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Abstract— Our work investigates how social robots can effi-
ciently collaborate with human users in a user-aware manner,
minimising the generated frustration in human colleagues, thus
enhancing their experience. As part of this, we develop a user-
aware framework for human-robot collaborative learning. We
model users’ frustration during human-robot interactions based
on recent interactions inspired by Psychological principles and
develop different frustration-aware interactive preference learn-
ing and decision-making models using multi-armed bandit and
knapsack methods. Evaluating our approach, 1) we conducted
simulated experiments on realistic human-behaviour datasets
and 2) a user-study in which participants worked with a TIAGo
Steel humanoid robot on a collaboration task using frustration-
aware and non frustration-aware (Upper Confidence Bounds
and Instruction-based) models. We demonstrate that when
collaborating with the frustration-aware robot, users completed
the collaboration task 9.04% faster and using 20.54% less
number of verbal interactions, with user questionnaire re-
sponses reporting less frustration experienced compared to
the baseline approaches. Additionally, we create a multimodal
dataset containing over 6 hours of human-robot interactions
displaying various explicit and implicit user responses.

I. INTRODUCTION

With the development of Artificial Intelligence (AI), robots
are deployed in various interaction settings, however, most
commonly in isolation from humans, in physically sepa-
rated areas (e.g. in factories, warehouses). Despite various
researches developing efficient systems for human-robot col-
laboration, the usage of such systems still remains limited in
real world settings due to various user concerns [1]. Recent
researches and surveys [2], [3], [4] argue that the key to the
successful deployment of robotic systems in social settings
is the acceptance and trust of human users. The acceptance
of human users is commonly influenced by their experience
of working with robots – whether they were happy or disap-
pointed by the robot’s performance, or whether they felt like
the robot actually helped their work or if it only distracted or
frustrated them, thus hindering their overall productivity [5].
Apart from the commonly targeted objective metrics such as
efficiency or robustness of performing tasks, user experience
is heavily influenced by aspects of the interaction such as
helpfulness, or predictability [6]. Notably, AI research [7]
has pointed out that these factors may have a larger effect
on user experience than model accuracy.

In our work, we focus on designing a learning framework
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for human-robot collaborations which also accounts for the
user’s frustration and overall experience, in addition to max-
imising accuracy. Doing so, we address questions such as is
it possible to infer how users perceive robotic help or which
robotic assistance approaches they find preferable, what they
find annoying; and what actions should a robot make to best
assist an individual considering their current state. Overall,
we seek to answer how to learn to collaborate with users,
without unnecessarily exposing them to frustration.

We investigate a scenario where the collaborating parties
(i.e. robot and user) are working at the same location, making
continuous interactions and feedback possible. As part of
this, we develop a frustration-aware learning framework,
learning how to interact with individuals by balancing actions
and queries throughout a collaboration while learning their
preferences without unduly causing them frustration. We
assume a collaborative task where a fixed set of actions
are performed by the human-robot pair in some sequence
(e.g. preparing a dish, assembling furniture or performing
household chores) in a leader-follower manner, with the robot
assuming the role of an assistant. Throughout the interaction,
we model the user’s expected frustration level following
patterns established in Psychology research, and propose
three different user-aware models. The proposed system is
evaluated in different interaction scenarios using quantitative
experiments on datasets of typical user behaviours and in a
qualitative user study of a real Human-Robot collaborative
manipulation scenario with the TIAGo humanoid robot [8].

II. BACKGROUND

Modelling user behaviour and user affective states have a
key role in enabling user-aware human-robot collaborations.
Involving affective states and their respective social signals in
AI models was introduced in Human-Computer Interaction
literature [9] and Social signal processing [10], with goals
of designing computer systems that users enjoy using. In
Human-Robot Interaction (HRI) settings, several works [11],
[12], [4], [13] focus on identifying the users’ affective states
while they participate in HRI scenarios. They primarily rely
on user self-assessment to elicit information on the user’s
experience, affective states (mainly frustration and trust), and
the correlation between affective states [4]. Some approaches
[4], [14] also attempt to map observed user behaviour to the
self-assessment’s results.

Other approaches focus on implicit feedback. From the
different behaviours exhibited by individuals when experi-
encing frustration, involuntary bodily functions such as pulse
or respiration [15][16], electrocardiogram (ECG) [15], elec-
tromyography (EMG) [17] are the most reliable indicators of
the affective state. However, due to the complicated sensory
requirements of these methods, these are more suitable for
laboratory or medical use cases than everyday scenarios.



