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A B S T R A C T

Wear mechanisms in dry and starved-lubricated contacts are critical factors contributing to the degradation of 
component surfaces. Real-time monitoring of wear progression presents significant challenges due to the com
plex nature of these mechanisms and the varying conditions under which they occur. Electrostatic sensing offers 
a way of monitoring wear progression as it is correlated with surface charging from wear debris, contact potential 
differences associated with surface films, material phase transformations and wear transitions as well as from 
additive adsorption. This research employs two types of electrostatic wear sensor: a bar sensor for in-situ 
monitoring of wear progression and an array sensor for charge mapping of the resultant wear mechanisms in 
the scar.

Two sliding wear tests with tool steel against bearing steel are presented. Tests were conducted under dry 
sliding conditions or partially lubricated. Positive charge signals were detected for oxidational wear under dry 
contact conditions. Elemental mapping confirmed a patchy oxide film had developed and loose oxide wear debris 
became charged. Correlation is seen between surface charge maps and the patchy surface oxide films. A cor
relation was also found between the coefficient of friction and electrostatic charge, highlighting the potential of 
electrostatic sensors in detecting changing friction and wear levels. Negative charge signals were observed under 
starved sliding conditions using polyalphaolefin (PAO), primarily attributed to the degradation of PAO under 
high shear rates and tribo-charge mechanism. The charge progressively changed towards a more positive value, 
suggesting the progression of mild oxidational wear. Only very mild wear was measured at the end of the test (i.e. 
plastic flow of asperity material into valleys).

A map of real-time wear progression and measurement of instantaneous wear rate of oxidational wear and 
mild wear induced by partially lubricated contacts are presented. This advancement could significantly impact 
digital tribology, as the electrostatic sensing allows the surface chemistry to be better characterised. This allows 
for monitoring of the wear processes in action, allowing for better optimisation of predictive maintenance, as the 
information is real-time and the sensor is non-invasive.

1. Introduction

Understanding complex wear mechanisms is essential for maintain
ing the performance and longevity of mechanical components. Partic
ularly challenging environments characterised by dry and starved- 
lubricated conditions, which are commonly encountered in high-stress 
mechanical systems, pose significant wear management difficulties. In 

dry contact scenarios, direct metal-to-metal contact leads to increased 
friction and elevated temperatures, fostering oxidational wear and 
abrasive wear where hard particles abrade the surfaces [1–5]. 
Starved-lubricated conditions, which feature fluctuating lubricant 
availability, can increase the thermal effects in the contacts, lead to 
scuffing-type failures and shorten fatigue life [6,7]. Even though some 
lubricant is present, it fails to maintain a continuous film, resulting in 
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intermittent breakdowns that mimic dry and boundary lubrication 
characteristics. Lubricant degradation due to high shear rates and 
thermal effects is also likely and this reduces the effectiveness in pre
venting wear [8].

With the trend toward more compact mechanical systems operating 
at higher power densities, effective wear monitoring is crucial for pre
dicting wear patterns and preventing premature failures due to material 
degradation. The advent of low-cost sensing and data acquisition tech
nologies has made real-time sensing of tribological parameters 
increasingly feasible [9]. Traditional monitoring techniques, such as 
piezoelectric, acoustic emission, ultrasonic, capacitive sensors, and 
thermocouples, are employed to detect features like power consump
tion, vibration, crack or corrosion propagation, wear debris, and lubri
cant temperature [10], which primarily serve as lagging indicators of 
wear. Consequently, these measurement methods are often inadequate 
for detecting subtle mechanistic changes during the early stages of 
contact degradation.

Electrostatic monitoring offers a significant advantage by measuring 
direct products of wear, rather than relying on secondary effects like 
increased vibration or temperature exceedance. Electrostatic measure
ments use a passive sensor connected to a charge amplifier to record 
voltage signals induced by changes in surface charge [11,12]. It has 
found broad applications in sectors like aero-engine gas path moni
toring, lubrication oil wear debris detection, and bearing wear moni
toring. The National Centre for Advanced Tribology at Southampton 
(nCATS) has conducted over 20 years research into electrostatic moni
toring in tribological systems. The research includes detection of scuff
ing [13–16], diesel contaminants [17–19], bearing fatigue and pitting 
[20–25], wear debris [26,27], lubricant additives [18], oxidational wear 
[3,11,28], tribo-chemical wear [29–31], oil quality [32,33] and adhe
sive wear [34] using electrostatic monitoring. Recently work at nCATS 
has been exploring the possibility of detecting surface damage with a 
higher resolution, leading to the development of an electrostatic array 
sensor, which was used in the detection of oxidational wear [11].

