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Data privacy leakage has always been a critical concern in cloud-based Internet of Things (IoT) systems. Dynamic 
Symmetric Searchable Encryption (DSSE) with forward and backward privacy aims to address this issue by 
enabling updates and retrievals of ciphertext on untrusted cloud server while ensuring data privacy. However, 
previous research on DSSE mostly focused on single keyword search, which limits its practical application in 
cloud-based IoT systems. Recently, Patranabis (NDSS 2021) [1] proposed a groundbreaking DSSE scheme for 
conjunctive keyword search. However, this scheme fails to effectively handle deletion operations in certain 
circumstances, resulting in inaccurate query results. Additionally, the scheme introduces unnecessary search 
overhead. To overcome these problems, we present CKSE, an efficient conjunctive keyword DSSE scheme. Our 
scheme improves the oblivious shared computation protocol used in the scheme of Patranabis, thus enabling 
a more comprehensive deletion functionality. Furthermore, we introduce a state chain structure to reduce 
the search overhead. Through security analysis and experimental evaluation, we demonstrate that our CKSE 
achieves more comprehensive deletion functionality while maintaining comparable search performance and 
security, compared to the oblivious dynamic cross-tags protocol of Patranabis. The combination of comprehensive 
functionality, high efficiency, and security makes our CKSE an ideal choice for deployment in cloud-based IoT 
systems.

1. Introduction

With the advancement of cloud computing and the Internet of Things 
(IoT), various cloud-based IoT systems, including intelligent logistics, 
smart homes, and intelligent healthcare, are experiencing widespread 
adoption [2--5]. During the deployment of these systems, individuals 
and organizations often choose to outsource large volumes of data to 
cloud servers for storage and processing. However, ensuring data pri

vacy becomes a critical concern due to the potential lack of trustworthi

ness of cloud servers. Unauthorized disclosure of sensitive information 
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can result in adverse consequences such as reputational damage, un

necessary discrimination, and location leakage [6--8]. To protect data 
privacy, a common approach is to encrypt the data before uploading 
it to the cloud server. However, traditional encryption algorithms ren

der the data indistinguishable from random values, posing a challenge 
when performing effective retrieval on ciphertext.

To address the aforementioned challenge, researchers have proposed 
Symmetric Searchable Encryption (SSE) as a solution. SSE aims to en

able the retrieval of ciphertext without revealing sensitive information. 
An important further advancement in this field is Dynamic SSE (DSSE), 
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which not only allows retrieval but also supports dynamic updates on 
the encrypted database by revealing limited additional privacy informa

tion. Unfortunately, adversaries can exploit this leaked information to 
launch attacks, such as file-injection attacks [9]. In order to mitigate the 
security concerns arising from this information leakage, Stefanov et al. 
[10] introduced two new concepts into the DSSE: forward privacy and 
backward privacy. Forward privacy ensures that newly added files to 
the database do not disclose whether they contain keywords that have 
been previously queried. Conversely, backward privacy guarantees that 
current search queries do not disclose any information about previously 
deleted files. Bost et al. [11,12] provided formal definitions for forward 
and backward privacy, and three types of backward privacy were de

fined in [12], with the security strength gradually weakening from Type

I to Type-III. Building upon these concepts, several dynamic searchable 
encryption schemes with forward and backward privacy were proposed 
in the literature [13--20].

Nevertheless, most existing DSSE schemes with forward and back

ward privacy only support single keyword search, which limits the 
expressive efficiency of the scheme. In cloud-based IoT systems, it is 
essential for DSSE to support conjunctive keyword search to enhance 
the practicality of the scheme. Although running single-keyword DSSE 
schemes multiple times can achieve conjunctive search, this approach 
has efficiency and security issues. Specifically, the computational and 
communication overhead is related to the update frequency of each 
keyword, and when multiple keywords have high update frequencies, 
the search performance is poor. In terms of security, the adversary may 
learn the update count and timestamps of each keyword, as well as files 
unrelated to the query. These additional leakages are undesirable. Re

cent works [1,21] have proposed dynamic conjunctive keyword search 
schemes with forward and backward privacy. In particular, the Oblivi

ous Dynamic Cross-tags (ODXT) protocol, introduced in [1], is the first 
efficient forward and Type-II backward private conjunctive keyword 
DSSE scheme known to us. ODXT [1] builds upon the static scheme of 
Oblivious Cross-tags (OXT) [22] and the single keyword DSSE scheme 
known as Mitra [14]. The concept of ODXT [1] is similar to OXT [22], 
where the server maintains two encrypted databases named ‘TSet’ and 
‘XSet’. When a client issues a conjunctive search query, the server first 
matches files containing the least frequent keyword in TSet. It then 
uses cross-token and dynamic cross-tag techniques to determine whether 
these files contain the remaining queried keywords in XSet. The server 
returns the results to the client for further filtering. The key to enabling 
dynamic conjunctive keyword search in ODXT [1] lies in the on-thefly 
computation of cross-tags and cross-tokens with each update operation.