User affective signals have been successfully inferred
using natural language inputs, such as the presence of user
frustration (as a binary factor) or future expected frustration
based on the user’s behaviour when interacting with “smart”
tutoring applications [18], [19], [20]; general computer ap-
plications [21]; or information retrieval systems [22].

A common theme among inference models in HRI con-
texts is identifying erroneous events throughout the interac-
tion scenario [23], [24], [25], such as when the robot makes
a technical error or performs actions inconsistent with the
user’s expectations. These models treat the input signals as
implicit feedback and do not directly model the affective
states experienced by the user. The majority of inference
models rely on using the user’s facial expressions [20], [22],
[18], [25], often as part of multimodal data-streams (e.g. gaze
[24], pose [19], gestures [23] or thermal face imaging [26]).

Other approaches focus on inferring the user’s impression
of the current interaction scenario, interpreting that as a user-
provided reward function [27] or as evaluative reinforcement
feedback [28]. While doing so, the inference model classifies
the user’s feedback as positive or negative, or attempts to
use the input to generate a ranking, without accounting
for the user’s underlying affective state. In an attempt to
make implicit feedback based decision-making more robust
focusing on specific events (e.g. robot error), the approach of
combining it with explicit user feedback [29] has been pro-
posed. In contrast, the work of [30] uses facial expressions
and speech information of individuals to infer their affective
state expressed as an arousal-valence vector, which is then
used to determine the robot’s interaction behaviour based on
its associated intrinsic mood. The model is deployed in a
HRI conversation scenario, negotiating a resource splitting
problem with an individual, thus the nature of feedback
signals differs from the other discussed approaches.

III. PROBLEM DEFINITION

We define our problem as a sequential decision-making
problem, with the aim of learning the user’s preferred way
of executing a multistep collaboration task (and successfully
provide assistance with that), while constrained by the user’s
individual frustration tolerance level. It can be described as
〈U, T,A,B(·),B〉, where U is a set of human users, T is
set of discrete time slots, A is a set of actions the agent
can perform to interact with the user (e.g. assist in certain
scenarios, or request additional information), B(·) is the
frustration cost function, associating individual actions with
a cost and B > 0 is the user’s frustration tolerance limit.

Problems of this type may be found in various HRI
contexts where the user’s preference has to be taken into
account to assist efficiently, and this information has to
be learnt as part of the interaction as the information is
not available in advance (making pre-interaction preference
elicitation strategies unsuitable).

IV. FRUSTRATION AWARE LEARNING FRAMEWORK

User Preference Tensor: As part of the learning model, we
define a 3-dimensional User Preference Tensor M, represent-
ing the likelihood of user u ∈ U to request assistance with
task a ∈ A at time t ∈ T . Rows of the tensor represent
possible actions a and columns represent times t, with

probability values [0, 1]. We consider the User Preference
Tensor the underlying belief model of all users’ preferences
participating in the interaction scenarios. Regarding individ-
ual instances, the user’s preferred actions for each time t can
be considered to be sampled from M. In practical scenarios,
these values are the oracle preferences of real life users or
values extracted from user behaviour datasets.

Action Space: When interacting with users, the agent’s
action space consists of assistive and communication actions.
Assistive actions: manipulation tasks aimed to assist the user
in their current activity (e.g. provide the next necessary
ingredient when cooking).
Communication actions: verbal interactions with the user,
with the aim of acquiring preference information (i.e. user
preference on being assisted with the current task), seeking
feedback or exchanging information. Our main communica-
tion actions are instruction queries and confirmation queries.

Frustration Cost Model: Our learning framework is de-
signed to support various different frustration cost models.
For the purpose of our experiments we propose a frustration
model supported by Psychology research, inferring the esti-
mated frustration level from previously observed events (e.g.
actions and errors that took place during the interaction).

We consider two main sources of frustration originating
from the robot’s decisions: interruption1 and error2.

