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Abstract

Data privacy leakage has always been a critical concern in cloud-based Internet of Things (IoT) systems. Dynamic Symmetric Searchable En-
cryption (DSSE) with forward and backward privacy aims to address this issue by enabling updates and retrievals of ciphertext on untrusted cloud
server while ensuring data privacy. However, previous research on DSSE mostly focused on single keyword search, which limits its practical ap-
plication in cloud-based IoT systems. Recently, Patranabis (NDSS 2021) [1] proposed a groundbreaking DSSE scheme for conjunctive keyword
search. However, this scheme fails to effectively handle deletion operations in certain circumstances, resulting in inaccurate query results. Addition-
ally, the scheme introduces unnecessary search overhead. To overcome these problems, we present CKSE, an efficient conjunctive keyword DSSE
scheme. Our scheme improves the oblivious shared computation protocol used in the scheme of Patranabis, thus enabling a more comprehensive
deletion functionality. Furthermore, we introduce a state chain structure to reduce the search overhead. Through security analysis and experimental
evaluation, we demonstrate that our CKSE achieves more comprehensive deletion functionality while maintaining comparable search performance
and security, compared to the oblivious dynamic cross-tags protocol of Patranabis. The combination of comprehensive functionality, high efficiency,
and security makes our CKSE an ideal choice for deployment in cloud-based IoT systems.

© 2022 Published by Elsevier Ltd.
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1. Introduction

With the advancement of cloud computing and the Internet of Things
(IoT), various cloud-based IoT systems, including intelligent logistics,
smart homes, and intelligent healthcare, are experiencing widespread
adoption [2–5]. During the deployment of these systems, individuals
and organizations often choose to outsource large volumes of data to
cloud servers for storage and processing. However, ensuring data pri-
vacy becomes a critical concern due to the potential lack of trustworthi-
ness of cloud servers. Unauthorized disclosure of sensitive information
can result in adverse consequences such as reputational damage, un-
necessary discrimination, and location leakage [6–8]. To protect data
privacy, a common approach is to encrypt the data before uploading it
to the cloud server. However, traditional encryption algorithms render
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the data indistinguishable from random values, posing a challenge when
performing effective retrieval on ciphertext.

To address the aforementioned challenge, researchers have proposed
Symmetric Searchable Encryption (SSE) as a solution. SSE aims to en-
able the retrieval of ciphertext without revealing sensitive information.
An important further advancement in this field is Dynamic SSE (DSSE),
which not only allows retrieval but also supports dynamic updates on
the encrypted database by revealing limited additional privacy informa-
tion. Unfortunately, adversaries can exploit this leaked information to
launch attacks, such as file-injection attacks [9]. In order to mitigate the
security concerns arising from this information leakage, Stefanov et al.
[10] introduced two new concepts into the DSSE: forward privacy and
backward privacy. Forward privacy ensures that newly added files to
the database do not disclose whether they contain keywords that have
been previously queried. Conversely, backward privacy guarantees that
current search queries do not disclose any information about previously
deleted files. Bost et al. [11, 12] provided formal definitions for forward
and backward privacy, and three types of backward privacy were defined
in [12], with the security strength gradually weakening from Type-I to
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Type-III. Building upon these concepts, several dynamic searchable en-
cryption schemes with forward and backward privacy were proposed in
the literature [13–20].

Nevertheless, most existing DSSE schemes with forward and back-
ward privacy only support single keyword search, which limits the ex-
pressive efficiency of the scheme. In cloud-based IoT systems, it is
essential for DSSE to support conjunctive keyword search to enhance
the practicality of the scheme. Although running single-keyword DSSE
schemes multiple times can achieve conjunctive search, this approach
has efficiency and security issues. Specifically, the computational and
communication overhead is related to the update frequency of each key-
word, and when multiple keywords have high update frequencies, the
search performance is poor. In terms of security, the adversary may
learn the update count and timestamps of each keyword, as well as files
unrelated to the query. These additional leakages are undesirable. Re-
cent works [1, 21] have proposed dynamic conjunctive keyword search
schemes with forward and backward privacy. In particular, the Oblivi-
ous Dynamic Cross-tags (ODXT) protocol, introduced in [1], is the first
efficient forward and Type-II backward private conjunctive keyword
DSSE scheme known to us. ODXT [1] builds upon the static scheme of
Oblivious Cross-tags (OXT) [22] and the single keyword DSSE scheme
known as Mitra [14]. The concept of ODXT [1] is similar to OXT
[22], where the server maintains two encrypted databases named ‘TSet’
and ‘XSet’. When a client issues a conjunctive search query, the server
first matches files containing the least frequent keyword in TSet. It
then uses cross-token and dynamic cross-tag techniques to determine
whether these files contain the remaining queried keywords in XSet.
The server returns the results to the client for further filtering. The key
to enabling dynamic conjunctive keyword search in ODXT [1] lies in
the on-the-fly computation of cross-tags and cross-tokens with each up-
date operation.

Although ODXT [1] is more efficient than the early conjunc-
tive keyword DSSE schemes, it still has two drawbacks. First, it
fails to adequately consider the update type of a keyword when
computing the cross-tag, which results in the inability to per-
form valid delete operations in certain circumstances. For in-
stance, consider the following interaction between the client and
server: [1, add, (w1, ind1)], [2, add, (w2, ind1)], [3, search, (w1 ∧ w2)],
[4, del, (w2, ind1)], [5, search, (w1 ∧ w2)]. After the delete operation at
time 4, if the server performs a search operation (w1 ∧ w2), the results
still contain ind1. It is worth noting that similar delete operations are
common in real-world scenarios, and a scheme that cannot effectively
handle delete operations will yield inaccurate query results. Second,
consider that the client runs an instance of Mitra within ODXT [1].
In order to achieve retrieval in TSet, the client needs to compute all
the locations involving the least frequent keyword in advance and send
them to the server. This increases the computational and communica-
tion overhead on the client side, particularly when the least frequent
keyword still has a high update frequency. Consequently, the search
performance degrades significantly. To sum up, the lack of effective
delete operations and the computational and communication overheads
hinder the practicality of existing conjunctive keyword DSSE schemes
in cloud-IoT systems [23, 24].

In this paper, our objective is to design a conjunctive keyword search
scheme with forward and backward privacy, incorporating a complete
deletion function, while minimizing search overheads. We anticipate
two significant challenges that need to be addressed. First, we need
to achieve efficient deletion operations within the scheme while ensur-
ing that the search complexity remains proportional to the number of
documents containing the least frequent keywords in conjunction. This
scenario represents the optimal achievable search complexity among
conjunctive SSE schemes, as noted in [1]. Second, supporting more
comprehensive functions inherently results in increased overheads and
may introduce additional security concerns. Striking a right balance
between functionality, efficiency, and security simultaneously within a
scheme poses a challenging task. Before proceeding to our contribu-
tions, we provide a comprehensive review of the existing literature.

1.1. Related Works

Song et al. [25] proposed the first practical SSE scheme having linear
search time with the size of database. Subsequently, Curtmola et al.
[26] considered leakage and constructed the first reversed-index based
scheme with sub-linear efficiency. Chase and Kamara [27] traded higher
storage complexity for the similar scheme. However, these works focus
on static settings and are not suitable for many scenarios that require
real-time data updates. To support data update on SSE and mitigate
the leakage, the forward and backward private DSSE has become an
important branch in this research area.

