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Abstract—We introduce HRI-SENSE, a multimodal dataset of
Human-Robot Interactions (HRI) studying users’ social, phys-
ical (e.g. facial expressions, body movements) and emotional,
psychological (e.g. frustration, satisfaction) responses to robot
behaviour. The dataset captures participants collaborating with
a TIAGo humanoid robot following various behaviour models on
a manipulation-based “Burger Assembly” task, eliciting different
user reactions. HRI-SENSE contains over 6 hours of verbal
and physical interactions taking place over 146 sessions with
18 participants, recording multiple modalities captured simul-
taneously by RGB and Depth cameras from three angles and
one microphone. The time-synchronized multimodal data include
non-verbal behaviours (e.g. facial landmarks, expressions, pose
landmarks), explicit feedback signals (e.g. verbal interactions),
robot movements and self-assessed questionnaires on sociodemo-
graphics and user impressions (e.g. frustration, satisfaction) on
robot interactions. HRI-SENSE is expected to facilitate further
research into modelling non-verbal behaviour and advancing the
development of user-aware interaction models in HRI domain.

Index Terms—Multimodal interaction dataset; Human-robot
interaction; Assistive robotics; Social signals; Implicit feedback;
Explicit feedback

I. INTRODUCTION

Recent studies in HRI [1], [2], [3] highlight that the suc-
cessful deployment of robotic systems in social settings is
critically dependent on the acceptance of interacting users.
User acceptance is heavily affected by their experience of
working with robots, relying as much (or even more [4], [5])
on subjective aspects (e.g. experiencing helpfulness, success
or lack of frustration) as objective metrics (e.g. speed of
task completion). Consequently, the analysis of subjective
user impressions in human-robot interactions may enable the
development of systems that act in a user-aware manner,
resulting in enhanced user acceptance.

Previous studies have shown that in addition to explicit
feedback signs (e.g. expression of preference [6] or evalua-
tive feedback [7]) and psychological behaviour patterns [8],
[9], implicit feedback signals expressed through non-verbal
behaviours [10] such as facial expressions or body movements
can serve as an indication of similar user characteristics (e.g.
engagement [11], [12], or stress [13]) with most of these
works focusing on verbal interaction scenarios [14], [11], [12],
[15]. However, little has been explored about how non-verbal
social signals can infer characteristics of user impressions
(e.g. interaction success, user frustration) in HRI, especially in
interactions containing collaborative manipulation elements.

As a result, we introduce HRI-SENSE, a time-synchronized
multimodal Human-Robot Interactions dataset on Social and
Emotional respoNseS to robot bEhaviour, collected from users

Long Tran-Thanh

Department of Computer Science,
University of Warwick, UK
long.tran-thanh @ warwick.ac.uk

o .o
2 2
b N
O
? ?
N
o | =]
<) &
o a
2 2

PL2

FL+FAU

Fig. 1. Multimodal data samples recorded for the HRI-SENSE dataset.
(SC: Static Camera, EC: Egocentric Camera, PL: Pose Landmarks, FL: Face
Landmarks, FAU: Face Action Units)

interacting with different user-aware autonomous robot be-
haviour models in a manipulation based “Burger Assembly”
HRI task. Our dataset contains multiple non-verbal modalities
simultaneously captured by two RGB cameras, a RGBD cam-
era and a microphone (see Fig. 1 for data samples), as well as
self-assessed questionnaires reporting user impressions. This
makes it, to the best of our knowledge, one of the few HRI
manipulation datasets capturing implicit and explicit feedback
signals, with an additional focus on user impressions.

