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Abstract— Virtual synchronous generators (VSGs) imitate
traditional synchronous generators to provide virtual inertia
and damping for inverter-based resources. The emulated
damping relates to the power synchronization, therefore, has a
major impact on system stability. Although various damping
methods exist, phase-locked loop (PLL) integration is
particularly concerning, as it is a key component in grid-
following (GFL) control but now is being applied to grid-
forming (GFM). This paper analyzes the typical VSG control
and PLL damping unit by mapping stability boundaries and
feasibility range. The boundaries are mapped in two dimensions
to determine the relationship between the control parameters
and the grid impedance. A comprehensive sensitivity analysis of
controller parameters for VSG stability is conducted, drawing
parallels with the equivalence of droop-based GFM stability.
Finally, the boundary analysis is verified by time-domain
simulation results and demonstrates the reliability of damping-
switching method.
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I. INTRODUCTION

The growth of renewable energy technologies has made
power systems more reliant on power-electronic interfaced
generation, introducing low-inertia and poor-damping that
impact the frequency stability and oscillatory stability of
power systems with inverter-based resources (IBRs). As
power systems continue to evolve, addressing these
challenges has become essential. Inverters are typically
operated in two control modes: grid-following (GFL) and
grid-forming (GFM). Traditionally, the GFL operates as a
current source, synchronizing to the grid frequency via a
phase-locked loop (PLL) and regulating the output current to
transfer a specified amount of active or reactive power [1]. In
weak or low-inertia grids, such synchronization units may
struggle to remain stable due to a lack of grid frequency
support. A better alternative in weak grids is to use GFM
mode, i.e. to act as a voltage source and actively form its own
frequency and voltage output [2].

Existing control methods for GFM inverters emphasize
droop and virtual synchronous generator (VSG) control. Most
research adopts droop control [3] that linearly relates active
and reactive power to frequency and voltage (P-o and Q-V)
for synchronization and load sharing. GFM with droop control
normally has no inertia support, however, VSG can mimic the
behavior of a real synchronous generator by applying the
swing equation and thus providing inertia support to the whole
system during transient process [4]-[6]. It incorporates the
dynamic behavior of synchronous generators (SGs) into the
power synchronization loop to regulate the energy stored in
the power converter and associated energy storage DC links
[7]. Thus, the power synchronization stability of VSG is
strongly influenced by the design parameters, such as inertia J
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and damping D, as well as control strategies like adaptive
inertia support [8] and damping emulation [4], [9]. Although
droop control and VSG are different control strategies,
equivalence is established between the two methods [10],
allowing droop control to be viewed as a special case of VSG
control under certain assumptions.

Current research has explored the stability of GFL and
GFM inverters with different grid strengths and suggests that
GFL tends to be unstable in weak grids, while GFM may lose
stability in strong grids [11]. VSG, as a type of GFM control,
is also prone to become unstable in stiff grids [5], [6]. PLL is
commonly used in GFL to track grid frequency, but it is also
mentioned in some VSG variants to help with the damping
effects [4] or current limitations [12] and improve dynamic
performance. It was suggested in [13] that adding a transient
damping term based on the PLL can prevent steady-state
deviations in active output power during sudden grid
frequency drops. However, authors in [4] noted that VSG
damping methods that introduce PLL may affect the stability
of weak grids, and [9] verified the negative impact of PLL in
VSG. The limitations of PLL damping loop in GFM control
are mentioned, but a comprehensive analysis under different
grid strengths and quantified evaluation are still missing.

In order to better understand the dynamic behavior of the
inverter, stability boundary methods have been proposed to
visualize the upper and lower limits of system stability [14].
For example, [7] determined the feasible ranges of virtual
inertia (J) and damping (D) from the stability boundaries of
the VSG. [6] observed the boundary curves of J versus D and
proposed online tuning inertia method. The effect of grid
impedance on the tuning of VSG parameters is not clear - it
can be further analyzed using stability boundaries.