1.1.1. Single Keyword DSSE
The first sub-linear-complexity DSSE scheme was proposed by

Karama et al. [28]. Subsequent work has focused on the security, effi-
ciency, and expressiveness of DSSE. Liu et al. [29] and Yu et al. [30]
leveraged the flexibility of attribute-based encryption (ABE) combined
with blockchain to enable fine-grained search and revocable functional-
ities. Yin et al. [31] introduced a secure index based on access policies
and an attribute-based search token, which supports fine-grained search
with integrated access control. While these methods reduce decryption
and revocation overhead, DSSE schemes relying on ABE still face chal-
lenges in resource-constrained environments.

Forward and backward privacy can address the additional privacy
leakage issues introduced by dynamic updates. The notion of forward
privacy was first proposed in [32]. Since then, several forward private
DSSE schemes supporting single keyword search have been proposed
[11, 33, 34]. Among them, Bost [11] proposed a pioneering forward
privacy scheme called Sophos, which uses the state-based approach to
reduce the overhead of the scheme. Although the trapdoor permutation
structure of Sophos is limited by public key operations, it provides new
ideas for subsequent research. Backward privacy was first introduced by
Stefanov et al. [10]. Later, Bost et al. [12] formally defined three types
of backward privacy, called Type-I, Type-II and Type-III with progres-
sively weakening security, and a number of schemes with various types
of backward privacy were proposed in [12–17]. Chamani et al. [14]
presented three schemes, Mitra, Orion and Hours. Mitra, a Type-II
scheme, obtains better performance by using symmetric key encryp-
tion. Orion is a Type-I scheme based on oblivious random-access mem-
ory, and Hours, a Type-III scheme, optimizes Orion’s performance at
the cost of leaking more information. In order to reduce the client-side
storage, Demertzis et al. [16] proposed three schemes called SDa, SDd
and Qos. SDa [16] and SDd [16] use static-to-dynamic techniques to
achieve Type-II backward privacy. Qos [16] is a quasi-optimal Type-III
backward privacy scheme. Dou et al. [35] introduced a robust scheme
that ensures both forward and backward privacy, designed to handle
more complex update and query processes. Chen et al. [36] leveraged
blockchain and hash-proof chain technologies to create a publicly ver-
ifiable DSSE scheme, incorporating a novel data hiding structure that
offers both forward and backward privacy.

To the best of our knowledge, majority of the existing forward
and backward private schemes primarily focus on supporting single
keyword search, with limited attention given to conjunctive keyword
search.

1.1.2. Conjunctive Keyword DSSE
The inclusion of conjunctive keyword search functionality greatly

enhances the practicality of SSE schemes. The first efficient conjunc-
tive keyword SSE scheme, OXT, was proposed by Cash et al. [22].
However, its construction lacks the capability for data updates. To ad-
dress this limitation, Lai et al. [37] compensated for the leakage in OXT,
while the works [38] and [39] focused on forward privacy in conjunc-
tive keyword searches on dynamic databases. Zuo et al. [21] introduced
FBDSSE-CQ, a forward and backward private conjunctive keyword
search scheme that trades linear search overhead for efficiency. Chen et
al. [40] developed DSSE-DC, a conjunctive search DSSE scheme fea-
turing a revocation mechanism based on inner product matching. Guo
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et al. [41] created a forward index using a t-puncturable pseudoran-
dom function, combining it with an inverted index to support conjunc-
tive keyword searches. Li et al. [42] introduced an update counter to
build a bi-directional index structure that supports conjunctive queries
over bipartite graphs. Their scheme also employed a new oblivious data
structure for storing the bi-directional index and used semantically se-
cure encryption to protect node information, achieving forward privacy
and backward privacy. Yuan et al. [43] presented the first sub-linear
KPRP-hiding conjunctive DSSE scheme with forward and backward
privacy, utilizing a novel cryptographic primitive called Attribute Up-
datable Hidden Map Encryption (AUHME). Li et al. [44] introduced
the Indistinguishable Binary Tree (IBtree), a highly balanced binary
tree structure designed to support conjunctive keyword searches. Ad-
ditionally, numerous studies have expanded DSSE to incorporate vari-
ous advanced query functionalities [45–47]. More recently, MitraCONJ,
BDXT and ODXT were proposed in [1]. MitraCONJ [1] is a straight-
forward extension of Mitra from single keyword queries to conjunc-
tive queries, but the computational and communication complexity of
this scheme is proportional to the sum of the update frequency of each
keyword in conjunction. BDXT [1] is the first forward and backward
private conjunctive keyword SSE scheme with the computational and
communication complexity proportional to the least frequent keywords
in conjunction. ODXT [1] further optimizes the performance of BDXT,
which is the most effective forward and backward conjunctive keyword
scheme at present. However, as mentioned before, ODXT [1] suffers
from ineffective deletion and high search overhead.

1.2. Our Contributions

Against the above background and to achieve more efficient conjunc-
tive keyword search in real-world scenarios, We proposed a conjunctive
keyword DSSE scheme, named CKSE. In particular, CKSE achieves
more comprehensive deletion operations than ODXT [1], while bal-
ancing the efficiency and security. Table 1 shows the comparison of
our scheme with other state-of-the-art schemes.Our contributions can
be summarized as follows.

• We propose an efficient conjunctive keyword DSSE scheme called
CKSE based on ODXT [1]. By constructing a new cross-tag that
combines the update type with the keyword and modifying the el-
ements involving the oblivious shared computation, our CKSE is
capable of performing effective deletion operations and providing
the client with accurate query results. Moreover, the search com-
plexity of CKSE is related to the least update frequency keyword.

• We introduce a state chain structure to instantiate our scheme.
This structure is a symmetric cryptographic primitive version of
the public key-based trapdoor permutation structure [11]. With
this state-chain structure, the client only needs to obtain the lat-
est state of the keyword to execute subsequent operations, which
greatly reduces the computational and communication overheads
of the scheme.

• We conduct a comprehensive analysis to prove that CKSE main-
tains forward and Type-II backward privacy. Additionally, we
implement CKSE and perform experiments to evaluate its per-
formance in comparison with ODXT [1]. The results demon-
strate that our scheme achieves search performance comparable
to ODXT [1].

2. Preliminaries

This section presents the notations used in the paper as well as the
cryptographic background and definitions for SSE.

2.1. Notations

We use x
$
→ X to denote that an element x is uniformly and ran-

domly sampled from the set X. For a security parameter λ ∈ N, we re-
fer to poly(λ) and negl(λ) as the unspecified polynomial and negligible

functions of λ, respectively. We store all documents and their respective
contained keywords w ∈ W in the database DB as keyword/document
identifier pairs (w, ind), whereW is the set of all keywords in DB, and
ind is the file identifier. We also denote by |W| the number of distinct
keywords, and by DB(w) the set of all documents containing the key-
word w.

In addition, we use q = (w1 ∧ w2 · · · ∧ wn) to denote a conjunc-
tive query, and assume that w1 is the least frequent term in the con-
junctive, called s-term, while the remaining keywords in q are called
x-terms. The result of a conjunctive query is expressed as DB(q) =
∩n

i=1DB(wi), i.e., the intersection of the search results for all keywords
wi, i ∈ {1, · · · , n}.

2.2. Decisional Diffie-Hellman Assumption

Let g be a uniformly sampled generator for the p = p(λ) order cyclic
group G. The Decisional Diffie-Hellman (DDH) assumption is that for
any Probabilistic Polynomial-Time (PPT) adversary A, the probabil-
ity of distinguishing (g, ga, gb, gab) from (g, ga, gb, gc) is negligible, for-
mally defined as:∣∣∣Pr[A(g, ga, gb, gab) = 1] − Pr[A(g, ga, gb, gc) = 1]

∣∣∣
≤ negl(λ) (1)

2.3. Dynamic Searchable Encryption

A dynamic searchable encryption scheme consists of three parts: one
S etup algorithm, two protocols U pdate and S earch that are run by
client and server, as follows.