II. BACKGROUND

Although various multimodal interaction databases are
available, only a limited number of them focuses on HRI.
Recent research investigations into the utilisation of implicit
user feedback in HRI generated collections of multimodal data
on the interactions. The most relevant datasets incorporating
aspects of implicit human reactions and communicatory sig-
nals (i.e. non-verbal cues such as facial expressions, gaze
or body movements) to robots are summarised in Table I.
They mostly consider HRI in verbal settings where interactions
are recorded [14], [11], [12], [16] and often additional self-
assessed feedback questionnaires provide explicit feedback
and ground truth values [11], [12], [16]. This allows for ex-
amining both implicit and explicit evaluative feedback during
interactions [16] or modelling user engagement [12], [11].
However, little is known about how implicit reactions reflect
user impressions and generated emotions (e.g. frustration,
satisfaction) on robot behaviour in HRI scenarios involving



Recorded Modalities and Published Features

. Interaction Duration Robot

Dataset Subjects Sessions  (hours:minutes) Behaviour V A D MC PL HP EG FL FAU DT RB Other
EMPATHIC [16] 14 98 <20 sec autonomous v/ v v v v

per interaction
REACT-Nao [15] 72 432 14:24 autonomous V' v v oV v v
Errors in HRI (HRC-A) [17] 12 23 2:31 autonomous  v' v
Errors in HRI (HRC-C) [17] 33 65 4:17 autonomous v/ v
Errors in HRI (PbD) [17] 28 38 0:48 Wizard-of-Oz v v
UE-HRI [11] 54 54 415 min autonomous v v/ v v v

per interaction

autonomous,
MHHRI [12] 18 48 6:00 Wizard-of-Oz, v v v v v v v EDA
Vernissage Corpus [14] 26 13 2:23 Wizard-of-Oz v v v v v v
HARMONIC [18] 24 480 5:48 teleoperated v v v v v v EMG
HRI-SENSE 18 146 6:03 autonomous v' vV v v v v v v
TABLE 1

COMPARISON OF PUBLICLY AVAILABLE RELATED MULTIMODAL HRI DATASETS. (V: RGB VIDEO, A: AUDIO, D: DEPTH FOOTAGE, MC: MOTION
CAPTURE, PL: POSE LANDMARKS, HP: HEAD POSE, EG: EYE GAZE, FL: FACE LANDMARKS, FAU: FACE ACTION UNITS, DT: DIALOGUE
TRANSCRIPT, RB: ROBOT BEHAVIOUR, EDA: ELECTRODERMAL ACTIVITY, EMG: ELECTROMYOGRAPHY)

manipulation. Existing datasets involving manipulation capture
users’ reactions to a robot making manipulation errors [17],
to suboptimal robot behaviour [16] and when teleoperating a
robot arm in a shared autonomy setting [18]. Doing so, they
focus on identifying specific behaviour instances (e.g. robot
error [17]) or on learning task statistics from implicit feedback
[16], rather than capturing and investigating user impressions
and emotional responses to robot behaviour.

Addressing these limitations, our data corpus, HRI-SENSE,
is designed to contain both implicit reaction data of various
modalities and explicit verbal communication collected from
users participating in a manipulation based HRI task interact-
ing with different robot behaviour models, complemented by
self-assessed questionnaires on user impressions.

III. SENSOR SUITE

We perform data collection of the human participant’s
interaction with the TIAGo humanoid robot [19] using a
suite of sensors containing multiple RGB cameras placed at
different angles, a stereo and depth camera and a microphone
(see setup in Fig. 2). Additionally, we record the robot’s arm
joint parameters representing the arm’s position throughout
the interaction. One RGB camera is mounted onto a ceiling
rail system providing a top-down perspective recording of
the interaction and a secondary RGB camera is positioned to
capture a side view of the interaction. We utilise the TIAGo
robot’s built-in stereo depth cameras to focus on capturing the
user’s reactions and expressions from closer proximity. The
interaction’s verbal components and any ambient sounds are
recorded from a side table adjacent to the interacting parties.

1) RGB Sensors: In addition to the capturing of visual data,
our RGB cameras enable the extraction of valuable semantic
information from the interactions. We particularly focus on
recording participants’ non-verbal signals, including gestures,
body positions, facial expressions, and their relative position
to the robot, since these details may be representative of their
impressions or reactions elicited by the robot’s actions. We
choose a Logitech BRIO camera considering its wide view
angle 90 degree, small form factor and ease of use (requiring
a single USB cable for real-time data transmission and power
supply) as our top-down camera, positioned directly above
the table between the participants, attached to the ceiling rail
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Fig. 2. Data collection setup for the HRI manipulation task with the TIAGo
robot. We used two RGB static cameras, one RGB & Depth egocentric camera
and one microphone.

system. An Intel RealSense D435i camera was used to create
the side view recordings.