This paper analyzes the performance of VSGs under
different grid strengths by constructing stability boundaries
that illustrate how PLL integration affects either positively or
negatively the damping behavior depending on the grid
strength. This approach quantifies the impact of PLLs on VSG
stability. The main contributions are:

o Defining VSG stability boundaries to provide guidance for
parameter selection;

e A comprehensive sensitivity analysis of VSG control
parameters with respect to grid strength, assessing PLL's
impact on damping; drawing comparisons with typical
GFM droop control from the view of stability boundaries;

o Demonstrating the application of defined stability region
by testing a damping-switching method via PLL
activation/deactivation.

Il. MODELLING

This study investigates a single-inverter single-infinite bus
system, illustrated in Fig. 1. The inverter, operating in GFM
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Fig. 1. Single-inverter-infinite-bus system.

mode, is connected to the grid through an inductance filter (Ly).

The primary focus is the application of the VSG control
strategy, along with an exploration of different methods for
enhancing damping performance. To facilitate a comparative
analysis, the typical droop-based GFM control approach is
also presented.

A. VSG and damping methods

Fig. 2(a) shows the outer power control loop that provides
the voltage phase angle and magnitude to serve as the
references for the VVSG system. This is followed by inner loops
that drive the inverter output via standard proportional-
integral (PI) voltage and current controllers [1], [11]. The
concept of VSG control is to emulate features of traditional
synchronous generators (SG) using an inverter unit. The
simplest model for synchronization relies on the conventional
swing equation, as given by:
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where Prs and P are the inverter active power setpoint and
measured values, J is the virtual inertia, and w is the angular
frequency of the VSG. It is worth mentioning that the damping
power (Pdamp) is often modelled as an approximation based on
the frequency difference,

Pdamp = D(wg - w), (2)

where D denotes the virtual damping coefficient, while the
grid frequency wq (highlighted in Fig. 2(a)) can be set to either
the nominal frequency wn [6], commonly used in VSG, or the
measured frequency wm [9]. The measured frequency is often
obtained from PLL [1] that tracks the system frequency by
aligning the q axis voltage. The reactive power loop involves
a Q-V droop module for voltage magnitude response, which
incorporates a first-order low-pass filter (LPF) with cut-off
frequency w¢ (= 2xf,) to filter the noises in measured power
and a per unit droop gain mq, defined by:

V- Vn = _mq(Q - Qref)l (3)

Here, Vi and Qe refer to the system nominal voltage and
reactive power reference set-point, respectively.

B. Droop-based control

The standard GFM controller with droop-based frequency
response is shown in Fig. 2(b) [3]. In this configuration, the
droop function serves both synchronization and power sharing
response roles, actively forming the reference frequency and
voltage. Similar to (3), the P-w droop can be expressed as:

_mp(P _Pref)- (4)

Comparing the power synchronization loop of VSG with
droop control reveals interesting insights. As outlined in [10],
the droop method can be viewed as a special case of VSG by
defining the droop gain m, and LPF cut-off frequency
based on the following relationships:
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Il. STABILITY BOUNDARY ANALYSIS

Stability Boundary Tracking (SBT) algorithm is a viable
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Fig. 2. Inverter GFM control scheme. (a) VSG and (b) droop-based control.
Table I. Parameters of the system.

Parameters Symbol Values
System frequency fn 50 Hz
Base power Sp 10 MVA
Inverter reference active power Prer lpu
Inverter reference reactive power Qrer 0.2pu
System nominal voltage , 1.0l pu
Virtual inertia J 1.6 pu
Virtual damping factor D 50 pu
Droop coefficient my 5%
Low-pass filter cut-off frequency fz 5 Hz
PLL proportional gain k, 80
PLL integral gain k; 4000
Voltage control (VC) proportional gain kepy 5
Voltage control integral gain kiy 250
Current control (CC) proportional gain kyi 1.25
Current control integral gain ki; 10

approach to investigate system dynamic behavior by relating
certain parameters of interest that render the system
marginally stable. [14] introduces the SBT algorithm in detail,
which is essentially a “grid search” method — sampling all
relevant parameters and assessing stability status to form the
multi-dimensional stability boundaries. The stability analysis,
performed via MATLAB/Simulink, involves linearizing the
model at multiple operating points, identifying eigenvalues,
and using them to evaluate stability. Such analysis has been
applied in this study to support the theoretical understanding
and system parameter selection of VSG system.