Interruption-based Frustration: Interruption-based frustra-
tion has been modelled in the past [32], [33] using the
so called Bother Cost Model. Since this model has been
extensively used in literature and is suitable for modelling
users with different characteristics, typical of HRI scenarios,
we use it in our work. The interruption-frustration cost is de-
fined as: FSFQ =

∑
q∈Q c(q)βt(q) where Q represents past

queries, and c(q) the base frustration cost of an interruption
(i.e. query) signifying the event’s severity (cognitive cost)
and duration (time to resolve interruption) and 0 < β ≤ 1
representing a discount factor used to simulate the interac-
tion’s diminishing impact (i.e. an interruption that happened
a longer time ago influences the individual’s frustration less
than a recent interruption) and t(q) quantifies the amount of
time elapsed since the interruption. The total “interruption-
based frustration” (IF) level is calculated as:

IF =
1− α

FSFQ

Q

1− αQ
(1)

where αQ = 1.26 − 0.05w with w ∈ [1, 10] denoting the
user’s willingness (with 0 being unwilling and 10 being

1Interruptions in the form of verbal interactions or questions may disrupt
the individual’s focus, distract them from their current task, and may demand
some cognitive effort on their part to respond appropriately. As such, by the
definition of frustration [31], these interruptions can induce frustration in
the individual.

2Inevitably, as part of the robot’s attempts to assist the individual in their
task, some attempts will not match the user’s expectations. Assistive actions
may not suit the current scenario (e.g. the robot offered to vacuum the floor
when the individual wants to relax) or the user’s preferences (e.g. the robot
provided ingredients in the wrong order when cooking), yielding frustration.
Naturally, other types of errors can also occur throughout interactions,
such as accidental technical errors, communication errors or social errors.
However, since these errors do not originate from the agent’s decision-
making process, rather than the execution of motions, they are out of our
scope.



Fig. 1. Overview of the frustration aware user learning framework’s components.

most willing). The function is modelled to follow a more
exponential or logarithmic pattern for less or more willing
users, respectively.
Error-based Frustration: To model error-based frustration,
we rely on characteristics of frustration established in the
Psychology literature. Specifically, we utilise implications
of the Frustration-Aggression Hypothesis [31], [34], Goal-
Gradient Principle [35], [36] and the role of Goal Attrac-
tiveness [9], [37] regarding user frustration.

Similarly to the model defined by [32], we introduce
the “error frustration so far” (FSFE) function defined as:
FSFE =

∑
e∈E g(e)c(e)βt(e) where E represents past

errors, 0 < β ≤ 1 the same discount factor illustrating the
error-based frustration’s diminishing effect, c(e) representing
the frustration’s base cost characterised by the error’s severity
(i.e. difficulty of correcting the error, the permanence of its
result) and g(e) defining the goal-gradient scaling factor.

g(e) = γ +
1− γ

|T | − 1
d(e) (2)

where 0 < γ ≤ 1 is a scaling parameter of the Goal-
Gradient Principle ranging between constant and linear (char-
acterised by the goal’s importance) and d(e) quantifies the
distance until the task’s expected completion at the time of
the error. Following the Frustration-Aggression Hypothesis
and the role of Goal Attractiveness, we calculate the total
error-based frustration

EF =
1− αFSFE

E

1− αE
(3)

with αE = 1.2 − 0.02p with 1 < p ≤ 10 denoting the
user’s patience or tolerance towards the robot, where a more
patient individual experiences less frustration as a result of a
logical error made by the robot. Specifically, the frustration
model of more patient users follow a near linear pattern,
while impatient users follow an exponential pattern.

We combine interruption and error based components with
equal weight, with an additional initialisation cost represent-
ing user’s individual characteristics [32] F = Init+IF+EF
where Init = 10− w − p.

Objective Function: The agent’s goal is to perform actions
a ∈ A assisting their collaborating user u ∈ U at various
time slots t ∈ T , without inducing unnecessary frustration,

causing them to exceed their individual frustration tolerance
limit B. As part of this, the agent has to estimate the oracle
User Preference Tensor M, while interacting with the user
and update the estimated user preference tensor M based
on the feedback received. We define an objective function
identifying the optimal sequence of robot actions (A∗):

A∗ = argmin
A

||M−M(A)||1
|U | × |T | × |A| s.t. cost(A) ≤ B (4)

where M(A) defines the user preference tensor following
the execution of action sequence A.

Solution Concept: Since we aim to approximate the oracle
User Preference Tensor M, which is unknown in prior to
the interactions, the optimisation problem (Eq. 4) cannot be
solved optimally, so we treat it as a constrained sequential
decision-making problem.

Our framework supports multiple decision-making mod-
els, however, all variants follow the same base structure.
The agent initialises the preference tensor estimate M with
random values, then at each time slot an action a ∈ A
is chosen to be performed, following a decision-making
models. After executing this action (either assistive or com-
munication), the interacting user provides feedback, which
the agent incorporates in its belief model.

