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Spontaneous torque on an inhomogeneous chiral body out of thermal equilibrium
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In a previous paper we showed that an inhomogeneous body in vacuum will experience a spontaneous force if
it is not in thermal equilibrium with its environment. This is due to the asymmetric asymptotic radiation pattern
such an object emits. We demonstrated this self-propulsive force by considering an expansion in powers of the
electric susceptibility: A torque arises in first order, but only if the material constituting the body is nonreciprocal.
No force arises in first order. A force does occur for bodies made of ordinary (reciprocal) materials in second
order. Here we extend these considerations to the torque. As one would expect, a spontaneous torque will also
appear on an inhomogeneous chiral object if it is out of thermal equilibrium with its environment. Once a chiral
body starts to rotate, it will experience a small quantum frictional torque, but much more important, unless
a mechanism is provided to maintain the nonequilibrium state, is thermalization: The body will rapidly reach
thermal equilibrium with the vacuum, and the angular acceleration will essentially become zero. For a small, or
even a large, inhomogeneous chiral body, a terminal angular velocity will result, which seems to be in the realm
of observability.
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I. INTRODUCTION

There is extensive theoretical literature over recent decades
concerning quantum electrodynamic friction between two rel-
atively moving surfaces, or between a particle or atom moving
parallel to a conducting or dielectric surface; see Refs. [1–19],
for example. But much earlier, Einstein and Hopf [20] showed
that a polarizable particle moving with nonrelativistic velocity
v through vacuum, filled with blackbody radiation at temper-
ature T = β−1, experiences a frictional force, which can be
expressed in generalized form for an isotropic particle with
polarizability α(ω):

F EH = − vβ

12π2

∫ ∞

0
dω ω5Im α(ω)

1

sinh2 βω/2
. (1.1)

Here, the imaginary part of the polarizability may arise from
either intrinsic processes within the particle or, for the case of
an atom, fluctuations in the electromagnetic field. In the last
two decades there has been considerable work on this effect:
For a subset of the literature see Refs. [21–26]. But such a
force is very small, and has never been observed. We general-
ized this result to relativistic velocities in Refs. [27,28], where
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the force might be much more appreciable. In particular, we
considered the temperature of the particle, T ′, to be different
from that of the background, T . We found that the nonequi-
librium steady state (NESS) [29], where the particle neither
gains nor loses energy in its rest frame, requires that the ratio
of these two temperatures, T ′/T , has a definite value, different
from unity, which might prove to be a signature for quantum
vacuum friction. The NESS condition plays a role analogous
to thermal equilibrium in this dynamic context and reduces
to thermal equilibrium when the relative velocity between the
body and its environment vanishes, in which case T ′/T → 1.

Even more remarkably, a stationary body may experience
a force or torque in a nontrivial background [30,31], or in
vacuum [32–41], provided it is out of thermal equilibrium
with its environment. In particular, for a nonreciprocal body
[42], that is, one for which the electric susceptibility has a
nonsymmetric real part, a spontaneous torque can arise in
vacuum if the temperature of the body differs from that of
the vacuum [39,40,43,44]. No force can arise, however, in
first order in the susceptibility, unless another body, such as
a conducting plate, is present. Such forces and torques owe
their origin to radiative heat transfer [45].

Forces and torques on ordinary bodies made of reciprocal
materials also arise, but in higher order in the electric sus-
ceptibility. Müller and Krüger [46] showed that a Janus ball
with the two halves made of different homogeneous reciprocal
materials would experience a force, for which they gave an
expression in the dilute approximation, in second order in
the susceptibility. Shortly thereafter, this effect was confirmed
by Reid et al. [47] through numerical calculations, but those
authors found a different scaling behavior with the radius of
the ball. To achieve a spontaneous force, to second order in
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electric susceptibility, requires that the body not only be out
of thermal equilibrium with its environment, but also that it be
inhomogeneous, having an electric susceptibility that varies
over the body. Of course, the distribution of susceptibility
must break reflection invariance so there is an axis for motion.
According to Ref. [47], however, the inhomogeneity require-
ment is not necessary for a torque to appear; all that is required
is that the body be chiral, that is, have a “handedness.”

In this paper we continue our systematic treatment of
quantum-thermal vacuum torques and forces. In Ref. [48]
we started from the classical expression for the force on
a dielectric body, and expanded it out to fourth order in
generalized susceptibilities (i.e., the electric susceptibility or
the Green’s dyadic) and quantized the result by using the
fluctuation-dissipation theorem (FDT). In this way we ob-
tained expressions for the force on an inhomogeneous object
out of thermal equilibrium with its vacuum environment,
which we evaluated for a number of examples. The results
were in qualitative agreement1 with previous work [46,47,49].
Of course, the fact that the body was hotter or colder than its
environment meant that it would rapidly thermalize, but even
so, the resulting terminal velocity might be observable.

Here, we return to the torque, but consider it in second
order in the electric susceptibility. To achieve a nonzero torque
in second order, the body again must be out of thermal
equilibrium with the vacuum, be chiral to break rotational
and reflection invariance, and be inhomogeneous. This is in
contrast to the nonperturbative numerical work of Ref. [47],
which finds a torque for a chiral body made of isotropic and
uniform gold.

The outline of this paper is as follows. In Sec. II we first
rederive the torque on a nonreciprocal body, which occurs
in first order in the electric susceptibility. We then expand
the expression for the torque to second order and find that
a torque arises in general for a reciprocal body provided
it is chiral and inhomogeneous. In Sec. III we rederive the
general torque expression we found in Sec. II by examining
the radiation-zone electromagnetic fields through the angular
momentum flux vector. We then consider two simple exam-
ples which would exhibit a torque but not a force (so the
body might be observed for some time without it flying away).
In Sec. IV we examine what we dub a dual Allen wrench,
with dielectric tags perpendicularly attached to a central metal
wire. The torque and resulting terminal angular velocity may
be enhanced if the tags are replaced by two-dimensional flags,
which we discuss in Sec. V. Conclusions round out the pa-
per. Two Appendixes follow, one on the general expansion
scheme in susceptibilities, Appendix A, and one on the dual-
ity between dielectric-metal and blackbody-metal composites,
Appendix B.

We use natural units, h̄ = c = ε0 = μ0 = kB = 1.

1There appear to be different results in the literature for the depen-
dence of the force on the size of the Janus ball. For example, the
dependence we found in Ref. [48] for the second-order susceptibility
contribution to the force disagrees with that given in Refs. [46,47],
which do not seem to agree with each other.

