™ |

Check for
updates

Research Article Vol. 15, No. 4/1 Apr 2025/ Optical Materials Express 766

R2o

Oyijez]| Yl

I

Classifying paint colour using acoustic data
from laser ablation
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Abstract: We present an approach for identifying the paint colour and tone on a surface by using
the acoustic signal collected during laser ablation. We trained convolutional neural networks
to classify the colour (from 8 different colours) and the tone (the percentage of black in the
paint). The colour was predicted with ~91% accuracy and the tone with an R-value of 0.95.
This technique has significant potential for supporting real-time optimisation in laser-material
processing, particularly for high-precision laser cleaning, as well as broader applications where
direct visual observation of the sample is not feasible.
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1. Introduction

Lasers have become ubiquitous across manufacturing [1], with applications including metal
welding [2], machining of metals and ceramics [3], crystalline material deposition [4], fabric
patterning [5], and rust and surface material removal [6]. However, depending on the process
and the laser used, plasma can be created during ablation due to the high laser intensity, which
ionizes the material or the surrounding air at the ablation site [7—11]. Due to the plasma produced
during laser ablation, it is often impossible to directly observe the surface and verify whether the
desired ablation has occurred. Developing the ability to monitor and understand the ablation
process without visual feedback could transform the laser processing industry by enabling more
precise machining control and improving overall efficiency.

Existing methods for detecting paint colour during laser ablation primarily rely on optical
techniques such as laser-induced breakdown spectroscopy (LIBS). LIBS is widely used for
elemental analysis by measuring the emitted light spectrum from the plasma generated during
ablation, providing insights into material composition, including pigments responsible for colour
differentiation [12]. Additionally, hyperspectral imaging has been utilized to analyse paint
composition by capturing both spatial and spectral information, thereby allowing differentiation
between paint layers and subtle colour variations [13].

In addition, Raman spectroscopy has also been employed for pigment analysis, demonstrating
its potential for non-destructive characterization of artistic materials. For instance, Gonzalez-
Vidal et al. [14] developed an automatic classification system for Raman spectra that enables
rapid identification of pigment compositions, thereby facilitating efficient analysis in conservation
science. Similarly, Nevin et al. [15] applied Raman spectroscopic methods to pigment analysis,
highlighting the ability to distinguish subtle chemical differences among pigments.

However, these methods often require complex and expensive optical setups or can be time
consuming, making real-time and cost-effective solutions challenging to implement. The
integration of deep learning, particularly convolutional neural networks (CNNs), offers a
promising alternative for automated and robust paint classification based on acoustic signals
generated during ablation.
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In recent years, deep learning, particularly convolutional neural networks (CNNs) [16], has
gained significant attention in science due to advances in GPU computing power [17]. CNNs
can classify features in data, such as images [18,19], with high accuracy and speed, often
providing results in milliseconds. These networks have been applied to various tasks, including
image classification of bird songs [20], labelling cars [21], and analysing magnetic resonance
imaging (MRI) scans [22]. In other applications of deep learning for material classification, 3D
convolutional neural networks (3D-CNNs) have been applied to hyperspectral images for material
classification [23]. The authors analyse how 3D-CNN models process spatial information and
compare their performance in classifying hyperspectral images, which contain detailed spectral
data about materials. The study provides insights into the role of deep learning in material
classification beyond traditional imaging techniques.

The application of deep learning has also been applied in real-time classification of enamel
paint coatings on a conveyor line [24]. The authors developed a system that classifies different
object types and surface conditions of enamel paint using computer vision. The research
highlights how CNN-based methods can be used for automated quality control in industrial
settings. More specific to lasers, CNNs have been applied to welding [25], particulate matter
detection [26], laser scanning [27], additive manufacturing [28], laser powder bed fusion [29],
subtractive machining [30], and laser induced breakdown spectroscopy in laser cleaning [31].

Recent advancements have demonstrated the integration of acoustic signals and deep learning
techniques in various laser-based material analysis applications. For instance, in laser paint
removal, the acoustic emissions generated during the process provide valuable information
about the state of paint removal. One study introduced a real-time acoustic monitoring method
using deep learning to analyse these signals, enabling precise process control [32]. In laser
beam welding, acoustic process monitoring combined with machine learning has been applied
to analyse recorded acoustic signals to aid in defect detection and optimization of welding
parameters, improving weld quality [33].