2) Stereo and Depth Camera: Many collaborative robots
are equipped with an RGBD (stereo and depth) camera sys-
tem attached to the robot’s head facing forward to acquire
geometric information about the environment in the form of
depth information and to record the current task/interaction
enabling the collection of visual feedback. This feedback
can serve robot movement verification purposes (e.g. for
following manipulation movements) or provide information on
the collaborating user throughout the interaction, depending
on the camera’s pose and orientation. We focus on the latter,
by positioning the camera at a fixed angle encompassing the
user’s face and front, capturing their reactions. Additionally,
the depth information recorded from the cameras serves as an
indication of the user’s position and distance from the robot.

3) Microphone: As human-robot interaction scenarios, such
as our interaction task, often include verbal communication
elements, we utilise an external Yeti Nano microphone using
omnidirectional patterns to record conversations and additional
ambient sound during the interactions.

4) Robot Arm Joint Movements: Since our observed inter-
action involves the robot executing pick-and-place and general
manipulation movements with the 7 degree-of-freedom (DoF)



robot arm, it is important to account for the robot arm’s po-
sitions and movement characteristics (e.g. speed, acceleration,
explainability, etc.) that may affect the user’s impressions. We
record the arm joint states provided by the robot’s movement
planner engine (Movelt! [20]) throughout the interaction at
50Hz frequency. The recorded data enables the analysis of both
the robot’s movement behaviour and the robot joints’ position
relative to the environment or the human user, extracted from
the joint states following the robot’s geometry.

IV. THE HRI-SENSE DATASET

The data collection was designed to take place as part of
a human-robot collaborative task with verbal interactions and
manipulations. Complementing the interaction structure of es-
tablished assembly datasets [21], [22], [23] with HRI elements
and user-preference based actions, designed for the collection
of continuous (implicit and explicit) feedback of user reactions
through various modalities, we introduce the “Burger Assem-
bly” task domain. While collaborating, participants take an
active role alongside the TIAGo Steel robot equipped with
a 7 DoF arm and parallel grippers, running a completely
autonomous system (i.e. without any teleoperation).

A. Interaction Scenario: The “Burger Assembly” Task

Context: As part of the collaborative task, the participant
and a robot are asked to “cook” a hamburger, assembled
from typical ingredients (hamburger buns, meat, salad, tomato)
represented by coloured foam blocks placed on a table between
the robot and person. The ingredients are referred to by
numerical identifiers throughout the interactions. The robot
takes an assistant role, handling the preparation of suitable
ingredients and handing them to the human user for assembly.

Verbal Interactions: Firstly, collaborators are tasked with
preparing a specific burger (of 3 different burger types), and
participants receive instruction graphics (an ordered list of
ingredients to assemble the burger from), which are unknown
to the robot. To learn the suitable ingredient to prepare, the
robot may pose inquires to the user, such as confirmation
queries (e.g. “Should I pass you ingredient number 1?”) or in-
struction queries (e.g. “What should I do next?). Alternatively,
the robot may hand over an object without any prior inquiries
as well, if deemed suitable. Over time, the robot learns how
various burgers are typically constructed and may attempt to
proactively prepare ingredients.

“Burger Assembly”: Afterwards, the robot assists the user
by “preparing” the ingredient considered suitable: the object
is picked up and placed in front of the user on the table for
assembly. Finally, the user stacks the received ingredient object
on top of any previous ingredients, building the hamburger.

Verbal Feedback: Following each object handover, the
robot inquires for a verbal feedback on its previous actions, to
which the user responds. Participants have been asked to focus
on the robot’s intentions over the handover task execution’s
precision when providing their verbal feedback.