Although ODXT [1] is more efficient than the early conjunctive 
keyword DSSE schemes, it still has two drawbacks. First, it fails to 
adequately consider the update type of a keyword when computing 
the cross-tag, which results in the inability to perform valid delete 
operations in certain circumstances. For instance, consider the fol

lowing interaction between the client and server: [1, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)], 
[2, 𝑎𝑑𝑑, (𝑤2, 𝑖𝑛𝑑1)], [3, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1 ∧𝑤2)], [4, 𝑑𝑒𝑙, (𝑤2, 𝑖𝑛𝑑1)], [5, 𝑠𝑒𝑎𝑟𝑐ℎ, 
(𝑤1 ∧𝑤2)]. After the delete operation at time 4, if the server performs 
a search operation (𝑤1 ∧𝑤2), the results still contain 𝑖𝑛𝑑1 . It is worth 
noting that similar delete operations are common in real-world scenar

ios, and a scheme that cannot effectively handle delete operations will 
yield inaccurate query results. Second, consider that the client runs an 
instance of Mitra within ODXT [1]. In order to achieve retrieval in TSet, 
the client needs to compute all the locations involving the least frequent 
keyword in advance and send them to the server. This increases the com

putational and communication overhead on the client side, particularly 
when the least frequent keyword still has a high update frequency. Con

sequently, the search performance degrades significantly. To sum up, the 
lack of effective delete operations and the computational and communi

cation overheads hinder the practicality of existing conjunctive keyword 
DSSE schemes in cloud-IoT systems [23,24].

In this paper, our objective is to design a conjunctive keyword search 
scheme with forward and backward privacy, incorporating a complete 

deletion function, while minimizing search overheads. We anticipate 
two significant challenges that need to be addressed. First, we need 
to achieve efficient deletion operations within the scheme while ensur

ing that the search complexity remains proportional to the number of 
documents containing the least frequent keywords in conjunction. This 
scenario represents the optimal achievable search complexity among 
conjunctive SSE schemes, as noted in [1]. Second, supporting more com

prehensive functions inherently results in increased overheads and may 
introduce additional security concerns. Striking a right balance between 
functionality, efficiency, and security simultaneously within a scheme 
poses a challenging task. Before proceeding to our contributions, we 
provide a comprehensive review of the existing literature.

1.1. Related works

Song et al. [25] proposed the first practical SSE scheme having lin

ear search time with the size of database. Subsequently, Curtmola et al. 
[26] considered leakage and constructed the first reversed-index based 
scheme with sub-linear efficiency. Chase and Kamara [27] traded higher 
storage complexity for the similar scheme. However, these works focus 
on static settings and are not suitable for many scenarios that require 
real-time data updates. To support data update on SSE and mitigate the 
leakage, the forward and backward private DSSE has become an impor

tant branch in this research area.

1.1.1. Single keyword DSSE

The first sub-linear-complexity DSSE scheme was proposed by 
Karama et al. [28]. Subsequent work has focused on the security, ef

ficiency, and expressiveness of DSSE. Liu et al. [29] and Yu et al. [30] 
leveraged the flexibility of Attribute-Based Encryption (ABE) combined 
with blockchain to enable fine-grained search and revocable functional

ities. Yin et al. [31] introduced a secure index based on access policies 
and an attribute-based search token, which supports fine-grained search 
with integrated access control. While these methods reduce decryption 
and revocation overhead, DSSE schemes relying on ABE still face chal

lenges in resource-constrained environments.

Forward and backward privacy can address the additional privacy 
leakage issues introduced by dynamic updates. The notion of forward 
privacy was first proposed in [32]. Since then, several forward private 
DSSE schemes supporting single keyword search have been proposed 
[11,33,34]. Among them, Bost [11] proposed a pioneering forward pri

vacy scheme called Sophos, which uses the state-based approach to 
reduce the overhead of the scheme. Although the trapdoor permuta

tion structure of Sophos is limited by public key operations, it provides 
new ideas for subsequent research. Backward privacy was first intro

duced by Stefanov et al. [10]. Later, Bost et al. [12] formally defined 
three types of backward privacy, called Type-I, Type-II and Type-III 
with progressively weakening security, and a number of schemes with 
various types of backward privacy were proposed in [12--17]. Chamani 
et al. [14] presented three schemes, Mitra, Orion and Hours. Mitra, a 
Type-II scheme, obtains better performance by using symmetric key en

cryption. Orion is a Type-I scheme based on oblivious random-access 
memory, and Hours, a Type-III scheme, optimizes Orion’s performance 
at the cost of leaking more information. In order to reduce the client-side 
storage, Demertzis et al. [16] proposed three schemes called SDa, SDd 
and Qos. SDa [16] and SDd [16] use static-to-dynamic techniques to 
achieve Type-II backward privacy. Qos [16] is a quasi-optimal Type-III 
backward privacy scheme. Dou et al. [35] introduced a robust scheme 
that ensures both forward and backward privacy, designed to handle 
more complex update and query processes. Chen et al. [36] leveraged 
blockchain and hash-proof chain technologies to create a publicly ver

ifiable DSSE scheme, incorporating a novel data hiding structure that 
offers both forward and backward privacy.

