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Abstract Nonlinearities in aerospace systems often
induce self-sustaining oscillations known as Limit
Cycle Oscillations (LCO), requiring costly analyses for
identification. A major challenge is the computational
expense of generating bifurcation diagrams, which lim-
its the feasibility of nonlinear analysis in early design
phases. This restriction not only constrains design pos-
sibilities but also impedes data-driven methods for non-
linear aeroelastic analysis, which rely on efficient data
collection-a growing focus in the aerospace sector. This
work proposes a computationally efficient numerical
framework to predict LCO amplitudes and assess sta-
bility in nonlinear aeroelastic systems. The approach
integrates the Harmonic Balance Method with the Hill
method for stability analysis. To address the sort-
ing problem, a Koopman operator-based data-driven
method is employed. The framework is validated using
numerical test cases with both smooth and nonsmooth
nonlinearities, benchmarked against results from MAT-
CONT, COCO and time-domain simulations. Finally,
experimental validation is performed by comparing the
framework’s predictions with LCO experimental data
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obtained through control-based continuation experi-
ments.
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1 Introduction

With the increasing integration of lightweight mate-
rials and complex systems, the study of nonlineari-
ties in aerospace structures has become an important
area of research. These nonlinearities are typically clas-
sified into two categories: geometric nonlinearities,
which manifest throughout the entire structure, and
localised nonlinearities, which are confined to specific
areas [35,45,48]. Geometric nonlinearities often arise
from large deflections induced by the use of lightweight
materials [46], while localised nonlinearities can stem
from factors such as friction within structural joints,
becoming more prevalent as complex novel systems
are integrated [20,26]. The effects of these nonlineari-
ties on dynamics and control can be significant, altering
flutter boundaries in tiltrotor systems and shifting the
aerodynamic centre of certain wings, thereby affecting
control strategies [38,49].

A common phenomenon resulting from both forms
of nonlinearities is the occurrence of self-sustaining
oscillations known as Limit Cycle Oscillations (LCO).
Both theoretical analysis and experimental evidence
indicate that close to the linear flutter velocity of aeroe-
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lastic systems the formation of LCO occur [22,56].
These LCO often represent the maximum response
of systems, with significant implications for structural
fatigue, making them crucial to track [18]. Moreover,
the stability of LCO is essential to consider, as stable
LCO signify real physical oscillations towards which
the system can converge, while unstable LCO indicates
orbits where the perturbed response diverges [59].

However, determining LCO behaviour typically
involves costly nonlinear analysis, particularly through
the generation of bifurcation diagrams. Both generat-
ing these diagrams and determining stability can be
resource-intensive, leading to the neglect of nonlin-
ear analysis in early design stages and constraining
the potential design space [37]. Furthermore, this lim-
itation hampers nonlinear aeroelastic analysis through
data-driven approaches, which rely on efficient gath-
ering of training data and have garnered attention in
the aerospace industry [40,50,55]. Therefore, there is a
demand for computationally efficient methods to deter-
mine LCO behaviour in aeroelastic systems.

This study aims to propose a computationally effi-
cient method for estimating LCO behaviour and deter-
mining their stability in aeroelastic systems. This is
accomplished by conducting LCO analysis solely in
the frequency domain, combining HBM continuation
with Koopman operator based stability analysis. To val-
idate the proposed method numerically, the compari-
son is made with state-of-the-art time-domain solvers,
namely MATCONT [14] and COCO [3], in both
smooth and nonsmooth nonlinear case studies. Addi-
tionally, the framework is experimentally validated by
comparing predicted LCO behaviour with empirical
LCO data.

The onset of LCO typically arises at a specific type
of bifurcation known as a Hopf bifurcation [53]. Both
theoretical analyses and experimental investigations
have demonstrated that Hopf bifurcations coincide
with the flutter points of aeroelastic systems [22,56].
The numerical continuation process leverages previous
solutions of the system and the equations of motion
to accurately predict subsequent solutions with respect
to a chosen continuation parameter. Various methods,
primarily employing a predictor-corrector approach,
have been developed to provide rough estimates fol-
lowed by refinement for improved accuracy. Among
these, methods such as arclength and pseudoarclength
continuation have proved effective in tracing solutions
beyond turning points, thereby revealing diverse sys-
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tem behaviours. Despite differences in existing bifurca-
tion software, the predominant tools rely on orthogonal
collocation methods for tracking and modelling LCO
[8]. Orthogonal collocation, a time-domain method,
segments a periodic orbit into intervals, represents
unknown variables using polynomials on each interval,
and collocates the governing equations at Gauss points
[27]. Orthogonal collocation techniques are integrated
into widely used bifurcation software packages such
as MATCONT, AUTO, and COCO [12,15,17]. How-
ever, despite their accuracy, these methods are seldom
applied to larger systems due to substantial memory
requirements, leading to high computational costs.
Harmonic balance methods (HBM) offer a compu-
tationally efficient alternative for identifying the maxi-
mum response of LCO. In HBM, the periodic motion of
LCO is approximated using Fourier series coefficients
in the frequency domain. The Alternative Frequency
Time scheme (AFT) is implemented so different types
of nonlinear forces can be evaluated in the frequency
domain [9]. Unlike time-domain methods, where a set
of coordinates with corresponding time values must be
stored to characterise the response, HBM requires stor-
ing only a set number of coefficients. The method is tai-
lored for analysing periodic responses in systems with
strong nonlinearities, particularly when time-domain
simulations become computationally expensive. Key
challenges in its application include ensuring conver-
gence, managing computational costs for higher har-
monic orders, and accurately modelling nonsmooth
nonlinearities. Previous studies [23,51] have demon-
strated that HBM can achieve a high level of accu-
racy compared to alternative methods like the shoot-
ing method while being significantly less computation-
ally expensive. In a comparison between HBM and
orthogonal collocation on nonlinear mechanical sys-
tems, Karkar found HBM to exhibit better convergence
on certain systems and to be “very robust” [27]. How-
ever, the literature lacks comprehensive research com-
paring HBM to current alternatives, particularly in the
context of aeroelasticity [13,27]. Existing studies are
mostly confined to low-harmonics or focus on forced
non-autonomous systems [30]. Although the NLvib
package implements HBM, its primary focus is on non-
linear mechanical systems, and it does not include sta-
bility analysis purely in the frequency domain [28].
The conventional estimation of LCO stability typ-
ically involves time domain methods, such as Flo-
quet analysis, as highlighted in Ref [52]. However, as
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frequency domain methods gain prominence in LCO
analysis, there is a growing interest in techniques that
directly compute stability in the frequency domain.
Guillot et al. [24,32] demonstrated the use of the Hill’s
matrix for computing the stability of LCO modeled
by Fourier series through eigenvalue analysis. Lazarus
and Thomas demonstrated the method’s accuracy on a
forced Duffing oscillator system [31]. While effective,
this method tends to be computationally demanding,
especially when dealing with large numbers of har-
monic orders necessary for modelling complex non-
linear systems, leading to extended computation times.
For large-scale scenarios, stability analysis using the
Hill method can be more numerically costly than com-
puting periodic motion [29,47]. The applications of
Koopman operator methods to limit cycling systems
have been explored for stability analysis [39,42]. Addi-
tionally, they have been applied to jet engine instabil-
ities with the advent of data-driven methods [43]. In
recent developments, the Koopman operator has been
employed to derive the monodromy matrix directly
from Hill’s matrix, as elucidated by Bayer and Leine
[6]. In the Koopman framework, the dynamical system
is characterised by the evolution of functions on the
state space over time. This method elevates the prob-
lem to a higher-dimensional space where the system
demonstrates more predictable behaviour. This inno-
vative approach significantly reduces the number of
eigenvalues needed for stability computation, aligning
it with the number of degrees of freedom in the sys-
tem. Consequently, this advancement holds promise for
enhancing the efficiency of stability analysis in the fre-
quency domain. However, it has not been applied and
validated to nonlinear smooth dynamical systems.
This paper presents the methodology for a gen-
eral aeroelastic frequency domain solver for LCO. The
methodology encompasses a detailed explanation of
the HBM continuation scheme and frequency domain
stability analysis. The preliminary numerical findings
of this research were showcased at the conference
[41]. This paper comprehensively outlines the HBM
methodology, incorporating Koopman operator based
stability analysis for predicting LCO behaviours. Sub-
sequently, the methodology is applied to a numerical
test case, incorporating both smooth and nonsmooth
nonlinearities. The test case results are then validated
by comparison with outcomes from MATCONT and
COCO software. Following numerical validation, the
framework’s results are juxtaposed with LCO experi-

mental data obtained through Control Based Continu-
ation (CBC) experiments [7]. Ultimately, conclusions
are drawn based on the numerical and experimental
validation of the proposed framework.

