies on
the use of monodromy matrix @7 (N x N) to assess the stability of the system
through its evolution in state changes over time. The monodromy matrix is
illustrated in Equation 15 which portrays the evolution of the system’s states
over a single period T'. It can usually be obtained as a byproduct of time-
domain continuation processes where the stability of the system can be subse-
quently assessed based on its eigenvalues known as Floquet multipliers [58]. If
the absolute value of any of the IV Floquet multipliers exceeds 1, the system
is deemed unstable. This approach is herein referred to as time-integration
stability analysis.

XT = @TX(] (15)

2.4.1 Hill’s method

In the frequency domain, the stability of an oscillation can be computed using
Hill’s method, which still applies Floquet theory [47]. The stability is deter-
mined based on the eigensolution of the truncated Hill’s matrix H as follows:

...J0+wIJ17S J2,s ..
He=|... Jio Jo Ji. ... (16)
J2,c JLCJ()—OJI...

The Hill’s matrix is truncated to size N (2] + 1) x N (2 + 1):

Jo+iwl... Jo
H=| (17)
ng N JO —lwl
Assuming Ji s and Ji . for k > [ are N x N zero matrices, as per standard
Hill’s method. N terms, referred to as Floquet exponents (distinct from Flo-
quet multipliers), are subsequently selected from the N (2] + 1) eigenvalues
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of the matrix H [32]. A numerical sorting algorithm is employed to identify
eigenvalues corresponding to £ = 0. The conventional approach involves sort-
ing the eigenvalues based on the amplitude of their imaginary parts. The N
eigenvalues with the smallest amplitude of imaginary parts are then selected
as the Floquet exponents. Stability is determined by comparing the real parts
of the Floquet exponents to zero. For the system to be deemed dynamically
stable, all real parts must be below zero; otherwise, the system is unstable.

2.4.2 Koopman operator based stability analysis

Koopman lift theory can be introduced to reduce the computational cost of
frequency domain stability analysis. The Koopman operator stability process
operates under two assumptions to derive an approximation of the monodromy
matrix. The first assumption is that the higher-dimensional space z can be
utilised to estimate the lower-dimensional space x via:

x(t) ~ x.(t) = C(t)z(t) (18)

Here, C(t) represents the time-dependent projection matrix that fulfils the
condition C(t)z(t) = x,(¢), with z(¢) composed of monomial terms and Fourier
terms of the base frequency [6]. z(t) can be then expressed as:

Zl le—ilwt

Zle.ilwt
2(t) = Z2lle—ilwt (19)

ZIN (;ilwt

Where [ is the maximum frequency order, N is the maximum index of the
monomial term and Z}" is the I*" Fourier coefficient of the N** monomial term.
The dimension of this orthogonal basis functions z(¢) is N(2{ + 1). Here, these
linear basis functions are ordered by the state at first and then by the frequency
in an ascending order. Vector Z; is used to denote the vector containing the
Fourier coefficients corresponding to the I*" frequency for each monomial term.

A common choice for the projection matrix C(¢) in frequency-based pro-
jection is to select the zeroth harmonic, which corresponds to the steady-state
or average behavior of the system providing insight into the system’s mean
behaviour or equilibrium states [6]. To select the components related to the
zeroth harmonic of z(t), the frequency domain projection matrix is defined as:

C=(0...01,,,0...0) (20)

The second assumption of the Koopman operator-based stability method is
that the truncated Hill’s matrix can be utilised to derive the state transition
matrix of the high-dimensional space with [6]:

2(t) = UTeB*U2(0) (21)
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Where U is the transformation matrix to convert the Hill’s matrix from fre-
quency to time domain, satisfying the criteria Uz(t) = (Z_je?“! ... Zje )T,
Substituting Equations 18 into 21 yields the following expression:

x,(t) = C(t)UTeHU2(0) (22)
At t = 0, Equation 19 simplifies to z(0) = Wx(0), where:

ITLXTL

ITLXTl

Utilising both reductions matrices together in Equation 22, results in:
x, = C(t)UTe*UWx(0) (24)
Over a full period T this yields:
xp ~ Cet*Wx (25)

As per Equation 15, this implies that the monodromy matrix can be approxi-
mated in the frequency domain by:

O ~ CeHTW (26)

This approximation of the monodromy matrix enables the computation of sys-
tem stability through Floquet multipliers, employing the same method as in
standard time-domain stability analysis. Thus, compared to traditional Hill’s
stability analysis, utilising the Koopman operator reduces the necessary num-
ber of eigenvalues from N(2H + 1) to just N. This approach will be referred
to herein as Koopman operator-based stability analysis.

Figure 2 provides an overview of the complete HBM continuation process,
including stability analysis. The continuation starts with an initial estimate of
the LCO frequency from eigenvalue analysis and a small guess for the ampli-
tude. Nonlinear forces are then computed in the frequency domain using the
AFT procedure, which estimates the system’s linear degrees of freedom. The
residual equations 9, 10 and 11 are numerically solved. Once a converged so-
lution is achieved, stability analysis is performed using either Hill’s method or
the Koopman-based procedure. Direction vectors are calculated through finite
differences based on previous points in the continuation scheme, and these vec-
tors are used to estimate the next point via the tangent predictor method [16].
This process continues until a user-defined stopping criterion is met, such as
the number of points or maximum/minimum continuation parameter.
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Fig. 2: HBM continuation process with stability analysis
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Fig. 3: Numerical test case (a) Freebody diagram of 2 DoF aerofoil [34], (b)
Quadractic-Cubic nonlinearity, (c¢) Freeplay nonlinearity with § = 1°

3 Test case

The model under investigation here is a simplified representation of the sys-
tem analysed in Ref. [36], focusing on a two-degree-of-freedom aerofoil section
depicted in Figure 3a. In this model, the degrees of freedom are the pitch angle
a and the heave h. The plunge degree-of-freedom is governed by a spring with
stiffness K}, while a torsional spring K, resists pitch movement. For the non-
linear flutter rig considered, the state variables are denoted as x = [h, a, w],
where h represents heave, a denotes pitch, and w indicates the aerodynamic

state. The structural matrices, as shown in Equation 1, are configured as fol-
lows:

mMr  MypTab 0 ch 0 O K, 00
M= |myzob I, 0]|; D= 0 e O0|; K= 0 K,0
0 0 1 —1/ba—-1/20 0 00
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Aerodynamic matrices are derived from the unsteady aerodynamic model
described by Abdelkef et al. [2].

