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Structured light analogy of quantum

squeezed states
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Abstract

Quantum optics has advanced our understanding of the nature of light and enabled applications far beyond what is
possible with classical light. The unique capabilities of quantum light have inspired the migration of some conceptual
ideas to the realm of classical optics, focusing on replicating and exploiting non-trivial quantum states of discrete-
variable systems. Here, we further develop this paradigm by building the analogy of quantum squeezed states using
classical structured light. We have found that the mechanism of squeezing, responsible for beating the standard
quantum limit in quantum optics, allows for overcoming the “standard spatial limit” in classical optics: the light beam
can be “squeezed” along one of the transverse directions in real space (at the expense of its enlargement along the
orthogonal direction), where its width becomes smaller than that of the corresponding fundamental Gaussian mode.
We show that classical squeezing enables nearly sub-diffraction and superoscillatory light focusing, which is also
accompanied by the nanoscale phase gradient of the size in the order of A/100 (A/1000), demonstrated in the
experiment (simulations). Crucially, the squeezing mechanism allows for continuous tuning of both features by varying
the squeezing parameter, thus providing distinctive flexibility for optical microscopy and metrology beyond the
diffraction limit and suggesting further exploration of classical analogies of quantum effects.

Introduction

Structured light enables precise control of light’s
degrees of freedom and dimensions, being in demand in
fundamental physics and optical technologies' ™. Due to
its multidimensional nature, structured light provides a
versatile platform for transferring and testing quantum-
inspired concepts with classical light®~®. For instance, the
vortex beams were used to simulate quantum cat states’,
Landau levels'®, and Laughlin matter'"'? and to observe
the Berezinskii—Kosterlitz—Thouless phase transition,
enabling thermodynamics study in photonic light fluid?.
Moreover, it has been shown that vector beams with
spatially inseparable polarization can resemble some
properties of the quantum-entangled Bell states'*'?,
suggesting quantum-inspired applications such as local
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teleportation'®, turbulence-resilient communication, and
encryption®” 1%,

The search for the classical analogies of quantum phe-
nomena has been primarily focused on the parallelism of
structured light and discrete-variable (DV) quantum sys-
tems. Within this paradigm, a finite Hilbert space of DV
systems, characterized by quantum numbers such as
energy level and spin, is mimicked by a finite set of spatial
modes and polarization states of structured light*>*'. In
contrast, many quantum systems, including optical fields,
superconducting circuits, and collective spin of atomic
ensembles, are associated with an infinite-dimensional
Hilbert space and have canonical variables corresponding
to position and momentum (the phase space). The spec-
trum of these observables is continuous, opposite to the
discrete spectrum of DV systems. Continuous-variable
(CV) systems represent an alternative approach to
implementing quantum technologies—from computation
and communication to sub-shot-noise metrology*>**. The
most exploited resource in CV systems is squeezing,
where one of the canonical variables (e.g., quadratures of
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Fig. 1 Exploiting the mechanism of quantum squeezing to squeeze classical light. a The vacuum state (left diagrams) of a quantum oscillator
can be squeezed along one of the directions in the phase space (along g, and p; directions in right diagrams). Counter-intuitively, the state with
more photons—the squeezed state—is less noisy along these directions than the vacuum state with zero photons. The probability distribution in the
basis (pq,p,) is the Fourier transform of the probability distribution in the basis (q;,g,). b For classical structured light, the squeezing methodology
can be used to “squeeze” the width of the fundamental Gaussian mode (left diagrams) along one of the directions in the real space (x,y) and the
Fourier space (4, f,) by adding higher-order modes. The intensity distribution in the basis (f,, f, ) is the Fourier transform of the intensity distribution

the optical field) is “squeezed,” surpassing the standard
quantum limit (the vacuum noise level)—at the expense
of the enlarged noise in the orthogonal canonical variable,
Fig. 1a. The operation below the standard quantum limit
plays a decisive role in high-precision optical measure-
ments, detection of gravitational waves** ', quantum
communication®?, and quantum imaging®.

In this work, we develop a classical analogy of the
quantum squeezed states. Within this methodology, the
infinite-dimensional set of eigenmodes of structured light
is used to simulate the Hilbert space of a CV system, while
structured light distribution in the transverse plane
mimics the behavior of squeezed states in the phase space.
Remarkably, the classical analogy of squeezed states
exhibits “squeezed” field distribution along one of the
directions in real space (x,y) and Fourier space (f,.f,)
compared to the corresponding field distribution of the
fundamental Gaussian mode (or “standard spatial limit”),
Fig. 1b. Such beam compression along the x and f,
directions comes at the cost of enlarging the beam size
along the f, and y directions, similar to quantum
squeezing. In this work, we formulate a theoretical fra-
mework and develop an experimental apparatus for gen-
erating and analyzing such states. We show that classical
squeezing holds both in free space propagation and tightly
focused conditions where, in the latter case, it is also
accompanied by the nanoscale phase gradient (super-
oscillations)**™' at the deep sub-wavelength level.
Therefore, classical squeezed light offers near- and,
potentially, sub-diffraction regimes of operation accom-
panied by sharp phase gradients, both of which can be

continuously tuned to meet the requirements of practical
super-resolution microscopy, optical metrology, and
nanofabrication.