This paper focuses on mapping the two-dimensional
stability boundaries to identify the relationship between
control parameters and grid impedance. The system stability
is inferred from small-signal analysis that is repeated at
different short circuit ratios (SCR) [15]. When the system
changes from stable to unstable, or vice versa, the
corresponding SCR value is captured as a boundary point.
Notably, if the system fails to initialize the power flow, it will
trigger a warning and be marked on the plots as well. Then,
the controller parameter varies, and the boundary points can
be collated together to form the stability boundary curve. To
evaluate damping methods in VSG systems, this section
compares two models: typical VSG model (VSG), which relies
on nominal frequency for damping; and an alternative model
using measured frequency via PLL (VSG+PLL). The
parameters of system components are listed in Table I.
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Table Il. Participation factor (PF) analysis at SCR=6.

Mode [Damp. |Freq. Major Participating States
ratio (Hz) (with PF values)
VSG 5 0.084 569 | grm (1); wgry (0.78); VC, (0.66)
6 0.084 5.69 dgrm (1); wery (0.78); VC, (0.66)
VSG 5 0.18 858 | dgry (1); wgry (0.94); wp,, (0.61)
+ 6 0.18 858 | dgry (1); wgrpy (0.94); wp,, (0.61)
PLL 9 1 0 VC, (1); wpyy, (0.93); Sgpu (0.50)

A. Eigenvalue analysis

The trajectories of dominant eigenvalues with varying
SCR from 2 to 10 are first explored; the remaining higher-
frequency eigenvalues do not affect the stability and are
omitted for simplicity. Fig. 3 depicts that reducing the grid
impedance (i.e. increasing SCR) leads to the VSG system
stability change. In the conventional VSG case (blue markers),
a pair of eigenvalues (4s, 1s) shifts monotonically to the right
half-plane, which yields the boundary point at an SCR of 6.93.
Table I1 lists the critical eigenvalues with their damping ratios,
frequencies and major participation factors (PF), where the
frequencies are in the sub-synchronous range and depend
mainly on the control synchronization loops. It can be found
that the dominant eigenvalues are highly sensitive to the state
variables, such as d;ry and wggy, associated with the inverter
system synchronization. The VSG, as a voltage source under
current control, is therefore prone to current deviations and
vulnerable to strong grids; this reaffirms literature that GFM
may lose synchronization in stiff grids [1], [11].

However, the system with PLL (red markers) initially
exhibits instability in a weaker grid strength due to the real
eigenvalue Ay lying on the right side. As the SCR increases,
this eigenvalue moves towards the stable region and the
boundary point is SCR=2.53. The PF analysis in Table Il
shows that Agis sensitive to the additional state variable, wp;;,
introduced by the PLL. The weakness of PLL has been widely
reported, i.e., struggling with weak grids due to sensitivity to
voltage disturbances [9], [11]. There is also a pair of
eigenvalues (4s, As) as in conventional VSG, with higher
damping ratios that shifted to the right. In the example case of
SCR=6 shown in Table Il, the damping ratios are increased
from 8.4% to 18% compared to the conventional VSG. It can
also be observed from the main participating states that the
higher damping eigenvalues are aided by the PLL loop. The
well damped system can therefore remain stable until the SCR
exceeds 9.53. This observation has already been reported in
[4], but without methodical characterization of the stability
boundaries as follows.

B. Sesitivity analysis: J and D

Fig. 4 illustrates the mapped 2-D stability boundary curve
for VSG systems, combining SCR with another key controller
parameter, virtual inertia J. In the low-SCR range, the light red
area represents where load flow fails to converge, creating an
infeasible region. This region sets the first boundary line
(yellow dashed line) —i.e., power transfer capability boundary
line — which indicates the system has limited capacity to
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Fig. 4. J vs. SCR stability boundary curves for (a) VSG and (b) VSG+PLL.
Blue and red dots indicate stable and unstable sampling points respectively.
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Fig. 7. Stability boundaries of Q-V droop (myg, fc).

deliver a specified amount of power and remains synchronized
to the power system [15]. This arises from the fundamental
principles of the two-machine system, which corresponds to
the maximum grid impedance to transfer the set values of real
and reactive power from one power source to the other for
fixed voltage magnitudes.