[ —7b? arb? 0
A= | arb® —7 (1/8 + a?) b*
|0 0 1
—7wbC (k) —(1+ (1/2 —a))7b?C(k)/p  —2wVb(cica + c3c4) /p
B=|n(a+1/2)b*/V — (1/4 — a®) 7b? 2762V (a + 1/2) (c1co + c3c4)
| 0 0 —(c2 +ca) /pb
K —mbC(k) —2nVeaeq (e1 +¢3) /p
C = | 0mb*C(k) (1/2 + a) 27b (a + 1/2) cacq (c1 + c3)
| 0 1/pVb cacy/pb?
(28)

Where C(k) is the generalised Theodorsen’s function detailed in Ref.[59].
Theodrsen’s function is related to the model through reduced frequency & that
can be calculated with & = wb/V. Aerodynamic constants cj-c4 are derived
with the Sears and Pade approximations [19]. The aerodynamic forces and
structural matrices are integrated in the generalised form from Equation 2.
With nonlinearity present in the pitch degree of freedom for the case studies
under examination, the Boolean matrix allocating the nonlinear function is
defined as g, = [0,1,0]7. The specific definition of the nonlinear function f,,
varies for each test case. This setup enables linear flutter analysis to precede
the detailed numerical continuation method outlined.

To illustrate the nonlinear characteristics of the system under smooth non-
linear conditions, the spring stiffness is modelled using quadratic and cubic
terms in the pitch degree of freedom. The shape of the smooth nonlinearity
is demonstrated in Figure 3b. This method is commonly used to replicate
geometrical nonlinear behaviours [34].

fnl(t) = Kaga(t)2 + Kaga(t)3 (29)

To capture the behaviour of a nonsmooth nonlinearity, the nonlinear func-
tion is now represented by a freeplay nonlinearity on the torsional spring, as
depicted in Figure 3c. This describes behaviour where the torsional stiffness
becomes zero within a range of pitch angles, typically denoted as —d to 4,
resulting in a nonsmooth shape. The segment with zero torsional stiffness is
commonly referred to as the freeplay region. Functions of this type are typically
employed to model nonlinear impacts arising from localised contact points and
friction [1,5].

Kn(a(t)+6) at) <-4
fu(t) =10 —d<at)<d (30)
Ky(a)—90) at)=46
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4 Numerical demonstration and validation

In this section, the outlined methodology will be applied to the specified aeroe-
lastic test case for a purely numerical validation assessment. This will involve
comparing the accuracy of bifurcation diagrams to time histories and time-
domain continuation tools, namely MATCONT and COCO. The examination
will consider both precision and computational cost. Two distinct types of non-
linearity will be explored. Firstly, a smooth nonlinearity, typically employed to
model geometric nonlinearities, will be analysed. Subsequently, a nonsmooth
function will be utilised to represent localised nonlinearity.

4.1 Smooth nonlinearity

The results obtained by implementing the smooth nonlinearity described in
Equation 29 are presented herein. To build the Hill’s matrix for frequency

domain stability analysis, dg;l (t) is derived from Equation 29 as follows:
dfy,
%(t) = 2Kp20(t) + 3Ka30(t)? (31)

The parameters outlined in Appendix A define the test case. For the purely nu-
merical test, a simplified aerodynamic model is utilised, resulting in the neglect
of the aerodynamic state w. Consequently, both structural and aerodynamic
matrices (Equations 27 and 28) are reduced from 3 x 3 to 2 x 2.

The HBM framework was applied to the test case, and bifurcation dia-
grams for various harmonic orders are presented in Figure 4a. Continuation
was initiated from the Hopf bifurcation point (flutter velocity) at 31.45m/s,
identified through linear eigenvalue analysis of the matrix Q. The continuation
initially progressed backward with respect to velocity until reaching a turning
point, after which the direction reversed. This is subcritcal behaviour, meaning
LCO exist at lower velocities than the linear flutter speed.

To establish a reference solution, a high-fidelity run with 100 harmonics
was conducted to assess the mean error in velocity for LCO amplitudes rang-
ing from 0 to 0.5rad. Figure 4b indicates that mean error relative to the
100-harmonic solution converges fully by five harmonics. It is observed that
the error in the shape of the bifurcation curves for one and two harmonics is
nearly identical, with a sharp change occurring at three harmonics. A steep
99.08% reduction in absolute error is observed between two and three har-
monics, followed by only marginal decreases up to five harmonics. This trend
is validated by Figure 4a, which shows a slight change in the bifurcation di-
agram’s shape between two and three harmonics, with negligible differences
beyond three harmonics.

From a design perspective, the turning point is critical as it represents the
minimum velocity at which LCOs are expected. Figure 4c reveals a 1.42%
change in the turning point location between two and three harmonics, with
only minor variations up to five harmonics. While the steep error reduction
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between two and three harmonics has limited impact on the overall bifurcation
diagram shape, full convergence is not achieved until five harmonics with a
turning point at 23.91m/s.