Results

Fundamentally, quantum-classical analogies arise from
similarities in the mathematical description of quantum
and classical systems. This occurs when the quantum
probability amplitude and the amplitude of classical fields
can, under specific conditions, play analogous roles™.
Here, we exploit a deep connection between Maxwell’s
equations in the paraxial approximation and the equations
governing the quantized light, where the mathematical
isomorphism has been established®®*3*, For instance, the
quantum state of two optical modes, which is a primary
interest of this work (for a single-mode case, see the
Supplementary Material), satisfies the quantum harmonic
oscillator equation, H|n,m) = E,,|n,m)>>, where H is
the Hamiltonian operator, E, ,, is the discrete eigenvalue
(energy) and the state |n, m) corresponds to n photons in
mode 1 and m photons in mode 2. Curiously, the paraxial
equation can be expressed in the analogong form>*—the
transverse eigenmod;SL equation, H u,., (€, n) =
Crmtnm(€,7), where H ~ is the analogous Hamiltonian
operator, (&,7) = (v2x/w(z),v/2y/w(z)) are reduced
coordinates, the coefficient C,, is an eigenvalue, and
uy.m(€,7) is a transverse mode function (Supplementary
Material). The analytic expression of u,,,(£,#) in the
Cartesian coordinates is the Hermite-Gaussian (HG) mode
with the corresponding indices®®. We note that solutions
of quantum and classical equations above constitute
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infinite-dimensional orthonormal spaces. Consequently,
direct mapping can be established: |n,m) < u, (&, n).
Since any two-mode quantum system can be described by
a superposition of |n,m) states, this implies the existence
of a classical structured light analogy of a diverse family of
CV quantum states where u,,,(§,n) (noted as |uy,)
hereafter) modes play a role of |n, m) states.

Quantum squeezing

Mathematically, the two-mode squeezed vacuum state is
generated by applying the squeeze operator to the vacuum
state, |7) = §(7)[0,0), where §(7) = exp(—zalal +
t*a1a,), 1 is the complex number, |z| is the squeezing
parameter, and (&;,&,’) (j = 1,2) are the ladder operators
with the properties a1ds|n, m) = /nm|ln —1,m — 1) and
alalln,m)y=\/(n+ ) (m+ 1)|n+1,m+1). As men-
tioned above, the alternative representation of this state
can be given in a Fock (number) basis, which reads as
|7y =3, culn,n)  with ¢, = (—1)" exp(intanh”(|7]))/
cosh(|7])*. A distinctive feature of two-mode squeezed
states is that both modes have an equal number of photons
as |7) has symmetric |n, n)-terms only.

Classical squeezing
The classical ladder operators for structured light,

(Zl;[, @), are introduced in a similar fashion®*: &1 as|u,,,) =

Vnmlu, 1 m-1) and ﬁiﬁg‘un,rﬁ = \/m|”n+l,mﬂ>~
Consequently, the classical analogy of the squeeze
operator is S(1) = exp(—ralal, + r*a1a,), with the com-
plex number 7. Therefore, the classical squeezed struc-
tured light is generated according to |u;) = S(7)|uoo),
where the classical analogy of the quantum vacuum state
is the fundamental HG mode |ugp). The classical
squeezed state can be represented as an infinite sum of
the HG modes |u;) = )", cu|tn), where the amplitudes
¢, are “borrowed” from the quantum squeezed state (see
“Methods”). Notably, the classical squeezed structured
light inherits remarkable properties of the quantum
squeezed state, which we explore theoretically and
experimentally in the subsequent sections.

Beating the standard spatial limit with classical light

The standard quantum (shot noise) limit (SQL) is
inevitable for classical states of light, including single-
frequency laser, restricting the precision of optical mea-
surements and imaging. This limit—the ultimate result of
quantum vacuum fluctuations—holds for single and
multi-component systems. For instance, let us consider
two optical modes (e.g., two traveling waves that differ in
frequency, polarization, or propagation direction) descri-
bed by canonical variables, or quadratures, (g;,p;) and
(44, p,), accordingly® (see “Methods”). If these modes are
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in a vacuum state |0,0), the joint measurement of two
quadratures, say g; and ¢,, follows isotropic Gaussian
distribution, Fig. 2a. Here, the left subfigure depicts the
state’s probability density distribution in the basis (¢, ¢, ),
whereas the right subfigure shows this distribution as a
function of the polar angle 6, where 6 = arctan(q,/q,)*.