Decision-making Models: The decision-making models be-
long to two broad categories: non frustration-aware and
frustration-aware. We hypothesise that the frustration-aware
model class will outperform the non frustration-aware class
of methods considering user’s perceived frustration.

As non frustration-aware baseline models, we use an
example of commonly used reinforcement learning / multi-
armed bandit style models, Upper Confidence Bounds (UCB)
[38] and a model following the popular instruction-based
approach to collaboration (that we refer to as “AlwaysAsk-
Agent”) used in teacher-student learning models.

We propose three decision-making approaches in the class
of frustration-aware models.

1) Frustration-aware Greedy model: This model utilises
the frustration estimation model to choose from the action
space in a greedy manner. At each time slot, the model
estimates the expected frustration cost induced by each po-
tential action a ∈ A incorporating the past interaction history,
and accounting for the model’s confidence in the action’s



correctness. After calculating the expected frustration cost of
each action, the one with the lowest expected cost is selected
to be executed. With each interaction, the preference tensor
estimate M gets updated based on the received feedback,
following the model update mechanism of a UCB agent.

2) Frustration-aware Knapsack model: The “Frustra-
tionAwareKnapsackAgent” decision model aims to select
actions that limit the frustration generated considering mul-
tiple future steps, treating it as a knapsack optimisation
problem (for a detailed description of knapsack problems,
see [39]). The weights associated with items (i.e. actions)
are represented as frustration cost estimates, the values are
defined as information gain and the knapsack’s capacity is the
user’s frustration tolerance level. We calculate information
gain from the difference between the parent entropy and
average child entropy, motivated by information theory. After
using a knapsack model to choose an action that maximises
the information gain without inducing too much expected
frustration on the user, that action is executed, and the user
provided feedback is used to update the preference estimate
tensor M following an UCB agent’s update mechanism.

3) Frustration-aware UCB model: This approach (“Frus-
trationAwareUCBAgent”) is built using a version of the Up-
per Confidence Bounds algorithm [38], designed for multi-
armed bandit problems with budget constraints and variable
action costs [40]. In our setting, the budget constraint is
provided by the user’s frustration tolerance limit and the
variable costs are calculated by the frustration estimation
model, with values calculated by the UCB component.
In this model, matching our setting, both exploration and
exploitation aspects are constrained by the budget.

V. SIMULATIONS

Our quantitative experiment aims to evaluate the models’
performance in a number of experiments and test its robust-
ness using user data from different interaction contexts (e.g.
assistive manipulation, household assistance).

User Characteristics: In the simulations, users are assigned
personality profiles, describing their behaviour characteristics
displayed when interacting with the robot. Willingness (w)
and patience (p) values and a frustration tolerance limit
are randomly assigned, remaining constant throughout the
experiment. Once a user’s frustration level reaches their
tolerance limit, they cease the collaboration.

User Behaviour Patterns: We simulate users’ behaviour
preferences using human behaviour datasets providing data
on individuals’ unique personal preferences for completing a
specified task involving a fixed discrete number of time steps
and a fixed set of actions, iterated over multiple iterations.

The 50 Salads Dataset [41], captures 25 people preparing
two salads each, suitably representing a manipulation and
assistance context for an HRI scenario, in which individuals
execute the same task following their own preferred way
(as individuals take different steps when preparing the meal
and use ingredients in different orders). The preference
dataset contains 5 primary actions in the form of ingredients
(’tomato’, ’cheese’, ’lettuce’, ’dressing’ and ’cucumber’).

A collection of datasets produced by the Centre of Ad-
vanced Studies in Adaptive Systems (CASAS) as part of the

Fig. 2. Experiments ran using the 50 Salad dataset. Values show the mean
of three experiment replicates, over all participating users, with the shaded
areas representing the distribution of all measured values (with the shaded
area’s width being proportional to the number of measurements with at the
given value). The second plot shows an example frustration tolerance level
at the value 30 in black.

WSU CASAS smart home project represents user behaviour
patterns and preferences in home environments. We used
their dataset titled “WSU Smart Apartment Interweave ADL
Testbed” [42] recording sensory events collected in a smart
apartment testbed of the activities of 20 participants, who
individually perform a fixed set of 8 household activities in
the apartment, with everyone following their preferred order.

Evaluation Metrics: To evaluate the performance of indi-
vidual models, we calculate the user preference estimation
model’s accuracy by using the objective function shown
in Equation 4. We describe the model’s decision-making
behaviour by recording the number of logical errors and
interruptions made and estimate the level of frustration
throughout interactions using the previous frustration model.