2 Methodology

In this section, the computational framework based on
HBM and Koopman operator based stability analysis
is presented. First, the standard mathematical format
is introduced, laying out the basic principles behind
HBM continuation based on the work in Ref [16]. The
AFT procedure is then outlined, as it is essential to
all steps of this methodology. Finally, two methods of
determining LCO stability in the frequency domain are
described: the standard Hill’s method and Koopman
operator based analysis.

2.1 General equation of motion

The methods outlined here revolve around mathemati-
cal models that can be formulated into the second-order
differential equation depicted in Eq. 1. Nonlinear aeroe-
lastic systems can be organised in this manner under the
assumption that structural forces counterbalance aero-
dynamic forces.

Mjé+D)zf+Kx+qn[fnl=Ajé+BfC+Cx (D

Degrees of freedom of the system are denoted as x,
while M, D, and K represent the structural mass, damp-
ing, and stiffness matrices, respectively. Matrices A, B,
and C characterise the encountered aerodynamic force,
with a size of N x N, where N is the number of degrees
of freedom of the system. The nonlinear function f;;;
captures various types of nonlinearities encountered in
aeroelastic systems. The N x 1 vector g,; incorporates
the nonlinear equations affecting the degrees of free-
dom. The standard differential equation is restructured
into a first-order state equation, as shown in Eq. 2:

X=Qx+q,fu 2

where:

Lo

[(M —~A)~YB-D) M- A)C - K)}
= 0 I Qn
NxN NxN
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The matrix Q will be denoted as the linear matrix, as it
completely represents the linear dynamics of the sys-
tem. This structural arrangement facilitates the conduct
of linear analysis to identify the flutter point through
the following procedure. By focusing solely on the lin-
ear aspect of the system, Eq.2 can be expressed as the
eigenvalue problem x — Qx = 0. Assuming an oscil-
latory response x = x,e?’, the eigenvalue problem is
formulated as:

[Q-Tyij]o=0 “4)
where v;; are eigenvalues in the conjugate pair
Vij = —Gijwij Liwijy/1 = &j )

The undamped natural frequencies are denoted by
wij, while ¢;; represents the damping ratios. Matrix ¢
encompasses the corresponding eigenvectors. Flutter
manifests as unstable, negatively damped oscillations.
Based on this characterisation, it becomes evident that
if any of the real parts of Eq. 5 are positive, the system
exhibits dynamic instability [60].

2.2 Harmonic balance method

Incorporating nonlinearities alters this behavior. In
nonlinear systems, the loss of linear stability typically
leads to the emergence of LCO at a hopf bifurcation
point. While linear analysis can pinpoint hopf bifur-
cation points, numerical continuation from such points
often reveals the presence of LCO solutions even before
the loss of linear stability.

Assuming that the system’s dynamic response after
a hopf bifurcation is an LCO, we can represent the
time response of x and x using the Fourier series. The
system can then be expressed through multi-harmonic
response and solved in the frequency domain:

I
x(t) = Xo + Z X sinkat + Xy cos kot (6)
k=1
The variable / denotes the harmonic order of the
response, while X¢, X s, and Xy . represent Fourier
coefficients. This assumed response is fundamental to
HBM, facilitating the transformation of the system
from the time domain to the frequency domain. Instead
of necessitating a time integration process spanning
potentially hundreds to thousands of time steps, only
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—> Eqn. 6 =
Nonlinear
equation
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Fig. 1 AFT procedure

N x (21 4 1) steps are required to characterise the
dynamic behaviour of the system.

An additional step is necessary to model the nonlin-
ear force component of Eq. 2. Nonlinear forces are typ-
ically depicted as nonlinear time functions. Since they
do not adhere to linearity with respect to states or rep-
resent explicit functions of time, direct transformation
to the frequency domain is impractical [9]. However,
the nonlinear force response can be transformed to the
frequency domain via the AFT procedure, facilitating
the determination of Fy, Fy s, and Fy . as:

l
fu®) = Fo+ Y Fygsinkot + Fyccoskot — (7)
k=1

The predicted values of Xo, Xk, Xk, and w are
utilised in Eq.6 to derive the time domain response
over a period. Subsequently, the time domain nonlin-
ear force response f;;(¢) is determined. A fast Fourier
transform algorithm (FFT) is then applied to estimate
Fourier coefficients based on the time domain nonlinear
force response. This is commonly known as the AFT
procedure, laid out in Fig.1. Leveraging these rela-
tionships, the equation of motion depicted in Eq. 2 can
be reformulated into a set of algebraic residual equa-
tions, which are solved numerically. Accuracy can be
assessed through convergence studies and benchmark-
ing against numerical tools such as COCO and MAT-
CONT. A converged HBM result with respect to / can
generally be assumed to be reliable for the system under
consideration, in the absence of such comparisons.

2.3 Continuation scheme

A continuation scheme is formulated based on the prin-
ciples of HBM. Its aim is to determine the amplitude
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and frequency of LCO, along with their correspond-
ing values of a chosen continuation parameter. Given
the uncertainty in the shape of the bifurcation diagram,
both the continuation parameter A and LCO frequency
o are treated as unknowns in this scheme. Typically, in
an aeroelastic system, velocity is used as the continua-
tion parameter. It is worth noting that the linear system
matrix Q is often dependent on the continuation param-
eter. The equations of motion in the nonlinear degrees
of freedom are denoted as follows:

Xu(t) = (Q)u,pXL + (Q)u‘uxnl(t) + (Q)u,vxnl(t)
() u Sfui (1) 3)

Linear Fourier coefficients, denoted by x; = X0, Yk,s,
Xy, are obtained by solving only the linear compo-
nents of the system. Here, the linear degrees of free-
dom or modes are labeled as p, while the nonlinear
degrees of freedom and modes are designated as u and
v, respectively. Substituting Eq. 6 into Eq. 8 yields the
set of N x (21 4 1) residual equations:

Ro = (Q)u,pYO + (Q)u,vXO + (qn)MFO
Rk,s = _kzwzxk,s - (Q)u,pyk,s - (Q)u,ukka,c

— (QuvXks — @) Fr s ©
Rk,c = _kzwzxk,c - (Q)u,pyk,c + (Q)u,ukka,s
- (Q)u,vXk,c - (qn)qu,c

In scenarios involving multiple nonlinear degrees of
freedom, a set of N x (2] 4 1) residual equations are
derived for each nonlinear degree of freedom. Incor-
porating A and @ as unknowns necessitates formulat-
ing two additional residual equations. A common con-
straint imposed on the scheme is related to pseudo-
arclength continuation [4,11]. Using point j as the
reference in the continuation, a prediction for j + 1
is generated utilising tangential direction vectors. It is
assumed that the converged solution for j + 1 is orthog-
onal to the initial prediction, imposing the following
constraint in the corrector stage during the numerical
continuation:

R (X X )dX +( )dw
2042 JHTAj410) ; JHIT@j+1.0) ;
di
+Ajr1 —Ajr1,0)—— (10)
Jj+ J+1, ds;‘
d(Xw 1)

Through this constraint, direction vectors (
where s denotes the non-dimensional arc- length) for
the next continuation step are also obtained.

Another widely used constraint is based on the prin-
ciple of orthogonality between the phase of degrees

of freedom and their rates of change [21,27]. This
assumption can be used to derive arelationship between
j" Fourier coefficients and the j + 1 points:

I
Ryjp3= Z —k(Xk,e) j (Xi,s) j+1 k(X s) j Xk o) j+1
k=1

(1)

Both of these constraints are commonplace in con-
tinuation methods and are also employed in time-
domain methods. Further details on each can be found
in Ref [12,16]. With an equal number of residual equa-
tions and unknowns [Xo, X5, Xk.c, 0, A] (for k =
1,..., 1), the system can be numerically solved at each
point in the continuation.