The convergence of frequency-domain stability methods is assessed after
the bifurcation diagram stabilises. Standard time-domain Floquet analysis, as
shown in Figure 5a, serves as a reference for stability behaviour. For LCO am-
plitudes below 0.25rad, the Floquet multiplier associated with mode 4 exceeds
unity, indicating unstable LCO behaviour. Conversely, for amplitudes exceed-
ing 0.25rad, all Floquet multipliers are less than or equal to unity throughout
the remainder of the continuation, signifying stable LCO. It is observed that
the multiplier for mode 3 remains exactly 1 across the entire continuation.
The stability exchange point corresponds to the turning point in the bifurca-
tion diagram, occurring at a velocity of 23.91m/s. This indicates the presence
of unstable LCOs at low amplitudes, spanning from the turning point to the
Hopf bifurcation point. At the turning point, a stability exchange takes place,
leading to the emergence of higher-amplitude stable LCOs.

While time integration provides an exact determination of LCO stability,
converting to the time-domain undermines the purpose of employing a fre-
quency domain method for delineating the shape of the bifurcation diagram.
Therefore, stability is evaluated using both the standard Hill’s method and
the Koopman operator-based method to determine the optimal approach in
this context, considering accuracy and runtime. Figure 5b shows the critical
Floquet exponent obtained from the standard Hill’s method at 5 Harmonics,
indicating where a change of stability occurs. It is observed that the transition
from stability to instability occurs within 0.01m/s of the prediction made by
the time-integration method. Similarly, in Figure 5¢, the Koopman operator
based method at 5 Harmonics predicts stability exchange at the same point
as the standard Hill’s method.

It is observed in Figure 5b that the Hill’s method exhibits an anomalous
jump in the Floquet exponent at the point of stability exchange. Furthermore,
the Floquet multipliers derived from the Koopman method in Figure 5¢ do not
align precisely with those obtained from direct time integration. This discrep-
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ancy suggests that modes 3 and 4 are coupled near the stability exchange point
but decouple thereafter. While the stability exchange is captured in this in-
stance, further investigation is warranted to determine under what conditions,
if any, these results converge to the exact solution.

Focusing initially on the Hill’s method, since no exact solution is available
for direct comparison, the harmonic order was increased to 100 to achieve fully
converged Floquet exponents, as shown in Figure 6a. The resulting curve is
smooth and exhibits no anomalous jumps near the stability exchange, indi-
cating convergence. This solution is treated as the reference for evaluating the
accuracy of Floquet exponents at lower harmonic orders. The mean error over
the critical range of LCO amplitudes of interest is presented in Figure 6b.
By six harmonic orders, the error is observed to converge, and this is further
confirmed in Figure 6¢, which demonstrates that for harmonic orders below
six, a jump near the stability exchange is evident, whereas at six harmonics,
the curve becomes smooth. Despite these jumps, the stability exchange lo-
cation converges by five harmonic orders. An exception to this is the single
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harmonic response, where a smooth curve is observed. However, this result
underestimates the true stability exchange location by 25%, as reflected in
the mean absolute error, making it the second least accurate among the cases
considered. A significant increase in error at three harmonics is also observed.
Examination of Figure 6¢ reveals that at this harmonic order, the Floquet
exponents fail to predict stability, diverging instead to a large positive value.

Using the Koopman method, the exact Floquet multipliers derived from
the time integration method serve as a benchmark for assessing its accuracy.
Figure 7a demonstrates that the mean error in the multipliers converges at
eight harmonic orders. It is observed that while modes 1 and 2 converge by six
harmonic orders, modes 3 and 4—critical for determining stability—do not
converge until eight orders. This is corroborated in Figure 7c, which shows
that modes 3 and 4 remain coupled prior to eight harmonics. Beyond this
point, the Koopman method accurately captures the dynamics of modes 3
and 4, with mode 3 maintaining a multiplier of 1 throughout the bifurcation
diagram, while mode 4 exhibits a smooth transition from stable to unstable.
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Figure 7b highlights the multipliers for modes 3 and 4 at low harmonic orders,
with the modes being fully coupled for the full continuation run in the sin-
gle harmonic result. At harmonic orders between two and four, the stability
transition location is underestimated. Notably, at three harmonic orders, the
Koopman method predicts that the system becomes unstable again at higher
amplitudes in the bifurcation diagram. However, despite discrepancies in the
Floquet multiplier shape compared to the exact solution, the stability transi-
tion location converges to the value predicted by the time-domain method by
five harmonic orders.

The final converged bifurcation diagram, shown in Figure 8, is generated
using a harmonic order of 5 with Koopman-based stability analysis. The re-
sults reveal subcritical behaviour, where unstable LCOs are tracked from the
linear flutter velocity up to 23.91m/s. Beyond this point, a turning point is
reached, after which stable LCOs of increasing amplitude are observed with
rising velocity.
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4.2 Nonsmooth nonlinearity

The outcomes derived from applying the freeplay nonlinearity outlined in
Equation 30 are presented in this section. To construct Hill’s matrix for fre-
quency domain stability analysis dfni (t) is derived from Equation 30 as follows:

o dx

Knl a(t) < -6
dfnl

Knl Oé(t) =0

The parameters are once again outlined in Appendix A, with the primary
distinction being the incorporation of nonlinearity in the case of the localised
nonlinearity. In the implemented freeplay nonlinearity, two distinct linear flut-
ter velocities emerge. The first occurs when the absolute value of the pitch is
less than 4, resulting in zero torsional stiffness. Under this condition, the flutter
velocity remains consistent with the smooth case at 31.45m/s (flutter velocity
1). Conversely, in scenarios where || > 6, the flutter velocity is determined by
setting K, = K,; and is calculated to be 29.5m/s (flutter velocity 2). Given
that flutter velocity 1 corresponds to the hopf bifurcation point, continuation
will commence from this point, assuming the aerofoil is perturbed from a state
with zero heave and pitch.