B. Data Collection Procedure

First, the participants are asked to complete a pre-study
questionnaire focusing on their demographics, prior experience

Data Collection

A

Data Processing
A

. Depth -
Visualisation s
8
f=
Depth & RGB Cam S 3
5 Processing 2
2 @
5 g
RGB Cam 1 _g < Pose & N Event
e > Landmarking "o Annotation
RGB Cam 2 3 S
o " T
Audio E Audio '—» &
= Transcription o
Robot Joints Log > %

Fig. 3. Data collection and post-processing data extraction steps illustrated.

and personality. Then the Burger Assembly task is performed
by the participants in collaboration with the TIAGo humanoid
robot multiple times. Each participant interacts with 3 dif-
ferent robot behaviour models, including instruction-based,
confirmation-based and hybrid, in which the robot’s verbal
interaction strategy may vary, aiming to elicit different inter-
action reactions depending on the context. Participants interact
with different robot behaviour models in a random order,
with the aim of avoiding bias. For each behaviour model,
3 sequential trials take place per participant, incentivising
them to accommodate the robot’s behaviour and appreciate
the behaviour model’s improvement over the trials. All inter-
actions are recorded using our installed sensor suite (see data
collection pipeline in Fig. 3). After completing interactions
with each behaviour model, participants complete a post-
interaction questionnaire rating their experience with the robot.

For each experiment trial, all data from the RGB cameras
and microphone is collected onto the laptop’s storage, while
stereo and depth camera recordings and robot arm joint state
logs are collected using the Robot Operating System (ROS)
bag functionality. Data collection is started and stopped in
a synchronous manner managed by a control module on the
investigator’s laptop, interacting with the TIAGo robot over the
local network using the ZeroMQ communication toolset. The
experiments were conducted at the University of Southampton
Robotics Laboratory, following the approval of all experiment
plans by the University’s Ethics Committee.

C. Participants

Our data collection took place through sessions con-
ducted with 18 participants associated with the University of
Southampton, mostly graduate and undergraduate students and
researchers. Participants came from various fields of expertise
(i.e. course of study, degree, profession) and had different
technological backgrounds and prior experience with robots.
An informed consent was obtained from all participants, each
of whom was assigned a numerical ID to anonymise the data.

D. Sensory Data Processing

1) User Poses: RGB videos captured from top-down, side
and robot points-of-view are all pipelined into Google’s
MediaPipe [24] Pose Landmarker, which identifies 33 sig-
nificant body landmark locations and locate these in a 3-
dimensional space. The output matrices represent the user’s
body position describing various movements from all three
recording angles without any privacy issues.



2) User Facial Expressions: To represent characteristics
of the recorded facial expressions and typical movement
patterns, we use head poses, facial landmarks and Action Units
(AUs) as defined by the established Facial Action Coding
System (FACS) [25]. Each RGB recording captured by the
robot’s camera is processed using the OpenFace toolkit [26],
outputting head pose and rotation values, facial landmark
coordinates and AU intensity, presence and confidence scores.

3) Audio Transcription: To provide a time-coded log of
verbal interactions between the user and the robot during
each experiment, we processed all recorded audio data using
OpenAI’s Whisper transcription model [27] (using English
language, large model settings).

4) Depth Information: As recorded from the robot RGBD
cameras, the depth footage is stored in the original 800%656
resolution, in 30 FPS in mp4 format. The recording was re-
encoded to reduce its size without quality loss.

5) Labelled Annotations of Interaction Events: Significant
interaction events corresponding to a list of textual tags that
occurred during the experiments have been identified and
manually labelled. Depending on the nature of the event, a
timestamp or a time interval has been assigned as a label.
The textual tags are designed to describe events affecting the
outcome of the interaction or the user’s impressions.

E. Questionnaire-based Assessments

Our pre-study questionnaire focused on assessing the par-
ticipants’ background information (e.g. demographics, prior
experience and expectations with technology and robots) and
personal behaviour tendencies in handling non-optimal every-
day situations causing frustration, as the displayed response
might show similarities to collaborating with a suboptimal
robot. Specifically, we used the 5-point Likert scale based as-
sessments on Frustration Discomfort Scale [28] and Frustrative
Nonreward Responsiveness Scale [29].