Wear mechanisms that potentially generate electrostatic charge 
include surface chemistry changes, adhesive wear, abrasive wear, phase 
transformations, lubricant shearing, and wear debris etc [11]. This work 
focuses on surface wear which generates a contact potential difference 
(CPD) and tribo-charging mechanism caused by fluid shearing on the 
solid-fluid interface. CPD exists between two materials with different 
work functions when they are brought into thermal equilibrium [11,35]. 
The work function is demonstrated as an intrinsic parameter of a ma
terial’s strength. A higher work function represents a more stable elec
tronic state, which generates a higher resistance to changes in structure 
caused by mechanical and electrochemical actions [36]. Therefore it is a 
promising indicative parameter of a material’s wear-resistance perfor
mance [37,38] and corrosion-resistance performance [39]. Apart from 
different materials, oxidised metal surfaces or surfaces with absorbed 
lubricant can also exhibit work functions that differ from the bulk ma
terial [11]. This difference in work function generates a CPD, which can 
be detected through electrostatic sensing. Tribo-charging occurs due to 
the relative motion between a fluid and a solid interface. At a 
solid-liquid interface, an electrical double layer naturally forms. Charge 
generation takes place when the fluid motion shears this double layer at 
the interface between the solid surface and the liquid phase. As a result, 
the liquid phase carries a portion of the electric charge from the double 
layer, generating free electrostatic charges. This mechanism is thought 
to be a potential charge source in lubricated wear processes due to the 
high shear nature of the tribocontact [32].

This work aims to investigate the dynamics of wear and friction in 
dry and starved-lubricated conditions, and their correlations with elec
trostatic charge. A bar sensor is employed to detect real-time charge and 
explore its correlation with wear progression and friction. Additionally, 
an array sensor is used to generate post-test charge maps, enabling the 
measurement of residual charge and the investigation of localised 
charge mechanisms. Machine learning techniques are applied to conduct 

an in-depth analysis of wear progression, facilitating the identification 
of early wear signs. This approach not only enhances machine efficiency 
but also reduces operational costs, representing a significant step toward 
the development of smart machines.

2. Material and methods

2.1. Materials

To investigate the wear mechanisms in dry and starved-lubricated 
conditions, two sets of sliding tests using rollers against plates were 
conducted using a TE77 reciprocating tribometer (Phoenix Tribology 
Ltd, Kingsclere, UK). The rollers, made of AISI 52100 steel, have a 
diameter of 6 mm and a length of 20 mm. The plates, made of BO1 
BS4659 tool steel, have a length of 57.5 mm and a width of 25 mm. The 
plates used in the dry tests were lapped to achieve a surface roughness of 
Ra (average roughness) 0.173 ± 0.018 μm, while the plates used in the 
starved-lubricated tests had a surface roughness of Ra 0.052 ± 0.001 
μm. The properties of the two steels are listed in Table 1. Before and after 
tests, the samples were ultrasonically cleaned with acetone for 5 min.

In the starved-lubricated tests, Polyalphaolefin (PAO) 4 oil (supplied 
by ExxonMobil Chemical, Baytown, Texas, US) was used. Its simplicity 
as a synthetic base oil facilitates a clearer understanding of the test re
sults by minimising the influence of complex additive interactions. The 
properties of PAO 4 are detailed in Table 2. Starved-lubrication was 
achieved by applying a single drop of oil onto the plate and spreading it 
across the surface, resulting in an approximate quantity of 0.0015 g/ 
cm2.

2.2. Test conditions

The tests were conducted using a TE77 reciprocating tribometer. The 
tribometer setup includes a moving roller mounted in a reciprocating 
carrier which oscillates against a stationary plate as shown in Fig. 1. The 
TE77 is driven by a motor cam and scotch yoke assembly that delivers 
pure sinusoidal motion with a stroke length of 0.025 m. During the tests, 
stroke position, load, friction force, and electrostatic charge were 
continuously monitored. Both dry and starved-lubricated tests were 
performed at room temperature (~20 ◦C), with the test conditions 
summarised in Table 3. In comparison to previous studies conducted 
under dry [3,28] and lubricated conditions [18] which employed 
maximum contact pressure of 1–2 GPa and sliding speed of 0.1–5 m/s, 
this work used lower-speed sliding (0.05–0.1 m/s) and reduced load 
corresponding to a maximum contact pressure of 0.08–0.22 GPa. These 
conditions were designed to induce wear at a lower rate, facilitating the 
investigation of the electrostatic sensors’ responses to mild and 
early-stage wear, and also ensuring appropriate electronic responses and 
adequate data capture for each stroke.

Table 1 
Properties and elemental composition of AISI 52100 and BO1 BS4659 steel [40,
41].

Property/element AISI 52100 steel (roller) BO1 BS4659 tool steel (plate)

Density (kg/m3) 7810 8000
Elastic modulus (GPa) 200 230
Poisson ratio 0.28 0.29
Hardness (HV) 848 800
Fe (%) 96–97 >96
C (%) 0.93–1.05 0.85–1
Mn (%) 0.25–0.45 1.1–1.35
Si (%) 0.15–0.35 <0.4
W (%) – 0.4–0.6
Cr (%) 1.35–1.60 0.4–0.6
Ni (%) ~0.25 <0.4
Cu (%) ~0.30 <0.2
P (%) ~0.025 <0.035
S (%) ~0.015 <0.035
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Dry-2 and Dry-3 had two and five runs respectively. Between the 
runs the plates were removed from the rig for charge map generation 
and surface observations. Starved-2, Starved-3, and Starved-4 had two, 
five, and twelve runs respectively, with the plates remaining fixed on the 
rig throughout the tests to minimise oil evaporation as much as possible. 
In the final run of Starved-4, the load was increased to 120 N to accel
erate wear progression. The run was stopped immediately upon 
observing a marked rise in the coefficient of friction.

