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Abstract— Virtual synchronous generators (VSGs) imitate 

traditional synchronous generators to provide virtual inertia 

and damping for inverter-based resources. The emulated 

damping relates to the power synchronization, therefore, has a 

major impact on system stability. Although various damping 

methods exist, phase-locked loop (PLL) integration is 

particularly concerning, as it is a key component in grid-

following (GFL) control but now is being applied to grid-

forming (GFM). This paper analyzes the typical VSG control 

and PLL damping unit by mapping stability boundaries and 

feasibility range. The boundaries are mapped in two dimensions 

to determine the relationship between the control parameters 

and the grid impedance. A comprehensive sensitivity analysis of 

controller parameters for VSG stability is conducted, drawing 

parallels with the equivalence of droop-based GFM stability. 

Finally, the boundary analysis is verified by time-domain 

simulation results and demonstrates the reliability of damping-

switching method. 

Keywords—Grid-forming inverter, virtual synchronous 

generator, damping emulation, phase-locked loop, grid strength.  

I. INTRODUCTION 

The growth of renewable energy technologies has made 
power systems more reliant on power-electronic interfaced 
generation, introducing low-inertia and poor-damping that 
impact the frequency stability and oscillatory stability of 
power systems with inverter-based resources (IBRs). As 
power systems continue to evolve, addressing these 
challenges has become essential. Inverters are typically 
operated in two control modes: grid-following (GFL) and 
grid-forming (GFM). Traditionally, the GFL operates as a 
current source, synchronizing to the grid frequency via a 
phase-locked loop (PLL) and regulating the output current to 
transfer a specified amount of active or reactive power [1]. In 
weak or low-inertia grids, such synchronization units may 
struggle to remain stable due to a lack of grid frequency 
support. A better alternative in weak grids is to use GFM 
mode, i.e. to act as a voltage source and actively form its own 
frequency and voltage output [2].  

Existing control methods for GFM inverters emphasize 
droop and virtual synchronous generator (VSG) control. Most 
research adopts droop control [3] that linearly relates active 
and reactive power to frequency and voltage (P-ω and Q-V) 
for synchronization and load sharing. GFM with droop control 
normally has no inertia support, however, VSG can mimic the 
behavior of a real synchronous generator by applying the 
swing equation and thus providing inertia support to the whole 
system during transient process [4]-[6]. It incorporates the 
dynamic behavior of synchronous generators (SGs) into the 
power synchronization loop to regulate the energy stored in 
the power converter and associated energy storage DC links 
[7]. Thus, the power synchronization stability of VSG is 
strongly influenced by the design parameters, such as inertia J 

and damping D, as well as control strategies like adaptive 
inertia support [8] and damping emulation [4], [9]. Although 
droop control and VSG are different control strategies, 
equivalence is established between the two methods [10], 
allowing droop control to be viewed as a special case of VSG 
control under certain assumptions.  

Current research has explored the stability of GFL and 
GFM inverters with different grid strengths and suggests that 
GFL tends to be unstable in weak grids, while GFM may lose 
stability in strong grids [11]. VSG, as a type of GFM control, 
is also prone to become unstable in stiff grids [5], [6]. PLL is 
commonly used in GFL to track grid frequency, but it is also 
mentioned in some VSG variants to help with the damping 
effects [4] or current limitations [12] and improve dynamic 
performance. It was suggested in [13] that adding a transient 
damping term based on the PLL can prevent steady-state 
deviations in active output power during sudden grid 
frequency drops. However, authors in [4] noted that VSG 
damping methods that introduce PLL may affect the stability 
of weak grids, and [9] verified the negative impact of PLL in 
VSG. The limitations of PLL damping loop in GFM control 
are mentioned, but a comprehensive analysis under different 
grid strengths and quantified evaluation are still missing. 

In order to better understand the dynamic behavior of the 
inverter, stability boundary methods have been proposed to 
visualize the upper and lower limits of system stability [14]. 
For example, [7] determined the feasible ranges of virtual 
inertia (J) and damping (D) from the stability boundaries of 
the VSG. [6] observed the boundary curves of J versus D and 
proposed online tuning inertia method. The effect of grid 
impedance on the tuning of VSG parameters is not clear - it 
can be further analyzed using stability boundaries. 