The system can be solved iteratively typically
through the Newton-Raphson procedure [16]. This
involves linking displacements to rates of change
through the Jacobian matrix J = dx/dx via x =
Jx. While the Jacobian can be numerically evaluated
through finite difference methods, this approach can
be computationally demanding, particularly for large-
scale systems [54]. Alternatively, the analytical Jaco-
bian can be incorporated by defining it via a Fourier
transform [13].

1
J(@) = Jo+ Y Jrssinkot + Jg . cos kot (12)
k=1
From Eqgs. 1 and 6 we can derive the Jacobi for each
Harmonic order as:

8F

oF
Q+qn(ax> (13)

=Q+ oF
4%\ 5%
JIF

Approximations for (BF )0, (ax )k ,-and (aF)k canbe
achieved by analytlcally transformmg the t1me domam
derivation ¢ d
inverse Fast Fourier Transform procedure.

l

dfnl oF OF _
( ) = <8X) +]§ (3_X)k,s sin kot

L (2F koot (14)
e COSKw
X ko

This necessity arises solely within the nonlinear degrees
of freedom. An added advantage is that the Fourier
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coefficients of the Jacobian can be utilised to directly
assess the stability of the response in the frequency
domain, as elaborated in the subsequent section.

2.4 Frequency domain stability determination

Once a converged solution including LCO amplitude,
frequency, and continuation parameter is achieved in
the frequency domain, the stability of the oscillation
must be determined. A stable LCO solution describes
behavior where, following an initial perturbation, the
system’s response is drawn towards the LCO. Con-
versely, with an unstable LCO, the response moves
away from the unstable cycle [47].

Time-domain analysis is used as a reference in the
study, which relies on the use of monodromy matrix ®7
(N x N) to assess the stability of the system through its
evolution in state changes over time. The monodromy
matrix is illustrated in Eq. 15 which portrays the evo-
lution of the system’s states over a single period 7. It
can usually be obtained as a byproduct of time-domain
continuation processes where the stability of the sys-
tem can be subsequently assessed based on its eigenval-
ues known as Floquet multipliers [57]. If the absolute
value of any of the N Floquet multipliers exceeds 1,
the system is deemed unstable. This approach is herein
referred to as time-integration stability analysis.

X7 = Prxp (15)
2.4.1 Hill’s method

In the frequency domain, the stability of an oscilla-
tion can be computed using Hill’s method, which still
applies Floquet theory [47]. The stability is determined
based on the eigensolution of the truncated Hill’s matrix
H as follows:

cee JO + wl Jl,s J2,s
Ho=1... Jic Jo Jis ... (16)
JZ,C Jl,c JO—CUI

The Hill’s matrix is truncated to size N(2/ 4+ 1) x
NQI+1):

Jo+lwI J_z[
H=| . . (17)
Jy ... Jo—lol
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Assuming Ji ¢ and J . fork > [ are N x N zero matri-
ces, as per standard Hill’s method. N terms, referred
to as Floquet exponents (distinct from Floquet multi-
pliers), are subsequently selected from the N (2] + 1)
eigenvalues of the matrix H [32]. A numerical sorting
algorithm is employed to identify eigenvalues corre-
sponding to k = 0. The conventional approach involves
sorting the eigenvalues based on the amplitude of their
imaginary parts. The N eigenvalues with the small-
est amplitude of imaginary parts are then selected as
the Floquet exponents. Stability is determined by com-
paring the real parts of the Floquet exponents to zero.
For the system to be deemed dynamically stable, all
real parts must be below zero; otherwise, the system is
unstable.

2.4.2 Koopman operator based stability analysis

Koopman lift theory can be introduced to reduce the
computational cost of frequency domain stability anal-
ysis. The Koopman operator stability process operates
under two assumptions to derive an approximation of
the monodromy matrix. The first assumption is that the
higher-dimensional space z can be utilised to estimate
the lower-dimensional space x via:

x(1) = x:(1) = C(1)z(1) (18)
Here, C(t) represents the time-dependent projection
matrix that fulfils the condition C(¢)z(t) = x,(¢), with
z(t) composed of monomial terms and Fourier terms

of the base frequency [6]. z(¢) can be then expressed
as:

1 —ilwt
Z_,e

1 ilwt

%le ilwt
—llw

ZZ,e

(1) = (19)

N Jilwt
Z e

where / is the maximum frequency order, N is the
maximum index of the monomial term and ZlN is the
I'" Fourier coefficient of the N monomial term. The
dimension of this orthogonal basis functions z(z) is
N (214+1). Here, these linear basis functions are ordered
by the state at first and then by the frequency in an
ascending order. Vector Z; is used to denote the vec-
tor containing the Fourier coefficients corresponding to
the [ frequency for each monomial term.
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A common choice for the projection matrix C(t) in
frequency-based projection is to select the zeroth har-
monic, which corresponds to the steady-state or aver-
age behavior of the system providing insight into the
system’s mean behaviour or equilibrium states [6]. To
select the components related to the zeroth harmonic of
z(1), the frequency domain projection matrix is defined
as:

C=(0...01,.,0...0) (20)

The second assumption of the Koopman operator-based
stability method is that the truncated Hill’s matrix can
be utilised to derive the state transition matrix of the
high-dimensional space with [6]:

z(t) = Ut Uz (0) (21)

where U is the transformation matrix to convert the
Hill’s matrix from frequency to time domain, satisfying
the criteria Uz(r) = (Z_;e''®" ... Zje '")T. Substi-
tuting Eqs. 18 into 21 yields the following expression:

x. (1) = C()UTeM Uz (0) (22)
At = 0, Eq. 19 simplifies to z(0) = Wx(0), where:

II’lXI’l

w=| : (23)
Ian

Utilising both reductions matrices together in Eq.22,
results in:

x, = C(HUTMUWx(0) (24)
Over a full period T this yields:
X7 X CthVVX() (25)

As per Eq. 15, this implies that the monodromy matrix
can be approximated in the frequency domain by:

®; ~ CHTW (26)

This approximation of the monodromy matrix enables
the computation of system stability through Floquet
multipliers, employing the same method as in standard
time-domain stability analysis. Thus, compared to tra-
ditional Hill’s stability analysis, utilising the Koopman
operator reduces the necessary number of eigenvalues
from N(2H + 1) to just N. This approach will be
referred to herein as Koopman operator-based stabil-
ity analysis.

Figure 2 provides an overview of the complete HBM
continuation process, including stability analysis. The

continuation starts with an initial estimate of the LCO
frequency from eigenvalue analysis and a small guess
for the amplitude. Nonlinear forces are then computed
in the frequency domain using the AFT procedure,
which estimates the system’s linear degrees of free-
dom. The residual Eqgs. 9, 10 and 11 are numerically
solved. Once a converged solution is achieved, stabil-
ity analysis is performed using either Hill’s method or
the Koopman-based procedure. Direction vectors are
calculated through finite differences based on previous
points in the continuation scheme, and these vectors
are used to estimate the next point via the tangent pre-
dictor method [16]. This process continues until a user-
defined stopping criterion is met, such as the number of
points or maximum/minimum continuation parameter.