II. TORQUE: SOURCE POINT OF VIEW

Classically, the torque on a stationary dielectric body with
polarization vector P is given by [50]

τ =
∫

(dr)
dω

2π

dν

2π
e−i(ω+ν)t [P(r; ω) × E(r; ν)

+ Pi(r; ω)(r × ∇)Ei(r; ν)]. (2.1)

The first term here is called the internal torque and the second
the external torque, because the latter is reflective of the force
on the body.

A. First-order calculation

Let us first review how this yields, in first order in the sus-
ceptibility, a torque if the body is out of thermal equilibrium
with the vacuum. To do this we either expand E to first order
in P,

E (1)
i (r; ω) =

∫
(dr′)�i j (r − r′; ω)Pj (r′; ω), (2.2a)

where � is the vacuum retarded Green’s dyadic, or we expand
P to first order in E,

P(1)
i (r; ω) = χi j (r; ω)Ej (r; ω), (2.2b)

where we assume that the electric susceptibility χ is local in
space. These expressions give the first-order linear responses
to the fluctuating fields P and E, respectively. See Appendix A
for the general scheme of the expansion. The resulting terms,
due to expanding P once, denoted (1,0), or expanding E once,
(0,1),2 are then quantized using the FDT for the independent
fluctuating fields:

〈Pj (r; ω)Pl (r′; ν)〉 = 2πδ(ω + ν)δ(r − r′)

×�χ jl (r; ω) coth
β ′ω

2
, (2.3a)

〈Ej (r; ω)El (r′; ν)〉 = 2πδ(ω + ν) �� jl (r − r′; ω) coth
βω

2
,

(2.3b)

where T = 1/β is the temperature of the blackbody en-
vironment, and T ′ = 1/β ′ is the temperature of the body,
and symmetrized products of fields are assumed.3 The FDT
requires that the “imaginary part” appearing here be the anti-
Hermitian part:

�χ ≡ 1

2i
(χ − χ†). (2.4)

(The vacuum is, of course, reciprocal, which means �� =
Im�, the ordinary imaginary part.) In this order, the Green’s

2Here, (n, m) designates the number of iterations in the expansion
of P and E, respectively.

3Note that, at zero temperature, the fluctuations are purely quan-
tum, while, in the limit of infinite temperature, the fluctuations
are purely classical. In between, the fluctuations are thermal but
reflect the quantum nature of the system. This is easily seen on
reinstating conventional units, and recognizing that the thermal factor
(eh̄ω/kBT − 1)−1 explicitly involves both h̄ and kB.
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dyadics are evaluated at coincident points,

�(r − r′; ω) → 1
(

ω2

6πR
+ i

ω3

6π
+ O(R)

)
, R = |r − r′| → 0, (2.5)

and its gradient is odd in r − r′. This means that the external torque vanishes, which is the reason there can be no spontaneous
force in this order. From the internal torque, we immediately obtain the sum of the (1,0) and (0,1) contributions:

τi =
∫

(dr)
dω

2π
εi jkReχ jk (r; ω)

ω3

6π

(
coth

βω

2
− coth

β ′ω
2

)
. (2.6)

Therefore, a spontaneous vacuum torque can arise only for a nonreciprocal material, which possesses a nonsymmetric real part
of the electric susceptibility.4 This is exactly the result found in Refs. [39,40,43,44].

B. Second-order torque

To obtain a torque on a body made of reciprocal material, we have to go to second order in the electric susceptibility. To deal
with the greater complexity, let us start with the terms coming from PP fluctuations.5 Using the designation above, these involve
two contributions, (2,1) and (0,3). The former is

τ
(2,1)
i =

∫
(dr)(dr′)(dr′′)

dω

2π

dν

dπ
εi jk

[
χ jm(r; ω)�mn(r − r′; ω)Pn(r′; ω)�kl (r − r′′; ν)Pl (r′′; ν)

+χlm(r; ω)�mn(r − r′; ω)Pn(r′; ω)r j∇k�l p(r − r′′; ν)Pp(r′′; ν)
]
. (2.7)

Use of the FDT (2.3a) yields

τ
(2,1)
i =

∫
(dr)(dr′)

dω

2π
εi jk

[
χ jm(r; ω)�mn(r − r′; ω)�χnl (r

′; ω)�kl (r − r′; −ω)

+χlm(r; ω)�mn(r − r′; ω)�χnp(r′; ω)r j∇k�l p(r − r′; −ω)
]

coth
β ′ω

2
. (2.8)

A small check of this is that if in the second term, the external part, we substitute r → r + R, where R designates the position
of the center of mass of the body, we read off the force contribution found in Ref. [48]:

F (2,1)
k =

∫
(dr)(dr′)

dω

2π
χlm(r; μ)�mn(r − r′; ω)�χnp(r′; ω)∇k�l p(r − r′; −ω) coth

β ′ω
2

. (2.9)

The formula for the torque simplifies considerably if the susceptibility is both isotropic and homogeneous, χlm(r; ω) =
δlmχ (ω). Then,

τ
(2,1)
i =

∫
(dr)(dr′)

dω

2π
εi jkIm[χ (ω)]χ (ω)[� jl (r − r′; ω)�kl (r − r′; −ω) + �ml (r − r′; ω)r j∇k�ml (r − r′; −ω)] coth

β ′ω
2

.

(2.10)

This evidently vanishes: the second term, the external contribution, is zero, because it is odd under interchange of r and r′
[r j → 1

2 (r j + r′
j ) to survive the Levi-Civita symbol], and the first term (the internal term) is zero because the vacuum Green’s

dyadic is entirely constructed from the vector r − r′. If the body is homogeneous but not isotropic, χ(r; ω) = χ(ω), it is similarly
seen that the torque around any principal axis is zero.

If we assume isotropy only, but not homogeneity, it is still true that the internal torque vanishes, and we are left with

τ
(2,1)
i =

∫
(dr)(dr′)

dω

2π
εi jkIm[χ (r′; ω)]χ (r; ω)�ml (r − r′; ω)r j∇k�ml (r − r′; −ω) coth

β ′ω
2

. (2.11)

In the same way, we can write down the (0,3) contribution:

τ
(0,3)
i =

∫
(dr)(dr′)

dω

2π
εi jk

[
�χ jm(r; ω)�kl (r − r′; −ω)χln(r′; −ω)�nm(r − r′; −ω)

+�χl p(r; ω)r j∇k[�lm(r − r′; −ω)]χmn(r′; −ω)�np(r − r′; −ω)
]

coth
β ′ω

2
. (2.12)

4Since the typical way such a nonreciprocity can arise is through an external magnetic field, calling this a vacuum effect seems to be an
oxymoron.