The post-interaction questionnaire containing 17 items (5-
point Likert scale format) aims to evaluate the participants’
interaction experience with different robot behaviours, focus-
ing on Frustration, Satisfaction, Perceived Usability, Perceived
Usefulness and Behavioural Intention to Use, following estab-
lished prior works [30], [31], [32], [33], [34].

V. DISCUSSION

HRI-SENSE! contains features extracted from six hours
of recordings collected during 146 human-robot interaction
sessions. 18 participants involved in our experiments. Each
participant interacted with the robot configured with 3 different
decision models over 2-3 sessions per configuration. Each
session involved performing 5 verbal interactions and object
handovers in the context of the Burger Assembly task.

A. User Reaction Findings

The human-robot interactions recorded in our data contain
various elements that may influence the participant’s reactions
and impressions. Considering the robot’s physical perfor-
mance, object pick-and-place sequences are mostly executed
following user expectations. However, errors may occasionally

IPublicly available at https://doi.org/10.5281/zenodo.14267885. This work
was supported by UK Research and Innovation [EP/S024298/1].

occur, primarily in the form of accidentally toppling the target
object attempting the pickup, or failing to grasp the object
properly. Occasionally, although the robot’s actions are correct
in handing over the target object, the robot arm movements
may be unexpected or irregular in terms of trajectory, speed,
or acceleration. Such irregularities can elicit reactions from
participants, ranging from surprise to frustration.

Additionally, considering the robot’s intention’s correctness,
whether the robot hands over (or attempts to hand over) the
expected target object or an incorrect one, severely affects the
interactions’ success and the user’s reactions, too.

Factors related to verbal interaction were also found to
influence user reactions. Overall, whether a verbal interaction
was perceived smooth, complex or even unnecessary is crucial
for its evaluation. How users receive different forms of verbal
interactions (e.g. confirmation queries, instruction queries, di-
rect actions) depending on the timing, frequency and duration
of these may serve as an indication. During verbal interactions
with the robot, on multiple occasions the time lag of the used
Speech-to-Text model [24] caused the users’ responses to be
ignored by the robot (in case of rapid user responses), forcing
them to repeat their response. This unexpected factor may also
influence the user’s impressions reflected in the data.

B. Anticipated Use Cases

Our HRI-SENSE collection of multimodal human-robot
interaction data focusing on collaborative assembly and verbal
interactions eliciting various human reactions to robot be-
haviour offers opportunities in several research directions.

1) Detection of Errors in Collaborations: Through
analysing data collected from various modalities at the time
when a robot error of certain type and severity has been made,
learning models may be trained to identify or classify such
situations to be suitably handled.

2) Implicit Human Feedback and Response Analysis:
Continuously observable implicit multimodal human feedback
(e.g. facial reactions, body movements or action choices) in
HRI-SENSE may serve a valuable role in reasoning about
human feedback during a human-robot interaction. Further on,
the displayed user responses can contribute to understanding
the user’s impressions and psychological state (e.g. frustration,
satisfaction, confusion, etc.) throughout an interaction.

3) Learning User-Aware Human-Robot Interactions: Fo-
cusing on how robots can accommodate their behaviour to
user preferences, our dataset provides a corpus of multimodal
human-robot interaction training data that can enable mobile
robots to learn user specific desirable interaction behaviours.
For instance, the identified helpful and desired robot behaviour
patterns may be learnt using Behaviour Cloning, or Imitation
Learning methods may be used to learn reward functions or
optimal policies for robot decision models.

4) Studying Human-Robot Interaction Patterns: Human-
Robot interactions tend to involve a number of modalities,
several of which we attempt to capture in our dataset. By inves-
tigating correlations and patterns between modalities, general
user preferences on robot behaviour may be identified in
human-robot interactions, enabling researchers to tune future
interaction model developments accordingly.
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