S etup(λ,DB) is executed unilaterally by the client. This algorithm
takes the security parameter λ and the database DB as input and out-
puts the tuple (sk, σ; EDB), where sk denotes the client’s key, σ is the
client’s local state, both of which are stored locally by the client, and
EDB is an empty encrypted database stored by the server.

U pdate(sk, σ,w, ind, op; EDB) is executed jointly by the client and
server. This protocol takes (sk, σ,w, ind, op) as input for the client,
where op ∈ (add, del) indicates the update type, and takes the encrypted
database EDB as input for the server. Eventually, the client gets a mod-
ified local state σ′ and the server gets a modified encrypted database
EDB′.

S earch(sk, σ, q; EDB) is executed jointly by the client and server.
This protocol takes (sk, σ, q) as input for the client, and takes EDB as
input for the client. At the end of the protocol, the client outputs the
result of query DB(q).

Note that there are two definitions of dynamic searchable encryp-
tion [48, 49]. One is the above definition adopted in this paper. An-
other definition is to take the addition/deletion of the entire file as an
update operation, which is functionally equivalent to performing mul-
tiple add/delete operations on keyword-document identifier pairs in our
definition.

Finally, we default that after receiving the file identifier contained in
DB(q), the client still needs to generate additional interaction with the
server to obtain the actual file.

2.4. Definitions of Correctness and Security

Correctness. The correctness of a dynamic searchable encryption
scheme Σ = (S etup,U pdate, S earch) means that for any conjunctive
query q, the search protocol can always return the correct result DB(q).

Security. The security of a dynamic searchable encryption scheme
is described by a leakage functionL = (LS tp,LU pdt,LS rch), whereLS tp,
LU pdt andLS rch represent the leakage information captured in the setup,
update and search, respectively, which can be learned by an adversary.

If an adversary server cannot learn any private information except
those contained in leakage function, the dynamic searchable encryption
scheme is secure. Formally, the security of a dynamic searchable en-
cryption scheme can be proven by two games of IDEAL and REAL.
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Table 1
Comparison of existing schemes with proposed scheme.

Scheme Query
Type

Update
cost

Search
cost

Forward
Privacy

Backward
Privacy

[1] Conjunctive O(1) O(nawmin ) ✓ II
[16] Single O(log P) O(aw + log P) ✓ II
[16] Single O(log3 P) O(nw log iw + log2 |W|) ✓ III
[35] Single O(|D|) O(aw|D|) ✓ I−

[40] Conjunctive O(a f ) O(awmin ) ✓ I−

[41] Conjunctive O(1) O(nawmin ) ✓ ×

[42] Conjunctive O(log N logk P) O(nawmin log N logk P) ✓ I
Ours Conjunctive O(1) O(nawmin ) ✓ II

P is the number of keyword/document pairs, |D| is the number of total files, and |s| is the number of authorized user. For keyword w, aw is the total number
of keyword updates, iw is the total number of Add queries, nw is the number of files currently containing w, awmin is the number of the least update keyword in
q = (w1 ∧ w2∧, · · · ,∧wn), and n is the number of keyword in conjunctive query q. a f is the number of updates for f .

• REAL
Σ
A(λ): This game first runs S etup(λ,DB) algorithm against

database DB chosen by adversary A to obtain an encrypted
database EDB. Then, the game executes S earch(sk, σ, q; EDB)
or U pdate(sk, σ,w, ind, op; EDB) protocol based on a series of
queries qi performed by A. Finally, according to the returned re-
sult, adversaryA outputs bit b ∈ {0, 1}.

• IDEAL
Σ
A,S(λ): After adversary A selects database DB, simulator

S returns encrypted database EDB ←− S(LS tp(DB)) to A by the
leakage function. Then, simulator S executes S(LS rch(qi)) or
S(LU pdt(qi)) according to a series of queries performed byA. Fi-
nally, according to the returned result, adversary A outputs bit
b ∈ {0, 1}.

Definition 1 (L-adaptive Security). A DSSE scheme is L-adaptively
secure if for any PPT adversaryA, there exists an efficient simulator S
such that: ∣∣∣Pr

(
REAL

Σ
A(λ)=1

)
−Pr
(
IDEAL

Σ
A,S (λ)=1

)∣∣∣≤ negl(λ) (2)

2.5. Forward and Backward Privacy

Forward privacy. For any adversary who can observe the interac-
tion between the client and server, forward privacy can ensure that the
update does not leak information about the latest addition operation,
which prevents the server from matching to the new update using pre-
vious queries. The formal definition of forward privacy is as follows
[12].

Definition 2 (Forward Privacy ). An L-adaptively-secure SSE scheme
is forward private, if leakage function LU pdt can be expressed in the
following form:

LU pdt(op, (w, ind)) = L
′

(op, ind) (3)

where L
′

is stateless function.

Backward privacy. Backward privacy ensures that the server can-
not match files that were added and then removed. Bost at al. [12]
formally defines three types of backward privacy: Type-I, Type-II, and
Type-III. The security decreases from Type-I to Type-III. Type-I and
Type-II are considered to be strong backward private, while Type-III is
a weaker backward private. Note that Type-III backward privacy leaks
the timestamp of when the files were deleted. For cloud-IoT system,
time is a critical piece of information that many attacks [50, 51] can
exploit to break the security of the system. For DSSE, the adversary
can correlate the information of subsequent queries or make statisti-
cal inferences based on when the file was deleted. Therefore, for the
DSSE scheme deployed in cloud-IoT system, it is highly desire to reach
higher level of backward privacy. We focus on Type-II backward pri-
vacy involved in the subsequent content. This kind of backward privacy
allows the scheme to leak the file identifier containing the keyword w

and the timestamp, when keyword-identifier pair (w, ind) was inserted
into the database, and the number of keyword updates. Before formally
defining Type-II backward privacy, we introduce two related functions
TimeDB(w) and Updt(w).

Let Q be a list maintaining all the search queries (u,w) and the up-
date queries (t, op, (ind,w)), where t denotes the timestamp of query.
TimeDB(w) consists of the files containing the keywords w that have
not yet been deleted, along with their timestamps of insertion, that is,

TimeDB(w) =
{
(t, ind)|(t, add, (w, ind)) ∈ Q and

∀t
′

, (t
′

, del, (w, ind)) < Q
}

(4)

Updt(w) is the function that contain the timestamp of each update of
the keyword, which is defined as:

Updt(w) =
{
t|(t, add, (w, ind)) ∈ Q or

(t, del, (w, ind)) ∈ Q
}

(5)

Definition 3 (Backward Privacy). An L-adaptively-secure SSE scheme
is Type-II backward private, if leakage function LU pdt and LS rch can be
written as following form:

LU pdt(op,w, ind) = L
′

(op,w) and
LS rch(w) = L

′′

(TimeDB(w),Updt(w))
(6)

where L
′′

and L
′′′

are stateless functions.

3. CKSE: An Efficient Conjunctive Keyword Searchable Encryp-
tion Scheme

In this section, we present our CKSE, an efficient conjunctive key-
word searchable symmetric encryption scheme. This scheme achieves
more efficient deletion operations than ODXT [1], while reducing com-
munication and computational overheads as much as possible. More-
over, CKSE maintains the forward and Type-II backward private.