5This notation means expanding the torque to a term quadratic in P and then using the FDT (2.3a). The EE notation means expanding to a
term quadratic in E and then using the FDT (2.3b).
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The second, external term, indeed reproduces the (0,3) force
contribution found in Ref. [48]. And again it is readily seen
that if the body is isotropic, so that χi j (r; ω) = δi jχ (r; ω),
the internal torque vanishes, while if the susceptibility is
homogeneous, the entire torque vanishes. However, if the sus-
ceptibility is isotropic but inhomogeneous, the external torque
is nonzero—as it must be since there is a force in such a
case—resulting in the torque due to PP fluctuations:

τ
(0,3)+(2,1)
i = τ PP

i = −
∫

(dr)(dr′)
dω

2π
εi jkr j

× Im�lm(r − r′; ω)∇kIm�lm(r − r′; ω)

× X (r, r′; ω) coth
β ′ω

2
, (2.13)

where

X (r, r′; ω) = Imχ (r; ω)Reχ (r′; ω) − Reχ (r; ω)Imχ (r′; ω).

(2.14)

The second-order EE fluctuation contribution to the torque
is calculated in the same way, and results merely in the change
of sign and the replacement of the thermal factor coth β ′ω

2 by
coth βω

2 . For a body with isotropic susceptibility there is only
the external torque, which is

τi =
∫

dω

2π

(
coth

βω

2
− coth

β ′ω
2

)
εi jk

∫
(dr)(dr′)

× X (r, r′; ω)Im�lm(r − r′; ω)r j

× ∇kIm�lm(r − r′; ω), (2.15)

which yields the corresponding force found in Ref. [48].
Again, there is no torque or force unless the body is in-
homogeneous. This is in contrast to the conclusions of the
numerical work by Reid et al. [47], who find a torque on a
homogeneous gold body that breaks chiral symmetry, such
as a pinwheel; however, their method is nonperturbative. The
product of Green’s dyadics sandwiching the gradient operator
can be written as

1

2
∇ 2�(ωs)

(4πs3)2
= 1

(4π )2

ŝ
s7

φ(v), (2.16)

with s = r − r′ and s = |s|, where, according to Ref. [48],

�(v) = (3 − 2v2 + v4) sin2 v − v(3 − v2) sin 2v

+ 3v2 cos2 v, (2.17)

in terms of v = ωs. The result of differentiation gives [this is
what we called v7D(v) in Ref. [48]]

φ(v) = − 9 − 2v2 − v4 + (9 − 16v2 + 3v4) cos 2v

+ v(18 − 8v2 + v4) sin 2v. (2.18)

Thus, Eq. (2.15) can be written as

τ =−
∫

dω

2π

(
coth

βω

2
− coth

β ′ω
2

)

×
∫

(dr)(dr′)X (r, r′; ω)
r × r′

(4π )2s8
φ(v). (2.19)

The examples we consider in Ref. [48] consisted of hetero-
geneous bodies consisting of two homogeneous parts, A and

B. The antisymmetric susceptibility product X becomes
1
2 X (r, r′; ω) → XAB(ω)

= ImχA(ω)ReχB(ω) − ReχA(ω)ImχB(ω), (2.20)

where the spatial support of χA is the volume A, while the
spatial support of χB is the nonoverlapping volume B. The
torque in this situation can then be written as

τ = 1

2π2

∫ ∞

0

dω

2π
XAB(ω)

(
1

eβω − 1
− 1

eβ ′ω − 1

)
JAB(ω),

(2.21a)

where the geometric factor is

JAB(ω) = −
∫

A
(dr)

∫
B

(dr′)
r × r′

|r − r′|8 φ(ω|r − r′|). (2.21b)

That the integral is convergent is evident from the behavior
of φ for small argument:

φ(v) ∼ −4

9
v8 + 28

225
v10 + · · · , v � 1, (2.22a)

φ(v) ∼ −v4 + v5 sin 2v + 3v4 cos 2v + · · · , v � 1.

(2.22b)

It is worth noting that φ(v) + 4v8/9 is strictly positive.

III. TORQUES FROM RADIATION-ZONE FIELDS

Because of the discrepancy with the results of Ref. [47], it
would be well to compute the torque in a different manner.
Such is provided by the local conservation law of angular
momentum [50]:

∂tJ + ∇ · K + r × f = 0. (3.1)

Here, the torque density is r × f , in terms of the force den-
sity f ; J is the angular momentum density of the field, in
vacuum,

J = r × G, G = E × H; (3.2a)

and K is the angular momentum flux tensor,

K = −T × r, T = E2 + H2

2
1 − EE − HH, (3.2b)

in terms of the vacuum field momentum G and the electro-
magnetic stress tensor T. For our static situation, we may
ignore the time derivative term in Eq. (3.1) (it will vanish
when the FDT is applied). Now integrate this over a very large
ball with origin at the center of the body. If the radius R of the
sphere is very large compared to distance within the body, we
have

τ =
∮

d�R2 R̂ · T × R = −
∮

d� R2 R̂ · (EE + HH) × R.

(3.3)

A. First-order torque

Let us first rederive the first-order torque for a nonrecip-
rocal body. In that case it is clear that the EE contribution to
the stress tensor is the only term that survives in the radia-
tion zone. (The HH contribution brings in extra derivatives.)
We expand the torque as before, but now we have to go to
second order in generalized susceptibilities: (0,2) and (2,0)
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correspond to EE fluctuations, while (1,1) corresponds to PP
fluctuations.6 Let us concentrate on the latter:

τ PP
i = −

∫
(dr)(dr′)

dω

2π

dν

2π
R̂l�lm(R − r; ω)Pm(r; ω)εi jk

× � jn(R − r′; ν)Pn(r′; ν)Rke−i(ω+ν)t . (3.4)

If we apply the FDT, this turns into

τ PP
i = −

∫
(dr)

dω

2π
R̂l�lm(R − r; ω)�χmn(r; ω)εi jk

× � jn(R − r; −ω)Rk coth
β ′ω

2
. (3.5)

We need to keep the two leading terms in the Green’s dyadic
here (in this case we can drop r in comparison to R):

�(R; ω) ∼ eiωR

4π

[
ω2

R
(1 − R̂R̂) + iω

R2
(1 − 3R̂R̂)

]
, R � r, r′.