This paper analyzes the performance of VSGs under 
different grid strengths by constructing stability boundaries 
that illustrate how PLL integration affects either positively or 
negatively the damping behavior depending on the grid 
strength. This approach quantifies the impact of PLLs on VSG 
stability. The main contributions are:  

• Defining VSG stability boundaries to provide guidance for 
parameter selection;  

• A comprehensive sensitivity analysis of VSG control 
parameters with respect to grid strength, assessing PLL's 
impact on damping; drawing comparisons with typical 
GFM droop control from the view of stability boundaries;  

• Demonstrating the application of defined stability region 
by testing a damping-switching method via PLL 
activation/deactivation. 

II. MODELLING 

This study investigates a single-inverter single-infinite bus 
system, illustrated in Fig. 1. The inverter, operating in GFM 



 
 

mode, is connected to the grid through an inductance filter (𝐿𝑓). 

The primary focus is the application of the VSG control 
strategy, along with an exploration of different methods for 
enhancing damping performance. To facilitate a comparative 
analysis, the typical droop-based GFM control approach is 
also presented.  

A. VSG and damping methods  

Fig. 2(a) shows the outer power control loop that provides 
the voltage phase angle and magnitude to serve as the 
references for the VSG system. This is followed by inner loops 
that drive the inverter output via standard proportional-
integral (PI) voltage and current controllers [1], [11]. The 
concept of VSG control is to emulate features of traditional 
synchronous generators (SG) using an inverter unit. The 
simplest model for synchronization relies on the conventional 
swing equation, as given by: 

𝐽𝜔
𝑑𝜔

𝑑𝑡
= 𝑃𝑟𝑒𝑓 − 𝑃 + 𝑃𝑑𝑎𝑚𝑝, (1) 

where Pref and P are the inverter active power setpoint and 
measured values, J is the virtual inertia, and ω is the angular 
frequency of the VSG. It is worth mentioning that the damping 
power (Pdamp) is often modelled as an approximation based on 
the frequency difference, 

𝑃𝑑𝑎𝑚𝑝 = 𝐷(𝜔𝑔 − 𝜔), (2) 

where D denotes the virtual damping coefficient, while the 
grid frequency ωg (highlighted in Fig. 2(a)) can be set to either 
the nominal frequency ωn [6], commonly used in VSG, or the 
measured frequency ωm [9]. The measured frequency is often 
obtained from PLL [1] that tracks the system frequency by 
aligning the q axis voltage. The reactive power loop involves 
a Q-V droop module for voltage magnitude response, which 
incorporates a first-order low-pass filter (LPF) with cut-off 
frequency ωc (= 2𝜋𝑓𝑐) to filter the noises in measured power 
and a per unit droop gain mq, defined by:  

𝑉 − 𝑉𝑛 = −𝑚𝑞(𝑄 − 𝑄𝑟𝑒𝑓), (3) 

Here, Vn and Qref refer to the system nominal voltage and 
reactive power reference set-point, respectively.  

B. Droop-based control 

The standard GFM controller with droop-based frequency 
response is shown in Fig. 2(b) [3]. In this configuration, the 
droop function serves both synchronization and power sharing 
response roles, actively forming the reference frequency and 
voltage. Similar to (3), the P-ω droop can be expressed as:   

𝜔 − 𝜔𝑛 = −𝑚𝑝(𝑃 − 𝑃𝑟𝑒𝑓). (4) 

Comparing the power synchronization loop of VSG with 
droop control reveals interesting insights. As outlined in [10], 
the droop method can be viewed as a special case of VSG by 
defining the droop gain mp and LPF cut-off frequency ωc 
based on the following relationships:  

𝐽 =
1

𝜔𝑐∗𝑚𝑝
; 𝐷 =

1

𝑚𝑝
.  (5) 

III.  STABILITY BOUNDARY ANALYSIS 

Stability Boundary Tracking (SBT) algorithm is a viable 

 
Fig. 2. Inverter GFM control scheme. (a) VSG and (b) droop-based control.  

Table I. Parameters of the system. 