Continuation is initiated from flutter velocity 1, and bifurcation diagrams
are generated across a range of harmonic orders. The results obtained using
100 harmonic orders are taken as the reference for assessing convergence of the
bifurcation diagram’s shape. Figure 9a illustrates a subcritical pattern, similar
to the smooth case, but with a sharper transition. Notably, LCO amplitudes
remain negligible before the turning point, beyond which they escalate towards
infinity.
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Figure 9a further shows similarity between the single and two harmonic
result and a noticeable change in the shape of the bifurcation curve at the
turning point between 2 and 3 harmonics. However, for harmonic orders above
3, even up to 100, the changes are minimal. This observation is validated by the
absolute error presented in Figure 9b, where a 78.41% drop in error relative to
the 100-harmonic result is observed between 2 and 3 harmonics. An additional
17.26% reduction occurs between 3 and 5 harmonics, but beyond this, only
marginal decreases are observed, with full convergence achieved around 10
harmonics.

As in the smooth case study, the turning point location remains the most
critical feature of the bifurcation diagram. Figure 9c shows that significant
jumps in absolute error result in only a 3.25% change in the turning point ve-
locity between 2 and 3 harmonics, with minor adjustments thereafter. Conver-
gence is reached at 8 harmonics, yielding a turning point velocity of 24.29 m/s.
Although the bifurcation shape converges at 10 harmonics, it suggests that
the amplitude also requires up to 10 harmonics to achieve full convergence.

Once the bifurcation diagram has stabilised with time integration Floquet
analysis, as shown in Figure ba as the reference point, the convergence of
frequency domain stability methods is re-assessed. Given the minimal change
in amplitude before the turning point in the bifurcation diagram, iteration
along the continuation process replaces the LCO amplitude in the stability
plots. Time-integration stability indicates an exchange from unstable to stable
at iteration 44, corresponding to the turning point of the bifurcation diagram.

Upon examination of the Floquet multipliers and exponents of the fre-
quency domain methods in Figures 10b and 10c, an erratic pattern is notice-
able, with sharp jumps between points. This contrast with the time-domain
method suggests discrepancies in depicting the dynamic behaviour. However,
in the case of standard Hill’s method, such behaviour does not influence the
prediction of stability exchange. Despite the erratic nature of the critical Flo-
quet exponent, it still indicates the transition of LCO from unstable to stable
at iteration 44, as shown in Figure 10b.

As there is no exact solution for the Floquet exponents, the result obtained
using 100 harmonic orders, shown in Figure 11a, is adopted as the converged
solution for accuracy assessment. This plot reveals a generally smooth curve,
particularly near the stability exchange point. The mean error in the Floquet
exponents over the full continuation run is illustrated in Figure 11b. It is
observed that the error begins to converge at harmonic orders exceeding 15.

In the outputs from the Hill’s method, erratic jumps are consistently ob-
served. However, as shown in Figure 11c, for harmonic orders above four, all
Floquet exponents correctly predict an exchange of stability at iteration 44,
aligning with the time-domain results. Once again, the single harmonic result
exhibits a smooth curve across all iterations but underestimates the turning
point location by 12 iterations. Any Floquet multipliers appearing in the top-
right or bottom-left quadrants of Figure 11c indicate an error. Notably, such
erroneous points are confined to results at harmonic orders below five. This
indicates that, despite the chaotic appearance of the results at low harmonic
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orders, meaningful stability information can still be extracted. Consequently,
reliable stability predictions can be obtained even at relatively low harmonic
orders, provided the analysis is carefully interpreted.

Focusing on the results from the Koopman-based method, the apparent
errors in the Floquet multipliers obtained through Koopman operator-based
stability analysis significantly influence the outcomes. A detailed examination
of the critical multipliers in Figure 10c reveals that eigenvalues 3 and 4 exhibit
chaotic jumps between iterations. Unlike the Floquet exponents, chaotic tran-
sitions between stable and unstable states are observed following the exchange
of stability indicated by the time-domain results. Additionally, the modes ap-
pear to be coupled near the stability exchange point, which contrasts with
the time-domain results where mode 4 consistently remains at 1 throughout
the continuation. This erratic behaviour is illustrated in Figure 12a, where the
bifurcation diagram shows unpredictable shifts between stability and instabil-
ity after the turning point. These deviations are inconsistent with the more
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reliable predictions derived from the time-integration method. An exception
is observed in the single harmonic case, where the Floquet multiplier curve
remains smooth throughout the continuation, with no chaotic jumps. How-
ever, this result yields the largest error compared to the time-domain solution,
underestimating the stability exchange by 12 iterations.

The error in the Floquet multipliers from the Koopman method is eval-
uated against the exact solution obtained from the time integration method.
Figure 12b indicates that while the errors for all modes begin to converge at
20 harmonic orders, they remain relatively high for the critical modes 3 and
4, which govern the stability of the LCO. Figure 12c confirms this observa-
tion, demonstrating that although the general shape of the Floquet multipliers
converges, chaotic jumps persist between iterations, along with incorrect sta-
bility transitions where none should exist. Notably, if any Floquet multipliers
fall within the top-right quadrant of Figure 12c, this indicates an error. The
presence of multiple erroneous points, not limited to regions near the stability
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exchange, highlights a broader issue. Even at 100 harmonic orders, chaotic
jumps in stability persist, suggesting that the Koopman operator, as applied
in this problem, cannot fully capture the stability of the non-smooth case.