(3.6)

The reason the higher-order term must be included here is that
the R̂l annihilates the leading term in the first Green’s dyadic.
Integrating over the large sphere gives∮

d� Rl Rm = 4π

3
δlmR2, (3.7)

so then all the R dependence cancels out in the radiation zone,
and we are left with

τ PP
i = 1

6π

∫
(dr)

dω

2π
iω3εi jk�χk j (r; ω) coth

β ′ω
2

. (3.8)

The only part of the anti-Hermitian part of the susceptibility
that survives in this integral is the real, antisymmetric part of

the susceptibility:

Im�χk j = − 1
2 [Reχk j − Reχ jk], (3.9)

so, introducing the mean polarizability

αk j (ω) =
∫

(dr)χk j (r; ω), (3.10)

we have

τi = εi jk

∫
dω

2π

ω3

6π
Re α jk (ω)

(
coth

βω

2
− coth

β ′ω
2

)
,

(3.11)

where we have included the corresponding EE-fluctuation
terms, (2,0) and (0,2). The only additional feature those terms
bring in is that, because of the imaginary part of the Green’s
dyadic that arises because of the FDT, we must recognize the
asymptotic replacement:

eiωR sin ωR → i

2
, e−iωR cos ωR → 1

2
. (3.12)

Thus, we have rederived, but by a rather more elaborate cal-
culation, the nonreciprocal result (2.6).

B. Second-order torque

When we go to second order, we have to proceed more
delicately. In particular, the HH part of the stress tensor con-
tributes equally to the radiated angular momentum, so let us
start with that. Classically, the corresponding contribution to
the torque is

τH
i = −

∫
d�

∫
dω

2π

dν

2π
R2 R̂ · H(r; ω) (H(r; ν) × R)i e−i(ω+ν)t , H(r; ω) = 1

iω
∇ × E(r; ω). (3.13)

We expand E, as before, in successive powers of the generalized susceptibilities. The (3,1) and (1,3) expansions refer to PP
fluctuations, which we will detail for the case of isotropic susceptibility. The (3,1) contribution is

τ
H (3,1)
i = −

∮
d� R2

∫
(dr)(dr′)(dr′′)

dω

2π

dν

2π
R̂l

εlmn

iω
∇m�nk (R − r; ω)χ (r; ω) �kp(r − r′; ω)Pp(r′; ω)

×εiqr

iν
εqst∇s�tu(R − r′′; ν)Pu(r′′; ν)Rr e−i(ω+ν)t

= −
∮

d� R2
∫

(dr)(dr′)
dω

2π
R̂l

εlmn

iω
∇m�nk (R − r; ω)χ (r; ω) �kp(r − r′; ω)Imχ (r′; ω)

× εiqr

−iω
εqst∇s�t p(R − r′; −ω)Rr coth

β ′ω
2

, (3.14)

where, in the second line, we have used the FDT. Now we must do a better approximation for the Green’s dyadic, in principle,
keeping first-order corrections in both the exponent and the power terms:

�nk (R − r; ω) ∼ 1 − r · ∇
4π

[
ω2

R
(1 − R̂R̂) + iω

R2
(1 − 3R̂R̂)

]
nk

eiω(R−R̂·r). (3.15)

6Now (n, m) refers to n iterations of the first factor and m iterations of the second.
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In this case, however, neither the r · ∇ nor the subleading
iω/R2 terms need be retained, but this is not true for the EE
terms. Now the effect of the first gradient in Eq. (3.14) is
confined to the exponential:

1

iω
∇meiω(R−R̂·r) =

(
R̂m − r

R
· (1 − R̂R̂)m

)
eiω(R−R̂·r).

(3.16)

The terms involving Rm vanish by virtue of the Levi-Civita
symbol. Thus, Eq. (3.16) already provides the necessary r fac-
tor. For the third Green’s dyadic, we merely keep the leading
term:

∇s

−iω
e−iω(R−r′ ·R̂) ∼ R̂se

−iω(R−r′ ·R̂). (3.17)

Putting this together, we have

τ
H (3,1)
i =

∮
d�

∫
(dr)(dr′)

dω

2π

ω4

(4π )2
χ (r; ω)

× Imχ (r′; ω) coth
β ′ω

2
eiωR̂·(r′−r)εlmnR̂l rm

× �np(r − r′; ω)(δip − R̂iR̂p). (3.18)

Now let us again abbreviate v = ω(r′ − r) and work out the
averages, ∮

d�R̂l e
iR̂·v = 4π iγ vl , (3.19a)∮

d�R̂l R̂mR̂neiR̂·v = 4π i[αvlvmvn + β(vlδmn

+ vmδnl + vnδlm)]. (3.19b)

The coefficients γ , β, and α are immediately obtained by
differentiating ∮

d� eiλR̂·v = 4π

vλ
sin vλ, (3.20)

once or three times, with respect to iλ. The relevant results are

γ = sin v

v3
− cos v

v2
, (3.21a)

α = −15
sin v

v5
+ 15

cos v

v4
+ 6

sin v

v3
− cos v

v2
, (3.21b)

β = 3
sin v

v5
− 3

cos v

v4
− sin v

v3
. (3.21c)

As we will immediately see, the α term does not contribute.
Finally, we can write the internal Green’s dyadic as

�(r − r′; ω) = f (v)v̂v̂ + g(v)1, (3.22)

with

f (v) = ω3

4πv3
(3 − 3iv − v2)eiv, (3.23a)

g(v) = − ω3

4πv3
(1 − iv − v2)eiv. (3.23b)

Then, it is readily seen that this contribution to the torque
is

τH (3,1) = 1

4π

∫
(dr)(dr′)

dω

2π
ω5Reχ (r; ω)

×Imχ (r′; ω)(r × r′)Im[γ g(v) + β f (v)] coth
β ′ω

2

= 1

(4π )2

∫
(dr)(dr′)

dω

2π
ω8X (r, r′; ω)(r × r′)

× 1

4v8
φ(v) coth

β ′ω
2

, (3.24)

where φ is the function defined in Eq. (2.18). This result is
exactly 1/4 of the PP part of Eq. (2.19). Indeed, following
precisely the same procedure detailed here, the H (1, 3), the
E (1, 3), and the E (3, 1) contributions are all the same, giving
a PP contribution to the torque exactly as found in Eq. (2.19).
We leave it to the reader to verify that the EE fluctuations
give the corresponding structure, with the replacement of the
thermal factor coth β ′ω/2 → − coth βω/2. Note that only the
(2, 2) EE and HH contributions are nonzero.7 As in Sec. II,
again we conclude that inhomogeneity is required for both
torque and force, in second order.