3.1. System Model of CKSE

Our scheme is designed to achieve more comprehensive, efficient
and secure conjunctive keyword search in cloud-IoT systems. Smart
home is a typical cloud-IoT system, which includes the collection and
transmission of data, e.g., temperature, health and air quality, etc., by
smart devices and the query of various data by the host. Taking the
smart home as an example, Fig. 1 shows the system model of CKSE for
smart home. It consists of three kinds of entities as follows.

Data Owner (DO). DO encrypts the collected data and uploads it to
the cloud server, and performs real-time updates on the data.

Data User (DU). DU initiates search queries to the cloud server and
decrypts the obtained encrypted results.
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Algorithm 1 CKSE.Setup(λ)

Client:
1: KS

$
←− {0, 1}λ for PRF F

2: KX,KY ,KZ
$
←− {0, 1}λ for PRF Fp

3: W←− empty map
Server:

4: T,X←− empty map

Cloud Server (CS). CS stores the encrypted data uploaded by DO
and performs ciphertext retrieval on the search queries issued by DU.
CS is a semi-honest entity provided by a third party. It strictly follows
the steps of the protocol but may curiously learn information during the
execution process.

Like all existing DSSE schemes, the security of our scheme relies on
a ”strong” assumption that the client’s key can always be protected and
will not be compromised [52]. Therefore, the issue of key sharing and
distribution is not our concern. Since both DO and DU are legal, and
DO can also act as DU, we refer DO and DU collectively as Clients in
the following text.

3.2. Construction of CKSE

Although the basic idea of CKSE is similar to ODXT [1], the key
difference between them is that CKSE achieves effective deletion by
designing a new oblivious dynamic cross-tags. Also unlike ODXT [1]
which uses Mitra for the instantiation, causing unnecessary computa-
tional and communication overhead, CKSE uses a state chain structure
to complete the instantiation, which reduces the computation and com-
munication overhead. To elucidate the core idea behind CKSE, we go
back to why ODXT [1] lacks the above features.

First, ODXT [1] cannot delete a file in certain circumstances. In
order to execute effective retrieval in XSet, the cross-tag known as
xtag constructed by ODXT [1] is split into two parts, one part is re-
lated to the pair (ind j, op) involving the s-term w1 and the other is
related to the x-terms wi, i ∈ 2, · · · , n. It can be seen that for the
same file, the server can only recognize the update of w1 accord-
ing to the xtag. Consider the case given in the introduction section
again: [1, add, (w1, ind1)], [2, add, (w2, ind1)], [3, search, (w1 ∧ w2)],
[4, del, (w2, ind1)], [5, search, (w1 ∧ w2)]. Since the update type in the
cross-tag only corresponds to the files containing w1, the cross-tag will
not be affected by the deletion operation at time 4. For the search query
at time 5, the final retrieval result will still contain what has been re-
moved. This is clearly unreasonable (w2 is not included in ind1 at this

Fig. 1. The system model of CKSE for smart home.

Algorithm 2 CKSE.Update(KS ,KX ,KY ,KZ ,W,w, ind, op; T,X)

Client:
1: Kw ||K∗w ←− F(KS ,w)
2: (S Tc, c)←−W[w]
3: if (S Tc, c) =⊥ then
4: S T 0

$
←− {0, 1}λ, c←− 0

5: end if
6: S T c+1

$
←− {0, 1}λ

7: W[w]←− (S Tc+1, c + 1)
8: uc+1 ←− H1(Kw, S Tc+1)
9: ec+1 ←− (ind||op) ⊕ H2(K∗w, c + 1)

10: CS Tc ←− S Tc ⊕ H3(Kw, S Tc+1)
11: α←− Fp(KY , ind) · (Fp(KZ ,w||c + 1))−1

12: xtag←− gFp(KX ,w||op)·Fp(KI ,ind)

13: S end(uc+1, ec+1,CS Tc , α, xtag)toserver
Server:

14: T[uc+1] = (ec+1,CS Tc , α)
15: X[xtag] = 1

time). In addition, ODXT [1] achieves conjunctive search based on Mi-
tra’s framework. During the search, the client needs to pre-compute
all the locations of update involving the s-term w1 and send them to
the server. Afterward, subsequent search operations can be performed.
However, the computational and communication overhead on the client
side scales with the frequency of w1. Consequently, when the s-term
has very high frequency of updates, the scheme will generate lots of
unnecessary search overhead.

A goal of CKSE is to incorporate the update operations of x-terms
wi, i ∈ 2, · · · , n, into the oblivious cross-tag computation and make it
unnecessary for clients to obtain all the locations of keywords during
the search, thereby avoiding the ineffective deletion and reducing the
overhead. Algorithms 1 to 3 summarize the Setup, Update and Search
procedures of our CKSE, respectively.

Setup. In this algorithm, the client generates λ-bit keys KS , KX , KY

and KZ for the Pseudo-Random Functions (PRFs) F and Fp respectively
and holds an empty set W to store the state of each keyword. On the
server side, two empty sets T and X are generated to store encrypted
indexes.

Update. When updating a keyword/file identifier pair
[add/del, (w, ind)], the client first queries the state S Tc and up-
date times c of the keyword w according to W[w], and then randomly
generates a new state S Tc+1 and updates W[w] (lines 1-7). Next, the
client uses the new state S Tc+1 and several hash functions to compute
encrypted entries ec+1 along with location uc+1, as well as a state token
CS Tc to trace the previous state of the keyword w (lines 8-10). More
importantly, in order to achieve subsequent conjunctive queries, the
client needs to obtain a blinding factor α and a cross-tag xtag so that
the server can learn whether a fixed file contains all the keywords
in the conjunctive query (lines 11-12). Finally, the client sends
(uc+1, ec+1,CS Tc , α, xtag) to the server, who stores (ec+1,CS Tc , α) in
T[uc+1] and sets the corresponding X[xtag] to 1 (lines 13-15).

Search. Assume that w1 is the keyword with the least update fre-
quency. In order to achieve the search query for (w1∧w2∧· · ·∧wn), the
client uses the currently state of the s-term w1 to get the cross-token pair
(xtokenadd, xtokendel) of wi, i ∈ 2, · · · , n, which involves each update of
w1. The search token (Kw, S Tc1 , c1, xtoken) is then send to the server
(lines 20-29). After receiving the search token, the server first computes
the location u j according to the current state of w1, and takes out the cur-
rent encrypted entry e j, state token CS T j−1 and blinding factor α j from
T[u j] (lines 32-34). Upon using (xtokenadd, xtokendel) and α j to obtain
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Algorithm 3 CKSE.Search(KS ,KX ,KY ,KZ ,W,w; T,X)

Client:
1: Assume w1 is the keyword with least updates
2: Kw ||K∗w ←− F(KS ,w1)
3: (S Tc1 , c1)←−W[w1]
4: for j = 1 to c1 do
5: for i = 2 to n do
6: xtoken[i, j]←− gFp(KX ,wi ||add/del)·Fp(KZ ,w1 || j)

7: end for
8: end for
9: Send (Kw, S Tc1 , c1, xtoken[1], · · · , xtoken[c1]) to server

Server:
10: Val←− ∅
11: for j = c1 to 1 do
12: cnt j = 1
13: u j ←− H1(Kw, S T j)
14: (e j,CS T j−1 , α j)←− T[u j]
15: for i = 2 to n do
16: (xtokenadd, xtokendel)←− xtoken[i, j]
17: if X[(xtokenadd)α j ] = 1,X[(xtokendel)α j ] =⊥ then
18: cnt j = cnt j + 1
19: end if
20: end for
21: Val←− (cnt j, e j, j)
22: S T j−1 ←− CS T j−1 ⊕ H3(Kw, S T j)
23: end for
24: Send Val to client

Client:
25: Res←− ∅
26: for each (cnt j, e j, j) ∈ Val do
27: (ind j||op j)←− e j ⊕ H2(K∗w, j)
28: if op j = add, cnt j = n then
29: Res←− Res ∪ ind j

30: else if op j = add, cnt j > 0 then
31: Res←− Res \ ind j

32: end if
33: end for
34: return Res

the cross-tag xtag, the server exploits it to learn whether the current up-
date contains wi, i ∈ 2, · · · , n (lines 35-40). Similar to locations, the
server also observes xtag during the update. The encrypted entry and
counter are then stored in the list Val, and the state token and the current
state are used to infer a previous state by the server (lines 41-42). Iter-
atively (lines 31-43), the server obtains all the states and corresponding
encrypted entries about (w1 ∧w2 ∧ · · · ∧wn), and sends Val to the client
(line 44). Finally, the client decrypts the encrypted entries locally and
further filters them (lines 45-55).