The presence of errors in the Hill and Koopman stability methods may
be attributed to the inherent approximation nature of the harmonic balance
method in capturing the dynamic behaviour of a system. In essence, frequency
domain methods can only be as effective as their ability to estimate true time
histories accurately. This notion is underscored by comparing the true time
histories of nonlinear forces with the frequency domain estimates obtained
through the AFT procedure, as depicted in Figure 13.

An analysis of the error in the case of smooth nonlinearity, presented in
Figures 13a and 13b, reveal that the AFT procedure offers a reasonable ap-
proximation of the true nonlinear force at both low and high LCO amplitudes.
The relative root mean square error (RRMS) remains below 1072 in both
instances, explaining why both frequency domain stability methods exhibit
success without chaotic jumps between iterations.
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However, when examining the case of a nonsmooth freeplay nonlinearity,
as shown in Figures 13c and 13d, the AFT procedure struggles to accurately
capture the behaviour of the nonlinear force. Particularly at low LCO ampli-
tudes, where the freeplay region induces a sharp transition of the nonlinear
force to zero, the frequency domain method fails to replicate this flat-line be-
haviour. Consequently, there is an underestimation in the peak of the force.
The RRMS error at low LCO amplitude is five orders of magnitude higher
than in the smooth case. Although this error diminishes as LCO amplitude
increases and the freeplay region becomes less influential, the mean RRMS
error remains two orders of magnitude larger than in the smooth case. This
error source is akin to the Gibbs phenomenon, which states that the error will
diminish as the number of harmonics increases but will always be present to
some degree [25,10]. The discrepancy likely elucidates the erratic nature of the
frequency domain estimations of stability for the nonsmooth case.
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An alternative explanation for the jumps observed in the Koopman oper-
ators may lie in the continuous nature of the oscillatory nonlinear force, f,;,
despite its discontinuous slope. The erratic patterns evident in Figures 10b
and 10c could initially be interpreted as reminiscent of the Gibbs phenomenon.
However, they are more likely attributable to the jump discontinuities in the
Jacobian of f,,;. These discontinuities can induce abrupt variations in the sys-
tem’s response, particularly in regions of heightened sensitivity, resulting in the
irregular behaviour observed in the results. This differentiation underscores the
necessity of distinguishing numerical artefacts, such as the Gibbs phenomenon,
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from the inherent physical effects arising from nonlinear system properties, to
facilitate a precise interpretation of stability and dynamic behaviour.

The stability information obtained from the standard Hill’s method is em-
ployed to evaluate the stability of the bifurcation diagram in Figure 14b, which
is considered the fully converged bifurcation plot for the freeplay study and
will be compared to time-domain solvers in Section 4.4. Unstable LCOs are
initiated at the bifurcation point (flutter velocity 1) and persist in reverse
with respect to velocity until reaching 24.3m/s. Subsequently, a turning point
is encountered, resulting in an exchange of stability. Stable LCOs of growing
amplitude then emerge between 24.3m/s and 29.5m/s (flutter velocity 2). At
29.5m/s, flutter behaviour manifests, characterised by LCO amplitudes tend-
ing towards infinity.

4.3 Time domain comparison

Figure 15 compares converged bifurcation diagrams with time histories ob-
tained from the MATLAB ode45 differential equation solver for both test cases.
The smooth comparison in Figure 15a, not only clarifies the physical signif-
icance of the LCO plot but also validates its accuracy. At velocities below
the turning point, the system responds to any initial perturbation in pitch
or plunge by oscillating with positive damping before eventually settling to
a steady rest state at zero. Responses within the velocity range between the
turning point and the linear flutter speed vary depending on the magnitude
of the initial perturbation. Small perturbations exhibit behaviour similar to
those observed below the turning point, while larger perturbations lead to
the generation of LCO. Beyond the linear flutter speed of 31.45m/s, it is ob-
served that the time response to any perturbation is an LCO with amplitude
correlating to the bifurcation diagram.
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Similar conclusions can be drawn from the non-smooth comparison in Fig-
ure 15b. Prior to the turning point, the system responds to any perturbation
with a stable rest response. Between the turning point and flutter speed 2
(24.3 — 29.5m/s), both stable and unstable LCO branches exist. This implies
that under low perturbations, the system responds with a rest solution, while
higher perturbations lead to stable LCO and is vaildated by time responses.
The amplitude of LCO increases rapidly towards flutter speed 2, as depicted in
both the time histories and the bifurcation diagram. Beyond velocities ranging
from 29.5m/s to 31.45m/s, the LCO plot indicates unstable LCOs, which ei-
ther converge to a stable solution or diverge towards infinity. This observation
is confirmed by the time responses, where systems settle with low perturba-
tions but exhibit dynamic instability with larger ones (as shown in Figure
15). Above the linear flutter speed without torsional stiffness, both the LCO
plot and the time histories indicate the absence of stable solutions, with the
response to any perturbation resulting in binary flutter.

The comparison in Figure 15 illustrates that the peak points of the time
responses accurately align with the stable curve generated from the HBM
results in both test cases. It is worth noting that the amplitude of the unstable
section of the LCO plot lacks physical significance. However, the plot clearly
indicates that solutions lie on either side of the branch, resulting in either a
steady-state rest or a vibrational response (flutter or LCO).