3 Test case

The model under investigation here is a simplified
representation of the system analysed in Ref. [36],
focusing on a two-degree-of-freedom aerofoil section
depicted in Fig.3a. In this model, the degrees of free-
dom are the pitch angle « and the heave /. The plunge
degree-of-freedom is governed by a spring with stiff-
ness K, while a torsional spring K, resists pitch move-
ment. For the nonlinear flutter rig considered, the state
variables are denoted as x = [h, o, w], where & rep-
resents heave, « denotes pitch, and w indicates the
aerodynamic state. The structural matrices, as shown
in Eq. 1, are configured as follows:

mr  Myxeb 0
M= | myxeb 1, O0];

0 0o 1
" ¢y 0 0
D= 0 ce O01; (27)
| —1/ba—1/20
K, 00
K=| 0 K,0
L 0 00

Aerodynamic matrices are derived from the unsteady
aerodynamic model described by Abdelkef et al. [2].
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Gather frequenc
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Fig. 2 HBM continuation process with stability analysis
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Fig. 3 Numerical test case a Freebody diagram of 2 DoF aerofoil [34], b Quadractic-Cubic nonlinearity, ¢ Freeplay nonlinearity with

—2a Vb (cic2 4+ c3cq) /p
27b%V (a + 1/2) (cica + c3¢4)
—(c2+c4) /pb

(28)

§=1°
" —nb? anh? 0
A= | anb® —m (1/8+a?)b*
0 0 1
—nbC(k)  — 1+ (1/2—a)wb*Ck)/p
B=|nm(a+1/2)b*)V —(1/4 = a*)wb?
i 0 0
[0 —1bC (k) =2 Veaes (1 +¢3) /p
C=|0nrb2Ck)(1/2+a) 2mb (a+ 1/2) crcs (c1 + ¢3)
0 1/pVb cacs/pb?

where C (k) is the generalised Theodorsen’s function
detailed in Ref. [58]. Theodrsen’s function is related to
the model through reduced frequency k that can be cal-
culated with k = wb/ V. Aerodynamic constants c1-c4
are derived with the Sears and Pade approximations
[19]. The aerodynamic forces and structural matrices
are integrated in the generalised form from Eq. 2. With
nonlinearity present in the pitch degree of freedom
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for the case studies under examination, the Boolean
matrix allocating the nonlinear function is defined as
gn = [0, 1,0]7. The specific definition of the nonlin-
ear function f;; varies for each test case. This setup
enables linear flutter analysis to precede the detailed
numerical continuation method outlined.

To illustrate the nonlinear characteristics of the sys-
tem under smooth nonlinear conditions, the spring stiff-
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ness is modelled using quadratic and cubic terms in
the pitch degree of freedom. The shape of the smooth
nonlinearity is demonstrated in Fig.3b. This method
is commonly used to replicate geometrical nonlinear
behaviours [34].

fu(t) = Ko (1)* + Koza(t)® (29)

To capture the behaviour of a nonsmooth nonlin-
earity, the nonlinear function is now represented by
a freeplay nonlinearity on the torsional spring, as
depicted in Fig. 3c. This describes behaviour where the
torsional stiffness becomes zero within a range of pitch
angles, typically denoted as —§ to 8, resulting in a non-
smooth shape. The segment with zero torsional stift-
ness is commonly referred to as the freeplay region.
Functions of this type are typically employed to model
nonlinear impacts arising from localised contact points
and friction [1,5].

Ku(a(t) +8) a(t) <=6
fu@®) =10 —S<alt)<é (30)
Kni(a(t) —=8) a(t) =34

4 Numerical demonstration and validation

In this section, the outlined methodology will be
applied to the specified aeroelastic test case for a purely
numerical validation assessment. This will involve
comparing the accuracy of bifurcation diagrams to time
histories and time-domain continuation tools, namely
MATCONT and COCO. The examination will consider
both precision and computational cost. Two distinct
types of nonlinearity will be explored. Firstly, a smooth
nonlinearity, typically employed to model geometric
nonlinearities, will be analysed. Subsequently, a non-
smooth function will be utilised to represent localised
nonlinearity.

4.1 Smooth nonlinearity

The results obtained by implementing the smooth non-
linearity described in Eq.29 are presented herein. To
build the Hill’s matrix for frequency domain stability

analysis, dé{;’ () is derived from Eq.29 as follows:
d
il (1) = 2K patt) + 3Kt (31)

The parameters outlined in Appendix A define the test
case. For the purely numerical test, a simplified aero-
dynamic model is utilised, resulting in the neglect of
the aerodynamic state w. Consequently, both structural
and aerodynamic matrices (Eqgs. 27 and 28) are reduced
from3 x 3to2 x 2.

The HBM framework was applied to the test case,
and bifurcation diagrams for various harmonic orders
are presented in Fig.4a. Continuation was initiated
from the Hopf bifurcation point (flutter velocity) at
31.45m/s, identified through linear eigenvalue anal-
ysis of the matrix Q. The continuation initially pro-
gressed backward with respect to velocity until reach-
ing a turning point, after which the direction reversed.
This is subcritcal behaviour, meaning LCO exist at
lower velocities than the linear flutter speed.

To establish a reference solution, a high-fidelity run
with 100 harmonics was conducted to assess the mean
error in velocity for LCO amplitudes ranging from 0
to 0.5 rad. Figure4b indicates that mean error relative
to the 100-harmonic solution converges fully by five
harmonics. It is observed that the error in the shape
of the bifurcation curves for one and two harmonics
is nearly identical, with a sharp change occurring at
three harmonics. A steep 99.08% reduction in absolute
error is observed between two and three harmonics, fol-
lowed by only marginal decreases up to five harmonics.
This trend is validated by Fig. 4a, which shows a slight
change in the bifurcation diagram’s shape between
two and three harmonics, with negligible differences
beyond three harmonics.

From a design perspective, the turning point is crit-
ical as it represents the minimum velocity at which
LCOs are expected. Figure4c reveals a 1.42% change
in the turning point location between two and three
harmonics, with only minor variations up to five har-
monics. While the steep error reduction between two
and three harmonics has limited impact on the over-
all bifurcation diagram shape, full convergence is not
achieved until five harmonics with a turning point at
23.91m/s.

The convergence of frequency-domain stability
methods is assessed after the bifurcation diagram sta-
bilises. Standard time-domain Floquet analysis, as
shown in Fig.5a, serves as a reference for stability
behaviour. For LCO amplitudes below 0.25rad, the
Floquet multiplier associated with mode 4 exceeds
unity, indicating unstable LCO behaviour. Conversely,
for amplitudes exceeding 0.25rad, all Floquet multipli-
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ers are less than or equal to unity throughout the remain-
der of the continuation, signifying stable LCO. It is
observed that the multiplier for mode 3 remains exactly
1 across the entire continuation. The stability exchange
point corresponds to the turning point in the bifurcation
diagram, occurring at a velocity of 23.91m /s. This indi-
cates the presence of unstable LCOs at low amplitudes,
spanning from the turning point to the Hopf bifurcation
point. At the turning point, a stability exchange takes
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0.6

place, leading to the emergence of higher-amplitude
stable LCOs.

While time integration provides an exact deter-
mination of LCO stability, converting to the time-
domain undermines the purpose of employing a fre-
quency domain method for delineating the shape of
the bifurcation diagram. Therefore, stability is eval-
uated using both the standard Hill’s method and the
Koopman operator-based method to determine the opti-
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mal approach in this context, considering accuracy and
runtime. Figure 5b shows the critical Floquet exponent
obtained from the standard Hill’s method at 5 Harmon-
ics, indicating where a change of stability occurs. It
is observed that the transition from stability to insta-
bility occurs within 0.01m /s of the prediction made
by the time-integration method. Similarly, in Fig. 5c,
the Koopman operator based method at 5 Harmonics
predicts stability exchange at the same point as the stan-
dard Hill’s method.

It is observed in Fig.5b that the Hill’s method
exhibits an anomalous jump in the Floquet exponent at
the point of stability exchange. Furthermore, the Flo-
quet multipliers derived from the Koopman method
in Fig.5c do not align precisely with those obtained
from direct time integration. This discrepancy sug-
gests that modes 3 and 4 are coupled near the sta-
bility exchange point but decouple thereafter. While
the stability exchange is captured in this instance, fur-
ther investigation is warranted to determine under what

0.2 0.3 0.4 0.5 0.6
pitch LCO amplitude [rad]

(c)

conditions, if any, these results converge to the exact
solution.