 

Parameters Symbol Values 

System frequency  𝑓𝑛 50 Hz 

Base power 𝑆𝐵 10 MVA 

Inverter reference active power 𝑃𝑟𝑒𝑓 1 pu 

Inverter reference reactive power 𝑄𝑟𝑒𝑓 0.2 pu 

System nominal voltage  𝑉𝑛 1.01 pu 

Virtual inertia J 1.6 pu 

Virtual damping factor D 50 pu 

Droop coefficient  𝑚𝑞 5% 

Low-pass filter cut-off frequency 𝑓𝑐  5 Hz 

PLL proportional gain 𝑘𝑝 80 

PLL integral gain 𝑘𝑖 4000 

Voltage control (VC) proportional gain 𝑘𝑝𝑣 5 

Voltage control integral gain 𝑘𝑖𝑣 250 

Current control (CC) proportional gain 𝑘𝑝𝑖 1.25 

Current control integral gain 𝑘𝑖𝑖 10 

approach to investigate system dynamic behavior by relating 
certain parameters of interest that render the system 
marginally stable. [14] introduces the SBT algorithm in detail, 
which is essentially a “grid search” method – sampling all 
relevant parameters and assessing stability status to form the 
multi-dimensional stability boundaries. The stability analysis, 
performed via MATLAB/Simulink, involves linearizing the 
model at multiple operating points, identifying eigenvalues, 
and using them to evaluate stability. Such analysis has been 
applied in this study to support the theoretical understanding 
and system parameter selection of VSG system. 

This paper focuses on mapping the two-dimensional 
stability boundaries to identify the relationship between 
control parameters and grid impedance. The system stability 
is inferred from small-signal analysis that is repeated at 
different short circuit ratios (SCR) [15]. When the system 
changes from stable to unstable, or vice versa, the 
corresponding SCR value is captured as a boundary point. 
Notably, if the system fails to initialize the power flow, it will 
trigger a warning and be marked on the plots as well. Then, 
the controller parameter varies, and the boundary points can 
be collated together to form the stability boundary curve. To 
evaluate damping methods in VSG systems, this section 
compares two models: typical VSG model (VSG), which relies 
on nominal frequency for damping; and an alternative model 
using measured frequency via PLL (VSG+PLL). The 
parameters of system components are listed in Table I. 
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Fig. 1. Single-inverter-infinite-bus system. 
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A. Eigenvalue analysis  

The trajectories of dominant eigenvalues with varying 
SCR from 2 to 10 are first explored; the remaining higher-
frequency eigenvalues do not affect the stability and are 
omitted for simplicity. Fig. 3 depicts that reducing the grid 
impedance (i.e. increasing SCR) leads to the VSG system 
stability change. In the conventional VSG case (blue markers), 
a pair of eigenvalues (𝜆5, 𝜆6) shifts monotonically to the right 
half-plane, which yields the boundary point at an SCR of 6.93. 
Table II lists the critical eigenvalues with their damping ratios, 
frequencies and major participation factors (PF), where the 
frequencies are in the sub-synchronous range and depend 
mainly on the control synchronization loops. It can be found 
that the dominant eigenvalues are highly sensitive to the state 
variables, such as δ𝐺𝐹𝑀  and 𝜔𝐺𝐹𝑀, associated with the inverter 
system synchronization. The VSG, as a voltage source under 
current control, is therefore prone to current deviations and 
vulnerable to strong grids; this reaffirms literature that GFM 
may lose synchronization in stiff grids [1], [11]. 

However, the system with PLL (red markers) initially 
exhibits instability in a weaker grid strength due to the real 
eigenvalue 𝜆9 lying on the right side. As the SCR increases, 
this eigenvalue moves towards the stable region and the 
boundary point is SCR=2.53. The PF analysis in Table II 
shows that 𝜆9 is sensitive to the additional state variable, 𝜔𝑃𝐿𝐿 , 
introduced by the PLL. The weakness of PLL has been widely 
reported, i.e., struggling with weak grids due to sensitivity to 
voltage disturbances [9], [11]. There is also a pair of 
eigenvalues (𝜆5, 𝜆6) as in conventional VSG, with higher 
damping ratios that shifted to the right. In the example case of 
SCR=6 shown in Table II, the damping ratios are increased 
from 8.4% to 18% compared to the conventional VSG. It can 
also be observed from the main participating states that the 
higher damping eigenvalues are aided by the PLL loop. The 
well damped system can therefore remain stable until the SCR 
exceeds 9.53. This observation has already been reported in 
[4], but without methodical characterization of the stability 
boundaries as follows. 