4.4 Software comparison

In this section, the converged HBM smooth and nonsmooth studies will be
compared to time-domain solvers, considering both accuracy and computa-
tional cost. Bifurcation diagrams of the same systems are generated using
state-of-the-art time-domain solvers, namely MATCONT and COCO. The
bifurcation diagrams produced by these time-domain solvers yield identical
results since both utilise time integration to establish their residual equations.
The primary distinction between the two lies in their methods for setting up
the residual equations: COCO employs orthogonal collocation, whereas MAT-
CONT uses the standard method [15,12]. When comparing the HBM contin-
uation results to those obtained from MATCONT and COCO, a high level of
accuracy is evident. Figures 16 and 17 demonstrate the accurate prediction
of stable LCO amplitude. It should also be noted that both MATCONT and
COCO predict an exchange in stability in the turning points of both diagrams.

Considering the smooth nonlinearity test case, Figure 16 demonstrates al-
most identical agreement with the MATCONT /COCO bifurcation diagrams.
Examining the RRMS error in Figure 16b, it is observed that the mean er-
ror appears essentially as noise and can be almost neglected. From this, we
can assert that in the case of the smooth nonlinearity, the HBM framework
provides adequate estimations of LCO behaviour.

Examining the freeplay comparison in Figure 17, inaccuracies in the am-
plitude of the unstable region are shown, as illustrated in Figure 17b. At the
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hopf point, the amplitude error measures at 45.71%. However, by iteration 30
(27m/s), the datasets align. This error may yet again be attributed to the
Gibbs phenomenon described in Figure 13. As demonstrated in Figure 13d,
at pitch LCO amplitudes of 0.10 rad, the mean RRMS error of the nonlin-
ear force response is 27 times less than at 0.02 rad amplitude. This explains
why prominent errors are observed at low LCO amplitudes but become less
impactful at higher LCO amplitudes. Another potential explanation may re-
late to the freeplay gap. Specifically, when the LCO amplitude approaches the
magnitude of the freeplay gap, the higher harmonic content in the nonlinear
force becomes significantly amplified [44]. This phenomenon, as illustrated in
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Figure 13c, can contribute to irregularities in the system response, resulting
in the erratic patterns observed in the results.

Regardless of the underlying cause of the error, no quantitative correlation
was identified between the magnitude of the unstable LCO and the boundary
at which perturbations settle to rest or transition to the stable LCO branch,
as is observed in some systems. Instead, the unstable section of the bifurca-
tion diagram offers more of a qualitative insight into the system’s behaviour.
Specifically, it demonstrated that for small perturbations, the system tends to
settle to rest, whereas larger perturbations result in a stable LCO response,
with amplitudes aligning with the stable section of the bifurcation diagram.
Given that the LCO amplitude is accurately captured within the stable region
of the bifurcation diagram, it can be argued that the HBM framework pro-
vides an acceptable representation of the dynamic system’s physical behaviour
in this case.

Considering the computational costs of the methods, the most computa-
tionally demanding aspect of each process involves generating a time series
through numerical integration for time-domain methods and employing the
AFT procedure for HBM continuation. This difference stands out as the pri-
mary distinction between the methods, while other steps remain consistent.
In Figure 18a, we compare the computation time at an arbitrary point in the
continuation for a single run of the AFT procedure with a time-integration
solution covering a full period. It becomes evident that at harmonic orders be-
low 9, the HBM continuation scheme is expected to exhibit lower computation
times at a fundamental level. However, this assessment does not account for
the frequency of iterations required before the convergence of residual equa-
tions is achieved, potentially undermining the apparent advantage of a full
continuation run.
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An essential consideration when evaluating computational efficiency is the
choice of stability analysis method. Figure 18b presents a comparison of the
mean computational time for the three stability methods applied to a two-
degree-of-freedom system, representative of both the smooth and nonsmooth
cases studied in this work. A key observation is that both frequency-domain
methods exhibit lower computational costs than standard time integration
up to 22 harmonics. At lower harmonic orders, the computational costs of
the two frequency-domain methods are comparable, with the standard Hill’s
method being slightly more efficient. However, at 5 harmonics, the Koopman

operator-based method becomes less computationally expensive and retains
this advantage at higher harmonics.
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In the smooth test case, the bifurcation curve shape and the absolute error
in the Hill’s method have converged by 5 harmonics. Similarly, the Koopman
method provides accurate stability predictions by this point. Given that sta-
bility prediction is the primary goal, and the Koopman method offers a 7%
reduction in run time compared to Hill’s method and a significant 90% reduc-
tion relative to time integration, the Koopman operator-based method emerges
as the preferred approach for computational efficiency in smooth cases.

For the nonsmooth study, both the bifurcation diagram shape and error in
the stability methods converge by 15 harmonics, making the Koopman method
the optimal choice regarding computational time. However, as previously dis-
cussed, the Koopman method was unable to consistently predict the correct
stability behaviour even after convergence. Despite the existence of errors rel-
ative to the fully converged solution, accurate conclusions about stability can
be drawn by 8 harmonics. Therefore, the Hill’s method at 8 harmonics is the
optimal choice in this scenario, offering an 84.21% reduction in computational
time compared to time integration while providing reliable stability predictions
for the LCO.

Table 1 provides a comparison of the converged HBM solutions for both
smooth and nonsmooth case studies to MATCONT and COCO, considering
run-time and data storage requirements. This comparison is carried out over a
full continuation run with 100 iterations. Regarding run-time, a similar pattern
is observed for both the smooth and nonsmooth case studies. MATCONT is the
slowest performing of the methods, while the HBM framework is the fastest.
The HBM framework offers over a 90% reduction in run-time compared to
MATCONT in both cases. For COCO, over a 60% reduction in time was
observed in both cases with the converged HBM solutions. For all methods,
the smooth case has a lower run-time than the nonsmooth. In the case of
MATCONT/COCO, this is likely due to a higher number of time intervals
being required to accurately capture the time behavior of the nonlinear force.
For the HBM scheme, this is for two reasons: 5 harmonic orders were used in
the converged smooth case, but 8 were used in the nonsmooth case, and the
standard Hill’s method was used over the Koopman operator based method
for stability in the nonsmooth case.