Focusing initially on the Hill’s method, since no
exact solution is available for direct comparison, the
harmonic order was increased to 100 to achieve fully
converged Floquet exponents, as shown in Fig. 6a. The
resulting curve is smooth and exhibits no anomalous
jumps near the stability exchange, indicating conver-
gence. This solution is treated as the reference for eval-
uating the accuracy of Floquet exponents at lower har-
monic orders. The mean error over the critical range
of LCO amplitudes of interest is presented in Fig. 6b.
By six harmonic orders, the error is observed to con-
verge, and this is further confirmed in Fig. 6¢c, which
demonstrates that for harmonic orders below six, a
jump near the stability exchange is evident, whereas
at six harmonics, the curve becomes smooth. Despite
these jumps, the stability exchange location converges
by five harmonic orders. An exception to this is the
single harmonic response, where a smooth curve is
observed. However, this result underestimates the true
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stability exchange location by 25%, as reflected in the
mean absolute error, making it the second least accurate
among the cases considered. A significant increase in
error at three harmonics is also observed. Examination
of Fig. 6¢c reveals that at this harmonic order, the Floquet
exponents fail to predict stability, diverging instead to
a large positive value.

Using the Koopman method, the exact Floquet mul-
tipliers derived from the time integration method serve
as a benchmark for assessing its accuracy. Figure 7a
demonstrates that the mean error in the multipliers con-
verges at eight harmonic orders. It is observed that
while modes 1 and 2 converge by six harmonic orders,
modes 3 and 4-critical for determining stability-do not
converge until eight orders. This is corroborated in
Fig.7c, which shows that modes 3 and 4 remain cou-
pled prior to eight harmonics. Beyond this point, the
Koopman method accurately captures the dynamics of
modes 3 and 4, with mode 3 maintaining a multiplier
of 1 throughout the bifurcation diagram, while mode
4 exhibits a smooth transition from stable to unstable.
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Fig. 7b highlights the multipliers for modes 3 and 4 at
low harmonic orders, with the modes being fully cou-
pled for the full continuation run in the single harmonic
result. At harmonic orders between two and four, the
stability transition location is underestimated. Notably,
at three harmonic orders, the Koopman method predicts
that the system becomes unstable again at higher ampli-
tudes in the bifurcation diagram. However, despite dis-
crepancies in the Floquet multiplier shape compared
to the exact solution, the stability transition location
converges to the value predicted by the time-domain
method by five harmonic orders.

The final converged bifurcation diagram, shown in
Fig.8, is generated using a harmonic order of 5 with
Koopman-based stability analysis. The results reveal
subcritical behaviour, where unstable LCOs are tracked
from the linear flutter velocity up to 23.91 m/s. Beyond
this point, a turning point is reached, after which stable
LCOs of increasing amplitude are observed with rising
velocity.



Prediction and validation of aeroelastic limit cycle

0.6

o
n

N
~

o
o

pitch LCO amplitude [rad]
&
ﬂuttervelomty

e
=

0 1 L 1 1
22 24 26 28 30 32 34 36
velocity [m/s]

Fig. 8 Smooth test case converged bifurcation diagram at/ = 5
(e unstable LCO), (e stable LCO)

4.2 Nonsmooth nonlinearity

The outcomes derived from applying the freeplay non-
linearity outlined in Eq. 30 are presented in this section.
To construct Hill’s matrix for frequency domain stabil-
ity analysis, d

({;’ () is derived from Eq. 30 as follows:

d Ky a(t) <=6
%(r): 0 —d<at)<$é (32)
Ky o) =46

The parameters are once again outlined in Appendix
A, with the primary distinction being the incorporation
of nonlinearity in the case of the localised nonlinearity.
In the implemented freeplay nonlinearity, two distinct
linear flutter velocities emerge. The first occurs when
the absolute value of the pitch is less than §, resulting in
zero torsional stiffness. Under this condition, the flut-
ter velocity remains consistent with the smooth case at
31.45m /s (flutter velocity 1). Conversely, in scenarios
where |«| > §, the flutter velocity is determined by set-
ting Ko = K,;; and is calculated to be 29.5m /s (flutter
velocity 2). Given that flutter velocity 1 corresponds to
the hopf bifurcation point, continuation will commence
from this point, assuming the aerofoil is perturbed from
a state with zero heave and pitch.

Continuation is initiated from flutter velocity 1, and
bifurcation diagrams are generated across a range of
harmonic orders. The results obtained using 100 har-
monic orders are taken as the reference for assessing
convergence of the bifurcation diagram’s shape. Fig-
ure9a illustrates a subcritical pattern, similar to the

smooth case, but with a sharper transition. Notably,
LCO amplitudes remain negligible before the turning
point, beyond which they escalate towards infinity.

Fig.9a further shows similarity between the single
and two harmonic result and a noticeable change in
the shape of the bifurcation curve at the turning point
between 2 and 3 harmonics. However, for harmonic
orders above 3, even up to 100, the changes are mini-
mal. This observation is validated by the absolute error
presented in Fig. 9b, where a 78.41% drop in error rel-
ative to the 100-harmonic result is observed between
2 and 3 harmonics. An additional 17.26% reduction
occurs between 3 and 5 harmonics, but beyond this,
only marginal decreases are observed, with full con-
vergence achieved around 10 harmonics.

As in the smooth case study, the turning point loca-
tion remains the most critical feature of the bifurca-
tion diagram. Figure9c shows that significant jumps
in absolute error result in only a 3.25% change in the
turning point velocity between 2 and 3 harmonics, with
minor adjustments thereafter. Convergence is reached
at 8 harmonics, yielding a turning point velocity of
24.29m/s. Although the bifurcation shape converges
at 10 harmonics, it suggests that the amplitude also
requires up to 10 harmonics to achieve full conver-
gence.

Once the bifurcation diagram has stabilised with
time integration Floquet analysis, as shown in Fig. 5a
as the reference point, the convergence of frequency
domain stability methods is re-assessed. Given the min-
imal change in amplitude before the turning point in
the bifurcation diagram, iteration along the continua-
tion process replaces the LCO amplitude in the stability
plots. Time-integration stability indicates an exchange
from unstable to stable at iteration 44, corresponding
to the turning point of the bifurcation diagram.

Upon examination of the Floquet multipliers and
exponents of the frequency domain methods in Fig. 10b
and c, an erratic pattern is noticeable, with sharp
jumps between points. This contrast with the time-
domain method suggests discrepancies in depicting the
dynamic behaviour. However, in the case of standard
Hill’s method, such behaviour does not influence the
prediction of stability exchange. Despite the erratic
nature of the critical Floquet exponent, it still indicates
the transition of LCO from unstable to stable at iteration
44, as shown in Fig. 10b.

As there is no exact solution for the Floquet expo-
nents, the result obtained using 100 harmonic orders,
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shown in Fig. 11a, is adopted as the converged solution
for accuracy assessment. This plot reveals a generally
smooth curve, particularly near the stability exchange
point. The mean error in the Floquet exponents over
the full continuation run is illustrated in Fig. 11b. It is
observed that the error begins to converge at harmonic
orders exceeding 15.

In the outputs from the Hill’s method, erratic
jumps are consistently observed. However, as shown
in Fig. 11c, for harmonic orders above four, all Flo-
quet exponents correctly predict an exchange of sta-
bility at iteration 44, aligning with the time-domain
results. Once again, the single harmonic result exhibits
a smooth curve across all iterations but underestimates
the turning point location by 12 iterations. Any Flo-
quet multipliers appearing in the top-right or bottom-
left quadrants of Fig.11c indicate an error. Notably,
such erroneous points are confined to results at har-
monic orders below five. This indicates that, despite
the chaotic appearance of the results at low harmonic
orders, meaningful stability information can still be
extracted. Consequently, reliable stability predictions
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(c)

can be obtained even at relatively low harmonic orders,
provided the analysis is carefully interpreted.
Focusing on the results from the Koopman-based
method, the apparent errors in the Floquet multipli-
ers obtained through Koopman operator-based sta-
bility analysis significantly influence the outcomes.
A detailed examination of the critical multipliers in
Fig. 10c reveals that eigenvalues 3 and 4 exhibit chaotic
jumps between iterations. Unlike the Floquet expo-
nents, chaotic transitions between stable and unstable
states are observed following the exchange of stability
indicated by the time-domain results. Additionally, the
modes appear to be coupled near the stability exchange
point, which contrasts with the time-domain results
where mode 4 consistently remains at 1 throughout
the continuation. This erratic behaviour is illustrated in
Fig. 12a, where the bifurcation diagram shows unpre-
dictable shifts between stability and instability after the
turning point. These deviations are inconsistent with
the more reliable predictions derived from the time-
integration method. An exception is observed in the sin-
gle harmonic case, where the Floquet multiplier curve
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remains smooth throughout the continuation, with no
chaotic jumps. However, this result yields the largest
error compared to the time-domain solution, underes-
timating the stability exchange by 12 iterations.