IV. EXAMPLE 1: DUAL ALLEN WRENCH

We now wish to study an example of an object that can
exhibit a torque but not a net force, so one could study the
rotational effect of a small object under a microscope. To
preclude a force on an inhomogeneous object, we can re-
quire that it be reflection invariant about a central point. In
order that it have a torque, the body must then be chiral,
meaning that it cannot be transformed into any mirror re-
flection by a translation or a rotation. A simple example of
such an object is shown in Fig. 1. The object is an L-shaped
figure reflected in the top of the L, which we might call a dual
Allen wrench, constructed of thin8 wires, with a shaft A of half
length a lying in the y direction, and asymmetric end tags B
of length b oriented along the x direction. The only significant
domain of integration is along the wires, which have small
cross-sectional areas SA and SB, respectively. The geometric
integral (2.21b) then points perpendicularly to the plane of the
body (the z axis), and is simple if we regard the cross-sectional
radius as negligible in size:

JAB(ω) = 2SASBω4ĴAB(ω)ẑ,

ĴAB(ω) = ω4
∫ a

−a
dy

∫ b

0
dx xy

φ(v)

v8
,

v = ω
√

x2 + (a + y)2. (4.1)

Due to the positivity condition noted at the end of Sec. II,
it is evident that JAB > 0, which means the torque (2.21a) is

7To resolve any notational confusion, recall that E or EE refers
to a term in the stress tensor (3.2b), while EE refers to the FDT
contribution (2.3b).

8Thin, because we want the thickness to be less than the skin depth
for the weak susceptibility approximation to be valid.
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FIG. 1. A reflected L-shaped body (“dual Allen wrench”) com-
posed of a thin wire A (cross-sectional area SA) of length 2a
connected at the ends to perpendicular equal-length wires B (cross-
sectional area SB) each of length b. Shown also are the Cartesian
coordinates of the center and the end points of the wire segments.
The two components have respective susceptibilities χA, χB. This
object is evidently invariant under reflection in the origin (0,0), but is
chiral, so it will experience a quantum vacuum torque about an axis
perpendicular to the plane of the figure, but not a force.

negative, clockwise in the sense of Fig. 1, if the susceptibility
product XAB > 0 and T ′ > T . Because the function φ involves
significant cancellations, it is not very practical to integrate
(4.1) numerically. Instead, it is convenient to adopt polar
coordinates:

x̃ ≡ ωx = ρ cos θ, ỹ ≡ ω(y + a) = ρ sin θ, (4.2)

where the integration is restricted to the interior of the
rectangle with sides 2ã ≡ 2ωa and b̃ ≡ ωb. The result of
straightforward integration on θ is

ĴAB(ω) =−ã
∫ 2ã

0
dρ

φ(ρ)

ρ6

+
∫ √

b̃2+4ã2

b̃
dρ

φ(ρ)

ρ6

⎡
⎣ã

√
1 − b̃2

ρ2
+ b̃2

2ρ

⎤
⎦

+ 1

2

⎡
⎣∫ b̃

0
−

∫ √
b̃2+4ã2

2ã

⎤
⎦dρ

φ(ρ)

ρ5
, (4.3)

which holds whatever are the relative magnitudes of 2a and b.
Most of the ρ integrals can also be carried out in closed form.
This function is always positive and, apart from the prefactor,
is plotted in Fig. 2.

If both ã and b̃ are large, the asymptotic value of ĴAB arises
only from the first integral in Eq. (4.3), and is

ĴAB ∼ 11
30π ã, ã � 1. (4.4)

How large an object does this correspond to? If T and
T ′ are both around room temperature, the transition be-
tween a “small” and a “large” object occurs when a, b ≈
1/T ≈ 10 µm, which uses the conversion factor h̄c = 2 ×

FIG. 2. The geometrical factor ĴAB in Eq. (4.3) plotted in terms of
the scaled half length ã of the central axis of the object in Fig. 1. The
solid curves show the cases ã = b̃ (central, black), b̃ = 2ã (upper,
blue), and ã = 2b̃ (lower, red). Also displayed are the asymptotic
values for large ã and b̃ (dotted red line), which show no dependence
on the aspect ratio r = b/a, and the behaviors for both ã and b̃ small,
which do show significant dependence on r, by the dashed lines.
The transition between the two asymptotic regimes occurs over a
relatively small region around ã = 2.

10−5 eV cm. Perhaps unexpectedly, this limit is independent
of the aspect ratio r = a/b, and is depicted in Fig. 2. The phys-
ical explanation of the large ã behavior of ĴAB is rather simple.
The local interactions are dominated by the regions near the
corners of the object. So, holding a fixed and increasing the
lengths of the tags, b, rather quickly saturates the integral, and
the torque becomes independent of b. This is true even for
smaller values of ã, as shown in Fig. 3. The local forces at the
corners also saturate as ã increases, but the lever arm grows
linearly with a, so the integral and torque do as well.

Therefore, for a large object of the type shown in Fig. 1,
with the shaft A being made of gold, described by a Drude
susceptibility (nominal values taken from Ref. [51])

χA = − ω2
p

ω2 + iων
, ωp = 9 eV, ν = 0.035 eV, (4.5)

FIG. 3. The dependence the geometric factor ĴAB on b̃ for fixed
ã. The four curves are for ã equal to 0.1, 0.5, 1, and 10, from bottom
to top. The curves are entirely similar, simply increasing with ã.
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FIG. 4. The integral τ̂ in Eq. (4.6) as a function of the temper-
ature of the body, T ′, relative to that of a vacuum environment at
T = 300 K, for parameters as given in the text.

and the tags B made of a dispersionless material, we have for
the torque

τ = 11

60π2
SASBaν4ω2

pχB

∫ ∞

0
dx

x4

x2 + 1

×
(

1

eβνx − 1
− 1

eβ ′νx − 1

)
. (4.6)

For a wire of circular radius 50 nm, which is approximately
the skin depth of gold [48], with a = 1 cm, the prefactor, τ0,
evaluates to 7 × 10−22 N m. The integral, denoted τ̂ , is shown
in Fig. 4. Such a torque might well be observable.