Data storage refers to the amount of data stored to describe LCO behav-
iors over the full run. For the time domain methods, this includes the position
points of each degree of freedom and time steps obtained through numeri-
cal integration. The method of discretion of time steps differs slightly between
MATCONT and COCO. In MATCONT, a set tolerance is automatically calcu-
lated at each run and used to set a constant time interval over a full period. In
COCOQ, a variable time step is automatically computed as the time-integration
is carried out over a period. In the HBM framework, the required data includes
the Fourier coefficients describing each degree of freedom’s amplitude and nat-
ural frequency. Fourier coefficients of the nonlinear force and nonlinear force
differential are also required to compute stability. It appears there is a direct
relationship between data storage requirements and run time, as more data is
required to be handled, resulting in higher run times. The same conclusions
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are then reached from looking at the data storage and run time comparisons.
With the considered test case, below 32 harmonics, HBM is more data efficient
than COCO in the smooth case and below 44 in the nonsmooth case.

Table 1: HBM time and data storage requirement comparison to generate full
bifurcation diagram

smooth nonsmooth
Software Run Time [s] Data Storage Run Time [s] Data Storage
MATCONT 105.78 46200 145.31 64600
COCO 29.44 38645 34.16 53250
HBM 10.40 6800 12.68 10400

From the comparisons of both accuracy and computational cost of the
HBM framework to MATCONT and COCQO, it is evident that the HBM frame-
work is more effective at estimating LCO behaviour via bifurcation diagrams in
both the smooth and nonsmooth test cases. However, it should be mentioned
that a key reason for this, particularly considering computational cost, is due
to the capabilities of each tool. Both MATCONT and COCO have capabili-
ties for searching for other types of bifurcations, and particularly in the case
of MATCONT, they provide a more in-depth user interface. In contrast, the
proposed HBM framework is only suited for generating bifurcation diagrams
to describe LCO behaviour.

5 Experimental study and validation

Having validated the HBM framework in a purely numerical test in the pre-
vious section, the subsequent section aims to experimentally validate it. Ex-
perimental LCO data for two different configurations will be compared with
predictions from the HBM framework.

5.1 Experimental test rig

Pre-existing experimental data collected at the University of Bristol by Lee et
al. [34] has been utilised to validate the methods proposed in this study. Fig-
ure 19 illustrates the experimental flutter rig, consisting of a NACA-0015 wing
profile firmly affixed to a stainless steel shaft. The aerofoil is supported by ro-
tational bearings on each end, enabling rotation, along with a bearing system
facilitating vertical displacement. The spring in the heave degree of freedom
behaves linearly. Additionally, leaf springs are introduced in the bearings to
induce a nonlinear hardening effect in pitch motion. This setup replicates non-
linear effects encountered at interfaces in real aircraft. Further details of the
setup can be found in Ref [33]. Heave displacement is measured using an Om-
ron ZX1-LD300 laser displacement sensor, while pitch motion is captured by an
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Fig. 19: The wing aerofoil flutter rig experimental configuration taken from
[57]

RLS AksIM 18-bit absolute magnetic encoder. Wind speed is directly recorded
from the wind tunnel control system. Stable and unstable LCO are captured
through control-based continuation (see Ref [7] for a deeper explanation on
CBC and its application in this context). The raw data undergoes fast Fourier
transform analysis to minimise noise, a process repeated for two experimental
configurations with different spring constants. Design rig parameters for each
configuration are displayed in Table 2.

5.2 Numerical modeling

The linear mathematical model described in Equations 27 and 28 is once again
utilised. In this test, however, the aerodynamic state w is introduced as a
degree of freedom to create a more intricate aerodynamic model. Consequently,
the full 3 x 3 structural and aerodynamic matrices are employed to construct
the @@ matrix. As the leaf spring employed in the experimental setup was
intended to replicate the behaviour of a geometric nonlinearity, the smooth
nonlinearity from Equation 29 is again applied to the pitch degree of freedom.

The parameters outlined in Table 2 are determined for both experimental
configurations. Flutter speeds for each setup are obtained through eigenvalue
analysis, as also depicted in the table. Estimates for the nonlinear parameters
K,5 and K,3 are required. Here, deterministic estimates derived from nor-
mal theory, as found in the original study [34],as well as updated estimates
obtained from a probabilistic data-driven Bayesian approach, are separately
employed [40].
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5.3 Comparsions between numerical and experimental results

The converged HBM continuation results, employing parameters for both ex-
perimental configurations, are now compared with the CBC data to assess
the accuracy of both LCO amplitude and stability. The comparison with con-
figuration 1 is depicted in Figure 20 for both deterministic and probabilistic
parameter estimates. Both the HBM continuation plots and the experimental
data exhibit a similar shape, featuring unstable LCO formations preceding a
turning point, followed by stable LCO formations. However, discrepancies are
evident in the amplitude of the plots, particularly in the deterministic estimate.
Figure 20c illustrates that errors in amplitude become more pronounced as the
amplitude increases in the stable section of the bifurcation diagram, with the
highest amplitude point deviating significantly from the bifurcation plot in
both estimates. It appears that the gradient of the bifurcation plot aligns with
the experimental data before the turning point, but subsequently underesti-
mates the gradient of the experimental data, particularly in the deterministic
estimate. Overall, the probabilistic estimate provides a better approximation
of the experimental data, with a mean RMS error of 0.13 compared to 0.23 in
the deterministic case.