The error in the Floquet multipliers from the Koop-
man method is evaluated against the exact solution
obtained from the time integration method. Figure 12b
indicates that while the errors for all modes begin to
converge at 20 harmonic orders, they remain relatively
high for the critical modes 3 and 4, which govern the
stability of the LCO. Figure 12¢ confirms this observa-
tion, demonstrating that although the general shape of
the Floquet multipliers converges, chaotic jumps per-
sist between iterations, along with incorrect stability
transitions where none should exist. Notably, if any
Floquet multipliers fall within the top-right quadrant of
Fig. 12c¢, this indicates an error. The presence of mul-
tiple erroneous points, not limited to regions near the
stability exchange, highlights a broader issue. Even at
100 harmonic orders, chaotic jumps in stability persist,
suggesting that the Koopman operator, as applied in
this problem, cannot fully capture the stability of the
non-smooth case.

The presence of errors in the Hill and Koopman sta-
bility methods may be attributed to the inherent approx-
imation nature of the harmonic balance method in cap-
turing the dynamic behaviour of a system. In essence,
frequency domain methods can only be as effective
as their ability to estimate true time histories accu-
rately. This notion is underscored by comparing the
true time histories of nonlinear forces with the fre-
quency domain estimates obtained through the AFT
procedure, as depicted in Fig. 13.

An analysis of the error in the case of smooth nonlin-
earity, presented in Fig. 13a and b, reveal that the AFT
procedure offers a reasonable approximation of the true
nonlinear force at both low and high LCO amplitudes.
The relative root mean square error (RRMS) remains
below 10~ in both instances, explaining why both fre-
quency domain stability methods exhibit success with-
out chaotic jumps between iterations.

However, when examining the case of a nonsmooth
freeplay nonlinearity, as shown in Fig. 13c and d, the
AFT procedure struggles to accurately capture the
behaviour of the nonlinear force. Particularly at low
LCO amplitudes, where the freeplay region induces a
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sharp transition of the nonlinear force to zero, the fre-
quency domain method fails to replicate this flat-line
behaviour. Consequently, there is an underestimation
in the peak of the force. The RRMS error at low LCO
amplitude is five orders of magnitude higher than in the
smooth case. Although this error diminishes as LCO
amplitude increases and the freeplay region becomes
less influential, the mean RRMS error remains two
orders of magnitude larger than in the smooth case. This
error source is akin to the Gibbs phenomenon, which
states that the error will diminish as the number of har-
monics increases but will always be present to some
degree [10,25]. The discrepancy likely elucidates the
erratic nature of the frequency domain estimations of
stability for the nonsmooth case.

An alternative explanation for the jumps observed
in the Koopman operators may lie in the continuous
nature of the oscillatory nonlinear force, f;;, despite
its discontinuous slope. The erratic patterns evident in
Fig. 10b and c could initially be interpreted as remi-
niscent of the Gibbs phenomenon. However, they are
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more likely attributable to the jump discontinuities in
the Jacobian of f;;;. These discontinuities can induce
abrupt variations in the system’s response, particularly
in regions of heightened sensitivity, resulting in the
irregular behaviour observed in the results. This differ-
entiation underscores the necessity of distinguishing
numerical artefacts, such as the Gibbs phenomenon,
from the inherent physical effects arising from nonlin-
ear system properties, to facilitate a precise interpreta-
tion of stability and dynamic behaviour.

The stability information obtained from the stan-
dard Hill’s method is employed to evaluate the sta-
bility of the bifurcation diagram in Fig. 14b, which is
considered the fully converged bifurcation plot for the
freeplay study and will be compared to time-domain
solvers in Sect.4.4. Unstable LCOs are initiated at
the bifurcation point (flutter velocity 1) and persist in
reverse with respect to velocity until reaching 24.3 m/s.
Subsequently, a turning point is encountered, result-
ing in an exchange of stability. Stable LCOs of grow-
ing amplitude then emerge between 24.3 m/s and 29.5
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m/s (flutter velocity 2). At 29.5 m/s, flutter behaviour
manifests, characterised by LCO amplitudes tending
towards infinity.

4.3 Time domain comparison

Figure 15 compares converged bifurcation diagrams
with time histories obtained from the MATLAB ode45
differential equation solver for both test cases. The
smooth comparison in Fig. 15a, not only clarifies the
physical significance of the LCO plot but also val-
idates its accuracy. At velocities below the turning
point, the system responds to any initial perturbation
in pitch or plunge by oscillating with positive damping
before eventually settling to a steady rest state at zero.
Responses within the velocity range between the turn-
ing point and the linear flutter speed vary depending
on the magnitude of the initial perturbation. Small per-
turbations exhibit behaviour similar to those observed
below the turning point, while larger perturbations lead
to the generation of LCO. Beyond the linear flutter

60 80
itteration

(c)

40

speed of 31.45m/s, it is observed that the time response
to any perturbation is an LCO with amplitude correlat-
ing to the bifurcation diagram.

Similar conclusions can be drawn from the non-
smooth comparison in Fig. 15b. Prior to the turning
point, the system responds to any perturbation with
a stable rest response. Between the turning point and
flutter speed 2 (24.3-29.5m/s), both stable and unstable
LCO branches exist. This implies that under low pertur-
bations, the system responds with a rest solution, while
higher perturbations lead to stable LCO and is vaildated
by time responses. The amplitude of LCO increases
rapidly towards flutter speed 2, as depicted in both
the time histories and the bifurcation diagram. Beyond
velocities ranging from 29.5 to 31.45 m/s, the LCO
plot indicates unstable LCOs, which either converge to
a stable solution or diverge towards infinity. This obser-
vation is confirmed by the time responses, where sys-
tems settle with low perturbations but exhibit dynamic
instability with larger ones (as shown in Fig. 15). Above
the linear flutter speed without torsional stiffness, both
the LCO plot and the time histories indicate the absence
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of stable solutions, with the response to any perturba-
tion resulting in binary flutter.

The comparison in Fig. 15 illustrates that the peak
points of the time responses accurately align with the
stable curve generated from the HBM results in both
test cases. It is worth noting that the amplitude of the
unstable section of the LCO plot lacks physical signif-
icance. However, the plot clearly indicates that solu-
tions lie on either side of the branch, resulting in either
a steady-state rest or a vibrational response (flutter or
LCO).

velocity [m/s]
(b)

4.4 Software comparison

In this section, the converged HBM smooth and non-
smooth studies will be compared to time-domain
solvers, considering both accuracy and computational
cost. Bifurcation diagrams of the same systems are
generated using state-of-the-art time-domain solvers,
namely MATCONT and COCO. The bifurcation dia-
grams produced by these time-domain solvers yield
identical results since both utilise time integration to
establish their residual equations. The primary distinc-
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tion between the two lies in their methods for setting
up the residual equations: COCO employs orthogo-
nal collocation, whereas MATCONT uses the standard
method [12,15]. When comparing the HBM continu-
ation results to those obtained from MATCONT and
COCO, a high level of accuracy is evident. Figures 16
and 17 demonstrate the accurate prediction of stable
LCO amplitude. It should also be noted that both MAT-
CONT and COCO predict an exchange in stability in
the turning points of both diagrams.

Considering the smooth nonlinearity test case, Fig. 16
demonstrates almost identical agreement with the
MATCONT/COCO bifurcation diagrams. Examining
the RRMS error in Fig. 16b, it is observed that the mean
error appears essentially as noise and can be almost
neglected. From this, we can assert that in the case of
the smooth nonlinearity, the HBM framework provides
adequate estimations of LCO behaviour.