On the other hand, as is most easily seen from the Cartesian
form of JAB (4.1) using the small v behavior of φ seen in
Eq. (2.22a), the behavior of the geometric factor for a small
object is

ĴAB = 56

675
ã6r2, r = b/a, ã, b̃ � 1. (4.7)

The contribution to JAB from the leading term in φ(v) in the
small argument limit (2.22a) vanishes by symmetry, so this
result reflects the v10 term. This limit is also displayed in
Fig. 2. It agrees well with the exact evaluation for ã < 1. In
this regime we can also readily calculate the torque for the
same model for the constitution of the chiral object:

τ = 28

675π3
χBν9ω2

pSASBa4b2[ f9(t ) − f9(t ′)],

fn(t ) ≡
∫ ∞

0
dx

xn

x2 + 1

1

ex/t − 1
, (4.8)

where the dimensionless torque is

τ̂ = f9(t ) − f9(t ′), t = T

ν
, t ′ = T ′

ν
, (4.9a)

and explicitly

f9(t ) = �(8)ζ (8)t8 − �(6)ζ (6)t6 + �(4)ζ (4)t4

− �(2)ζ (2)t2 − 1
2

[
ψ

(
1

2πt

) + ln 2πt + πt
]
. (4.9b)

The temperature dependence of τ̂ is shown in Fig. 5.
As noted below Eq. (4.1), if the body is hotter than the

environment, the torque is always negative, that is, clockwise;

FIG. 5. The torque on a small Allen wrench, τ̂ , apart from the
prefactor, for the environmental vacuum temperature of 300 K for
the configuration considered above, with ν = 0.035 eV. For a = b =
1 µm, and a common cross-sectional radius of the wires being 40 nm
(dictated by the skin depth [48]), the prefactor in Eq. (4.8) evaluates
to 3.4 × 10−16 nN µm, which is rather large.

this is because the underlying local forces are always toward
the metal side, that is, in the +x direction at the top, and the
−x direction at the bottom, using the coordinate system of
Fig. 1.

Terminal angular velocity

A chiral object, once set in rotation by a quantum vac-
uum torque, will feel quantum frictional forces opposing the
motion. More important, however, will be the cooling of the
object, if it is hotter than the environment, or heating other-
wise. Both of these effects will cause the object to reach a
final terminal angular velocity.

The initial angular acceleration α about the z axis is given
by

Iα = τ, (4.10)

where, for the object pictured in Fig. 1, the moment of inertia
is

I = mA
1
3 a2 + mB

(
a2 + 1

3 b2
)

= ρASA
2
3 a3 + ρBSB2b

(
a2 + 1

3 b2), (4.11)

with mA and mB being the total masses of the A and B portions
of the object. Let us suppose, in the perturbative spirit in
which we are proceeding, that the cooling comes only from
the metal, since in our simplified model only the A part of the
object has an imaginary part to its susceptibility.9 According
to Ref. [43] the power radiated by a Drude metal is

P(T, T ′) = 1

π2
2aSAν3ω2

p p(T, T ′),

p(T, T ′) = f3(T/ν) − f3(T ′/ν). (4.12)

9Realistically, this is at odds with the fact that the emissivity of a
dielectric is much greater than that of a metal. This point is clarified
in Appendix B.
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FIG. 6. Time taken (scaled by the prefactor t0) for the object
shown in Fig. 1 to cool from an initial temperature T ′

0 = u0T , to a
final temperature T ′

1 = u1T . Here T is taken to be room temperature,
300 K, ν = 0.035 eV, and the three curves are for different final
temperature ratios u1 = 1.05, 1.10, and 1.20, shown from top to
bottom. The curves are similar, and plateau for large T ′

0 .

Since this is the rate of energy loss by the particle, the time t
for the body to cool from temperature T ′

0 to T ′
1 , T ′

0 > T ′
1 > T ,

is [43]

t =
∫ T ′

1

T ′
0

dT ′ CV (T ′)
P(T, T ′)

= t0t̂ . (4.13)

If we suppose the specific heat CV (T ) ≈ 3N , N being the
number of atoms in A, which is the result of the Debye
model for temperature well above the Debye temperature,
� ≈ 170 K for gold (atomic mass mAu),

t0 = 3π2ρAuT

mAuω2
pν

3
≈ 30 µs, (4.14a)

putting in parameters appropriate for gold. The remaining
dimensionless integral is

t̂ (u0, u1; T ) =
∫ u1

u0

du
1

p(u; T )
, u = T ′

T
. (4.14b)

The latter is readily integrated and is shown in Fig. 6. It
actually takes an infinitely long time to cool the body to
equilibrium with the environment, but one can get arbitrarily
close to the ambient temperature in a finite time.

Because of this cooling, the quantum torque on the body
gradually decreases, until it finally reaches a terminal angular
velocity given by integrating Eq. (4.10):

ωT = 1

I

∫ ∞

0
dt τ (T ′(t ), T ) = t0τ0

I
ω̂T ,

ω̂T =
∫ 1

u0

du
τ̂ (u; T )

p(u; T )
, (4.15)

where we have changed variable from t̂ to u according to
Eq. (4.14b). Using Eq. (4.6) for a large object, and ignoring
the mass of the dielectric tags, we find the prefactor in ωT to
be roughly, for a wire of circular cross-sectional radius 50 nm
and length 1 cm,

t0τ0

I
≈ 33

40

SBνT

mAua2
≈ 5 × 10−10 s−1, (4.16)

FIG. 7. The terminal angular velocity for the object shown in
Fig. 1, apart from the prefactor, (4.16), as a function of the initial
temperature of the body relative to the vacuum temperature. The
latter is taken to be 300 K in the curves with lower slope (black)
and 3000 K in the higher slope curves (red). In both cases, ν is taken
to be 0.035 eV. The solid curves are the exact numerical integration,
while the dashed lines are for the high-temperature approximation.
The relative error is much smaller in the latter case.

which would seem to be undetectably small. The integral, ω̂T ,
is shown in Fig. 7, and does not change this conclusion. Note
that the rotation changes from clockwise to counterclockwise
if the object is colder than the environment, because it is then
absorbing radiant energy from the environment.