2.3. In-situ data collection on a reciprocating tribometer

As shown in Fig. 1, an electrostatic (ES) bar sensor was mounted on 
the reciprocating carrier to measure real-time electrostatic charge. The 
sensing element was positioned 0.4–0.45 mm away from and parallel to 
the plate surface, set using a feeler gauge, and the ES signal was 
amplified using a Brüel & Kjær 2635 charge amplifier with an amplifi
cation factor of 1V/pC. Stroke position and per stroke friction force were 
collected from the TE77 system, and ES signal were recorded at a sam
pling rate of 1 kHz.

2.4. Ex-situ measurements of samples

ES charge maps were generated using an ES array sensor immedi
ately after the completion of the tests. Details of the array sensor and the 
process of creating the charge maps was introduced in Ref. [11].

After removing the loose wear debris using compressed air, the 
roughness of the samples was measured using a contact-based profil
ometer, Intra Touch (Taylor Hobson, Leicester, UK), which performed 
single 2D profile measurements with a vertical resolution of 4 nm and a 
stylus vertical range of 1 mm. The surface topography of the rollers and 
plates was measured using a high-resolution non-contact optical 3D 
surface measurement device, Alicona G4 Infinite-Focus profilometer 
(Alicona Imaging GmbH, Raaba, Austria). To investigate the wear 
mechanisms, a JEOL JSM-7200F scanning electron microscope (SEM) 
equipped with an EDAX EDS (Energy Dispersive X-Ray Spectroscopy) 
detector (JEOL Ltd., Tokyo, Japan) was used. After each runs in Dry-3, 
SEM/EDS analysis was conducted at twelve positions within the wear 
scar to investigate relationships between localised wear mechanisms 
and charge distribution.

3. Data processing and correlation

3.1. Signal processing

Before analysing the ES data, it is necessary to process the raw data, 
as it may exhibit slopes due to factors such as slight misalignment of the 
sensor or sample fixture, or shifts caused by the DC offset from the 
charge amplifier. For all tests, the ES data were processed following the 
procedure outlined in Fig. 2. The data were binned using a bin width of 
0.2 mm to ensure consistency in data length. Multiple cycles at the 
beginning of each test (e.g., cycles 3–7) were selected to extract the slope 
of the signals, as minimal wear occurred during the initial cycles and the 
data were relatively smooth. This ensured that any slopes detected were 
more likely due to system factors. The data from these cycles were 
averaged, and a linear regression was performed on the averaged data 
within the wear scar region (0 mm–8 mm of the stroke) to determine the 
slope. Once the slope was determined, it was subtracted from each cycle 
of the ES data to correct for any tilts. Following the slope removal, a DC 
offset correction was performed. This correction was based on the data 
from the non-worn area of the sample (16 mm–17 mm of the stroke). For 
each cycle, the mean value of the data in this non-worn region was 
calculated and subtracted from the data over the entire stroke to elim
inate any baseline shifts caused by the charge amplifier’s DC offset.

For statistical analysis, friction data at the reversing points (from 
− 12.5 mm to − 11 mm and from 11 mm to 12.5 mm of the stroke) were 
excluded due to fluctuations caused by changes in sliding speed and 
direction. Only the central section, from − 11 mm to 11 mm within each 
stroke, was taken into consideration. This approach ensured that the 

Table 2 
Properties of PAO4 base oil.

Kinematic 
viscosity, cSt, 
100 ◦C

Kinematic 
viscosity, cSt, 
40 ◦C

Viscosity 
index

Flash 
point, ◦C

Specific 
gravity (15.6/ 
15.6 ◦C)

3.8 16.8 124 >222 0.82

Fig. 1. Configuration of the roller-plate contact on TE77 and data acquisition system.

Table 3 
Conditions for dry and starved tests conducted at room temperature (~20 ◦C).

Test No Sliding distance 
(m)

Load 
(N)

Reciprocating 
frequency (Hz)

Initial maximum 
contact pressure 
(GPa)

Dry-1 62.5 15 1 0.1
Dry-2 125(62.5 × 2) 10 and 

15*
1 0.08

Dry-3 312.5 (62.5 × 5) 15 1 0.1
Starved- 

1
62.5 80 2 0.22

Starved- 
2

125 (62.5 × 2) 80 2 0.22

Starved- 
3

312.5 (62.5 × 5) 80 2 0.22

Starved- 
4

744.25 (62.5 ×

11 + 56.75)
80 and 
120**

2 0.22

* In ‘Dry-2’, the applied load was 10 N in the first 1250 strokes, and 15 N in the 
second 1250 strokes.

** In ‘Starved-4’, the applied load was 80 N in the 1250 × 11 strokes, and 120 
N in the last 1135 strokes.
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analysis focused on the central part of the stroke, where both the ES and 
friction data were most relevant for understanding wear progression.