Regions beyond that power transfer capability boundary
are color-coded: the stable system is marked in blue; the
unstable region is red. The small-signal stability boundary
line, shown in Fig. 4, separates these stable and unstable areas.
As expected, Fig. 4(a) shows VVSG system stability worsens as
SCR increases. The shape of the boundary line further
suggests that the performance in strong grids can be improved
by tuning the virtual inertia, especially since the curve does
not vary monotonically i.e., the situation is the worst when J
is around 2 pu. Fig. 4(b) shows that the red instability region
of the VSG+PLL is shrunk, however, instability region also
appears at low SCR, which introduces additional instability
issue for weak grids with limited power transmission capacity.
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In other words, the well damped system improves the stability
performance in strong grids, whereas it becomes unstable in
weaker grids due to the structure of PLL.

Fig. 5 further examines the boundary variation of damping
factor D that is directly related to the damping loop of VSG
control. As seen in Fig. 5(a), the stability of typical VSG
system worsens as D decreases [5], reflected in the expanding
red region. Consequently, a higher value of D is required as
the grid becomes stronger. Fig. 5(b) features a similar yet
improved trend, where the VSG+PLL performs well even at
very high grid strengths (e.g., SCR in the range of 8-10) if D
is larger than 60. It is worth noting that increasing D has a dual
effect, it improves performance in strong grids but negatively
affects the stability in weaker grids, which reveals a trade-off
between these competing factors. Moreover, for VSG+PLL,
tuning J is effective for strong grids only, while D benefits
both weak and strong grids.

C. Sensitivity analysis: voltage controller and Q-V droop

The integration of the PLL only modifies the damping
loop; the voltage and Q-V droop controllers remain the same
control structure. The stability characteristics of these
controller parameters are presented in Fig. 6 and 7. In the
subsequent stability boundary plots, the boundary lines of the
two models are merged together for simplicity. As the
different stability performance, there are five different regions
illustrated: the infeasible region limited by power transfer
capability, the stable region for VSG only, the stable region
for both models, the stable region for VSG+PLL only, and the
unstable region for both models. This region identification
also helps to form a strategy for enhancing stability via
switching between the two damping methods.

Fig. 6(a) shows that increasing kp, from 1 to 5 expands the
VSG stability range (red solid line) from 4 to 6.9 SCR, and
using PLL (blue solid line) extends that range from 5 to 9.5
SCR. The VSG+PLL boundaries reaffirm the drawback of
PLL — loss of stability in weaker grids — while noting that
variations in kyy have less impact on this region. The combined
region plot further indicates that for SCR values above 4, the
PLL damping method offers better performance, while in
weaker grids, the typical VSG is the preferred choice.

In Fig. 6(b), the VSG system exhibits the worst stability
when ki is adjusted to 200, and the system tends to be unstable
at SCR=6.7. The ki, plays an important role in VSG+PLL
system; the higher its value, the better the stability, e.g., if it is
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Fig. 11. Simulation of VSG+PLL system as SCR is reduced at 2 s and PLL
damping loop is deactivated at 2.5 s.

increased to 500, the system is stable at most grid strengths. It
also warns that the use of PLL damping loop is not always a
good choice for strong grids.

Fig. 7 considers the parameters in Q-V droop control and
reveals that increasing the mq and f. within a reasonable range
enhances stability for both damping systems. Again, it shows
that the VSG+PLL is vulnerable to weak grids (although it can
be slightly improved by adjusting mg); whereas it performs
well in stiff grids, as shown in Fig. 7, where the red regions
are significantly reduced to the yellow ones.

D. Sensitivity analysis: kp, and ki of PLL

In order to explore the effect of PLL on the VSG+PLL
variant, sensitivity analyses of the controller gains are shown
in Fig. 8. When k; increases, the stable region in strong grids
is extended from SCR 6.2 to 10, while the system unstable
behavior in weak grids is less affected. Fig. 8(b) shows that an
increase in k; reduces the feasible SCR stability range, similar
to the eigenvalue trajectory sensitivities analyzed in [9]; for
example, if k; = 10000, the range is minimized to (5, 6.2).