Results: We mainly focus on the scenario with user be-
haviour patterns based on the 50 Salad dataset. The CASAS
based simulations obtained similar results, however, for the
sake of readability and presentation, these are omitted.

As shown in Figure 2, due to its continuous instruction
queries, the AlwaysAskAgent yields the best preference
estimation performance. All members of the frustration-
aware class outperform the UCB model’s performance, with
FrustrationAwareUCBAgent reaching maximal success rates
by iteration 4, and FrustrationAwareKnapsackAgent main-
taining above 95% success rates from this time, converging
towards 100%. FrustrationAwareGreedyAgent also shows
continuously incremental performance with iterations, ap-
proximately doubling the mean success rate of the UCB
model over all iterations.



Fig. 3. Example of a participant’s interaction with the robot in the burger assembly task. 1) Following on the robot’s decision model, it selects the best
way to elicit user’s task preferences in the given situation (instruction inquiry, confirmation inquiry, direct action). 2) The assistive action is executed in
the form of an object handover. 3) The object is received by the user, who performs the assembly and 4) provides feedback to the robot.

The FrustrationAwareUCBAgent maintains around 2 inter-
ruptions over time, due to the UCB-based strategy accounting
for inconsistencies in user behaviour, resulting in the model’s
fast learning. The other two frustration-aware agents show
similar tendencies to each other, timing their interruptions in
the first few iterations, and rarely using interruptions later.
The number of errors continuously decreases with all models,
consistent with the preference estimation performance.

Resulting from its large number of interruptions, Al-
waysAskAgent yields the highest initial frustration cost.
The UCBAgent’s generates slightly lower initial frustration
levels, with near linear mean continuous decrease afterwards.
The class of frustration-aware models outperform the others
when considering their early frustration values by around
40% (13-17 versus 23-25 after the first iteration), and main-
tain continuous near exponential convergence towards the
minimum, with FrustrationAwareKnapsackAgent converging
the fastest. Due to their high initial frustration costs, non-
frustration aware models may be suitable to fewer users (only
those with high frustration tolerance levels).

VI. HUMAN-ROBOT INTERACTION USER STUDY

In our HRI setting, participants and the robot mimic a fast
food restaurant collaborative burger assembly scenario. With
ingredients (bread, meat, cheese, salad, bread) represented by
coloured foam blocks, the robots performs a handover of the
suitable object based on the preference model learnt from
the human collaborator’s responses and previous actions
throughout the interactions. The human then completes the
burger assembly by stacking the received object.

Experiment Procedure: Our experiment followed a
repeated-measure design, each participant performed 9 trials
(3 decision models (UCB, Instruction-based and Frustra-
tionAwareGreedy), 3 repetitions) of the collaborative burger-
assembly interaction, with interactions containing 5 action
steps (i.e. burgers contain 5 ingredients). The order of models
was randomised, not to affect the user’s judgement. The
participants were not informed of these conditions prior to
the completion of the experiments.

We used the TIAGo Steel robot, equipped with a 7 DoF
arm and parallel grippers. The robot base remained stationary
during the interactions. The movement trajectories executing
the handover are dynamically generated using the MoveIt
framework [43], with additional user-safety constraints (mo-

Fig. 4. The HRI setting from a top-down angle. During the collaboration,
foam blocks (“ingredients”) are initially placed on the robot’s side of a table
at fixed locations known to the robot to be picked up.

bile arm velocity, acceleration and accessible zones).

The natural language user responses to robot queries3

are processed using Google’s Speech-to-Text API with the
audio feed recorded on a Logitech Yeti Nano microphone
(using omnidirectional polar patterns) placed next to the
experiment setup. User responses to confirmation requests
or feedback requests are then pipelined into the Sentiment
Analysis toolkit provided by Google’s Natural Language API
to binarily classify the user’s response by its sentiment (i.e.
if the user responded positively or negatively).

Participants: A total of 18 participants were recruited for the
experiments. Data from 1 participant had to be discarded due
to a mechanical failure of the robot. (The robot failed to close
its parallel gripper due to a controller contact error, resulting
in incomplete handovers. The issue was fixed after this
trial.) Firstly, participants were provided with an Information
Sheet and the experiment procedure was explained. Then a
written informed consent was obtained, and each participant
was assigned a numerical ID to anonymise the data. The
whole experiment was conducted at the Active Laboratory at
the University of Southampton, following experiment plans
approved by the University’s Ethics Committee.

