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Abstract: We present a novel approach for identifying the paint colour and tone on a surface 
by using the acoustic signal collected during laser ablation. We trained convolutional neural 
networks to classify the colour (from 8 different colours) and the tone (the percentage of black 
in the paint). The colour was predicted with ~91% accuracy and the tone with an R-value of 
0.95. This technique has significant potential for supporting real-time optimisation in laser-
material processing, particularly for high-precision laser cleaning, as well as broader 
applications where direct visual observation of the sample is not feasible. 

1. Introduction
Lasers have become ubiquitous across manufacturing [1], with applications including metal 
welding [2], machining of metals and ceramics [3], crystalline material deposition [4], fabric 
patterning [5], and rust and surface material removal [6]. However, depending on the process 
and the laser used, plasma can form during ablation due to the high laser intensity, which ionizes 
the material or the surrounding air at the ablation site[7–11]. Due to the plasma produced during 
laser ablation, it is often impossible to directly observe the surface and verify whether the 
desired ablation has occurred. Developing the ability to monitor and understand the ablation 
process without visual feedback could transform the laser processing industry by enabling more 
precise machining control and improving overall efficiency.

Existing methods for detecting paint colour during laser ablation primarily rely on optical 
techniques such as laser‐induced breakdown spectroscopy (LIBS). LIBS is widely used for 
elemental analysis by measuring the emitted light spectrum from the plasma generated during 
ablation, providing insights into material composition, including pigments responsible for 
colour differentiation [12] .

Additionally, hyperspectral imaging has been utilized to analyse paint composition by 
capturing both spatial and spectral information, thereby allowing differentiation between paint 
layers and subtle colour variations [13].

In addition, Raman spectroscopy has also been employed for pigment analysis, 
demonstrating its potential for non‐destructive characterization of artistic materials. For 
instance, González‐Vidal et al. [14] developed an automatic classification system for Raman 
spectra that enables rapid identification of pigment compositions, thereby facilitating efficient 
analysis in conservation science. Similarly, Nevin et al. [15] applied Raman spectroscopic 
methods to pigment analysis, highlighting the ability to distinguish subtle chemical differences 
among pigments. 

However, these methods often require complex and expensive optical setups or can be time 
consuming, making real‐time and cost‐effective solutions challenging to implement. The 
integration of deep learning, particularly convolutional neural networks (CNNs), offers a 
promising alternative for automated and robust paint classification based on acoustic signals 
generated during ablation.

In recent years, deep learning, particularly convolutional neural networks (CNNs) [16], has 
gained significant attention in science due to advances in GPU computing power [17]. CNNs 
can classify features in data, such as images [18,19], with high accuracy and speed, often 
providing results in milliseconds. These networks have been applied to various tasks, including 
image classification of bird songs[20], labelling cars [21], and analysing magnetic resonance 



imaging (MRI) scans [22]. In other applications of deep learning for material classification, 3D 
convolutional neural networks (3D-CNNs) have been applied to hyperspectral images for 
material classification [23]. The authors analyse how 3D-CNN models process spatial 
information and compare their performance in classifying hyperspectral images, which contain 
detailed spectral data about materials. The study provides insights into the role of deep learning 
in material classification beyond traditional imaging techniques.

The application of deep learning has also been applied in real-time classification of enamel 
paint coatings on a conveyor line [24]. The authors develop a system that classifies different 
object types and surface conditions of enamel paint using computer vision. The research 
highlights how CNN-based methods can be used for automated quality control in industrial 
settings. More specific to lasers, CNNs have been applied to welding [25], particulate matter 
detection [26], laser scanning [27], additive manufacturing [28], laser powder bed fusion [29], 
subtractive machining [18], and laser induced breakdown spectroscopy in laser cleaning [31]. 

Recent advancements have demonstrated the integration of acoustic signals and deep 
learning techniques in various laser-based material analysis applications. For instance, in laser 
paint removal, the acoustic emissions generated during the process provide valuable 
information about the state of paint removal. One study introduced a real-time acoustic 
monitoring method using deep learning to analyse these signals, enabling precise process 
control [32]. In laser beam welding, acoustic process monitoring combined with machine 
learning has been applied to analyse recorded acoustic signals to aid in defect detection and 
optimization of welding parameters, improving weld quality [33].