The quantum squeezed vacuum state, |7), overcomes
the SQL: squeezing suppresses noise in one of the quad-
ratures at the cost of increasing noise in another quad-
rature, as shown in Fig. 2b for 7 = 0.5 (left subfigure). The
resulting elliptical distribution’s minor axis (blue dashed
line) is smaller than the SQL (black dashed line). With
varying polar angle 6, the noise oscillates between these
two extreme values (Fig. 2b, right subfigure).

As previously mentioned, the vacuum state finds a tri-
vial classical analogy—the fundamental HG mode, |uq).
The mode’s transverse profiles at various planes are
shown in Fig. 2c. The profiles are drawn in the reduced
coordinate frames (x/w(z),y/w(z)), with the beam waist
w(z) changing with the longitudinal coordinate z. This
beam waist (white dashed contours) is regarded as the
counterpart of the SQL and, hence, called the “standard
spatial limit” (SSL). In contrast, the classical squeezed
structured light, |u,), exhibits an elliptical beam waist,
Fig. 2d. Remarkably, the waist is “squeezed” along one of
the directions and is smaller than that of the fundamental
HG mode. The blue dashed contour highlights that the
classical squeezed structured light beats the SSL, shown
by the white dashed contour.

The longitudinal evolution of the fundamental HG
mode and classical squeezed state is illustrated in Fig. 2e,
f, respectively. Light distribution becomes broader during
propagation due to the diffraction, necessitating the use of
the reduced coordinate frame in Fig. 2¢, d. Furthermore,
the direction of squeezing oscillates periodically along the
propagation direction (Fig. 2f), following the 6-evolution
of the quantum squeezed state (Fig. 2b).

Generation and detection of classical squeezed light

Beyond the mathematical framework, the structured
light analogy of squeezed states can benefit from the
experimental methods of quantum optics. In this section,
we develop the parallelisms between generating and
detecting quantum and classical squeezed light.

The quantum squeezed vacuum state is routinely gen-
erated in the spontaneous parametric down-conversion
(SPDC) process, taking place in a non-linear crystal
exposed to a pump laser. In this process, one laser photon
can generate two photons of lower frequency in two
distinct (“signal” and “idler”) modes where one photon is
always emitted to the signal mode, and the other photon
is always emitted to the idler mode. These two modes
differ in polarization (as in Fig. 3a), direction, or fre-
quency. If the pump power is sufficiently high, it can
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a Vacuum state

752,:(

b Squeezed vacuum state

Fig. 2 Quantum squeezed state and its structured light analogy. a, b The quantum probability density distributions for vacuum (a) and squeezed
vacuum (b) states, where the black (blue) dashed lines mark the noise level of the vacuum (squeezed) state. The angle 6 varies from 0 to 2r; g, and g,
are field quadratures (canonical variables). ¢, d The transverse modes of the corresponding structured light analogies (simulation) at different planes
perpendicular to z, where (x/w(z),y/w(z)) varies from —2 to 2; white (blue) dashed line marks the waist of Gaussian beam (classical squeezed

structured light). e, f The propagation evolution of the Gaussian and classical squeezed beams; z varies from 0 to 5z, (x,y) varies from —10wq to

10wo, Wy is the beam waist at z = 0, zg is the Rayleigh range. SQL standard quantum limit, SSL standard spatial limit

stimulate the higher-order processes in which two or
more laser photons simultaneously experience such
transformation. As a result, the initial vacuum state of the
signal and idler modes becomes populated synchronously,
generating the squeezed vacuum state |1) = >, c¢,|n, n)
with proper coefficients ¢, (see above). The laser power,
non-linear susceptibility of the crystal, interaction length,
and phase matching define the squeezing parameter. After
the crystal, the pump laser is filtered out.

To generate the classical squeezed structured light, we
replace the non-linear crystal in the above scheme with
the liquid-crystal spatial light modulator (SLM1), Fig. 3b,
loaded with the specially prepared numerical mask
(“Methods”). The squeezing takes place in the +1 dif-
fraction order, while all other diffraction orders are fil-
tered out. The mask defines the squeezing parameter,
which, importantly, can be continuously varied in a wide
range, providing flexibility in the squeezing effect and
resulting field patterns.

The quantum squeezing can be experimentally quanti-
fied as shown in Fig. 3c. Here, the signal and idler modes
are separated using a polarizing beam splitter (PBS), and
each output port of the PBS is monitored by a photon-

number resolving detector, such as the transition edge
sensor. In the photon-number correlation measurements,
the coefficients |c,,u|> = |(n, m|7)|> are recovered®
(“Methods”). The zero off-diagonal terms are a distinctive
feature of the squeezed vacuum state, |c,,, > =0 forn=m.