3.2. Data correlation

Correlation analysis was conducted to quantify the relationship be
tween various statistical features of the Coefficient of Friction (CoF) and 
the ES bar sensor data collected during the tests. The statistical features 
considered include max, min, mean, standard deviation, RMS, skewness, 
and kurtosis. As presented in Ref. [11], CoF and ES both increased as 
oxidational wear progressed in the dry sliding test. In this work, the 
relationship between CoF and ES was assumed as linear and the Pearson 
correlation coefficient was calculated using MATLAB’s corr function to 
evaluate the relationship. The correlation coefficients range from − 1 to 
1, where a value of 1 indicates a perfect positive linear relationship, − 1 
indicates a perfect negative linear relationship, and 0 indicates no linear 
relationship.

Correlation between localised ES signal and element concentration 
on the surface was also studied using charge maps generated by the ES 
array sensor and SEM/EDS maps. By comparing the statistical features, 
deeper insights into the wear progression were obtained. This approach 
enabled the identification of early evidence of contact decay from the 
surface charge maps, integrating elemental composition data to provide 
a comprehensive understanding of the wear mechanisms and their 
evolution over time.

3.3. Outlier detection

Previous work, in this and other fields suggests, that a good range of 
different outlier detection algorithms are successful in different tasks. In 
this work, five outlier detection algorithms were used, based on a 
mixture of traditional and deep learning approaches. The first one, 
Feature regression with L2 penalty (FRR) is based on feature-based 
regression. The features are each individually used as a target for reg
ularised regression with all the other features used as input data. The 

error on each feature is added up to give an individual sample outlier 
score. The second, Isolation Forest (IF) is based on an ensemble of de
cision trees, where the number of divisions to isolate a data point is used 
as the outlier score [42]. Each division is made along a randomly chosen 
value in a randomly chosen dimension. The third algorithm is a one-class 
support vector machine (OCSVM) [43] which uses a support vector 
machine to characterise the density of the data, where the support 
vectors are those that surround the main density of the data, as defined 
by a tuneable parameter ν. The outlier score is the value of the coeffi
cient on the support vector. The fourth method is based on a Long-Short 
Term Memory (LSTM) deep learning algorithm [44], which attempts to 
reconstruct the series, and the reconstruction errors are used as the 
outlier score. The fifth method is an autoencoder (AE) where by the data 
is squeezed though a multilayer perceptron with a smaller middle layer, 
and is trained to reconstruct the data [45]. The data points with larger 
reconstruction errors are more outlying, so this is used as the outlier 
score. All these algorithms and more are available easy to use Python 
package https://pypi.org/project/odds/.

To ensure reliability, as many of these algorithms are stochastic in 
nature, due to random network initialisation, and stochasticity in the 
backpropagation methods used to train these networks, the outlier score 
was calculated 32 times with each algorithm and the average was taken. 
OCSVM is deterministic, so will not vary. FRR will vary somewhat, as 
stochastic gradient descent is used in the solve, rather than the direct 
solution of the normal equation, due to the large quantity of data for this 
case. IF will vary, as random splits are used each time, and LSTM and AE, 
the deep learning methods will vary, averaging will ensure any random 
variations are removed.

4. Results and discussion

4.1. Dry sliding tests

This section discusses the friction, wear mechanisms, and ES charge 
during dry tests, with a particular focus on the results from Dry-3.

Fig. 2. Signal processing of ES data to remove slopes and DC offset.
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4.1.1. Evolution of oxidational wear and its interactions with friction
The CoF against sliding distance for the dry tests Dry-1, Dry-2, and 

Dry-3 is shown in Fig. 3. For each test, the plot was generated using 
mean values of CoF calculated over cycles with a length of 0.05 m. The 
same method was used to plot the ES data, as well as the CoF and ES data 
for the starved-lubricated tests. The CoF levels were comparable across 
the three tests, ranging from 0.2 to 0.6, with an increasing trend 
observed in each run. As discussed in Ref. [11] which presented Dry-2, 
the increase in friction was primarily due to the formation of oxide films 
on the surface, and Fe3O4 was the predominant oxide according to the 
value of CoF.

At the beginning of the second to fifth runs in Dry-3, the CoF was 
lower compared to the end of the previous run, this is probably due to 
the removal of hard wear debris during test stops when the plates were 
taken off the rig for charge map generation and surface observations. It 
is noted that in the first and third runs of Dry-3, there were periods when 
the CoF was noisy. This could be attributed to progression of abrasive 
wear which will be discussed later.

4.1.2. Wear mechanism and correlation with electrostatic charge
The evolution of the ES charge within the wear scar on plates during 

the dry tests Dry-1, Dry-2, and Dry-3 was detected by the ES bar sensor 
and is shown in Fig. 4. A positive charge was detected in all tests. As 
discussed in Ref. [11], the positive charge detected under dry sliding 
conditions indicated the presence of oxide, either as a film or as oxidised 
wear debris. The phenomenon was due to the higher work function of 
the oxide [46], which led to the material becoming positively charged 
when in contact with unoxidised steel.

It is observed that at the beginning of the second run of Dry-2, the 
charge level was lower than at the end of the first run. A similar pattern 
is noted in Dry-3, where the charge was lower at the start of the second 
to fifth runs compared to the end of the preceding runs. This reduction in 
charge can be attributed to charge relaxation during the pauses between 
tests. Given that the oxide exhibits semi-conducting behaviour, the 
charge relaxes gradually over time when the plates were connected to 
ground. The relationship between charge relaxation and the pause 
duration in Dry-2 and Dry-3 tests is illustrated in Fig. 5. It is evident that 
charge relaxation increased with longer pause durations. The pause 
durations varied because of the different accounts of time required to 
create charge maps and conduct optical and electron microscopy 
observations.

