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ABSTRACT

Efficient urban traffic management remains a critical challenge,
yet traditional congestion games fail to capture the dynamic and
competitive nature of real-world transportation systems. We in-
troduce the Multi-Market Routing Problem (MMRP), an online
and oligopolistic extension that models competition amongst route
providers utilising adaptive microtolling strategies to influence
driver behaviour and mitigate congestion. We formally define the
MMRP, highlighting the computational complexity of solving the
MMRP, and use an adapted version of Proximal Policy Optimisa-
tion (PPO) to improve update stability in multiagent environments
to address this problem in online settings. Our empirical analysis
demonstrates that our PPO-based approach not only matches the
performance of existing benchmarks but also significantly enhances
equity, reduces travel times for users, and increases profitability for
providers.
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1 INTRODUCTION

Urban transportation systems are increasingly burdened by conges-
tion, a challenge that significantly impacts economic productivity
and quality of life [6]. Traditional Congestion Game (CG) [13]
models provide valuable insights into individual route choices and
their impacts on traffic flow, but neglect the competitive dynamics
present in modern, dynamic, transportation networks, where mul-
tiple transportation providers compete in an oligopolistic manner.
Effective modelling of competition in modern urban transporta-
tion networks provides valuable insights into how to maximise
the efficiency of existing infrastructure and guide the strategic
development of new transportation systems [19].
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Traditional CGs are non-cooperative models where individual
players select resources (i.e. routes in the context of transporta-
tion CGs) and an associated cost is incurred, which escalates with
the popularity of that resource. In traffic management, CGs are
essential for simulating user behaviours and decision-making in
congested environments [10, 22], offering insights into traffic pat-
terns and identifying bottlenecks for optimisation [1, 2, 7, 9, 15, 17].
A detailed discussion of existing applications of CGs to congestion
management can be found in de Palma and Fosgerau [3], de Palma
and Lindsey [4], Yang et al. [20]. While these models offer valuable
insights into the impact of individual decisions on overall system
performance, they are typically static and offline problems which
assume perfect information. These simplifications fail to capture
the dynamic and competitive interactions inherent in modern urban
transportation networks, where multiple route providers continu-
ously compete in real time. This limitation underscores the urgent
need for more sophisticated modelling that more closely reflects the
dynamic and competitive nature of urban transportation systems.

To overcome these limitations, we propose a novel framework
that extends traditional CGs into an online and competitive setting,
referred to as the Multi-Market Routing Problem (MMRP). In
our framework, transportation networks are modelled as systems
where multiple route providers are able to utilise adaptive pricing
to influence the behaviour of transportation users in response to
fluctuating traffic conditions and competitive pressures. To solve
the MMRP in practice, we propose a multiagent reinforcement
learning based approach, utilising Proximal Policy Optimisation, to
learn adaptive pricing strategies that effectively manage congestion
in real time. Our framework bridges the gap between theoretical
models and practical traffic management, and our empirical re-
sults demonstrate significant improvements in travel times, equity,
and profitability, underscoring its potential impact on intelligent
transportation systems.

2 ONLINE MULTI-MARKET ROUTING
PROBLEM

We expand the definition of a Congestion Game [14, 19] to the Multi-
Market Routing Problem (MMRP) M, where M is a 6-tuple: M =
(RV,(®)jev, (©))jev, (Di)icr, (Q)ier) Theset R ={Ry, ..., Ri}
is the set of available routes; the set V = {Vp, ..., V;} is the set of
players. For each player V; € V, ®; denotes the strategy space of
player V; and ©; denotes the Value of Time (VoT) of player V;. For
each route R; € R, D; : {0,...,j} — R represents the delay func-
tion of the route, mapping the number of players selecting a route
to a travel time, and Q; represents the route cost strategy. For each
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playerV; € V,®; C 2R defines the strategy space. We define MMRP
as an optimisation problem, where the optimal assignment of an in-
stance of MMRP is one in which players incur the lowest total travel
time. When this problem is extended to online scenarios, we use the
7-tuple OM = (R, V, (®))jev, () jev, (Aj) jev (T1)ier, (Q)ieRr)
where the variables (R, V, ®) from the offline 6-tuple definition are
not changed. In the online definition, A; represents the entry time
of a player V;, and functions D, Q are changed to become strategies
that depend on time ¢, becoming D(x, t) and Q(x, t).