For additive manufacturing, particularly selective laser melting (SLM), a method combining
acoustic signals with deep learning was proposed to monitor spatter behaviours. Acoustic data
recorded by a microphone was analysed alongside high-speed camera footage, demonstrating that
deep learning could effectively track spatter in a cost-efficient manner [34]. In laser ablation, both
acoustic and plasma emissions have been analysed using deep learning models to classify tissue
types, identify laser pulse energy, and predict the appearance of the ablated sample, improving
the understanding of laser-tissue interactions [35]. Similarly, Alperovich et al. [36] demonstrated
real-time tissue classification by analysing acoustic emissions during pulsed ultraviolet laser
ablation, applying machine learning for automated tissue identification.

Other recent results including predictive visualisation of the sample surface during ablation
[37] and for laser weld depth classification [38]. This paper introduces a novel approach for
classifying paint colour and tone, using acoustic data collected in real-time during laser ablation.
More specifically, we use a microphone to collect acoustic signal during laser ablation of paint,
and use deep learning to classify the colour (from 8 different colours) and the tone (the percentage
of black in the paint) of the ablated paint. Traditional methods in material processing often
rely on visual inspection, which can be limited by accessibility, surface contamination, or
material transparency. In contrast, this method uses CNNs to analyse acoustic signals, offering a
non-visual, indirect measurement technique that operates effectively even when optical viewing
of sample is restricted.

2. Experiment and method
2.1. Sample fabrication

Two microscope slides (25 mm X 75 mm X 1 mm thick soda-lime glass) from Thermo Fisher
Scientific, each featuring ten wells, were used as the substrates for the paint. Daler-Rowney
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Georgian oil paints were used as the samples in this study and were diluted in plastic wells with
60 ml of Winsor & Newton artist white spirit. The paints, referred to by simplified names for
clarity throughout the work were Lamp Black (black), French Ultramarine (blue), Sap Green
(green), Lime Yellow (lime), Yellow Ochre (ochre), Cadmium Red (orange), Crimson Alizarin
(red), and Titanium White (white).

The diluted paints were deposited onto each substrate using a 20 mL Eppendorf Research plus
micropipette at a volume of 10 mL in each well. The first slide consisted of the eight colours.
The second slide featured varying black/white ratios, starting with a 0/100 ratio (0% black) in
the first well, which was entirely white, followed by a 10/90 ratio (10% black) in the next well,
producing a weakly grey tone. This was repeated for all ten wells, with the final well having a
90/10 ratio (90% black). The first slide, which had pure black, was used to represent the 100/0
ratio (100% black). Each tone was created by depositing a total of 10 mL of paint mixture per
well. For instance, 3 mL of black mixed with 7 mL of white resulted in a 30/70 ratio (30% black).
The paints were left to dry over several days before they were used in the laser ablation setup.

2.2. Laser ablation setup

Single laser pulses (1 mJ, 1030 nm wavelength and ~190 fs pulse length) from a Light Conversion
Pharos SP, were focused onto the surface of a painted substrate using a 20x magnification Nikon
microscope objective lens (TU Plan ELWD, 0.40 NA) with a spot size of 30 um (see Fig. 1 for
diagram of setup). The microscope objective also enabled the surface ablation to be imaged
and monitored with the use of a camera (Basler a2A5320-23ucPRO, 5320 x 5320 pixels). By
including the camera, the sample position could be adjusted by the motorised stages so that each
paint colour could be located, and each paint colour’s top surface could be aligned to be in focus
prior to ablation, for consistency throughout all colours. The glass slide samples were clamped
onto a motorised linear 3-axis stage (Zaber, 3 X LSM050A-T4) that was computer-controlled and
allowed accurate positioning of the sample (in 1 um step size movement). A USB microphone
(Adafruit, 22.2 mm X 18.3 mm x 7.0 mm) was placed approximately 1 mm below the lower
surface of the glass slide and 2 mm away from the laser axis. The microphone was connected to
a Windows 10 workstation with an Intel Core i7-7700 CPU @ 3.60 GHz 3.60 GHz, 64.0 GB
RAM, and an NVIDIA Titan Xp (12 GB VRAM).