To investigate the wear mechanisms, optical and SEM observations 
of the wear scar were conducted. An optical image of the wear scar after 
the first run in Dry-3 is shown in Fig. 6 (a), and SEM images of twelve 
positions on the wear scar are shown in Fig. 6 (b). It is seen that in Fig. 6
(a), most of the wear scar had the steel colour and there were two black 
stripes where the surface was worn out. SEM images at positions 1, 2, 3, 
7, 8, and 9, corresponding to the steel-colour areas, show the presence of 
oxide films on the plate surface, indicating the formation of oxidational 
wear. In contrast, SEM images at positions 4, 5, and 6 within the black 
stripes show a worn surface with scratches in the direction of sliding, 
which is recognised as abrasive wear. A comparison of the two wear 

mechanisms is evident in positions 10, 11, and 12, where a mixture of 
both is observed. Oxidational wear is observed on the left side, while 
abrasive wear is presented on the right side.

The evolution of the wear scar in Dry-3 is shown in Fig. 7 (a). After 
the first run (Dry-3-1), the abrasive wear area visible as black stripes 
constituted 31.7 % of the total wear area. This increased to 41.9 % after 
the second run (Dry-3-2) and eventually reached 100 % following the 
third run (Dry-3-3). Notable increases in the abrasive wear area during 
Dry-3-1 and Dry-3-3 corresponded to the noisy periods in the CoF 
observed in Fig. 3. As seen in Fig. 7 (b), oxide films were present in 
position 1 after Dry-3-2, with lapping scars still visible on the surface. By 
the end of Dry-3-3, abrasive wear had become dominant in this position, 
and most of the oxide films had been worn off. The ploughing and 
fracture mechanisms, along with the breakdown of oxide films, debris 
hardening and egress occurred during Dry-3-3 contributed to the de
viations in the CoF.

To discuss the wear mechanisms in dry tests, Dry-2 is used as an 
example because both oxidational and abrasive wear were produced 
after the test. In Dry-3, both oxidative and abrasive wear were present on 
the wear scar during the first three runs as seen in Fig. 7; however, the 
roller was not removed from the rig for observation until the end of the 
test to maintain the continuity of the test. As a result, the wear scar on 
the roller was not observed until the test concluded, so a correlation 
between the wear on the roller and the plate could not be established. 
Observations of the wear scar on the plate and roller after Dry-2 are 
presented in Fig. 8.

As shown in Fig. 8 (a), both steel-colour areas and black stripes were 
present on the wear scar, corresponding to different wear mechanisms: 
oxidational wear (Fig. 8 (b)) and abrasive wear (Fig. 8 (c)) respectively. 
Corresponding to the abrasive wear area on the plates, grooves were also 
observed on the harder roller as presented in (Fig. 8 (d)). The SEM/EDS 
analysis of the wear debris from Dry-2 is shown in Fig. 9. The corre
sponding oxygen and iron maps reveal that the debris is composed of 
both oxide particles and metallic debris. The debris was likely to be 
strain hardened and thus harder than the roller and able to abrade it.

The Wear mechanism under dry condition is illustrated in Fig. 10. At 
a relatively low sliding speed (50 mm/s in this work), the oxide films 
formed on the plate surface due to oxidation process which was pro
moted by frictional heating and accumulation of oxide debris [1,2,47]. 
Fractured oxides and oxidised metallic wear particles can undergo strain 
hardening during sliding. These hardened particles then plough the 
surface, causing abrasive wear and generating additional oxide and 
metallic debris.

To investigate the relationship between charge and oxygen concen
tration on the wear scar of the five runs in Dry-3, charge maps were 
generated using data collected by the ES array sensor, and EDS analysis 
was conducted at twelve positions on the wear scar after each run. As an 
example, the charge map of the wear scar after the first run is shown in 
Fig. 11 (a), and the oxygen concentration at the twelve marked positions 
measured using EDS analysis is shown in Fig. 11 (b). The twelve posi
tions correspond to those marked on the wear scar in Fig. 6 (a).

Correlation between localised charge and oxygen concentration in 

Fig. 3. CoF data in dry tests (Dry-1, Dry-2, and Dry-3).
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the five runs of Dry-3 is shown in Fig. 12. The black dots are in oxida
tional wear regions, and the white dots are in abrasive wear regions. 
When considering the entire dataset, the correlation appears weak to 
non-existent. However, when analysed separately by surface charac
teristics, the charge and oxygen concentration exhibited a nearly linear 
relationship in the oxidational wear regions with a correlation coeffi
cient of 0.79. In contrast, the abrasive wear regions showed little to no 

correlation. The weak correlation in the abrasive wear regions may be 
due to the removal of most oxide debris before SEM/EDS analysis, 
leading to oxygen concentration measurements that were not consistent 
with the conditions at the time of charge detection. Another reason 
could be that oxides with different compositions (oxygen content) were 
produced in the abrasive wear regions. Rapid reoxidation can occur on 
the nascent surfaces generated by abrasive wear, and the reformed oxide 
may differ in composition from the oxide films that develop under static 
conditions in the oxidational wear regions [1].