The classical squeezing can be measured in a similar
fashion by replacing the PBS with the second liquid-
crystal spatial light modulator (SLM2) and replacing the
photon-number resolving detectors with the charge-
couple device (CCD) camera, as shown in Fig. 3d. The
SLM2 was loaded with the masks of conjugation of dif-
ferent HG modes, while CCD records the modal spectrum
|ty m|uz)|* (“Methods”). The classical modal spectrum
reproduces the quantum correlations for the same
squeezing parameter (r = 0.5 in Fig. 3).

Classical squeezed light in real space

The quantum squeezed vacuum state has a remarkable
ability to surpass the SQL. The classical squeezed light
inherits this ability by overcoming the SSL, as experi-
mentally demonstrated in this section.

The classical squeezed structured light is generated by
diffracting the 488 nm laser (continuous-wave) on the
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Fig. 3 Experimental generation and detection of quantum and classical squeezed light. a Generation and ¢ detection of quantum squeezed
vacuum state. b Generation and d detection of classical squeezed structured light. PBS polarizing beam splitter, TES transition edge sensor, SLM
liquid-crystal spatial light modulator, FT Fourier transform, CCD charge-coupled device camera
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programmed hologram (“Methods”) as described in the
previous section (Fig. 3b). After the reflection from SLM1,
the beam is focused by a weakly focusing lens (focal length
of 200 mm). We set the value of the squeezing parameter
to 0.78 and only retained the eleven HG modes in lowest
orders in the state decomposition of |u;), since negligible
coefficients accompany the higher-order modes.

In the first set of measurements, we remove the SLM2
and directly image the transverse profile of the beam
using the CCD camera (pixel size of 6.5 pum) at different
planes along the propagation direction. In agreement with
the simulations in Fig. 2f, the beam’s profile oscillates
between diagonal elliptical, circular, and anti-diagonal
elliptical shapes; a few of those profiles are shown in
Fig. 4a. The different phase dependencies of the HG
modes explain this evolution of the squeezing ellipse. At
the same time, the beam’s width changes with the pro-
pagation distance, and the maximum squeezing occurs at
the focal plane, z = 0.

From the beam’s profile measurements at different
planes, we evaluate the normalized radial size (=
r(z) /w(z). Here, r(z) is the size of the beam profile along
the squeezing direction (the direction is defined as the
orientation of the minor axis of the elliptical profile at
z = 0), and w(z) is the beam waist of the fundamental HG

mode. The normalized radial size { as the function of
propagation direction z is shown in Fig. 4b. Qualitatively,
the dynamics of { reproduce the dynamics of quantum
squeezing as a function of 6 (Fig. 2b). Importantly, the
classical squeezed structured light surpasses the smallest
SSL (defined at z=0) in the interval (—0.3zz,0.3zz),
beating the weakly focused fundamental HG mode in this
interval.

In the second set of measurements, now with the SLM2
in place as shown in Fig. 3d, we measure the modal
spectrum of the classical squeezed structured light, fol-
lowing the procedure described in the previous section.
The resulting distribution is shown in Fig. 4c. This mea-
surement confirms the dominant contribution of the first
three modes: |ugg), |#11), and |uz;). Notably, the dis-
tribution is diagonal, which agrees with the number state
representation of squeezed states. Based on this dis-
tribution, the correlation coefficient cor between the
theoretical and experimental distributions is estimated to
be 0.946, while the fidelity is estimated to be 0.770
(“Methods”). We attribute the appearance of small non-
diagonal terms and the deviation of cor and F from unity
to the imaging system’s aberration and the CCD camera’s
noise. For the context, we also plot the probability density
distribution for the quantum squeezed states with the
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SSL at
the focal plane

z=0

Fig. 4 Classical squeezed light in real space. a The transverse modes of classical squeezed structured light at z = —5zz, 0, and 5z, respectively.
The blue arrows mark the squeezing direction at z = 0. White and blue dashed lines are the same as in Fig. 2d. b The intensity distributions at { — z
plane, where z ranges from —5zz to 5z, { is the normalized radial position along the squeezing direction at z = 0 (the anti-diagonal direction at

squeezed state (simulation), with T = 0.78

7z = 0). ¢ The detected modal spectrum of the classical squeezed light. d The probability density distributions of the corresponding quantum

same level of squeezing in Fig. 4d, where the gray (blue)
dashed line marks the SQL (the squeezed noise).

Classical squeezed light in Fourier space

In the previous section, we demonstrated that classical
squeezed light beats the SSL in real space. At the same
time, in the Fourier space (being focused by a microscope
objective), such light can operate at near- and sub-
diffraction limit, as we discuss in this section.