2.3. Data collection

Python code was used on the Windows workstation to automate the data collection process,
controlling the 3-axis stage, laser pulses, microphone, and camera. Each sample category was
positioned under the laser and single pulse ablation occurred in a 5 X 9 grid (total of 45 pulses),
with 50 um spacing between ablated spots. During each ablation, the acoustic signal was recorded
using the USB microphone over a 3-second window. The temporal peak in the signal was
identified, and the acoustic data was cropped to a 42.3 ms window, with the peak centered along
the time axis (horizontal in the images in this work). The temporal peak in the signal refers to
the maximum amplitude observed in the time domain of the acoustic waveform. This peak was
identified to align the acoustic signal with the moment of laser-material interaction, ensuring that
the extracted features were directly related to the ablation event. A sample period of 42.3 ms
was chosen based on the duration of the observable acoustic signal, allowing for optimal feature
extraction.

A Fourier transform was used to convert the time-domain acoustic data into its frequency
spectrum. The lower frequencies of the spectra were removed due to low signal within this range,
apart from signal in the range 100-400 Hz, which was present within all spectra. As a result,
the resultant spectra were split into 94 bands from 11.4 kHz to 22.1 kHz (since this was where
most of the signal existed), and then resized to a square array of 256 x 256 pixels and duplicated
across three channels to create a 256 x 256 RGB image. The images were generated by mapping
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Fig. 1. Femtosecond laser pulses were focussed onto the surface of a dried painted region
and the acoustic signal produced as a result of ablation was recorded using a USB microphone.
The acoustic signals were then transformed into spectral images that were then used as the

input to a neural network that classified the colour or the tone. The white bar indicates 20
um in the inset ablated colour samples.
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the frequency intensities onto a 256-pixel y-axis, with each pixel representing approximately
43 Hz (calculated as the 11 kHz frequency range divided by 256 pixels). The intensities were
normalized using min-max scaling to ensure consistency across samples. Frequency bands were
evenly distributed along the y-axis, providing a clear spectral representation of the acoustic data
over time.

Figure 2 shows examples of acoustic spectra for the categories. The data were normalised to
the average maximum signal in the dataset from 0-255-pixel intensity (1 channel, greyscale), to
allow for signal to cover the bit depth of the images, and thus increase the dynamic range of the
signals, to allow for more accurate CNN network to be trained.

2.4. Neural networks

Two neural networks were trained using MATLAB 2024b (see Fig. 3 for concept). The first
network was for classifying the colour, and was a CNN (Inception v3 [39]) with 314 layers
and a classification output layer. The second network was designed to classify numbers from O
to 100, where O represented a sample with 0% black paint and 100 represented a sample with
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Fig. 2. Diagram showing examples of acoustic spectra for the different categories, for (a)
colour and (b) tone (where O corresponds to white and 100 to black).

100% black paint. This CNN architecture consisted of 18 layers, including 4 convolutional layers
(each followed by batch normalization and ReLU activation), 2 average pooling layers, a dropout
layer, a fully connected layer, and a regression output layer. The neural network was trained
using an initial learning rate of 0.0002, with a validation frequency of 200 iterations, a learning
rate drop-out factor of 0.1, and the mini-batch size was set to 2. In addition, weight decay (L2
regularization) was incorporated to penalize overly large weights and reduce overfitting. No
adjustments were made the structure of the model, apart from the image input size, which changed
from the default size of 299 X 299 x 3 to 256 X 256 X 3, where 3 indicates RGB channels.
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Fig. 3. The concept of using neural networks to identify (a) colour and (b) tone, from the
acoustic spectra.

Training took 22 minutes (20 epochs) for the first network and 2 minutes (20 epochs) for the
second network, with both networks showing a training loss plateau during this time. Both neural
networks were trained and tested on a Windows 10 computer workstation with two NVIDIA RTX
A6000 (48 GB VRAM each).

In total, 328 acoustic spectra images were used for training the colour neural network and
32 (4 from each category) were used for testing the neural network. The tone neural network
was trained on 365 spectra images, and were tested on 40 spectra (test data 1) randomly chosen
images not used in training, in the quantity (8, 6, 3,4, 7, 3, 5, 3, 1) from the 0, 10, 20, 40, 50, 60,
80, 90, 100 categories, respectively, that were used in training, and 45 spectra for each 30 and 70
category (test data 2) not used in training.