4.1.3. Correlation between friction and charge
The correlation analysis between the CoF and ES signals collected 

from the initial run of the Dry-2 test is illustrated in Fig. 13, using data 
from Ref. [11]. This test primarily induced oxidational wear. As depicted 
in the correlation matrix in in Fig. 13 (a), both the mean and root mean 
square (RMS) values of CoF and ES exhibit a strong positive linear 
relationship, with a correlation coefficient of approximately 0.979. 
Given that the charge can be either positive or negative, depending on 
the wear mechanisms involved, the use of mean values is more appro
priate for this analysis. The cluster mapping of the CoF mean against the 
ES mean, shown in in Fig. 13 (b), further emphasises this relationship. 
The colour gradient in the cluster plot, ranging from blue (representing 
the start of the run) to red (representing the end of the run), demon
strates an increase in both friction and charge over the duration of the 
test. The same analytical approach was applied to other tests, revealing 
distinct correlation patterns corresponding to different wear 

Fig. 4. ES bar sensor data in dry tests (Dry-1, Dry-2, and Dry-3).

Fig. 5. Relationship between charge relaxation and stop time in Dry-2 and 
Dry-3.

Fig. 6. (a) Optical image of wear scar on plate and (b) SEM images of wear distribution of the first run in Dry-3.
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mechanisms.
The cluster mapping of the CoF mean against the ES mean for the first 

and final runs of the Dry-3 test is presented in Fig. 14. In the first run, as 
shown in Fig. 14 (a), the relationship was linear in some regions high
lighted in the green circles, while nonlinear in others. As depicted in 
Fig. 6 (a), the wear scar after this run exhibited both oxidational and 
abrasive wear. As learnt from the Dry-2 test, the linear relationship 
corresponds to the dominance of oxidational wear, while the nonlinear 

relationship is associated with the progression of abrasive wear. In 
Fig. 14 (b), the relationship between ES and CoF in the final run 
appeared nearly linear, with a correlation coefficient of 0.927. This in
dicates a reduced progression rate of abrasive wear during this run, 
while the reemergence of a linear relationship suggests that oxidational 
wear once again became the dominant mechanism on the worn surface.

In contrast to prior studies focused on oxidational wear at the final 
wear scar [4,5], this work employed friction and electrostatic charge 
monitoring at each cycle to track wear evolution and identify transitions 
between wear mechanisms in real time. Compared to earlier research [3,
28] that measured the net charge from the whole scar, this work ach
ieved localised charge detection and established its relationship with 
wear mechanisms. Building on the study in Ref. [11], the relationship 

Fig. 7. (a) Evolution of wear scar in Dry-3; (b) transition from oxidational wear after Dry-3-2 to abrasive wear after Dry-3-3 in position 1.

Fig. 8. (a) Optical image of wear scar on plate, (b) SEM image of oxidational 
wear, (c) SEM image of abrasive wear, and (d) optical image of wear scar on 
roller after Dry-2.

Fig. 9. (a) SEM image and (b) EDS maps (O and Fe) of wear debris after Dry-2.
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between online electrostatic signals and friction was investigated, 
enabling the identification of wear mechanisms in real time. Addition
ally, more data were collected to validate the relationship between 
surface charge and oxide formation.

4.2. Starved sliding tests

4.2.1. Wear mechanisms, friction and electrostatic charge
The CoF versus sliding distance for the starved-lubricated tests 

Starved-1, Starved-2, and Starved-3 is shown in Fig. 15. The CoF was 
around 0.1 during the tests. As observed in the graph, there was a 
decrease in friction in Starved-1 and the first runs in Starved-2 and 
Starved-3. This could be attributed to the reduction in surface roughness 
of the plates during the running-in stage [48]. Roughness measurements 
of the plate tested in Starved-1 showed that the untested plate had a 
roughness average (Ra) of 0.052 ± 0.001 μm, a skewness (Rsk) of 0.042 
± 0.034, and a kurtosis (Rku) of 3.964 ± 0.391. In contrast, within the 
tested wear scar, Ra decreased to 0.046 ± 0.002 μm, Rsk to − 0.383 ±
0.074, and Rku to 3.174 ± 0.178, indicating the removal of asperity 
peaks and the smoothing of the surface. The polishing of surface is also 
observed in the SEM images shown in Fig. 16. Compared with the un
tested surface shown in Fig. 16 (a), the lapping scars on the plates were 
polished off and no significant damage was observed in the post-test 
surfaces shown in Fig. 16 (b), (c), and (d).

4.2.2. Charge correlated with lubricant shearing and degradation
The evolution of the ES charge detected by the ES bar sensor during 

the starved tests (Starved-1, Starved-2, and Starved-3) is shown in 
Fig. 17. In all tests, the charge was negative and progressively shifted 
towards a more positive value, approaching zero, as the tests proceeded.