E. Comparision with droop-based control

The aforementioned equivalence between VSG and
frequency droop-based control follows from the swing
equation, with assumptions of a constant grid frequency and
active power set-points [10]. Fig. 9 shows the resulting curves
obtained by varying P-» droop coefficient m, and setting the
values of J and D as defined in equation (5): the boundary
curves for both controllers perfectly match. In Fig. 9(a), it is
clear that GFM exhibits better performance in weak grids. The
shape of boundary lines first implies that a higher m, can
efficiently improve GFM stability, which agrees with
observations in [3]; it also verifies the equivalence of the two
GFM controls. The boundary deviations in Fig. 9(b) reveal
again the effect of introducing the PLL.

IVV. TIME-DOMAIN RESULTS

In accordance with the stability boundaries mentioned
above, two case studies are simulated in time domain in this
section. The system is similar to the previous analyzed model,
only the damping loop is modified to use a switching
component to deactivate (using the nominal frequency wn) or
activate PLL. Fig. 10(a) shows the subsystem used to
derive wy, as referenced in Fig. 2(a). The stability of the
system under different grid strengths is tested. Fig. 10(b)
shows two case studies, 4Aand B, in which one transition is
from operating point ato b, and the other from cto e. The
system was simulated in MATLAB/Simulink with parameters
as outlined in Table I.
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A. Case studies in weaker grid

The weaker grid case (Case A) in Fig. 10(b) is investigated
first for the simple case where the typical VSG always shows
stable operation, but VSG+PLL introduces instability issues.
In this case, the VSG system with activated PLL damping
starts to operate and the SCR suddenly drops from 3.33 to 2 at
t = 2s, thus crossing the boundary point 2.53 mentioned in
Section 1ll. The time-domain simulation results in Fig. 11
show that the system frequency loses stability and rises to 52
Hz in only 0.5s. After t =2.5 s, the PLL unit is deactivated, and
the frequency re-stabilizes at 50 Hz. The time-domain results
are consistent with theoretical analysis, which proves that the
PLL employed in the damping unit of VSG has a negative
impact on the stability of weaker grids.

B. Case studies in stronger grid

Fig. 10(b) illustrates the stronger grid test cases, moving
first from point ¢ to d as the SCR rises from 5 to 6.67, though
it remains below the boundary point of 6.93 noted earlier. The
system is initially operated with wn, then applies the SCR
change at t =2s and activates the PLL at 6s. The results in Fig.
12(a) demonstrate that the typical VSG system can remain
stable after the grid impedance change but is poorly damped,
while activating the PLL loop results in faster reduction of
frequency oscillations. Fig. 10(b) reconfirms this, i.e., both
operating points are located in the “Both Stable” region, and
thus both systems are stable; it further emphasizes the PLL’s
role in aiding damping.

Fig. 12(b) shows that the typical VSG system tends to be
unstable when SCR is further increased to 7.69. At 3 s, the
PLL damping loop is activated, which re-stabilizes the
frequency. This suggests that properly enabling or disabling
of the PLL in damping loop can prevent system from
instability (as seen in Fig. 11 and 12), leading to the interesting
concept of adaptively switching the PLL. The boundary lines
and mapped regions thus play a vital role in helping to form
the damping loop tuning strategies that allow the inverter to
perform optimally under different grid strengths.

V. CONCLUSION

In this paper, the stability of VSG with different damping
methods is investigated. The stability boundary serves as a
visual tool for defining the basic criteria for parameter
adjustments, which maps the boundaries using a 'grid-search’
manner. By combining sensitivity analysis of controller
parameters and grid impedance, the results identify the power
transfer capability and small-signal stability boundaries,
highlighting the system's physical limitations and stability
margins, respectively. The suggested feasible regions show
that the introducing PLL in the damping loop has a dual effect

on stability, i.e., it enhances the VSG damping behavior in the
stiff grids, but also leads to instability in weak grids. It also
validates the feasibility of applying a damping-switching
method through PLL activation/ deactivation in time domain
simulation. Further work will apply this analysis to develop an
online damping tuning method based on real-time grid
impedance estimation and validate it in hardware experiments.
Furthermore, the detailed multi-level inverter systems and
advanced grid strength metrics can substitute single-bus and
traditional SCR metrics to improve root cause identification
and system behavior evaluation.
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