We now further explain the important features of our CKSE.

3.2.1. New Cross-Tag
To support conjunctive keyword search while achieving efficient

deletion operations, the first important feature of CKSE is to construct
a new cross-tag as:

xtagi, j,op ←− gFp(KX ,wi ||op)·Fp(KY ,ind j) (7)

Conceptually, our cross-tag is also divided into two parts. But unlike
ODXT [1], we integrate the update types of wi, i ∈ 2, · · · , n, into the
generation of cross-tag. The first part of our cross tag contains wi along
with update type, and the second part is only related to the file identifier
containing w1. Next, to perform effective conjunctive retrieval with new

cross-tag, we modify the cross-token to add/delete token pairs as:

xtokeni, j,add ←− gFp(KX ,wi ||add)·Fp(KZ ,w1 || j)

xtokeni, j,del ←− gFp(KX ,wi ||del)·Fp(KZ ,w1 || j) (8)

Upon receiving the add/delete token pairs, the server obtains a blind
factor α j involving the jth update of w1 from TSet:

α j ←− Fp(KI , ind j) · (Fp(KZ ,w1|| j))−1 (9)

Given the add/delete token pairs xtokeni, j,op, op = {add, del} and a blind
factor α j, the sever can easily carries out the oblivious cross-tag com-
putation as:

xtagi, j =
(
xtokeni, j,op

)α j (10)

thereby detecting whether each update of w1 contains the x-term wi.
To see why this is useful, recall that in our CKSE, we bundle the

update types with keywords and introduce them into the oblivious cross-
tag computation. After the delete operation on x-term is completed, the
cross-tag calculated by the server using the add/delete token pair during
the search can implicitly identify the deletion update, while the delete
operations related to s-term are filtered out locally by the client, thereby
avoiding the ineffective deletion.

3.2.2. State Chain Structure
CKSE achieves comprehensive deletion operations based on ODXT

[1] but it would need more overheads to do so (e.g., additional group ex-
ponentiation operations). It is known that some existing schemes using
a state-based approach impose less overhead [11, 33, 34]. Inspired by
the hash chain, we exploit a state chain structure to reduce the compu-
tational and communication overhead on the client side. This structure
enables the client to perform subsequent conjunctive queries only by
obtaining the latest state of s-term w1 during the search. Concretely, in
the update protocol, the client randomly generates a state S T for each
update of the keyword and stores it in W. More importantly, this state
is connected by a state token CS T . Therefore, the client only takes out
the current state of the keyword w1 from W and sends it along with the
latest state token to the server during the search. The server uses the
state token to trace back to the previous state of w1, i.e., each update of
w1. Fig. 2 depicts this state chain structure.

Fig. 2. The state chain structure.

Note that this structure can also support CKSE to achieve forward
privacy. Previously, many forward privacy schemes were constructed
based on Oblivious RAM (ORAM) structures. The main issue with
this approach is the high communication cost caused by using ORAM-
like structures. Only a few DSSE schemes avoid using ORAM. Among
them, Bost et al. [11] proposed a one-way trapdoor permutation, which
effectively reduces communication costs but is still limited by public-
key cryptographic primitives. The advantage of the state chain structure
lies in its use of symmetric cryptographic primitives, ensuring forward
privacy based on the same principle as [11].
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3.3. Efficiency of CKSE

3.3.1. Client and Server Storage
In CKSE, the client stores four λ-bit secret keys, KS , KX , KY and KZ ,

for PRFs F and Fp, respectively, and a map W containing the states of
all the keywords. Initially, W is the empty map, and after N updates,
the size of W grows to O(|W| · log N), where |W| is the total number
of keywords. On the server side, it needs to store the maps T and X,
and they are both initialized to be empty. After N updates, the server
storage grows to O(N). It is clear that the client storage grows loga-
rithmically with the number of update operations and the server storage
grows linearly with the number of update operations.

3.3.2. Update and Search Overhead
During the update, since the numbers of operations for client and

server are constant, the computational overheads of both scale with
O(1), and the same is true for communication overheads of updating
a single keyword-file identifier pair (w, ind). In the search protocol, for
each update of w1, the client needs to execute only n − 1 exponential
operations, compared to the overhead of computing all the locations
of updates involving w1 required by ODXT [1]. Therefore, the com-
putational complexity is O((n − 1) · aw1 ) and the same is true for the
communication overhead, where aw is the total number of updates for
w1. For the server, the computational and communication complexity
are O(n · aw1 ) and O(aw1 ), respectively, which are the same as ODXT
[1].

3.4. Security analysis

We now show that CKSE achieves forward privacy and Type-II back-
ward privacy. The evolution of each state of keywords plays an im-
portant role in a search query, and the states of keywords are randomly
generated during the update. For the server, the value of each state is in-
distinguishable from a random value, and the server cannot infer the fu-
ture state and state token of the keyword using the current search token
(containing the current state and state token of the keyword). Therefore,
CKSE leaks no information during the update, and the forward privacy
is guaranteed.

In the search protocol, the server obtains a series of locations for s-
term w1 which have been observed previously in the update protocol.
This leakage helps the server to learn the timestamp of each update for
w1. In addition, for each update (op j, (w1, ind j)) of w1, the server learns
the number of updates of the form (op j, (wi, ind j)) for each x-term wi,
i ∈ 2, · · · , n, along with the corresponding timestamp for each update.
The definition of the above leakage is as follows:

Updt(q) = Updt(w1)
⋃( n⋃

i=2

Updt(w1,wi)
)

(11)

where q is a conjunctive search query and

Updt(w1,wi) =
{
(t1, ti)|(t1, op, (w1, ind)) ∈ Q and

(ti, op, (wi, ind)) ∈ Q
}

(12)

Except for the above leakage, the server cannot obtain any information
that breaks the backward privacy of CKSE. We use the leakage function
L = (LS tp,LU pdt,LS rch) defined in section 2.5 to describe the leakages
as mentioned above. After the leakage is captured, the formal definition
of our scheme’s leakage functions are as follows:

LU pdt(op, (w, ind)) = (⊥)

LS rch(q) = (TimeDB(q),Updt(q)) (13)

According to Definition 2 of forward privacy and Definition 3 of
backward privacy, our scheme achieves forward privacy and Type-II
backward privacy.

Formally, the forward privacy and Type-II backward privacy of
CKSE is summarized in the following theorem.

Theorem 1. (Security of CKSE) Assume that F and Fp are secure
pseudorandom function, the DDH assumption holds over the group G,
and H1, H2 and H3 are hash functions modeled as random oracles.
CKSE is an L-adaptively secure SSE scheme with the leakage functions
LU pdt(op, (w, ind)) =⊥ and LS rch(q) = (TimeDB(q),Updt(q)).