A more observable effect will arise for a small object,
where the torque is given by Eq. (4.8). The initial acceleration
when ã, b̃ � 1 is, for the representative case that SA = SB,
a = b,

α0 = τ

I
= 14

225π3
χBν9ω2

pSAa3 1

ρA + 4ρB
[ f9(T/ν) − f9(T ′/ν)]

≡ τ0

I
τ̂ , (4.17)

where f9 is the function defined in Eq. (4.9b). The prefactor
τ0 for our nominal values for gold, and a = b = 1 μm, is
about 5 × 10−3 s−2. The cooling time prefactor t0 does not
depend on the dimensions of the A wire, so is still 30 μs, as
given in Eq. (4.14a). The terminal angular velocity, given by
Eq. (4.15), where the prefactor is now t0τ0/I ≈ 2 × 10−7 s−1,
is nearly three orders of magnitude bigger than the corre-
sponding prefactor for the large-argument limit (4.16). The
remaining integral is

ω̂T =
∫ 1

u0

du
f9(t ) − f9(t ′)
f3(t ) − f3(t ′)

, t = T

ν
, t ′ = T ′

ν
, (4.18)

where the functions f2k+1(t ), with k a positive integer, are
given in Eq. (4.8), which are explicitly

f2k+1(t ) = �(2k)ζ (2k)t2k − �(2k − 2)ζ (2k − 2)t2k−2 + · · ·
+ (−1)k+1�(2)ζ (2)t2

+ (−1)k+1 1

2

[
ψ

(
1

2πt

)
+ ln 2πt + πt

]
. (4.19)
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FIG. 8. The dimensionless integral ω̂T , Eq. (4.18), in the terminal
angular velocity for a small Allen wrench object as a function of the
initial temperature T ′

0 of the object, relative to the temperature of
the vacuum background T = 300 K, ν = 0.035 eV. This integral is
typically much larger than the corresponding ω̂T shown in Fig. 7 for
a large Allen wrench.

The resulting numerical integral for ω̂T is shown in Fig. 8.
So, for the object initially at twice the ambient temperature,
the terminal angular velocity would be 3 × 10−3 s−1, which
should be readily observable.

V. EXAMPLE 2: DUAL FLAG

We now consider a two-dimensional model, in which the
tags of the first example are replaced by thin plates, which we
will call flags, with sides b and a, and thickness LB, as shown
in Fig. 9.

The torque on this object is still given by Eq. (2.21).
Evidently, only the z component of the geometric integral is
nonzero, which, rather immediately, reduces to the threefold

FIG. 9. A two-dimensional chiral object, consisting of a central
metallic wire A of length 2a and cross-sectional area SA, from which
dielectric flags, of height a, width b, and thickness LB, extend to the
left for the upper flag, and to the right for the lower flag. The whole
assembly is reflection invariant about the central point, denoted by
(0,0), so there is no net self-propulsive force on the object.

integral, because both flags contribute equally:

JAB(ω) = 2SALB

∫ a

−a
dy

∫ 0

−b
dx′

∫ a

0
dy′

× yx′

[x2 + (y − y′)2]4
φ
[
ω

√
x2 + (y − y′)2

]
. (5.1)

We adopt dimensionless variables,

x̃ = ωx, ỹ = ωy, ỹ′′ = ω(y′ − y), (5.2)

so the y integral is trivial, and we are left with

JAB(ω) =−ω3SALB

∫ b̃

0
dx̃′

[
2

∫ ã

0
dỹ′′(ã2 − ỹ′′2) +

∫ 2ã

0
dỹ′′(ỹ′′2 − 2ãỹ′′)

]
x̃′

v8
φ(v), v =

√
x̃′2 + ỹ′′2, (5.3)

where ã = ωa, b̃ = ωb. Now we adopt polar coordinates,

ỹ′′ = v sin θ, x̃′ = v cos θ, (5.4)

where, with due attention to the limits of integration, the integral over θ can be readily carried out. In terms of the radial integrals

�(α, β, n) ≡
∫ β

α

dv
φ(v)

vn
, (5.5a)

�(α, β, n) ≡
∫ β

α

dv
φ(v)

vn

√
1 − α2

v2
, (5.5b)

we find

JAB(ω) = −ω3SALB

{
− 1

3�(0, ã, 4) + 1
3�(ã, 2ã, 4) − ã�(0, b̃, 5) + ã�

(
2ã,

√
4ã2 + b̃2, 5

)
+ 2ã2�(0, ã, 6)

− ãb̃2�
(

b̃,
√

4ã2 + b̃2, 7
)

+ 4
3 ã3�

(
ã,

√
ã2 + b̃2, 7

)
− 4

3 ã3�
(

2ã,
√

4ã2 + b̃2, 7
)

+ 2
3�

(
b̃,

√
ã2 + b̃2, 4

)

− 1
3�

(
b̃,

√
4ã2 + b̃2, 4

)
− 2

3

(
3ã2 + b̃2

)
�

(
b̃,

√
ã2 + b̃2, 6

)
+ 1

3 b̃2�
(

b̃,
√

4ã2 + b̃2, 6
)}

(5.6)
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FIG. 10. Reduced geometric integrals ĴAB as a function of ã =
aω are shown for b = a/2, b = a, and b = 2a from bottom to top.
The dotted red line shows the behavior for large ã, while the dashed
lines show the small ã behavior. The transition between these asymp-
totes occurs for ã ≈ 2, that is, around a = 20 µm for frequencies
corresponding to room temperature. As with the Allen wrench, the
dependence on b̃ disappears for large ã.

The � integrals can all be given in closed form in terms of
sine-integral functions, while the � integrals seem to require
numerics. In Fig. 10 we show the geometric integral ĴAB(ã, b̃),
defined by JAB(ω) = ω3SALBĴAB(ã, b̃).

For large ã, the leading term comes only from �(0, a, 6)
in Eq. (5.6), as in the Allen wrench model, and is, as follows
from Eq. (2.22b),

ĴAB(ã, b̃) ∼ 11π

15
ã2, ã � 1, (5.7a)

independent of b̃, while the small argument expansion (2.22a)
gives

ĴAB(ã, b̃) ∼ 56

675
ã5b̃2, ã, b̃ � 1 (5.7b)

These are also compared to the exact results in Fig. 10. The
results are quite comparable to the geometric integral for the
Allen wrench. In fact, comparing the full geometric integrals
in the small- and large-frequency limits,

JDF
AB

JAW
AB

∼ aLB

SB

{
1, ωa � 1,
1
2 , ωa � 1.

(5.8)

This indicates that the geometric integrals in the two models
differ only by roughly the geometric ratio of the size of the
object divided by its thickness. Of course, the moment of
inertia of the larger object, the dual flag, is somewhat bigger:

IDF = 1
3

[
mAa2 + mB

(
a2 + b2)]

= 2
3 a

[
ρASAa2 + ρBLBb

(
a2 + b2

)]
, (5.9)

where mi is the mass of the ith component of the object.
However, typically the mass of the metal wire is much larger
than that of the flags, so this results in only a small correction.
The torque for a large dual flag (a � 10 µm for room temper-
ature) is thus different from that of the Allen wrench (4.6) by
precisely the above factor given in Eq. (5.8):

τ = 11

60π2
a2SALBχBω2

pν
4[ f4(T/ν) − f4(T ′/ν)] (5.10)

The cooling of the object, due primarily to the metal wire, is
unchanged. For a = b = 1 cm and LB = 50 nm, the enhance-
ment factor is

aLB

SB
∼ a

LB
≈ 105, (5.11)

resulting in a terminal velocity of ωT ≈ 10−4 s−1. For a small
object, so that ã ∼ b̃ � 10 µm, the enhancement factor is
about 10, which increases the terminal velocity to about
ωT ≈ 3 × 10−2 s−1 for T = 300 K and T ′ = 600 K. These
enhancements increase the likelihood of observing these ter-
minal angular velocities.