In the tight focusing experiment, we send the classical
squeezed light (after the SLM1) through a lens and the
microscope objective, composing a 4f system with 60x
magnification (“Methods”). In this configuration, the
effective pixel size is 108 nm (=6.5 pm/60). The numerical
aperture (NA) of the microscope objective is 0.95. Justi-
fied by the continuous and smooth variation of the
intensity distribution recorded in the experiment, we
exploit an interpolation function to restore the intensity
distribution at the subpixel level of 23 nm from the image
recorded at the effective pixels of 108 nm. The schematic
diagram of the tightly focusing experiment and the phase
retrieval standard method are presented in “Methods” and
Supplementary Material, respectively.

The tightly focused patterns of structured light with 7 =
0 (fundamental mode) and 7 = 0.5 (squeezed) are shown
in Fig. 5a, b, respectively. Importantly, the tight focusing
process preserves the squeezing—the beam waist of the
classical squeezed light (blue dashed line) is noticeably
smaller than that of the fundamental HG mode (white
dashed line). The analysis of the diagonal and anti-
diagonal sections of these intensity maps, Fig. 5c, reveals

that the full width at half maximum (FWHM) in the
squeezing direction (0.871) is one and a half times smaller
than that of the Gaussian beam (1.271). Squeezing comes
at the cost of doubling the spot size in the anti-diagonal
direction (FWHM 2.601). We note that simulations based
on the parameters of our experiment (but free of aber-
rations) predict the FWHM in a squeezing direction at the
level of 0.64, approaching the diffraction limit. It is
important to note the difference between the diffraction
limit and the standard spatial limit. The diffraction limit
describes the resolution limit of imaging systems, defined
as M/(2NA)*°, where 1 is the wavelength, and NA is the
numerical aperture. The standard spatial limit is defined
as the beam waist of the Gaussian beam—the structured
light counterpart of the standard quantum limit. There-
fore, classical squeezed structured light can surpass the
standard spatial limit if the squeezing parameter is greater
than zero. However, to overcome the diffraction limit,
significantly large squeezing parameters are necessary.
Experimentally, this would involve incorporating higher-
order eigenmodes, which is beyond the scope of this

paper.

Superoscillatory structure of classical squeezed light
Curiously, despite beam squeezing, the tightly focused
classical squeezed light exhibits large local wavenumbers,
exceeding the free-space wavenumber 2m/1, and,
accordingly, deep sub-wavelength superoscillatory struc-
ture*”. We note that these properties go beyond the
quantum-classical analogy. The local wavenumber kjqcy is
defined as the gradient of the phase P(x, ¥), kiocal =
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Fig. 5 Tunable deep-sub-wavelength features of classical squeezed structured light in tightly focused conditions. a, b The tightly focused
intensity patterns with T = 0 (the fundamental HG mode) and T = 0.5 (classical squeezed structured light), respectively, where (x,y) ranges from
—5\ to 5\ ¢ The intensity along the diagonal and anti-diagonal directions, where the gray curve corresponds to T = 0, while the blue and green
curves correspond to T = 0.5. d The phase (blue line) and local wavenumber (red line) of structured light along the squeezing direction retrieved
from the experiment. Inset: simulated phase gradient at z= 6.6\ plane. The gray regions highlight superoscillatory structures with the local
wavenumber larger than the free-space wavenumber k. e The local wavenumber in the gray region in (d) retrieved from the experiment (blue line)
and simulations (red line in the inset). f Tuning the beam spot size and the local wavenumber with the squeezing parameter T (simulations). Here, the
FWHM of kjocqr is measured in A/100
7

|VP(x,y)|. Both phase and local wavenumber are shown in
Fig. 5d as a function of position along the diagonal
direction. Here, the dimension of the local wavenumber is
1/k and the superoscillatory regions appear for kjoca/k > 1
(the corresponding area is highlighted with a gray color).
Zooming in this region, Fig. 5e shows that the FWHM of
the local wavenumber is 7A1/100, which is about 34 nm (in
simulation, the FWHM of the local wavenumber is 1/1000
for the parameters of our experiment).

Importantly, the FWHM of both intensity and local
wavenumber can be continuously tuned by changing the
squeezing parameter 7. The results of simulations shown
in Fig. 5f confirm that the field features become smaller
for larger 7 (kjoca/k also exhibits weak oscillation beha-
vior). Note that, the simulations accounting for the
parameters of experimental setup are limited within the
range of 7 < 0.5. For 7 > 0.5, the size of the tightly focused
spot approaches the size of the effective CCD pixel, thus
increasing the measurement error (pink labels in Fig. 5f),
which becomes large compared to the signal.