Proof. See Appendix.

4. Performance Evaluation

In this section, we implement CKSE, and compare it with the two
existing schemes, MitraCONJ [1] is an instantiation of the naı̈ve solution,
and comparison with it can show the advantages of the conjunctive key-
word search scheme, and ODXT [1] is the baseline of our scheme, and
comparison with it can best verify our goal of achieving comprehensive
deletion operations without compromising efficiency and security. Ad-
ditionally, in order to clearly demonstrate the performance improvement
of the state chain structure for CKSE, we utilize ODXT [1] to instanti-
ate CKSE under the Mitra framework, named CKSEMitra, and compare
its performance with CKSE.

4.1. Implementation and Settings

We implement CKSE and CKSEMitra in Python 3.10 and use Py-
Crypto library and Sagemath library to achieve symmetric crypto-
graphic operations and group-based operations, respectively. Specif-
ically, we use AES-256 to realize PRFs F and Fp, SHA-256 for all
hash operations H1, H2 and H3, and the elliptic curve Curve25519 [53]
for group operations in CKSE. Our scheme aims to provide efficient,
privacy-preserving ciphertext retrieval and data updates in a cloud en-
vironment. IoT devices serve as auxiliary components responsible for
collecting and uploading data, without impacting the core search per-
formance of the scheme. All experiments were conducted on worksta-
tions equipped with an Intel(R) Core(TM) i7-14700K CPU (3.40 GHz),
32GB and 16GB RAM, running the Windows 11 (64-bit) operating sys-
tem. When evaluating MitraCONJ [1] and ODXT [1], we use the Python
code released by Patranabis and Mukhopadhyay [1]. To provide a fair
comparison, the specific implementations of CKSE and CKSEMitra are
the same as ODXT [1].

We test the performance of the schemes compared using the data
from Enron email dataset1, which is derived from the real world and
consists of multiple folders containing email messages from about 150
different users. We choose 30109 emails in the sent-email folder as the
file set, and apply the keyword extraction process of [54, 55] to obtain
77,000 unique keywords, which exclude some stopwords like ‘a’, ‘the’
and ‘so’. All the experiments are repeated 10 times and the results are
averaged over the ten runs.

Table 2
Comparison of Update Computational Overheads [ms].

|DB|
Scheme

MitraCONJ [1] ODXT [1] CKSEMitra CKSE

10 2.9 12.5 12.5 13.4
100 35.3 131.3 131.3 137.4

1000 242.3 1202.3 1202.3 1213.6
10000 1934.2 11534.1 11534.1 11640.3

4.2. Update Time Performance

We first compare the computational overheads of the four schemes
in the update operation. We generate variable update entries with sizes
|DB| = 10 ∼ 10000, where each entry consists of a keyword and
a file identifier, and test each scheme’s overall update computational
overhead. Table 2 shows that the update computational overhead of

1Enron Email Dataset: available online at https://www.cs.cmu.edu/∼enron/.
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(a) |Updt(w1)| = 3 × 100

(d) |Updt(w2)| = 3 × 104

(b) |Updt(w1)| = 3 × 100

(e) |Updt(w2)| = 3 × 104

(c) |Updt(w1)| = 3 × 100

(f) |Updt(w2)| = 3 × 104

Fig. 3. Client and server computation times for two-keyword conjunctive search query q = (w1 ∧ w2).

MitraCONJ [1] is the least, about one order of magnitude smaller than
those of the other schemes. This is because MitraCONJ [1] only needs
to consider update process for single keyword. It does not need to pre-
pare for the subsequent conjunctive keyword search like ODXT [1],
CKSEMitra and CKSE, which greatly reduces the computational over-
head of the update. However, the excellent update performance of
MitraCONJ [1] is at the cost of higher overhead in the search, as will be
shown later. Since the operations of ODXT [1] and CKSEMitra during
the update are the same, they maintain the same computational over-
heads. The computational overhead of our CKSE is slightly higher
than ODXT [1] and CKSEMitra. This is because unlike ODXT [1] and
CKSEMitra, CKSE executes additional hash and XOR operations in the
update. However, these additional operations will help CKSE to per-
form better during the search.

4.3. Search Time Performance

We next compare the computational overheads of the client and
server for the four schemes in the cases of two-keyword conjunc-
tive queries q = (w1 ∧ w2) and four-keyword conjunctive queries
q = (w1 ∧ · · · ∧ w4). We execute two types of experiments in each
case. In the first type, we set the update frequency of the s-term w1

to constant |Updt(w1)| = 3 and the update frequency of the x-term w2

to |Updt(w2)| = 3 × 100 ∼ 3 × 104, while in the second type, we set
|Updt(w1)| to 3 × 100 ∼ 3 × 104 and fix |Updt(w2)|=3 × 104. Addition-
ally, in the case of four-keyword conjunctive queries q= (w1 ∧ · · · ∧w4),
the values of |Updt(w3)| and |Updt(w4)| remain constant at 3 × 104 for
both the experimental types.

4.3.1. Two-keyword Conjunctions
Fig. 3 compares the computational overheads of the client and server

for the four schemes in the two-keyword conjunctive search. The
first thing to note is that the computational overheads of ODXT [1],
CKSEMitra and CKSE are proportional to the update frequency of s-
term w1, and they are independent of the update frequency of x-term
w2, which is consistent with our analysis of CKSE in Subsection 3.2.
By contrast, the computational overhead of MitraCONJ [1] is mainly
proportional to the update frequency of x-term w2, and its computa-
tional overhead is higher than the other schemes in most cases (when

|Updt(w1)| = 3 × 101, |Updt(w2)| = 3 × 104, CKSE takes 45.8ms,
CKSEMitra takes 61.1ms, ODXT [1] takes 35.2ms, and MitraCONJ [1]
takes 857.3ms, which is more than 20 times the cost of other schemes).
On client side, CKSE outperforms CKSEMitra, and it matches ODXT
[1]. This is due to the fact that compared to CKSEMitra, CKSE does
not need to compute all the locations of the keywords, and compared
to ODXT [1], CKSE does not need to compute all the locations of the
keywords but requires an additional cross-token xtoken{add/del} (when
|Updt(w1)|=3× 104, |Updt(w2)|=3× 104, CKSE takes 19.3s, CKSEMitra

takes 32.5s). On server side, CKSE has slightly higher computational
overhead than ODXT [1], and it matches CKSEMitra. Although the
search computational overhead of CKSE is slightly higher than ODXT
[1], CKSE supports more efficient deletion function, which is critical in
practice.

4.3.2. Multi-keyword Conjunctions
In Fig. 4, we compare the computational overheads of the client and

server for the four schemes in the four-keyword conjunctive queries
q = (w1 ∧ · · · ∧ w4). The trends of the four schemes in Fig. 4 are
similar to those shown in Fig. 3, with one obvious exception. Specif-
ically, in Fig. 4 (a)-(c), the computational overhead of MitraCONJ [1]
is no longer proportional to the update frequency of w2. This is
because the keywords w3 and w4 have the higher update frequency
|Updt(w3)| = |Updt(w4)| = 3 × 104 in x-terms, which increases the com-
putational overhead of MitraCONJ [1] to an extremely high level (when
|Updt(w1)| = 3 × 100, |Updt(w2)| = |Updt(w3)| = |Updt(w4)| = 3 × 104,
CKSE takes 11.1ms, CKSEMitra takes 13.4ms, ODXT [1] takes 9.4ms,
and MitraCONJ [1] takes 2430.3ms, which is much more expensive than
other schemes).