The offline formulation of the MMRP is NP-hard!, rendering
exact optimisation methods computationally intractable for large-
scale instances and online problems. To this end, we employ Mul-
tiagent Reinforcement Learning (MARL), specifically an adapted
version of independent Proximal Policy Optimisation (PPO) [16].
The use of PPO over existing MARL approaches is deliberate; the
inherently competitive nature of route providers suggests that
approaches which require inter-agent coordination, such as cen-
tralised learning with decentralised execution, are impractical. Con-
sequently, we employed independent PPO, adapted for increased
training stability and suitability in our environment, which allows
each provider to optimise its pricing strategy. To adapt PPO for use
in the MMRP, we employed separate policy and value networks [21],
proven effective in multiagent and highly stochastic settings [8], to
enhance stability. To mitigate divergence, we normalised rewards
by first running random-agent experiments to compute the mean
(pr) and variance (og) of rewards, and then applied Ry = R’J_—R”R.
Finally, we enabled multiple parallel experiments to replicate the
vectorised actor framework used in single-agent PPO [16].

This approach enables each route provider to dynamically adjust
tolls in real time, approximating the complex equilibrium behaviour
of the system and effectively managing congestion. Our method
thus offers a scalable, adaptive solution that bridges the gap between
theoretical complexity and practical real-world traffic management.
We consider a two-route network (R = {R1, Ry }), akin to the parallel
two-link models in [11, 18]. Each route’s delay is defined by the
Bureau of Public Roads volume delay function: D;(x) = fo(1 +
(x(%)ﬁ), where x is the number of vehicles at time ¢, fp is the
free-flow travel time, f; is the route capacity, and the calibration
parameters & = 0.68 and f§ = 2.73 align the function with real-world
data [12]. For the values of (f;, fo), we set Ry as (15, 20) and R as
(30, 20) for routes 1 and 2 respectively.

We trained our PPO agent for 4 x 107 steps, with each episode
lasting 1000 timesteps. In each episode, the number of players was
sampled from a uniform distribution U(500, 1000) to generalise
across varied traffic scenarios. Agents share the same architecture,
enabling robust performance without environment-specific tuning.
The reward function is defined as profit per timestep to reflect a
route provider’s objective, and the action space consisted of three
discrete actions: increase, maintain, or decrease the price by 1.

For our evaluation, we measured the average travel time and
profit per vehicle, and employed the Gini coefficient [5] to quantify
inequality in travel times across our simulations. A lower Gini
coeflicient indicates a more equitable distribution of travel times,
while a higher value reveals significant disparities . This multi-
faceted evaluation framework not only demonstrates the efficiency

1Proof omitted due to space constraints.

Table 1: Adaptive Pricing Results for the Online MMRP

A% 500 600 750 900 1000
Time 26.66 30.85 117.1 469.12 1739.88
MMRP-PPO  Gini Coef. 0.14 0.14 0.33 0.18 0.13
Profit 13.38 24.65 66.04 86.78 90.41
Time 32.50 34.87 151.83 553.88 2083.49
Random Gini Coef. 0.18 0.15 0.44 0.20 0.14
Profit 46.13 50.8 46.64 48.52 46.55

of our adaptive pricing strategies, but also rigorously assesses their
fairness, providing a comprehensive picture of system performance
under our proposed solution.

3 RESULTS

Our results (Table 1) demonstrate that our adapted PPO-based
approach significantly outperforms a random pricing agent in
a two-route synthetic environment. At 500 players, our method
achieves an average travel time of 26.66 timesteps compared to
32.50 timesteps for the Random Agent, while consistently main-
taining lower Gini coefficients and yielding higher profits (rising
from 13.38 at 500 players to 90.41 at 1000 players). Moreover, under
infinite capacity conditions, our agents converge towards equilib-
rium strategies, confirming that our approach effectively captures
equilibrium-like behaviour?.

These results underscore the potential of our adaptive pricing
strategy to transform real-world traffic management, delivering
not only reduced congestion, but also a fairer distribution of travel
costs. The robust convergence towards equilibrium under infinite
capacity further validates our approach, suggesting its applicability
in more complex, real-world scenarios.

4 CONCLUSION

In this study, we introduced the Multi-Market Routing Problem
(MMRP), an online, oligopolistic extension of traditional conges-
tion games that models real-world traffic competition through mul-
tiple route providers employing adaptive microtolling. We formally
defined MMRP and, to overcome its computational complexity, we
developed an enhanced Proximal Policy Optimisation (PPO)
algorithm tailored for competitive multiagent settings. Our evalua-
tions demonstrate that our approach significantly reduces travel
times, promotes equity, and increases provider profitability com-
pared to benchmarks. Future work will explore scalability, reduced
training costs, advanced techniques such as opponent modelling,
and improved explainability to further bridge theory and practical
traffic management. Overall, our contributions advance conges-
tion game theory and offer actionable strategies for developing
intelligent, adaptive transportation systems.
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