Discussion

In this work, we have introduced the framework for
characterizing and experimentally realizing classical ana-
logies of quantum squeezed states, demonstrating that

quantum and classical squeezed states exhibit similar
behavior in phase space (quantum) and real space (clas-
sical), respectively. We have exploited this parallelism to
establish the squeezing of the structured light beam along
one of the directions in the transverse plane to overcome
the standard spatial limit, which serves as an analogy of
the standard quantum limit.

These results suggest that structured light is a robust
and easily accessible platform for studying and demon-
strating the properties of quantum states of CV quantum
systems. Clearly, the developed analogy can be extended
to a broader range of quantum states. To illustrate this, we
provide an analysis of the classical analogies of quantum
squeezed number state, displaced squeezed vacuum state,
and displaced squeezed number state in the Supplemen-
tary Material. Notably, substantial complications are
required in the setup (Fig. 3a, c) to generate and detect
such complex quantum states, and, to the best of our
knowledge, none of these states has been demonstrated
experimentally. Intriguingly, the generation and detection
of the classical counterparts can be implemented by
simply changing the numerical masks (“Methods”). Thus,
a classical setup (Fig. 3b) can serve as a testbed for
demonstrating and exploring complex quantum experi-
ments. Besides, the classical analogies of a single-mode
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squeezed state*' can be studied similarly using classical
structured light, as detailed in Supplementary Material.
Moreover, the developed framework enables the
exploration of structured light analogies of other families
of states, such as the cat state’, GHZ state*?, and NOON
state, paving the way for further exploration of multi-
dimensional structured light, quantum-classical connec-
tion, and its advanced applications.

Importantly, our experiments and simulations have
established that the classical squeezing is preserved after
the tight focusing. As a result, the spot size of classical
squeezed structured light can reach near the diffraction
limit, while the local wavenumber can surpass the dif-
fraction limit. The spot size of classical squeezed struc-
tured light beats the corresponding SSL, while we
demonstrated experimentally (0.871) and in simulations
(0.61) operation near the diffraction limit. Surpassing the
diffraction limit requires large squeezing parameters and
correspondingly higher-order eigenmodes, which, in
principle, could be achieved in a more advanced setup.
Moreover, we have found that tightly focused classical
squeezed light exhibits a local phase gradient (super-
oscillation) at a deep sub-wavelength level (1/100 in the
experiment and 1/1000 in simulations). Although a local
phase gradient at the level of 1/100 can be realized in
different ways*’, having both a near or sub-diffraction
beam spot and a sharp phase gradient is not trivial and
can provide additional advantages for optical measure-
ments. For instance, while superimposing two opposite-
handed vortex beams allows the generation of a sharp
local phase gradient, the resulting spot size will be much
larger than in our experiment. Specifically, the spot size of
superimposing two opposite-handed vortex beams is
about /p + 2/ + 1wy, where wy is the beam waist of the
Gaussian beam™, and p and [ are the indices of the vortex.
Accordingly, the spot size cannot be smaller than wg, and
it follows square root scaling with increasing vortex
indices. In contrast, the spot size of squeezed structured
light scales as w, exp(—|z]) along the squeezing direction.
The realizable squeezing parameters || depend on the
experimental setup, but even moderate values of || allow
a spot size significantly smaller than wy (the SSL).

The structured light analogy of squeezed states offers a
robust method for operation at the near- and sub-
diffraction limit and generating superoscillatory struc-
tures, providing powerful tools for ultra-precise mea-
surement®, microscopy®®, super-resolution imaging®,
and nanofabrication”’. In the context of imaging, for
instance, classically squeezed light can replace or com-
plement the method of imaging of 1D objects by a set of
masks*® where the resolution in one direction is enhanced
by sacrificing resolution in the orthogonal direction.
Moreover, the classical squeezed light provides a unique
mechanism for continuous tuning of spot and phase
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gradient sizes via adjusting the squeezing parameter.
Indeed, in general, one does not require as small features
(spot and phase gradient) as possible but rather find a
compromise between the size of those features and the
corresponding disadvantages. In the case of metrology
with the sharp phase gradient™, this compromise includes
the energy consideration: the sharper the phase gradient,
the smaller the energy it carries, and, accordingly, the
longer the integration time to extract the information
about the parameter of interest. By adjusting the size of
the phase gradient in situ, one could reduce the integra-
tion time, thus enabling the metrology of dynamic sys-
tems while keeping the phase gradient sharp enough for a
particular measurement scenario. Similarly, the tunable
beam spot size is desirable in manufacturing applications
(e.g., lithography), where the fabrication of large compo-
nents can be assembled with the larger beam spot, hence
faster, while for components with smaller features, the
beam can be squeezed accordingly.