4.4. Communication Performance

In Fig. 5, we compare the communication overheads for the four
schemes in two-keyword conjunctive search. For ODXT [1], CKSEMitra

and CKSE, the communication overheads increase with the update fre-
quency of s-term w1, while the communication overhead of MitraCONJ

[1] increases with the update frequency of x-term w2. Moreover, the
communication overhead of MitraCONJ [1] is much higher than the other
schemes. In addition, CKSE slightly outperforms CKSEMitra and is very
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(a) |Updt(w1)| = 3 × 100

(d) |Updt(wi)| = 3 × 104, i = 2, 3, 4

(b) |Updt(w1)| = 3 × 100

(e) |Updt(wi)| = 3 × 104, i = 2, 3, 4

(c) |Updt(w1)| = 3 × 100

(f) |Updt(wi)| = 3 × 104, i = 2, 3, 4

Fig. 4. Computation times for client and server in a multi-keyword conjunctive search query q = (w1 ∧ · · · ∧ w4). In (a)-(c), |Updt(w3)| = |Updt(w4)| = 3 × 104.

(a) |Updt(w2)| = 3 × 104

(b) |Updt(w1)| = 3 × 100

Fig. 5. Communication overheads in two-keyword conjunctive search query q =
(w1 ∧ w2).

close to ODXT [1]. This is due to the fact that compared to CKSEMitra,
CKSE omits the transmission of each location of s-term w1, and com-
pared to ODXT [1], CKSE omits the transmission of each location of
s-term w1 but needs to transmit additional cross-token.

To sum up, the performance of MitraCONJ [1] is generally worse
than the other three schemes in terms of both computational overhead
and communication overhead. For our approach, CKSE outperforms

CKSEMitra, which shows the effectiveness of the state chain structure.
More importantly, compared to the state-of-the-art ODXT [1], CKSE
has a similar performance. It is worth recapping that our CKSE main-
tains the same security level as ODXT [1], i.e., forward and Type-II
backward privacy, and unlike ODXT [1], our CKSE can achieve effi-
cient deletion operation in any case.

4.5. Query Result Performance

After performing different deletion operations, we compare the query
results of ODXT [1] and CKSE involving search query q = (w1 ∧ w2).
We first select 100 files containing the keyword w1 and w2, and then
delete w1 and w2 from the Top (T) 10%, T 20%, Bottom (B) 10%, and
B 20% of the file set, respectively. Finally, we collect the query results
of each scheme under different deletion scenarios. Note that w1 is the
s-term.

After performing deletion updates, the comparison between the
query results of ODXT [1] and CKSE and the ground truth is illustrated
in Fig. 6. It can be seen that CKSE consistently produces the same query
results as the real results in all the 16 cases, whereas ODXT [1] fails to
achieve accurate query results in 10 out of 16 cases. Ideally, deletion
operations involving either w1 or w2 should have an impact on the final
query result. However, the query result of ODXT [1] only changes with
deletion operations involving w1, and it remains unaffected by deletion
operations involving w2, which results in ODXT [1] being able to obtain
accurate query results only when the set of documents with deletions of
w1 includes the documents with deletions of w2. This limitation arises
from the fact that the cross-tag xtag computed by ODXT [1] during
the search query can only respond to the update type corresponding to
s-term w1, but ignores the update type of other keywords in conjunc-
tion. Consequently, ODXT [1] fails to detect deletion operations on
keywords other than the s-term w1, resulting in discrepancy between
the query results and the actual results. In contrast, CKSE incorporates
the update types of each keyword into the design of the new cross-tag,
enabling it to effectively respond to deletion operations for every key-
word. As a result, CKSE consistently achieves accurate query results
across various scenarios.
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(a) Delete Percentage of w1 = T 10%

(b) Delete Percentage of w1 = T 20%

(c) Delete Percentage of w1 = B 10%

(d) Delete Percentage of w1 = B 20%

Fig. 6. The query results of search query q = (w1 ∧ w2).

5. Conclusions and Future Work

In this work, we have designed an effective and efficient conjunc-
tive keyword DSSE scheme called CKSE based on the state-of-the-art
ODXT [1]. However, unlike ODXT [1], our scheme supports update
operations in any scenario, especially for robust deletion operations,
which enable the client to obtain accurate query results. Additionally,
we have adopted a state chain structure to save unnecessary ODXT [1]
operations during the search and achieve efficient search performance.
In terms of security, our CKSE leaks no information in update and
moderates leakage during the search to achieve forward privacy and

Type-II backward privacy. In summary, our CKSE design comprehen-
sively considers functionality, efficiency and security, and it offers an
ideal scheme for cloud-IoT systems. In the future, extending CKSE to
support more expressive queries, e.g., boolean queries, is meaningful,
which will strengthen the practical applications of our scheme.

Moreover, the proposed scheme operate under the assumption that
the client’s key remains secure at all times, without addressing the po-
tential risks associated with key sharing. This oversight presents chal-
lenges in real-world applications, where key exposure could allow an
adversary to compromise the encrypted database and monitor update
and search activities. Moreover, our scheme primarily focuses on min-
imizing access pattern leakage but fails to consider the vulnerability to
keyword guessing attacks, which are a common concern in public key
searchable encryption schemes. In future work, we aim to explore and
address these two issues in DSSE, which will enable us to develop a
more secure scheme for cloud-IoT systems.
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Appendix A. Proof of Theorem 1

We use the REAL-IDEAL model mentioned in Subsection 2.4 to prove
the security of CKSE. Specifically, a sequence of games are constructed
from REAL

Σ
A(λ) and reached to IDEAL

Σ
A,S(λ). We prove that REAL

Σ
A(λ) and

IDEAL
Σ
A,S(λ) are indistinguishable by proving the indistinguishability be-

tween two adjacent games.
Game G0: G0 is the real world game REAL

Σ
A(λ).

Game G1: The difference between G1 and G0 is that G1 replaces
PRFs F(KS , ·), Fp(KX , ·), Fp(KY , ·) and Fp(KZ , ·) with random functions
GS (·), GX(·), GY (·) and GZ(·), respectively. Specifically, GS (·) is uni-
formly sampled from the set of all random functions on (0, 1)λ, while
GX(·), GY (·) and GZ(·) are uniformly sampled from the set of all random
functions on Z∗p. Since we cannot distinguish a pseudo-random function
from a truly random function, G1 and G0 are indistinguishable.

Game G2: The difference between G2 and G1 is that G2 no longer
calls H1, H2 and H3 to generate location u, encrypted entry e and state
token CS T in the update protocol, but uses random numbers instead.
Taking H1 and u as an example, it replaces u ←− H1(Kw, S Tc+1) with

u
$
←− {0, 1}λ and executes L[Kw||S Tc+1] ←− u, where L is a mapping

maintained by G2. Afterward, H1[Kw||S Tc+1] ←− L[Kw||S Tc+1] is exe-
cuted in the search protocol, where H1 is the table of the random ora-
cles H1. Thus, H1 is not updated immediately, and when an adversary
accesses H1[Kw||S Tc+1] before a search query is issued, H1[Kw||S Tc+1]
will randomly generate a value u∗ that is not equal to u. If the adversary
queries H1[Kw||S Tc+1] again after next search query, it will get the value
u that has been updated to H1. By observing the difference between the
two queries, the adversary knows that it is in game G2. We now show
that the probability of this case is negligible. Based on the above dis-
cussion, it is clear that this case will only take place if the adversary
uses Kw||S Tc+1 to query H1. Since S Tc+1 is randomly generated, the
adversary chooses S Tc+1 with probability 1

2λ + negl(λ). Assuming that
a PPT adversary makes at most p = poly(λ) guesses, the probability of
adversary choosing S Tc+1 is p

2λ + p · negl(λ), which is negligible. H2

and H3 are processed in the same way as H1 in G2. Therefore, G2 and
G1 are indistinguishable.