3. Results and discussion

Figure 4(a) shows the confusion matrix for the results of testing the neural network on spectra
from the 8 different coloured paints. The neural network was able to correctly predict 29
of the 32 randomly chosen test samples. Figure 4(b) shows the application of Grad-CAM
(Gradient-weighted Class Activation Mapping [40]), which is a technique to visualise and
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therefore interpret the decisions made by CNNs. Grad-CAM was applied with the reduction
layer being the penultimate layer (SoftMax layer) before the classification output, for 1 of each of
the different classes and the results are visualized as an overlay (50% alpha) of corresponding
spectra. The figure presents a Grad-CAM visualisation applied to different coloured paint
samples, highlighting the spectrum’s most influential area in the CNN’s classification process.
Each sub-image corresponds to a specific paint colour, with an overlaid heat map indicating
areas of high and low activation. The intensity scale at the bottom of each sub-image represents
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Fig. 4. (a) Confusion matrix showing the true class vs predicted class for the colour neural
network being applied to acoustic spectra from the coloured samples. The blue shows the
correct predictions and the orange the incorrect predictions, with the number of images
tested on labeled in the corresponding squares. (b) Grad-CAM overlay of spectra from
different samples, with the peak frequency (kHz) labeled in the inset in white.
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the strength of the activation, where brighter regions (e.g., yellow) signify higher importance
in the model’s decision-making, while darker regions (e.g., blue) indicate less influence. This
visualisation aids in interpreting the CNN’s spectral region of focus, aiding in understanding of
how the neural network distinguishes between different paint colours.

As shown in the images, the neural network associates distinct spectral regions with different
classifications. For example, in the white spectrum, the upper region has the greatest influence
on the classification, while in the blue spectrum, the middle region is most influential, and in the
green spectrum, the lower region has the strongest impact. This indicates that the neural network
has identified spectral features (or a lack of spectral features) that are correlated with each colour.
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Fig. 5. Testing of the tone neural network on data not used in training. Red circles represent
test data 1, covering the full range from 0 to 100, while blue circles represent test data 2,
comprising the entire categories of 30 and 70 that were excluded from training.

Since a regression CNN was applied to train and test acoustic spectra from paint samples with
varying tone, each prediction was a numerical value. Figure 5 shows the plot of actual values
versus predicted values for the test data. The results of the test data from categories used in the
training are shown as red circles in the figure, giving an R-value of 0.9915 and RMSE (root
mean-squared error) of 4.9307. The results of the data from categories not used in training (30%
and 70%) are shown as blue circles, giving an R-value of 0.9476, and a mean and RMSE of
18.1 £ 15.3 for 30% black and 71.1 + 8.33 for 70% black. The ability for the neural network to
identify the tone from the acoustic signal can be understood by looking at the example spectra
in Fig. 2(b), which show visually distinct differences in the spectra. For example, 0% and 10%
black have few visible frequency (horizontal lines of high intensity) components compared to
higher percentage such as 70-100% black. Future work could involve exploring mixtures of
colours as well as other types of paints or materials.

This technique has significant potential for enhancing optical material processing, especially
where visual assessment is difficult or impossible. For example, in high-precision laser cleaning,
real-time acoustic-based classification can dynamically adjust laser parameters, improving
selectivity and reducing substrate damage. In heritage conservation, it offers non-invasive
insights without visual access. In industrial coating processes, it enables rapid, in-situ quality
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control by identifying paint colour, tone, rust or material in real-time. Additionally, this method
supports adaptive laser processing, where feedback from acoustic signals allows for intelligent
control systems, therefore broadening the utility of laser technologies in various environments,
including industrial, manufacturing and cleanroom environments.

4. Conclusion

In conclusion, this study demonstrates the ability of neural networks to classify both the color
and the tone of paint from their acoustic spectra during laser ablation, achieving approximately
91% accuracy in color classification and an R-value of 0.95 for tone prediction. This technique
holds potential for supporting real-time optimisation in laser-material processing, especially for
high-precision laser cleaning, and it could be applied more broadly in situations where direct
visual observation of the sample is not possible.

Funding. Engineering and Physical Sciences Research Council (EP/W028786/1, EP/T026197/1, EP/Z002567/1).
Disclosures. The authors declare no competing interests.

Data availability. Data underlying the results presented in this paper are available in Ref. [41] .
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