VI. CONCLUSIONS

In this paper we have extended the considerations of
Ref. [48] to the torque on an inhomogeneous chiral body in
vacuum, out of thermal equilibrium with the blackbody radi-
ation. We do this by carrying out a perturbative expansion in
powers of the electric susceptibility of the body. In first order,
a torque can only arise if the susceptibility is nonreciprocal,
which usually entails an external field of some kind. To get
a true vacuum effect on a body made of reciprocal material
in second order requires only one additional requirement:
the body must be inhomogeneous. A body made of uniform
material cannot experience a vacuum torque, at least through
second order.10

We develop a general formalism for the torque, both by
directly calculating the torque, and looking at the angular
momentum flux carried away from the body at infinity. The
general approach also allows for nonisotropic susceptibilities,
and arbitrary inhomogeneity. We restrict attention, for sim-
plicity, to the case when all parts of the inhomogeneous body
are at a common temperature.

We then consider some simple examples of bodies com-
posed of two contiguous parts, each of which has a uniform
isotropic electric susceptibility. We present explicit results
when one part is a dispersionless dielectric and the other part
is a Drude metal. We choose configurations for which there
is no net force, but only a torque. The sense of the torque is
given by that of the local forces between the two parts, which
are dominated by the immediate region of the interface. If
the body is hotter than the vacuum, these forces are always
directed toward the metal side, due to the high reflectivity
of the latter. Once the body is set rotating by the quantum
vacuum torque, it will quickly reach a terminal angular veloc-
ity due to thermalization, unless a mechanism is provided to
sustain the thermal imbalance. However, it seems likely that
configurations can be found where such a terminal angular
velocity could be observed in the laboratory.11

10Ongoing investigations indicate that forces and torques do, in
fact, appear in third order.

11We speculate that such forces and torques might occur with living
organisms, which indeed possess mechanisms to keep themselves out
of thermal equilibrium.
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APPENDIX A: SUSCEPTIBILITY ORDERS
IN E AND P EXPANSIONS

This Appendix shows how to obtain the terms to each order
in the generalized susceptibilities in E and P expansions, in a
compact form that easily keeps track of orders and factors.
The focus is on the structure of terms and expressions. The
exposition is symbolic: no boldface, no integrals, delta func-

tions implied as factors of unity, and transpositions include
coordinate variables as well as indices.

We begin by splitting the full E and P fields into their
corresponding free (or fluctuating) ( f ) and induced (i) parts:

E = E f + Ei (A1a)

and

P = P f + Pi, (A1b)

where

Ei = �P (A2a)

and

Pi = χE (A2b)

Note that only the free (fluctuating) parts are used in the
relevant FDT. Then

E = E f + �(P f + χE ) ⇒ E = (1 − �χ )−1(E f + �P f ) =
∞∑

n=0

(�χ )n(E f + �P f ) =
∞∑

m=0

E (m) (A3a)

and

P = P f + χ (E f + �P) ⇒ P = (1 − χ�)−1(P f + χE f ) =
∞∑

n=0

(χ�)n(P f + χE f ) =
∞∑

m=0

P(m), (A3b)

where m denotes the number of generalized susceptibility
factors in these expansions. It immediately follows that

E (m) =
{

(�χ )
m
2 E f , if m is even,

(�χ )
m−1

2 �P f , if m is odd,
(A4a)

and

P(m) =
{

(χ�)
m
2 P f , if m is even,

(χ�)
m−1

2 χE f , if m is odd.
(A4b)

Products such as 〈P E〉 may be similarly decomposed,
yielding

〈P E〉 =
∞∑

m=0

∞∑
n=0

〈P(m) E (n)〉

=
∞∑

m even

∞∑
n odd

〈P(m) E (n)〉 +
∞∑

m odd

∞∑
n even

〈P(m) E (n)〉, (A5a)

which becomes

〈P E〉 =
∞∑

m even

∞∑
n odd

tr
{
(�χ )

n−1
2 �Pc(�T χT )

m
2
}

+
∞∑

m odd

∞∑
n even

tr
{
(χ�)

m−1
2 χEc(χT �T )

n
2
}
, (A5b)

where Pc ≡ 〈P f P f 〉 and Ec ≡ 〈E f E f 〉 are the free (fluctuat-
ing) field correlation functions (symmetrization understood),
to be evaluated using the relevant FDT. Of course, this last
expression may be written in different forms.

Where ∇ operators are involved in expressions, these
should be inserted at appropriate places in expansions such
as the above.

APPENDIX B: DUALITY BETWEEN DIELECTRIC-METAL
AND BLACKBODY-METAL COMPOSITES

In the text we point out that the local interactions between
the disparate portions of the composite body are such that
the effective forces between a dispersionless dielectric and a
Drude metal are in the direction of the metal. In Ref. [48] we
saw in an example that this was also true if the dielectric were
replaced by an ideal blackbody. This is a general feature: Up
to a factor, the second-order susceptibility factor is the same
for the two situations. Suppose χA is given by Eq. (4.5), while
χB is a real constant. Then, the susceptibility factor is

XAB(ω) = χB

ω2
pν

ω(ω2 + ν2)
(B1)

On the other hand, an ideal blackbody has a surface suscepti-
bility of [48]

χ̃B(ω) = i

4

1

ω + iε
, ε → +0, (B2)

so using that for χB we have

XAB = 1

4ωt

ω2
p

ω2 + ν2
, (B3)

where t is the thickness of the blackbody surface. These two
susceptibility factors, (B1) and (B3), are the same function
of ω, and hence yield the same torques, up to a constant
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factor. Now the blackbody is a perfect emitter, if T ′ > T ,
while the Drude metal is a good reflector, so it seems clear
that more radiation is emitted on the blackbody side of the

composite object, resulting in a force toward the metal side.
This argument seems less ambiguous than that based on the
dielectric-metal composite.
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