In this work, we have demonstrated the classical
squeezed light in free space. Yet, this concept could
benefit from implementation in integrated platforms,
including optical fibers and waveguides, parity-time (PT),
and anti-PT symmetric Hamiltonian system®**°, Since the
diffraction is naturally surpassed in such systems, the
quantum-to-classical correspondence can be established
between 8-evolution (quantum) and z-propagation (clas-
sical), with possible implications for optical sensing and
computing applications®"*%,

Also, one of the possible extensions of this work could be
exploring the classical analogies of quantum states on the
basis of modes other than HG (e.g., Laguerre-Gaussian,
Ince-Gaussian, and Bessel-Gaussian modes). Moreover, the
astigmatic Gaussian beams focused by a single cylindrical
lens could also exhibit classical squeezing (Supplementary
Material), suggesting to investigate further the connection
between quantum states and classical astigmatic optics.

Beyond the interest in classical optics, the complex
spatial modes of squeezed structured light hold notable
advantages for applications in quantum opticss. For
instance, the interference of structured photons shaped
into the squeezed spatial profiles on a beam splitter®® or in
free space®® would allow for generating entangled, highly
correlated states of multidimensional structured light.
Indeed, such a basis exhibits multiple degrees of freedom,
including squeezing parameter 7, displacement parameter
a, and mode number N, which could incorporate the
methods of quantum CV states into the teleportation and
communication using structured light””.

Materials and methods

The probability distribution of quantum squeezed states
The annihilation 4; and creation sz operators are

defined via the canonical variable operators p; and g;



Wang et al. Light: Science & Applications (2024)13:297

(g; and p; correspond to observables g; and p)) as®>:
. g+ i
a; = 1
U \/E ( )
4
]T =y = (2)

V2

The structured light counterparts of the ladder opera-
t At 34,
ors (a;,a;) are defined as™"

. g tip
tlj = ]\/E / (3)
4
=5 @
where p; = fia%. and g; = j, where j = ¢, 1 represents two

orthogonal directions in a two-dimensional space.

The wavefunction of two-mode vacuum states in the
basis (g1, g») can be expressed as’®:

1 @ 5
Yyae(q1,92) —\/—ﬁexp<—?1—72 (5)

The probability distribution |¥,..(q;,4,)|* is plotted in
the left subfigure of Fig. 2a. The wavefunction of two-
mode vacuum states in the momentum basis, ¥, (p;, p,),
is the Fourier transform of ¥,,.(q;, qz)%.

The wavefunction of two-mode squeezed vacuum states
in the basis (g,,g,) could be expressed as>*:

Y(q1,q,) = \/Lﬁexp [ (qi;z‘h) R (‘114_ 9,) ]
(6)

where R = exp(|z]). Equation (8) means the squeezing
effect appears in the diagonal direction. A rotation of

(41,4) by angle 6o,
[Ql} _ [cos@o - sin@o} q,/V2
Q, sinf, cosfy q,/V2
changes the squeezing direction. We plot the probability
|¥sq(Qu, Q2)|2 with 6o =7/4, ie, V¥ylqy,q,) =
Jzexp[—aqi/ (4R*) — (R*q3)/4], in the left subfigure of
Fig. 2b.

(7)

Experiment

(1) Numerical masks. Two liquid-crystal spatial light
modulators, SLM1 and SLM2, are exploited to generate
and detect the structured light analogies of quantum
squeezed states. Liquid-crystal SLM is an opto-electrical
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device for phase modulation via regulating the extra-
ordinary refractive index of liquid crystal cells. This
method requires numerical masks, which are computer-
generated holograms. The masks could be expressed as™:

Fmask = exp{ify ' [CA(x,y)] sin[P(x, y) + 2m(usx + vyy)]}

(8)

where C = 0.5819 is a constant, /' [] is the inverse of the
1st-order Bessel function, A(x, y) and P(x, y) are the target
complex amplitude and phase, (u,v,) is the spatial
frequency coordinate.

(2) The generation and detection of classical squeezed
light. The experimental setup is illustrated in Fig. 6.
Lenses L1 and L2 expand and collimate the laser beam,
which is then modulated by SLM1. The generated several
order components go through a 4f system (L3 and L4)
and are filtered in the Fourier plane to extract the +1st-
order component (Filter). The focal plane of L4 corre-
sponds to z = 0 in Fig. 4. The filtered beam is the struc-
tured light analogy of the quantum squeezed state. SLM2,
used to detect the modal spectrum, is loaded with the
mask (u,,,|, which is the conjugate of the |u,,,). The
demodulated light is Fourier transformed by a lens L5
(labeled as “FT” in Fig. 3d). The modal spectrum infor-
mation |(i, |w)|* is carried by the intensity of the +1st-
order component, which is detected by a CCD camera.
The complete modal spectrum is obtained by changing
the mask (indices of (u,,,,|) and recording corresponding
intensities.