Performance Metrics: Participants first completed a pre-
interaction questionnaire collecting preliminary information:
Frustration Discomfort Scale assessment [44], a Frustrative
Nonreward Responsiveness Scale assessment [45] and a
custom 5-point Likert-scale based section on users’ prior
experience with robots and their interaction expectations.

3Instruction inquiry such as “What should I do next?”, action confirmation
request as “Shall I pass you Ingredient 3?”, or a feedback request following
a robot decision such as “How did I do?”.



Fig. 5. Mean values with the error bars indicating standard error of the mean of user impressions of different behaviour models based on questionnaire
outcome 1) Frustration, 2) Satisfaction with the Robot, 3) Perceived Ease of Use, 4) Perceived Usefulness, 5) Behavioural Intention to Use the Robot.

After each repetition, participants completed a post-
interaction questionnaire. Data was collected following es-
tablished prior work on Frustration [46], Satisfaction with the
robot [47], Perceived Usability (using the Technology Accep-
tance Model or TAM) [48], [49], [50], Perceived Usefulness
(TAM) and Behavioural Intention to Use (TAM), each using
a 5-point Likert-scale. The models’ quantitative performance
was evaluated using Number of Interactions, (Instructions
and Confirmation) and Completion Time metrics.

Fig. 6. Snapshot of multimodal footage captured throughout the user study,
processed for the HRI dataset, with detected pose landmarks illustrated. 1)
RGB side-view, 2) RGB top-down view, 3) RGB robot point-of-view, 4)
depth robot point-of-view.

Multimodal Human-Robot Interaction Dataset: Synchro-
nised multimodal recordings (see Figure 6) were made of
each HRI burger-assembly scenario in the user study: 3
streams of RGB footage, 1 stream of depth footage and
transcribed audio recordings of the interaction. User pose
and face data is extracted from the RGB footage allowing
for the future analysis of user behavioural responses to robot
actions, while maintaining the anonymity of participants. Our
dataset4 contains over 6 hours of HRI footage, including
various explicit and implicit user responses to robot actions.

Results: Evaluating the post-interaction questionnaire, the
Mann-Whitney-Wilcoxon test was used to determine whether
users provided different responses for the different models.
We found significant differences (α = .05) for the Frustration
metric, where participants reported lower levels of frustration
when interacting with the frustration-aware decision model
(p = .041). The difference between models in other aspects
of the questionnaire has shown similar trends (with users rat-

4Publicly available at https://doi.org/10.5281/zenodo.14267885. For fur-
ther details on the dataset’s composition, see [51].

Fig. 7. Mean values with the error bars indicating standard error of the
mean of 1) Task Completion Time, 2) Number of Verbal Interactions during
the human-robot collaboration.

ing the frustration-aware model as more easy-to-use, useful
and higher level of satisfaction with the robot), however, it
did not reach the level of statistical significance.
Participants welcomed when the frustration-aware model
successfully learnt their preferences and only inquired when
it was uncertain: “Robot is anticipating my needs.”, “When it
takes action without checking, it is always correct, so I trust
it.”. They welcomed the robot’s suggestions (confirmation
requests) when correct, “I liked how it suggested to pass me
stuff on its own”. However, they reacted negatively if the
robot repeatedly offered incorrect suggestions (confirmation
requests) or the interaction took longer, “I hope that the robot
can respond more quickly to my instructions.”.
Quantitatively, significant differences were found between
models for the Number of Interactions (p = .001) and
Completion time (p = .001), calculated using the Mann-
Whitney-Wilcoxon test. Participants completed the collabo-
ration in 9.04% less time using the Frustration-aware model
and required 20.54% less number of interactions with the
robot. Additionally, on average 38.77% of the interactions
using the Frustration-aware model consisted of confirmation
actions, requiring less cognitive effort from the participant.

VII. CONCLUSIONS

We proposed a Human-Robot Interaction (HRI) framework
using Psychology-inspired frustration models, and combining
multi-armed bandit and knapsack methods to address the
issue of user frustration in collaborative HRI settings. We
conducted simulations and a HRI user study using the TIAGo
robot. Our findings show that users completed the collabora-
tion task more efficiently using our frustration-aware model,
while experiencing less frustration than with baseline models.
There is still potential to improve user frustration modelling
using fewer interactions. Additionally, we contributed a mul-
timodal human-robot interaction dataset containing over 6
hours of implicit and explicit user responses.
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