Game G3: The difference between G3 and G2 is that in the search
protocol of G3, the manner of generating xtoken is changed. Specifi-
cally, for a conjunctive query q = (w1 ∧w2 ∧ · · · ∧wn), G3 first looks up
the update query history of adversary to obtain the set of update opera-
tions involving s-term w1. Then, it computes α and xtag involving each
x-term wi in conjunction q, and obtains xtoken as xtoken = xtag1/α. It
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is clear that the distribution of each xtoken value in G3 is the same as
the its distribution in G2. Therefore, G3 and G2 are indistinguishable.

Game G4: The difference between G4 and G3 is that the manner of
generating α is changed in the update protocol of G4. Specifically, G4

replace computing α in G3 with random sampling α
$
→ Z∗p. Note that

α in G3 is computed by GY (·) and the inverse of GZ(·), where GY (·) and
GZ(·) are uniformly sampled from the set of all random functions on
Z∗p, and the value of α in G4 is also uniform and independent random
distribution on Z∗p. Therefore, G4 and G3 are indistinguishable.

Game G5: The difference between G5 and G4 is that the manner of
generating xtag is changed in the update protocol of G5. Specifically,
G5 replace computing xtag in G4 with random sampling gγ, where g is

an uniformly sampled generator for the group G and γ
$
→ Z∗p. Since

the DDH assumption holds in the group G, the probability of a PPT
adversary distinguishing xtag = gGX (·)·GY (·) in G4 from xtag = gγ in G5

is negligible. Therefore, G5 and G4 are indistinguishable.
Game G6: The difference between G6 and G5 is that the manner of

computing the maps involving u, e and CS T are changed in the update
and search protocol of G6. Specifically, still taking u as an example,

G6 replace L[Kw||S Tc+1]
$
←− {0, 1}λ with L[t]

$
←− {0, 1}λ, where t is the

timestamp for each update operation. Note that each state of keyword
is different in G5, and the values sampled uniformly randomly are never
the same when input two different timestamps in G6. The map involving
e and CS T are processed in the same way as L[·] in G5. This implies that
G6 and G5 are indistinguishable.

Simulator: In IDEAL
Σ
A,S(λ), the simulator S generates a view accord-

ing to the given leakage function

LU pdt(op, (w, ind)) =⊥

LS rch(q) = (TimeDB(q),Updt(q))

where TimeDB(q) and Updt(q) are defined in (4) and (5) of Subsec-
tion 2.5. Specifically, from LU pdt, S gains no information about update
operations, and a series of variables are generated by S as done by G6.
In the search protocol, S uses Updt(q) to learn the number of updates
involving the s-term w1, as well as the corresponding timestamp and
x-term leakage for each update operation. It can also learn the final set
of file identifiers in the conjunction by using TimeDB(q). Moreover, S
can learn whether two (or more) conjunctive queries contain the same s-
term w1 by using Updt(q1) and Updt(q2). Note that the view generated
by S using the above information are identical to the view in G6.

This completes the proof of Theorem 1.

References

[1] S. Patranabis, D. Mukhopadhyay, Forward and backward private conjunc-
tive searchable symmetric encryption, in: 28th Annual Network and Dis-
tributed System Security Symposium (NDSS 2021), The Internet Society,
2021.

[2] L. Chen, J. Li, J. Li, Toward forward and backward private dynamic search-
able symmetric encryption supporting data deduplication and conjunctive
queries, IEEE Internet of Things Journal 10 (19) (2023) 17408–17423.

[3] G. S. Poh, P. Gope, J. Ning, Privhome: Privacy-preserving authenticated
communication in smart home environment, IEEE Transactions on De-
pendable and Secure Computing 18 (3) (2019) 1095–1107.

[4] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, J. Yu, Direct acyclic
graph-based ledger for internet of things: Performance and security analy-
sis, IEEE/ACM Transactions on Networking 28 (4) (2020) 1643–1656 .

[5] W. Liu, B. Cao, M. Peng, Web3 technologies: Challenges and opportuni-
ties, IEEE Network 38 (3) (2024) 187–193.

[6] J. Shu, X. Jia, K. Yang, H. Wang, Privacy-preserving task recommenda-
tion services for crowdsourcing, IEEE Transactions on Services Comput-
ing 14 (1) (2018) 235–247.

[7] C. Zhang, L. Zhu, C. Xu, J. Ni, C. Huang, X. Shen, Location privacy-
preserving task recommendation with geometric range query in mobile
crowdsensing, IEEE Transactions on Mobile Computing 21 (12) (2021)
4410–4425.

[8] B. Cao, Z. Wang, L. Zhang, D. Feng, M. Peng, L. Zhang, Z. Han,
Blockchain systems, technologies, and applications: A methodology per-
spective, IEEE Communications Surveys & Tutorials 25 (1) (2022) 353–
385.

[9] Y. Zhang, J. Katz, C. Papamanthou, All your queries are belong to us:
the power of {File-Injection} attacks on searchable encryption, in: 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp. 707–720.

[10] C. B. Papamanthou, E. Stefanov, E. Shi, Practical dynamic searchable en-
cryption with small leakage, in: Proc. Netw. Distrib. Syst. Secur. Symp,
2014, pp. 23–26.

[11] R. Bost,
∑

oϕoξ: Forward secure searchable encryption, in: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 1143–1154.

[12] R. Bost, B. Minaud, O. Ohrimenko, Forward and backward private search-
able encryption from constrained cryptographic primitives, in: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1465–1482.

[13] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, S. Nepal,
Practical backward-secure searchable encryption from symmetric punc-
turable encryption, in: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 763–780.

[14] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, R. Jalili, New con-
structions for forward and backward private symmetric searchable encryp-
tion, in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 1038–1055.

[15] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, J. Pieprzyk, Dynamic searchable
symmetric encryption with forward and stronger backward privacy, in: Eu-
ropean symposium on research in computer security, Springer, 2019, pp.
283–303.

[16] I. Demertzis, J. G. Chamani, D. Papadopoulos, C. Papamanthou, Dynamic
searchable encryption with small client storage, Cryptology ePrint Archive.

[17] S.-F. Sun, R. Steinfeld, S. Lai, X. Yuan, A. Sakzad, J. K. Liu, S. Nepal,
D. Gu, Practical non-interactive searchable encryption with forward and
backward privacy, in: Usenix Network and Distributed System Security
Symposium 2021, The Internet Society, 2021.

[18] P. Xu, W. Susilo, W. Wang, T. Chen, Q. Wu, K. Liang, H. Jin, ROSE:
Robust searchable encryption with forward and backward security, IEEE
transactions on information forensics and security 17 (2022) 1115–1130.

[19] P. Zhang, Y. Chui, H. Liu, Z. Yang, D. Wu, R. Wang, Efficient and privacy-
preserving search over edge–cloud collaborative entity in IoT, IEEE Inter-
net of Things Journal 10 (4) (2021) 3192–3205.

[20] R. Zhou, X. Zhang, X. Wang, G. Yang, H.-N. Dai, M. Liu, Device-oriented
keyword-searchable encryption scheme for cloud-assisted industrial IoT,
IEEE Internet of Things Journal 9 (18) (2021) 17098–17109.

[21] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, J. Pieprzyk, G. Wei, Forward and
backward private dynamic searchable symmetric encryption for conjunc-
tive queries, Cryptology ePrint Archive.

[22] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, M. Steiner,
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