( N\

Filter

Fig. 6 Schematic diagram of the experiment. SLM: liquid-crystal
spatial light modulator; L1 to L7: lenses, where the focal lengths of L1
and L2 are 20 mm and 120 mm, composing a 4f system with 6x
magnification, while the focal length of L3 and L6 is 200 mm; Filter:
aperture and reflector; CCD charge-coupled device camera, R reflector,
MO microscope objective
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States |u,,,,) and |u;) describe the transverse pattern of
structured light, and the propagation factor should be
accounted for a real beam, represented as U, (x,7,z)
and u,(x,y,z), respectively Therefore, in the experiment,

= [fu;,.(x,9,2 The

value of |, | is independent of z. In this work, we detect
the modal spectrum at the z = 0 plane.

we detect ¢, Vur(x,y, 2)dxdy.

To correct the aberrations in the experiment, we use the
Laguerre-Gaussian mode®’. If not corrected, the
Laguerre-Gaussian mode shows an elliptical or near
Hermite Laguerre-Gaussian mode shape. We use the
Zernike polynomials to load a correction phase on the
SLM and tune their parameters until the Laguerre-
Gaussian mode shows a circular pattern, i.e., an ideal
vortex mode.

(3) Tight focusing (experiment). For this experiment,
we replace the detection part (left dashed box in Fig. 6)
by a microscope objective (right dashed box). Some
additional optical components, not shown here, are used
to couple the generated beams to the microscope
objective. These components are shown in the full detail
diagram in Supplementary Material. The microscope
objective tightly focuses the paraxial beams at the
reflector R. L6 and the microscope objective assembles a
4f system with 60x magnification. The physical pixel
size of the CCD camera is 6.5 um. The images of tightly
focused beams in Fig. 5 are recorded on a very small area
(65 x 65 pixels), and we selected the area with the least
noise. Therefore, the images in Fig. 5 look cleaner than
in Fig. 4, where for the latter one, the large area
(1000 x 1000 pixels) is more susceptible to camera noise
and ambient scattering.

Tight focusing (simulation)

The focused electro-magnetic field could be calculated
via non-paraxial vector diffraction theory based on the
Debye approximation, which is expressed in angular
spectrum representation as”®

ikj 2
z/fe - [Imax 19 [kz cos 9 tkp sin 9 cos(p, —p,)
mpuz (/)

sin x9d'9dq)1

E(p, 9,2

©)

where f is the focal length, k is the wavenumber, p and ¢,
represent the radial and azimuthal coordinates in the
focused plane, ¢, is the azimuthal coordinate in the input
plane, z is the longitudinal distance between the focused
plane and the input plane, 9 is the incident angle where
the maximum incident angle 9y, is determined from the
NA as NA = n; sin(9max), 71 and ny are the refractive
indices of media in the object and image space. A large
numerical aperture lens modulates the input electric field
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58
Einput as

Einput(‘()v (pl) =

— sin(g;) — sin(g,)
() Eipue - | cos(gy) cos(¢;) \/7\/CE~+
0 0
cos(¢y)\ [ cos(gy) cos(9)
t(9)Eipue - | sin(e,) sin(¢p;) cos(9) \/Z:;\/m
0 — sin(9)

(10)

where £(9) and #(9) are transmission coefficients of the
interface at the focal plane for s— and p— polarized beam,
respectively. Based on Eq. (11) and Eq. (12), it is possible
to calculate optical fields at any position behind the focal
lens. The simulation of the classical structured light in
real space (before focusing) and Fourier space (after
focusing) is shown in Fig. 7.

We note that the focusing process is different from the
squeezing process, where the latter is achieved by adding
higher-order modes. Also, a strongly focused beam could
have an elongated shape in the direction of polarization®®,
which is not the case in this work (the focused Gaussian
beams retain a good circular shape, as shown in Fig. 5a
and Fig. 7b).

Correlation coefficient
The correlation coefficient cor is defined as®®

cor = Cov(C,D)/+/ Var|C|Var|D]

(11)

Real space

Fourier space

Fig. 7 Simulation of the focusing process. The intensity
distributions of the fundamental Gaussian beam in a real space (x,y)
and b Fourier space (fy, f,). The intensity distributions of the classical
squeezed structured light in ¢ real space and d Fourier space. The
white dashed circles mark the SSL while the green arrows mark the
squeezing direction. The Fourier transform is performed via a focusing
lens with 60x magnification
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where C and D are the modal spectra for simulation and
experimental results, Cov(C, D) is the covariance between
the C and D, Var|] is the variance, respectively.

Fidelity
Fidelity, or distance between two states, is evaluated

35321

F(yy,95) = {pnlwa) > = le, il (12)

where [y1) = 32, Cum|ns ), W2) = 32, dunmlns m).
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