B. Sesitivity analysis: J and D  

Fig. 4 illustrates the mapped 2-D stability boundary curve 
for VSG systems, combining SCR with another key controller 
parameter, virtual inertia J. In the low-SCR range, the light red 
area represents where load flow fails to converge, creating an 
infeasible region. This region sets the first boundary line 
(yellow dashed line) – i.e., power transfer capability boundary 
line – which indicates the system has limited capacity to  

 

    
Fig. 4. J vs. SCR stability boundary curves for (a) VSG and (b) VSG+PLL. 
Blue and red dots indicate stable and unstable sampling points respectively. 

      
Fig. 5. D vs. SCR stability boundary curves for (a) VSG and (b) VSG+PLL.  

 

 
Fig. 6. Stability boundary curves of voltage controller parameters (𝑘𝑝𝑣 , 𝑘𝑖𝑣). 

   
Fig. 7. Stability boundaries of Q-V droop (𝑚𝑞 , 𝑓𝑐).  

deliver a specified amount of power and remains synchronized 
to the power system [15]. This arises from the fundamental 
principles of the two-machine system, which corresponds to 
the maximum grid impedance to transfer the set values of real 
and reactive power from one power source to the other for 
fixed voltage magnitudes. 

Regions beyond that power transfer capability boundary 
are color-coded: the stable system is marked in blue; the 
unstable region is red. The small-signal stability boundary 
line, shown in Fig. 4, separates these stable and unstable areas. 
As expected, Fig. 4(a) shows VSG system stability worsens as 
SCR increases. The shape of the boundary line further 
suggests that the performance in strong grids can be improved 
by tuning the virtual inertia, especially since the curve does 
not vary monotonically i.e., the situation is the worst when J 
is around 2 pu. Fig. 4(b) shows that the red instability region 
of the VSG+PLL is shrunk, however, instability region also 
appears at low SCR, which introduces additional instability 
issue for weak grids with limited power transmission capacity.  
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Fig. 3. Trace of low-frequency eigenvalues for increasing SCR.  

 Mode Damp. 

ratio 

Freq. 

(Hz) 
Major Participating States 

(with PF values) 

VSG 
5 0.084 5.69 δ𝐺𝐹𝑀 (1); 𝜔𝐺𝐹𝑀 (0.78); 𝑉𝐶𝑞  (0.66) 

6 0.084 5.69 δ𝐺𝐹𝑀 (1); 𝜔𝐺𝐹𝑀 (0.78); 𝑉𝐶𝑞  (0.66) 

VSG 

+       

PLL 

5 0.18 8.58 δ𝐺𝐹𝑀 (1); 𝜔𝐺𝐹𝑀 (0.94); 𝜔𝑃𝐿𝐿 (0.61) 

6 0.18 8.58 δ𝐺𝐹𝑀 (1); 𝜔𝐺𝐹𝑀 (0.94); 𝜔𝑃𝐿𝐿 (0.61) 

9 1 0 𝑉𝐶𝑞  (1); 𝜔𝑃𝐿𝐿 (0.93); δ𝐺𝐹𝑀 (0.50) 

Table II. Participation factor (PF) analysis at SCR=6.  

VSG+PLL VSG

λ5

λ6

λ9

λ5

λ6

(a)                                                       (b) 

 

(a) VSG 

 

 (b) VSG+PLL 

 

 

 

 

 

(a)                                                       (b) 

 

(a) VSG                                              (b) VSG+PLL 



In other words, the well damped system improves the stability 
performance in strong grids, whereas it becomes unstable in 
weaker grids due to the structure of PLL. 