For additive manufacturing, particularly selective laser melting (SLM), a method 
combining acoustic signals with deep learning was proposed to monitor spatter behaviours. 
Acoustic data recorded by a microphone was analysed alongside high-speed camera footage, 
demonstrating that deep learning could effectively track spatter in a cost-efficient manner [34]. 
In laser ablation, both acoustic and plasma emissions have been analysed using deep learning 
models to classify tissue types, identify laser pulse energy, and predict the appearance of the 
ablated sample, improving the understanding of laser-tissue interactions [35]. Similarly, 
Alperovich et al. [36] demonstrated real-time tissue classification by analysing acoustic 
emissions during pulsed ultraviolet laser ablation, applying machine learning for automated 
tissue identification.

Other recent results including predictive visualisation of the sample surface during ablation 
[37], tissue classification during laser ablation [38], and for laser weld depth classification [39]. 
This paper introduces a novel approach for classifying paint colour and tone, using acoustic 
data collected in real-time during laser ablation. More specifically, we use a microphone to 
collect acoustic signal during laser ablation of paint, and use deep learning to classify the colour 
(from 8 different colours) and the tone (the percentage of black in the paint) of the ablated paint. 
Traditional methods in material processing often rely on visual inspection, which can be limited 
by accessibility, surface contamination, or material transparency. In contrast, this method uses 
CNNs to analyse acoustic signals, offering a non-visual, indirect measurement technique that 
operates effectively even when optical viewing of sample is restricted.

2. Experiment and method
2.1 Sample fabrication

Two microscope slides (25 mm × 75 mm × 1 mm thick soda-lime glass) from Thermo Fisher 
Scientific, each featuring ten wells, were used as the substrates for the paint. Daler Rowney 
Georgian oil paints were used as the samples in this study and were diluted in plastic wells with 
60 ml of Winsor & Newton artist white spirit. The paints, referred to by simplified names for 
clarity throughout the work were Lamp Black (black), French Ultramarine (blue), Sap Green 
(green), Lime Yellow (lime), Yellow Ochre (ochre), Cadmium Red (orange), Crimson Alizarin 
(red), and Titanium White (white).  



The diluted paints were deposited onto each substrate using a 20 mL Eppendorf Research plus 
micropipette at a volume of 10 mL in each well. The first slide consisted of the eight colours. 
The second slide featured varying black/white ratios, starting with a 0/100 ratio (0% black) in 
the first well, which was entirely white, followed by a 10/90 ratio (10% black) in the next well, 
producing a weakly grey tone. This was repeated for all ten wells, with the final well having a 
90/10 ratio (90% black). The first slide, which had pure black, was used to represent the 100/0 
ratio (100% black). Each tone was created by depositing a total of 10 mL of paint mixture per 
well. For instance, 3 mL of black mixed with 7 mL of white resulted in a 30/70 ratio (30% 
black). The paints were left to dry over several days before they were used in the laser ablation 
setup.

2.2 Laser ablation setup

Single laser pulses (1 mJ, 1030 nm wavelength and ~190 fs pulse length) from a Light 
Conversion Pharos SP, were focused onto the surface of a painted substrate using a 20× 
magnification Nikon microscope objective lens (TU Plan ELWD, 0.40 NA) with a spot size of 
30 µm (see figure 1 for diagram of setup). The microscope objective also enabled the surface 
ablation to be imaged and monitored with the use of a camera (Basler a2A5320-23ucPRO, 5320 
× 5320 pixels). By including the camera, the sample position could be adjusted by the motorised 
stages so that each paint colour could be located, and each paint colour’s top surface could be 
aligned to be in focus prior to ablation, for consistency throughout all colours. The glass slide 
samples were clamped onto a motorised linear 3-axis stage (Zaber, 3 × LSM050A-T4) that was 
computer-controlled and allowed accurate positioning of the sample (in 1 µm step size 
movement). A USB microphone (Adafruit, 22.2 mm × 18.3 mm × 7.0 mm) was placed 
approximately 1 mm below the lower surface of the glass slide and 2 mm away from the laser 
axis. The microphone was connected to a Windows 10 workstation with an Intel(R) Core(TM) 
i7-7700 CPU @ 3.60GHz 3.60 GHz, 64.0 GB RAM, and an NVIDIA Titan Xp (12 GB 
VRAM).