To investigate the charge mechanisms, SEM observations and cor
responding EDS analysis were performed on the wear scars from the 
three starved-lubricated tests, with the results presented in Fig. 18. As 
the test duration increased, the accumulation of wear debris became 
more prominent, especially in the wear scar of Starved-3. This debris is 
believed to consist of oxidised particles, as evidenced by the elevated 
oxygen levels detected in this test, as indicated by the EDS spectrum.

Charge measurements on tribological surfaces under starved- 
lubricated conditions are affected by numerous factors, ranging from 
the lubricant type, the work function of the surfaces [34] to lubricant 
shearing. The lubricant type has been known to influence the magnitude 
and polarity of charge [49]. As investigated in Ref. [32], fully formu
lated synthetic oils tend to exhibit negative charge, while mineral base 
oils typically generate positive charge. In this study, synthetic oil was 
used, which could be a factor to the negative charge.

Lubricants complicate charge levels in that they absorb onto sur
faces, with the absorbed molecules affect the work function [50]. Under 
sliding conditions, lubricants respond to shear, potentially altering bulk 
chemistry, undergoing thermal degradation, and interacting with the 
metal surface. Under starved-lubricated conditions, as the test 

Fig. 10. Wear mechanism in dry sliding tests.

Fig. 11. (a) Charge map generated by ES array sensor data, and (b) oxygen 
concentration distribution obtained by EDS analysis at twelve positions after 
the first run of Dry-3.

Fig. 12. Correlation between oxygen concentration and localised charge in test 
Dry-3.
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progressed, an increasing amount of lubricant was pushed out of the 
contact area, particularly towards the reversal points of the recipro
cating motion. This allowed for metal-to-metal contact, which could 
result in a polishing effect, creating nascent surfaces that could interact 
with the adsorbed lubricant. The surface with absorbed lubricants can 
exhibit a different work function, resulting in a CPD with the untested 
surface and generation of a negative charge. Additionally, the negative 
charge may originate from the tribo-charging mechanism due to the 
relative motion of the double layer present at metal/oil interfaces [34].

As the lubricant was further removed, the contact area became 
increasingly starved, leading to partial dry sliding condition, where mild 
oxidational wear was likely to occur. Since oxidational wear induces a 
positive charge as discussed in Section 4.1.2, the near-zero charge 

observed at the end of Starved-3 could be attributed to this mild oxi
dational wear, as evidenced by the presence of wear debris as shown in 
Fig. 18.

In the starved tests, electrostatic charge and friction were not highly 
correlated because they were influenced by several different mecha
nisms. The charge was primarily generated from lubricant type, 
shearing, and CPD with untested surface, whereas the decrease in fric
tion was attributed to the reduction in surface roughness.

4.3. Wear detection with outlier score analysis

Outlier detection was employed to identify abnormal events in the 
CoF and ES data during both dry and starved-lubricated tests, which may 

Fig. 13. (a)Correlation matrix of statistical features between CoF and ES, and (b)cluster mapping of CoF mean against ES mean in the first run of Dry-2 test, based on 
data from [11].

Fig. 14. Cluster mapping of CoF mean against ES mean in the (a) first run and (b) final run of Dry-3.

Fig. 15. Coefficient of friction versus sliding distance in starved tests (Starved-1, Starved-2, and Starved-3).
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provide insights into the initiation and progression of wear. As presented 
in Section 3.3, five outlier detection algorithms, FRR, IF, OCSVM, LSTM, 
and AE, were applied for normalised outlier score calculations. The 
dataset used for this analysis was the raw CoF and ES data collected with 
a sampling rate of 1 kHz.

4.3.1. Outlier detection of Starved-4 test
The outlier scores obtained using the five algorithms during the last 

run of Starved-4 are presented in Fig. 19. A sharp increase in outlier 
scores for both CoF and ES data was detected at around 1125 cycles, 
near the end of the run, by the FRR, IF, OCSVM, and LSTM algorithms. 
While the AE algorithm also indicated a sharp rise in outlier scores for 
the CoF data towards the end of the run, the outlier score for the ES data 
exhibited an increasing trend much earlier, starting at approximately 
400 cycles.

During the Starved-4 test, a video was recorded to monitor the 

progression of wear on the plate. Fig. 20 (a), (b), and (c) show screen
shots from the video captured during the final run of Starved-4. These 
screenshots correspond to different stages in the wear process: at 1130 
cycles, just before debris became visible; at 1131 cycles, when debris 
first appeared near the stroke end; and at 1135 cycles, the final cycle of 
the run. After the test, an optical image of the wear scar at the stroke end 
was taken, clearly showing the accumulation of debris within the wear 
scar, as illustrated in Fig. 20 (d).

Based on the observation of wear evolution, the sharp increase in 
outlier scores for both CoF and ES, detected by the FRR, IF, OCSVM, and 
LSTM algorithms, occurred just before the visible accumulation of 
debris. This suggests that the rise in outlier scores was directly linked to 
the formation of debris. In contrast, the AE algorithm identified 
abnormal events much earlier, potentially corresponding to earlier 
stages of the wear process, such as mild oxidative wear and early debris 
formation. Given that the sample was lubricated with oil, the wear in 

Fig. 16. SEM images of plates (a) before testing, (b) after Starved-1, (c) after Starved-2, and (d) after Starved-3.