Fig. 5 further examines the boundary variation of damping 
factor D that is directly related to the damping loop of VSG 
control. As seen in Fig. 5(a), the stability of typical VSG 
system worsens as D decreases [5], reflected in the expanding 
red region. Consequently, a higher value of D is required as 
the grid becomes stronger. Fig. 5(b) features a similar yet 
improved trend, where the VSG+PLL performs well even at 
very high grid strengths (e.g., SCR in the range of 8-10) if D 
is larger than 60. It is worth noting that increasing D has a dual 
effect, it improves performance in strong grids but negatively 
affects the stability in weaker grids, which reveals a trade-off 
between these competing factors. Moreover, for VSG+PLL, 
tuning J is effective for strong grids only, while D benefits 
both weak and strong grids. 

C. Sensitivity analysis: voltage controller and Q-V droop 

The integration of the PLL only modifies the damping 
loop; the voltage and Q-V droop controllers remain the same 
control structure. The stability characteristics of these 
controller parameters are presented in Fig. 6 and 7. In the 
subsequent stability boundary plots, the boundary lines of the 
two models are merged together for simplicity. As the 
different stability performance, there are five different regions 
illustrated: the infeasible region limited by power transfer 
capability, the stable region for VSG only, the stable region 
for both models, the stable region for VSG+PLL only, and the 
unstable region for both models. This region identification 
also helps to form a strategy for enhancing stability via 
switching between the two damping methods. 

Fig. 6(a) shows that increasing kpv from 1 to 5 expands the 
VSG stability range (red solid line) from 4 to 6.9 SCR, and 
using PLL (blue solid line) extends that range from 5 to 9.5 
SCR. The VSG+PLL boundaries reaffirm the drawback of 
PLL – loss of stability in weaker grids – while noting that 
variations in kpv have less impact on this region. The combined 
region plot further indicates that for SCR values above 4, the 
PLL damping method offers better performance, while in 
weaker grids, the typical VSG is the preferred choice.  

In Fig. 6(b), the VSG system exhibits the worst stability 
when kiv is adjusted to 200, and the system tends to be unstable 
at SCR=6.7. The kiv plays an important role in VSG+PLL 
system; the higher its value, the better the stability, e.g., if it is  

increased to 500, the system is stable at most grid strengths. It 
also warns that the use of PLL damping loop is not always a 
good choice for strong grids. 

Fig. 7 considers the parameters in Q-V droop control and 
reveals that increasing the mq and fc within a reasonable range 
enhances stability for both damping systems. Again, it shows 
that the VSG+PLL is vulnerable to weak grids (although it can 
be slightly improved by adjusting mq); whereas it performs 
well in stiff grids, as shown in Fig. 7, where the red regions 
are significantly reduced to the yellow ones. 

D. Sensitivity analysis: kp and ki of PLL 

In order to explore the effect of PLL on the VSG+PLL 
variant, sensitivity analyses of the controller gains are shown 
in Fig. 8. When kp increases, the stable region in strong grids 
is extended from SCR 6.2 to 10, while the system unstable 
behavior in weak grids is less affected. Fig. 8(b) shows that an 
increase in ki reduces the feasible SCR stability range, similar 
to the eigenvalue trajectory sensitivities analyzed in [9]; for 
example, if ki = 10000, the range is minimized to (5, 6.2). 

E. Comparision with droop-based control 

The aforementioned equivalence between VSG and 
frequency droop-based control follows from the swing 
equation, with assumptions of a constant grid frequency and 
active power set-points [10]. Fig. 9 shows the resulting curves 
obtained by varying P-ω droop coefficient mp and setting the 
values of J and D as defined in equation (5): the boundary 
curves for both controllers perfectly match. In Fig. 9(a), it is 
clear that GFM exhibits better performance in weak grids. The 
shape of boundary lines first implies that a higher mp can 
efficiently improve GFM stability, which agrees with 
observations in [3]; it also verifies the equivalence of the two 
GFM controls. The boundary deviations in Fig. 9(b) reveal 
again the effect of introducing the PLL. 