The comparison with configuration 2 is illustrated in Figure 21. Similar to
configuration 1, both the HBM continuation results and the CBC data exhibit
unstable LCO at low amplitudes until a turning point is reached, after which
stable LCO begin to form. Both sets of HBM results adeptly capture the shape
of the unstable section of the bifurcation diagram, showcasing low RMS errors
below 15%, as indicated in Figure 21c. However, following the turning point,
the shape of the bifurcation diagrams diverges from the CBC data, displaying
a shallower gradient than expected, particularly in the deterministic estimate.
Additionally, in the deterministic estimate, it appears that the location of the
turning point is overestimated, extending back in velocity further than an-
ticipated. This is not the case in the probabilistic estimate, where it appears
the location of the turning point has been estimated more accurately. Again,
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it is observed that the probabilistic estimate captures the behaviour of the
data more closely. The probabilistic estimate has a mean RMS error of 0.083
compared to the higher 0.12 in the deterministic case. This is likely due to the
probabilistic approach accounting for parameter uncertainties, thereby provid-
ing a more robust prediction of system behaviour across varying conditions.
This enhances accuracy compared to the deterministic method [40]. In either
case, both estimates provide an improvement over the estimated bifurcation
diagrams in configuration 1. Consequently, it can be argued that the HBM con-
tinuation scheme captures the real behaviour in configuration 2, particularly
with the probabilistic estimate.

Overall, the comparison between the HBM continuation scheme and CBC
data in this case study presents a mixed outcome. In each configuration, the
general shape of the bifurcation diagram is accurate, depicting a subcritical
plot with unstable LCO at low amplitudes and stable LCO after the turning
point. At low amplitudes, the RMS errors were relatively low, particularly
in the second configuration; however, substantial errors are observed after the
turning point. In both configurations, it appears that the gradient of the bifur-
cation diagram is lower than expected, leading to more pronounced errors at
higher LCO amplitudes. This discrepancy suggests a potential issue with either
the experimental data, the mathematical model, or the estimated parameters.
Improvements in accuracy are, however, observed with the probabilistic pa-
rameter estimates over the deterministic ones, especially in configuration 2,
where the completed bifurcation diagram has a mean RMS error under 10%.

6 Conclusion

This study proposed a computationally efficient method for estimating Limit
Cycle Oscillation behaviour and determining stability in aeroelastic systems.
The methodology involved conducting LCO analysis solely in the frequency do-
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main, integrating the Harmonic Balance Method continuation and the Koop-
man operator.

The paper elucidated the methodology for a general aeroelastic frequency
domain solver for LCO, providing detailed insights into the HBM continuation
scheme and frequency domain stability analysis. Subsequently, this methodol-
ogy was put into practice through a numerical test case, encompassing both
geometric and localised nonlinearities. The results were validated against out-
comes from MATCONT and COCO, with additional comparison against LCO
experimental data obtained through Control Based Continuation experiments.

In the smooth nonlinear numerical test, successful convergence of bifur-
cation diagrams and LCO stability estimation was achieved at 5 harmonic
orders. The Koopman operator-based method emerged as the preferred choice
for stability analysis, offering notable reductions in run-time compared to stan-
dard Hill’s method and time integration. However, in the nonsmooth nonlinear
numerical test, convergence of the bifurcation diagram was achieved at 8 har-
monic orders. While the standard Hill’s method proved successful compared
to time-integration, the Koopman operator-based method exhibited chaotic
behavior, rendering it unreliable for LCO stability determination.

Comparisons with MATCONT and COCO underscored the HBM frame-
work’s superiority in accuracy and computational efficiency, particularly ev-
ident in the smooth test case. Despite some discrepancies in the nonsmooth
case, the HBM framework provided a satisfactory description of the system’s
dynamic behaviour.

The experimental validation against experimental data yielded mixed re-
sults, with an accurate depiction of bifurcation diagram shapes but notable
errors observed after the turning point. However, improvements in accuracy
were noted with probabilistic parameter estimates over deterministic ones,
particularly in configuration 2.

Future research should focus on validating the proposed framework for
more complex, higher-degree-of-freedom systems to establish its robustness
and applicability. Emphasis should also be placed on demonstrating its poten-
tial advantages in data-driven approaches for reducing computational costs,
as drawing definitive conclusions from a two-degree-of-freedom system may
be premature. Furthermore, the development of more suitable mathematical
models tailored to experimental test cases would enhance the framework’s
experimental validation and practical utility.
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chapter 10.4

A Model parameters

Table 2: Parameters used in case study

Numerical Experimental
Parameter Smooth  Nonsmooth  Configuration 1  Configuration 2
b (m) 0.127 0.127 0.150 0.150
a -0.5 -0.5 -0.5 -0.5
mw (kg) 1.56 1.56 5.30 5.30
To 0.434 0.434 0.24 0.24
In (kg.mQ) 0.001347 0.001347 0.1724 0.1724
Ky (N/m) 2818.8 2818.8 3529.4 3318.3
Ko (N/rad) 0 0 54.11 65.6
cn (kg/s) 0.77 0.77 14.58 14.58
co (kg.m?/s?) 0.63 0.63 0.56 1.03
cw (kg/s) 0.54 0.54 0 0
c1 0.165 0.165 0.165 0.165
c2 0.0455 0.0455 0.0455 0.0455
c3 0.335 0.335 0.335 0.335
cq 0.3 0.3 0.3 0.3
Koz (N/rad?) 250 - 751.6/524.50 774.7/678.32
Kas (N/rad3) 7500 - 5006.7/2595.9 3490.7/ 2982.6
0 [rad] - 0.0175 - -
Vi (m/s) 31.45  31.45/29.50 17.80 26.15