Fig. 1. Femtosecond laser pulses were focussed onto the surface of a dried painted region and 
the acoustic signal produced as a result of ablation was recorded using a USB microphone. The 
acoustic signals were then transformed into spectral images that were then used as the input to a 
neural network that classified the colour or the tone. The white bar indicates 20 µm in the inset 
ablated colour samples.

2.3 Data collection

Python code was used on the Windows workstation to automate the data collection process, 
controlling the 3-axis stage, laser pulses, microphone, and camera. Each sample category was 
positioned under the laser and single pulse ablation occurred in a 5 × 9 grid (total of 45 pulses), 
with 50 µm spacing between ablated spots. During each ablation, the acoustic signal was 
recorded using the USB microphone over a 3-second window. The temporal peak in the signal 
was identified, and the acoustic data was cropped to a 42.3 ms window, with the peak centered 
along the time axis (horizontal in the images in this work). The temporal peak in the signal 
refers to the maximum amplitude observed in the time domain of the acoustic waveform. This 
peak was identified to align the acoustic signal with the moment of laser-material interaction, 
ensuring that the extracted features were directly related to the ablation event. A sample period 
of 42.3 ms was chosen based on the duration of the observable acoustic signal, allowing for 
optimal feature extraction.



 

Fig. 2. Diagram showing examples of acoustic spectra for the different categories, for a) colour 
and b) tone (where 0 corresponds to white and 100 to black).

 A Fourier transform was used to convert the time-domain acoustic data into its frequency 
spectrum. The lower frequencies of the spectra were removed due to low signal within this 
range, apart from signal in the range 100-400 Hz, which was present within all spectra. As a 
result, the resultant spectra were split into 94 bands from 11.4 kHz to 22.1 kHz (since this was 
where most of the signal existed), and then resized to a square array of 256 × 256 pixels and 
duplicated across three channels to create a 256 × 256 RGB image.  The images were generated 
by mapping the frequency intensities onto a 256-pixel y-axis, with each pixel representing 
approximately 43 Hz (calculated as the 11 kHz frequency range divided by 256 pixels). The 
intensities were normalized using min-max scaling to ensure consistency across samples. 
Frequency bands were evenly distributed along the y-axis, providing a clear spectral 
representation of the acoustic data over time.

Figure 2 shows examples of acoustic spectra for the categories. The data were normalised 
to the average maximum signal in the dataset from 0–255-pixel intensity (1 channel, greyscale), 
to allow for signal to cover the bit depth of the images, and thus increase the dynamic range of 
the signals, to allow for more accurate CNN network to be trained.

2.3 Neural networks

Two neural networks were trained using MATLAB 2024b (see Fig. 3 for concept). The first 
network was for classifying the colour, and was a CNN (Inception v3 [40]) with 314 layers and 
a classification output layer. The second network was designed to classify numbers from 0 to 
100, where 0 represented a sample with 0% black paint and 100 represented a sample with 
100% black paint. This CNN architecture consisted of 18 layers, including 4 convolutional 
layers (each followed by batch normalization and ReLU activation), 2 average pooling layers, 
a dropout layer, a fully connected layer, and a regression output layer. The neural network was 
trained using an initial learning rate of 0.0002, with a validation frequency of 200 iterations, a 
learning rate drop-out factor of 0.1, and the mini-batch size was set to 2. In addition, weight 
decay (L2 regularization) was incorporated to penalize overly large weights and reduce 
overfitting. No adjustments were made the structure of the model, apart from the image input 
size, which changed from the default size of 299 × 299 × 3 to 256 × 256 × 3, where 3 indicates 
RGB channels.

Training took 22 minutes (20 epochs) for the first network and 2 minutes (20 epochs) for the 
second network, with both networks showing a training loss plateau during this time. Both 
neural networks were trained and tested on a Windows 10 computer workstation with two 
NVIDIA RTX A6000 (48 GB VRAM each). 

In total, 328 acoustic spectra images were used for training the colour neural network and 32 
(4 from each category) were used for testing the neural network. The tone neural network was 
trained on 365 spectra images, and were tested on 40 spectra (test data 1) randomly chosen 
images not used in training, in the quantity (8, 6, 3, 4, 7, 3, 5, 3, 1) from the 0, 10, 20, 40, 50, 
60, 80, 90, 100 categories, respectively, that were used in training, and 45 spectra for each 30 
and 70 category (test data 2) not used in training.  