IV. TIME-DOMAIN RESULTS 

In accordance with the stability boundaries mentioned 
above, two case studies are simulated in time domain in this 
section. The system is similar to the previous analyzed model, 
only the damping loop is modified to use a switching 
component to deactivate (using the nominal frequency ωn) or 
activate PLL. Fig. 10(a) shows the subsystem used to 
derive ωg, as referenced in Fig. 2(a). The stability of the 
system under different grid strengths is tested. Fig. 10(b) 
shows two case studies, A and B, in which one transition is 
from operating point a to b, and the other from c to e. The 
system was simulated in MATLAB/Simulink with parameters 
as outlined in Table I. 

 
Fig. 8. (a) kp or (b) ki vs. SCR stability boundary curves for VSG+PLL.  

 
Fig. 9. Stability boundaries of VSG-based and P-ω droop-based control (Note 
that the cut-off frequency fc is listed in Table I).  

 
Fig. 10.  Case studies overview: (a) subsystem of ωg; (b) Operating Points. 

 
Fig. 11. Simulation of VSG+PLL system as SCR is reduced at 2 s and PLL 
damping loop is deactivated at 2.5 s. 
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A. Case studies in weaker grid  

The weaker grid case (Case A) in Fig. 10(b) is investigated 
first for the simple case where the typical VSG always shows 
stable operation, but VSG+PLL introduces instability issues. 
In this case, the VSG system with activated PLL damping 
starts to operate and the SCR suddenly drops from 3.33 to 2 at 
t = 2s, thus crossing the boundary point 2.53 mentioned in 
Section III. The time-domain simulation results in Fig. 11 
show that the system frequency loses stability and rises to 52 
Hz in only 0.5s. After t =2.5 s, the PLL unit is deactivated, and 
the frequency re-stabilizes at 50 Hz. The time-domain results 
are consistent with theoretical analysis, which proves that the 
PLL employed in the damping unit of VSG has a negative 
impact on the stability of weaker grids. 

B. Case studies in stronger grid 

Fig. 10(b) illustrates the stronger grid test cases, moving 
first from point c to d as the SCR rises from 5 to 6.67, though 
it remains below the boundary point of 6.93 noted earlier. The 
system is initially operated with ωn, then applies the SCR 
change at t =2s and activates the PLL at 6s. The results in Fig. 
12(a) demonstrate that the typical VSG system can remain 
stable after the grid impedance change but is poorly damped, 
while activating the PLL loop results in faster reduction of 
frequency oscillations. Fig. 10(b) reconfirms this, i.e., both 
operating points are located in the “Both Stable” region, and 
thus both systems are stable; it further emphasizes the PLL’s 
role in aiding damping.  

Fig. 12(b) shows that the typical VSG system tends to be 
unstable when SCR is further increased to 7.69. At 3 s, the 
PLL damping loop is activated, which re-stabilizes the 
frequency. This suggests that properly enabling or disabling 
of the PLL in damping loop can prevent system from 
instability (as seen in Fig. 11 and 12), leading to the interesting 
concept of adaptively switching the PLL. The boundary lines 
and mapped regions thus play a vital role in helping to form 
the damping loop tuning strategies that allow the inverter to 
perform optimally under different grid strengths. 

V. CONCLUSION 

In this paper, the stability of VSG with different damping 
methods is investigated. The stability boundary serves as a 
visual tool for defining the basic criteria for parameter 
adjustments, which maps the boundaries using a 'grid-search' 
manner. By combining sensitivity analysis of controller 
parameters and grid impedance, the results identify the power 
transfer capability and small-signal stability boundaries, 
highlighting the system's physical limitations and stability 
margins, respectively. The suggested feasible regions show 
that the introducing PLL in the damping loop has a dual effect 

on stability, i.e., it enhances the VSG damping behavior in the 
stiff grids, but also leads to instability in weak grids. It also 
validates the feasibility of applying a damping-switching 
method through PLL activation/ deactivation in time domain 
simulation. Further work will apply this analysis to develop an 
online damping tuning method based on real-time grid 
impedance estimation and validate it in hardware experiments. 
Furthermore, the detailed multi-level inverter systems and 
advanced grid strength metrics can substitute single-bus and 
traditional SCR metrics to improve root cause identification 
and system behavior evaluation. 
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Fig. 12. Simulation of typical VSG system as SCR and damping loop change. 
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