Examining the freeplay comparison in Fig. 17, inac-
curacies in the amplitude of the unstable region are
shown, as illustrated in Fig. 17b. At the hopf point, the
amplitude error measures at 45.71%. However, by iter-
ation 30 (27 m/s), the datasets align. This error may yet
again be attributed to the Gibbs phenomenon described
in Fig. 13. As demonstrated in Fig. 13d, at pitch LCO
amplitudes of 0.10 rad, the mean RRMS error of the
nonlinear force response is 27 times less than at 0.02
rad amplitude. This explains why prominent errors
are observed at low LCO amplitudes but become less
impactful at higher LCO amplitudes. Another potential
explanation may relate to the freeplay gap. Specifically,
when the LCO amplitude approaches the magnitude of
the freeplay gap, the higher harmonic content in the
nonlinear force becomes significantly amplified [44].
This phenomenon, as illustrated in Fig. 13c, can con-
tribute to irregularities in the system response, resulting
in the erratic patterns observed in the results.

Regardless of the underlying cause of the error,
no quantitative correlation was identified between the
magnitude of the unstable LCO and the boundary at
which perturbations settle to rest or transition to the
stable LCO branch, as is observed in some systems.
Instead, the unstable section of the bifurcation diagram
offers more of a qualitative insight into the system’s
behaviour. Specifically, it demonstrated that for small
perturbations, the system tends to settle to rest, whereas
larger perturbations result in a stable LCO response,
with amplitudes aligning with the stable section of the
bifurcation diagram. Given that the LCO amplitude

@ Springer

is accurately captured within the stable region of the
bifurcation diagram, it can be argued that the HBM
framework provides an acceptable representation of the
dynamic system’s physical behaviour in this case.

Considering the computational costs of the meth-
ods, the most computationally demanding aspect of
each process involves generating a time series through
numerical integration for time-domain methods and
employing the AFT procedure for HBM continuation.
This difference stands out as the primary distinction
between the methods, while other steps remain con-
sistent. In Fig. 18a, we compare the computation time
at an arbitrary point in the continuation for a sin-
gle run of the AFT procedure with a time-integration
solution covering a full period. It becomes evident
that at harmonic orders below 9, the HBM continu-
ation scheme is expected to exhibit lower computa-
tion times at a fundamental level. However, this assess-
ment does not account for the frequency of iterations
required before the convergence of residual equations is
achieved, potentially undermining the apparent advan-
tage of a full continuation run.

An essential consideration when evaluating com-
putational efficiency is the choice of stability analy-
sis method. Figure 18b presents a comparison of the
mean computational time for the three stability meth-
ods applied to a two-degree-of-freedom system, rep-
resentative of both the smooth and nonsmooth cases
studied in this work. A key observation is that both
frequency-domain methods exhibit lower computa-
tional costs than standard time integration up to 22 har-
monics. At lower harmonic orders, the computational
costs of the two frequency-domain methods are com-
parable, with the standard Hill’s method being slightly
more efficient. However, at 5 harmonics, the Koopman
operator-based method becomes less computationally
expensive and retains this advantage at higher harmon-
ics.

In the smooth test case, the bifurcation curve shape
and the absolute error in the Hill’s method have con-
verged by 5 harmonics. Similarly, the Koopman method
provides accurate stability predictions by this point.
Given that stability prediction is the primary goal, and
the Koopman method offers a 7% reduction in run time
compared to Hill’s method and a significant 90% reduc-
tion relative to time integration, the Koopman operator-
based method emerges as the preferred approach for
computational efficiency in smooth cases.
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Fig. 16 HBM continuation
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For the nonsmooth study, both the bifurcation dia-
gram shape and error in the stability methods converge
by 15 harmonics, making the Koopman method the
optimal choice regarding computational time. How-
ever, as previously discussed, the Koopman method
was unable to consistently predict the correct stabil-
ity behaviour even after convergence. Despite the exis-

tence of errors relative to the fully converged solution,
accurate conclusions about stability can be drawn by 8
harmonics. Therefore, the Hill’s method at 8 harmon-
ics is the optimal choice in this scenario, offering an
84.21% reduction in computational time compared to
time integration while providing reliable stability pre-
dictions for the LCO.
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Table 1 HBM time and data storage requirement comparison to generate full bifurcation diagram

Smooth Non-smooth
Software Run time [s] Data storage Run time [s] Data storage
MATCONT 105.78 46200 145.31 64600
COCO 29.44 38645 34.16 53250
HBM 10.40 6800 12.68 10400

Table 1 provides a comparison of the converged
HBM solutions for both smooth and nonsmooth case
studies to MATCONT and COCO, considering run-
time and data storage requirements. This comparison
is carried out over a full continuation run with 100 itera-
tions. Regarding run-time, a similar pattern is observed
for both the smooth and nonsmooth case studies. MAT-
CONT is the slowest performing of the methods, while
the HBM framework is the fastest. The HBM frame-
work offers over a 90% reduction in run-time compared
to MATCONT in both cases. For COCO, over a 60%
reduction in time was observed in both cases with the
converged HBM solutions. For all methods, the smooth
case has a lower run-time than the nonsmooth. In the
case of MATCONT/COCO, this is likely due to a higher
number of time intervals being required to accurately
capture the time behavior of the nonlinear force. For
the HBM scheme, this is for two reasons: 5 harmonic
orders were used in the converged smooth case, but
8 were used in the nonsmooth case, and the standard
Hill’s method was used over the Koopman operator
based method for stability in the nonsmooth case.

Data storage refers to the amount of data stored to
describe LCO behaviors over the full run. For the time
domain methods, this includes the position points of
each degree of freedom and time steps obtained through
numerical integration. The method of discretion of time
steps differs slightly between MATCONT and COCO.
In MATCONT, a set tolerance is automatically calcu-
lated at each run and used to set a constant time interval
over a full period. In COCO, a variable time step is auto-
matically computed as the time-integration is carried
out over a period. In the HBM framework, the required
data includes the Fourier coefficients describing each
degree of freedom’s amplitude and natural frequency.
Fourier coefficients of the nonlinear force and nonlin-
ear force differential are also required to compute sta-
bility. It appears there is a direct relationship between
data storage requirements and run time, as more data
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is required to be handled, resulting in higher run times.
The same conclusions are then reached from looking
at the data storage and run time comparisons. With
the considered test case, below 32 harmonics, HBM
is more data efficient than COCO in the smooth case
and below 44 in the nonsmooth case.

From the comparisons of both accuracy and compu-
tational cost of the HBM framework to MATCONT and
COCO, it is evident that the HBM framework is more
effective at estimating LCO behaviour via bifurcation
diagrams in both the smooth and nonsmooth test cases.
However, it should be mentioned that a key reason for
this, particularly considering computational cost, is due
to the capabilities of each tool. Both MATCONT and
COCO have capabilities for searching for other types
of bifurcations, and particularly in the case of MAT-
CONT, they provide a more in-depth user interface. In
contrast, the proposed HBM framework is only suited
for generating bifurcation diagrams to describe LCO
behaviour.

5 Experimental study and validation

Having validated the HBM framework in a purely
numerical test in the previous section, the subsequent
section aims to experimentally validate it. Experimen-
tal LCO data for two different configurations will be
compared with predictions from the HBM framework.

5.1 Experimental test rig

Pre-existing experimental data collected at the Univer-
sity of Bristol by Lee et al. [34] has been utilised to
validate the methods proposed in this study. Figure 19
illustrates the experimental flutter rig, consisting of
a NACA-0015 wing profile firmly affixed to a stain-
less steel shaft. The aerofoil is supported by rotational
bearings on each end, enabling rotation, along with a
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Fig. 19 The wing aerofoil flutter rig experimental configuration
taken from [56]

bearing system facilitating vertical displacement. The
spring in the heave degree of freedom behaves linearly.
Additionally, leaf springs are introduced in the bear-
ings to induce a nonlinear hardening effect in pitch
motion. This setup replicates nonlinear effects encoun-
tered at interfaces in real aircraft. Further details of the
setup can be found in Ref [33]. Heave displacement
is measured using an Omron ZX1-LD300 laser dis-
placement sensor, while pitch motion is captured by an
RLS AksIM 18-bit absolute magnetic encoder. Wind
speed is directly recorded from the wind tunnel control
system. Stable and unstable LCO are captured through
control-based continuation (see Ref [7] for a deeper
explanation on CBC and its application in this con-
text). The raw data undergoes fast Fourier transform
analysis to minimise noise, a process repeated for two
experimental configurations with different spring con-
stants. Design rig parameters for each configuration are
displayed in Table 2.