 

Fig. 3. The concept of using neural networks to identify (a) colour and (b) tone, from the acoustic spectra.

3. Results and discussion
Fig. 4(a) shows the confusion matrix for the results of testing the neural network on spectra 

from the 8 different coloured paints. The neural network was able to correctly predict 29 of the 
32 randomly chosen test samples. Fig. 4(b) shows the application of Grad-CAM (Gradient-
weighted Class Activation Mapping [41]), which is a technique to visualise and therefore 
interpret the decisions made by CNNs. Grad-CAM was applied with the reduction layer being 
the penultimate layer (SoftMax layer) before the classification output, for 1 of each of the 
different classes and the results are visualized as an overlay (50% alpha) of corresponding 
spectra. The figure presents a Grad-CAM visualisation applied to different coloured paint 
samples, highlighting the spectrum’s most influential area in the CNN's classification process. 
Each sub-image corresponds to a specific paint colour, with an overlaid heat map indicating 
areas of high and low activation. The intensity scale at the bottom of each sub-image represents 
the strength of the activation, where brighter regions (e.g., yellow) signify higher importance 
in the model’s decision-making, while darker regions (e.g., blue) indicate less influence. This 
visualisation aids in interpreting the CNN’s spectral region of focus, aiding in understanding of 
how the neural network distinguishes between different paint colours.

As shown in the images, the neural network associates distinct spectral regions with different 
classifications. For example, in the white spectrum, the upper region has the greatest influence 
on the classification, while in the blue spectrum, the middle region is most influential, and in 
the green spectrum, the lower region has the strongest impact. This indicates that the neural 
network has identified spectral features (or a lack of spectral features) that are correlated with 
each colour.  



Fig. 4 (a) Confusion matrix showing the true class vs predicted class for the colour neural 
network being applied to acoustic spectra from the coloured samples. The blue shows the correct 
predictions and the orange the incorrect predictions, with the number of images tested on labeled 
in the corresponding squares. (b) Grad-CAM overlay of spectra from different samples, with the 
peak frequency (kHz) labeled in the inset in white.

Since a regression CNN was applied to train and test acoustic spectra from paint samples with 
varying tone, each prediction was a numerical value. Figure 5 shows the plot of actual values 
versus predicted values for the test data. The results of the test data from categories used in the 
training are shown as red circles in the figure, giving an R-value of 0.9915 and RMSE (root 
mean-squared error) of 4.9307. The results of the data from categories not used in training (30% 
and 70%) are shown as blue circles, giving an R-value of 0.9476, and a mean and RMSE of 
18.1 ± 15.3 for 30% black and 71.1 ± 8.33 for 70% black. The ability for the neural network to 
identify the tone from the acoustic signal can be understood by looking at the example spectra 
in Fig. 2(b), which show visually distinct differences in the spectra. For example, 0% and 10% 
black have few visible frequency (horizontal lines of high intensity) components compared to 



higher percentage such as 70-100% black. Future work could involve exploring mixtures of 
colours as well as other types of paints or materials. 

This technique has significant potential for enhancing optical material processing, 
especially where visual assessment is difficult or impossible. For example, in high-precision 
laser cleaning, real-time acoustic-based classification can dynamically adjust laser parameters, 
improving selectivity and reducing substrate damage. In heritage conservation, it offers non-
invasive insights without visual access. In industrial coating processes, it enables rapid, in-situ 
quality control by identifying paint colour, tone, rust or material in real-time. Additionally, this 
method supports adaptive laser processing, where feedback from acoustic signals allows for 
intelligent control systems, therefore broadening the utility of laser technologies in various 
environments, including industrial, manufacturing and cleanroom environments. 

Fig. 5 Testing of the tone neural network on data not used in training. Red circles represent test 
data 1, covering the full range from 0 to 100, while blue circles represent test data 2, comprising 
the entire categories of 30 and 70 that were excluded from training.

4. Conclusion
In conclusion, this study demonstrates the ability of neural networks to classify both the color 
and the tone of paint from their acoustic spectra during laser ablation, achieving approximately 
91% accuracy in color classification and an R-value of 0.95 for tone prediction. This technique 
holds potential for supporting real-time optimisation in laser-material processing, especially for 
high-precision laser cleaning, and it could be applied more broadly in situations where direct 
visual observation of the sample is not possible.
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