Fig. 17. Electrostatic bar sensor signal versus sliding distance in starved tests (Starved-1, Starved-2, and Starved-3).
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this test was relatively mild, resulting in small changes in surface charge. 
The AE algorithm demonstrated the highest sensitivity in detecting these 
early, subtle changes, making it particularly effective for identifying the 
onset of wear in such conditions.

4.3.2. Outlier score with Starved-3 test
The outlier scores for CoF and ES data during Starved-3 test calcu

lated by the AE algorithm are shown in Fig. 21. No abnormal events 
were detected in either the CoF or ES data during the first four runs, 
likely due to the mild wear under the lubricated conditions. However, in 
the final run, fluctuations in the outlier scores for the ES data were 
observed, which may be attributed to the formation of oxide debris, as 
indicated by the SEM images presented in Fig. 18.

4.3.3. Outlier score with Dry-3 test
The outlier scores for the CoF and ES data calculated using the AE 

algorithm during Dry-3 test are shown in Fig. 22. In the first run, the 
outlier score of CoF fluctuated between 120 and 630 cycles (a total of 
510 cycles) as highlighted in the black box. The number of cycles with 
fluctuating outlier scores in the subsequent four runs was also measured 
and is summarised in Table 4. The increase in the proportion (%) of the 
abrasive wear region was measured based on the optical images of the 
wear scars shown in Fig. 7 and is also listed in Table 4. An increase in the 
number of cycles with fluctuating outlier scores corresponds to a higher 
proportion of abrasive wear, suggesting that the outlier scores effec
tively revealed the progression of abrasive wear. By the fourth run, 
abrasive wear had covered the entire wear scar, and the progression rate 
slowed down, leading to a significant reduction in the number of cycles 
with fluctuating outlier scores. This suggests that the outlier algorithm is 

Fig. 18. SEM/EDS analysis of wear scar in starved tests.

Fig. 19. Outlier scores versus number of cycles of the last run in Starved-4.
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capable of detecting the signals associated with wear propagation, with 
lower scores associated with steady-state running.

The outlier detection of online electrostatic and friction data enables 
the real-time identification of early and mild wear mechanisms. The 
insights provided by electrostatic sensing enhance predictive digital 
twin technologies and contribute to early wear detection and predictive 
maintenance strategies.

5. Conclusions

This study investigated wear mechanisms occurring under dry and 
starved-lubricated conditions and the corresponding friction and elec
trostatic charge behaviours. The main findings are as follows: 

⁃ In this study, a bar electrostatic sensor was employed to detect the 
real-time charge, with the data used to explore its correlation with 
friction and investigate wear evolution. Additionally, an electrostatic 
array sensor was used to detect residual charge with higher 

Fig. 20. Screenshot of the video taken at (a) 1130 cycles, (b) 1131 cycles, (c) 1135 cycles of the last run in Starved-4, and (d) the optical image taken at the end of 
the run.

Fig. 21. Outlier scores of CoF and ES versus number of cycles of the five runs in Starved-3.
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resolution, enabling the investigation of localised charge mecha
nisms and their relationships with wear mechanisms.

⁃ In dry conditions, oxidational wear and abrasive wear were the 
dominant wear modes. Oxidational wear developed first, and as 
sliding continued, oxide debris accumulated and hardened, plough
ing and surface and leading to the onset of abrasive wear. Oxida
tional wear was associated with a stable increase in the coefficient of 
friction (CoF), ranging from 0.4 to 0.6, while abrasive wear caused 
noisier CoF data.

⁃ Positive electrostatic charge was detected during the dry tests, 
attributed to the presence of oxide films, which have a higher work 
function than steel. The relationship between friction and real-time 
charge was found to indicate the type of wear process. A linear 
relationship was observed during oxidational wear, whereas a 
nonlinear relationship was found during abrasive wear. EDS analysis 
revealed that in areas where oxidational wear was dominant, a 
localised higher oxygen percentage correlated with a higher elec
trostatic charge, showing a nearly linear relationship.

⁃ In starved-lubricated conditions, the running-in process was char
acterised by a decreasing CoF and a reduction in surface roughness. 
Negative electrostatic charge was detected during these tests, 
potentially attributed to the lubricant type, reaction between the 
lubricant with the steel surface, and tribo-charging mechanism.

⁃ Outlier detection algorithms were used to study the evolution of 
wear under dry and starved-lubricated conditions in-depth and 
showed potential in identifying evolution of wear. In dry tests, the 
algorithms found evidence of irregularities pointing to wear on the 

surface occurring. In starved-lubricated tests, they indicated subtle 
signs of damage from wear processes. This would indicate that the 
outlier detection has been successful in the early detection of wear 
propagation, before even very minor damage has occurred.

Electrostatic measurements are sensitive to environmental factors 
such as humidity and temperature, which can influence the identifica
tion of wear mechanisms. Additionally, interpreting charge signals in 
complex tribological systems with simultaneous wear mechanisms pre
sents challenges. To address these issues, the effects of environmental 
factors on electrostatic charge behaviour such as generation and relax
ation and their relationships to wear mechanisms will be investigated. 
Furthermore, electrostatic sensing will be integrated into a multi-modal 
sensing system to fully resolve sensor signals and their relationships to 
wear processes.
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