5.2 Numerical modeling

The linear mathematical model described in Eqgs.27
and 28 is once again utilised. In this test, however,
the aerodynamic state w is introduced as a degree of
freedom to create a more intricate aerodynamic model.
Consequently, the full 3 x 3 structural and aerodynamic
matrices are employed to construct the Q matrix. As
the leaf spring employed in the experimental setup was
intended to replicate the behaviour of a geometric non-

linearity, the smooth nonlinearity from Eq.29 is again
applied to the pitch degree of freedom.

The parameters outlined in Table 2 are determined
for both experimental configurations. Flutter speeds
for each setup are obtained through eigenvalue anal-
ysis, as also depicted in the table. Estimates for the
nonlinear parameters K,» and K,3 are required. Here,
deterministic estimates derived from normal theory, as
found in the original study [34], as well as updated
estimates obtained from a probabilistic data-driven
Bayesian approach, are separately employed [40].

5.3 Comparsions between numerical and
experimental results

The converged HBM continuation results, employing
parameters for both experimental configurations, are
now compared with the CBC data to assess the accu-
racy of both LCO amplitude and stability. The com-
parison with configuration 1 is depicted in Fig.20 for
both deterministic and probabilistic parameter esti-
mates. Both the HBM continuation plots and the exper-
imental data exhibit a similar shape, featuring unstable
LCO formations preceding a turning point, followed
by stable LCO formations. However, discrepancies are
evident in the amplitude of the plots, particularly in
the deterministic estimate. Figure20c illustrates that
errors in amplitude become more pronounced as the
amplitude increases in the stable section of the bifurca-
tion diagram, with the highest amplitude point deviat-
ing significantly from the bifurcation plot in both esti-
mates. It appears that the gradient of the bifurcation
plot aligns with the experimental data before the turn-
ing point, but subsequently underestimates the gradient
of the experimental data, particularly in the determin-
istic estimate. Overall, the probabilistic estimate pro-
vides a better approximation of the experimental data,
with a mean RMS error of 0.13 compared to 0.23 in the
deterministic case.

The comparison with configuration 2 is illustrated
in Fig.21. Similar to configuration 1, both the HBM
continuation results and the CBC data exhibit unsta-
ble LCO at low amplitudes until a turning point is
reached, after which stable LCO begin to form. Both
sets of HBM results adeptly capture the shape of the
unstable section of the bifurcation diagram, showcasing
low RMS errors below 15%, as indicated in Fig.21c.
However, following the turning point, the shape of the
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bifurcation diagrams diverges from the CBC data, dis-
playing a shallower gradient than expected, particu-
larly in the deterministic estimate. Additionally, in the
deterministic estimate, it appears that the location of
the turning point is overestimated, extending back in
velocity further than anticipated. This is not the case
in the probabilistic estimate, where it appears the loca-
tion of the turning point has been estimated more accu-
rately. Again, it is observed that the probabilistic esti-
mate captures the behaviour of the data more closely.
The probabilistic estimate has a mean RMS error of
0.083 compared to the higher 0.12 in the determinis-
tic case. This is likely due to the probabilistic approach
accounting for parameter uncertainties, thereby provid-
ing a more robust prediction of system behaviour across
varying conditions. This enhances accuracy compared
to the deterministic method [40]. In either case, both
estimates provide an improvement over the estimated
bifurcation diagrams in configuration 1. Consequently,
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it can be argued that the HBM continuation scheme
captures the real behaviour in configuration 2, particu-
larly with the probabilistic estimate.

Overall, the comparison between the HBM continu-
ation scheme and CBC data in this case study presents
a mixed outcome. In each configuration, the general
shape of the bifurcation diagram is accurate, depicting
a subcritical plot with unstable LCO at low amplitudes
and stable LCO after the turning point. At low ampli-
tudes, the RMS errors were relatively low, particularly
in the second configuration; however, substantial errors
are observed after the turning point. In both configu-
rations, it appears that the gradient of the bifurcation
diagram is lower than expected, leading to more pro-
nounced errors at higher LCO amplitudes. This discrep-
ancy suggests a potential issue with either the experi-
mental data, the mathematical model, or the estimated
parameters. Improvements in accuracy are, however,
observed with the probabilistic parameter estimates



Prediction and validation of aeroelastic limit cycle

over the deterministic ones, especially in configuration
2, where the completed bifurcation diagram has a mean
RMS error under 10%.

6 Conclusion

This study proposed a computationally efficient method
for estimating Limit Cycle Oscillation behaviour and
determining  stability in aeroelastic  systems.
The methodology involved conducting LCO analysis
solely in the frequency domain, integrating the Har-
monic Balance Method continuation and the Koopman
operator.

The paper elucidated the methodology for a general
aeroelastic frequency domain solver for LCO, provid-
ing detailed insights into the HBM continuation scheme
and frequency domain stability analysis. Subsequently,
this methodology was put into practice through a
numerical test case, encompassing both geometric and
localised nonlinearities. The results were validated
against outcomes from MATCONT and COCO, with
additional comparison against LCO experimental data
obtained through Control Based Continuation experi-
ments.

In the smooth nonlinear numerical test, successful
convergence of bifurcation diagrams and LCO stabil-
ity estimation was achieved at 5 harmonic orders. The
Koopman operator-based method emerged as the pre-
ferred choice for stability analysis, offering notable
reductions in run-time compared to standard Hill’s
method and time integration. However, in the nons-
mooth nonlinear numerical test, convergence of the
bifurcation diagram was achieved at 8 harmonic orders.
While the standard Hill’s method proved successful
compared to time-integration, the Koopman operator-
based method exhibited chaotic behavior, rendering it
unreliable for LCO stability determination.

Comparisons with MATCONT and COCO under-
scored the HBM framework’s superiority in accuracy

and computational efficiency, particularly evident in
the smooth test case. Despite some discrepancies in the
nonsmooth case, the HBM framework provided a satis-
factory description of the system’s dynamic behaviour.

The experimental validation against experimental
data yielded mixed results, with an accurate depic-
tion of bifurcation diagram shapes but notable errors
observed after the turning point. However, improve-
ments in accuracy were noted with probabilistic param-
eter estimates over deterministic ones, particularly in
configuration 2.

Future research should focus on validating the pro-
posed framework for more complex, higher-degree-of-
freedom systems to establish its robustness and applica-
bility. Emphasis should also be placed on demonstrat-
ing its potential advantages in data-driven approaches
for reducing computational costs, as drawing definitive
conclusions from a two-degree-of-freedom system may
be premature. Furthermore, the development of more
suitable mathematical models tailored to experimental
test cases would enhance the framework’s experimental
validation and practical utility.
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A Model parameters

Table 2 Parameters used in case study

Numerical Experimental

Parameter Smooth  Non-smooth Configuration 1 Configuration 2
b (m) 0.127 0.127 0.150 0.150
a -0.5 -0.5 -0.5 -0.5
my (kg) 1.56 1.56 5.30 5.30
Xa 0.434 0.434 0.24 0.24
Iy (kg.m?) 0.001347 0.001347 0.1724 0.1724
Kp (N/m) 2818.8  2818.8 3529.4 33183
Ko (N/rad) 0O 0 54.11 65.6
cp (kg/s) 0.77 0.77 14.58 14.58
cq (kg.m?/s?)  0.63 0.63 0.56 1.03
cw (kg/s) 0.54 0.54 0 0
1 0.165 0.165 0.165 0.165
© 0.0455 0.0455 0.0455 0.0455
3 0.335 0.335 0.335 0.335
cq 0.3 0.3 0.3 0.3
Koo (N/rad?) 250 - 751.6/524.50  774.7/678.32
Ko3 (N/rad3) 7500 - 5006.7/2595.9  3490.7/ 2982.6
8 [rad] - 0.0175 - -
Vi (m/s) 31.45 31.45/29.50 17.80 26.15
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