To the best of our knowledge, majority of the existing forward and 
backward private schemes primarily focus on supporting single keyword 
search, with limited attention given to conjunctive keyword search.
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Table 1
Comparison of existing schemes with proposed scheme.

Scheme Query 
Type 

Update 
cost 

Search 
cost 

Forward 
Privacy 

Backward 
Privacy 

[1] Conjunctive 𝑂(1) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛 ) ✓ II 
[16] Single 𝑂(log𝑃 ) 𝑂(𝑎𝑤 + log𝑃 ) ✓ II 
[16] Single 𝑂(log3 𝑃 ) 𝑂(𝑛𝑤 log 𝑖𝑤 + log2 ||) ✓ III 
[35] Single 𝑂(|𝐷|) 𝑂(𝑎𝑤|𝐷|) ✓ I−

[40] Conjunctive 𝑂(𝑎𝑓 ) 𝑂(𝑎𝑤𝑚𝑖𝑛 ) ✓ I−

[41] Conjunctive 𝑂(1) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛 ) ✓ ×
[42] Conjunctive 𝑂(log𝑁 log𝑘 𝑃 ) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛 log𝑁 log𝑘 𝑃 ) ✓ I 
Ours Conjunctive 𝑂(1) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛 ) ✓ II 

𝑃 is the number of keyword/document pairs, |𝐷| is the number of total files, and |𝑠| is the 
number of authorized user. For keyword 𝑤, 𝑎𝑤 is the total number of keyword updates, 𝑖𝑤 is 
the total number of Add queries, 𝑛𝑤 is the number of files currently containing 𝑤, 𝑎𝑤𝑚𝑖𝑛 is the 
number of the least update keyword in 𝑞 = (𝑤1 ∧𝑤2∧,⋯ ,∧𝑤𝑛), and 𝑛 is the number of keyword 
in conjunctive query 𝑞. 𝑎𝑓 is the number of updates for 𝑓 .

1.1.2. Conjunctive keyword DSSE

The inclusion of conjunctive keyword search functionality greatly 
enhances the practicality of SSE schemes. The first efficient conjunctive 
keyword SSE scheme, OXT, was proposed by Cash et al. [22]. However, 
its construction lacks the capability for data updates. To address this 
limitation, Lai et al. [37] compensated for the leakage in OXT, while the 
works [38] and [39] focused on forward privacy in conjunctive keyword 
searches on dynamic databases. Zuo et al. [21] introduced FBDSSE-CQ, 
a forward and backward private conjunctive keyword search scheme 
that trades linear search overhead for efficiency. Chen et al. [40] devel

oped DSSE-DC, a conjunctive search DSSE scheme featuring a revocation 
mechanism based on inner product matching. Guo et al. [41] created a 
forward index using a t-puncturable pseudorandom function, combin

ing it with an inverted index to support conjunctive keyword searches. 
Li et al. [42] introduced an update counter to build a bi-directional in

dex structure that supports conjunctive queries over bipartite graphs. 
Their scheme also employed a new oblivious data structure for stor

ing the bi-directional index and used semantically secure encryption 
to protect node information, achieving forward privacy and backward 
privacy. Yuan et al. [43] presented the first sub-linear KPRP-hiding con

junctive DSSE scheme with forward and backward privacy, utilizing a 
novel cryptographic primitive called Attribute Updatable Hidden Map 
Encryption (AUHME). Li et al. [44] introduced the Indistinguishable Bi

nary Tree (IBtree), a highly balanced binary tree structure designed to 
support conjunctive keyword searches. Additionally, numerous studies 
have expanded DSSE to incorporate various advanced query functionali

ties [45--47]. More recently, MitraCONJ, BDXT and ODXT were proposed 
in [1]. MitraCONJ [1] is a straightforward extension of Mitra from sin

gle keyword queries to conjunctive queries, but the computational and 
communication complexity of this scheme is proportional to the sum of 
the update frequency of each keyword in conjunction. BDXT [1] is the 
first forward and backward private conjunctive keyword SSE scheme 
with the computational and communication complexity proportional to 
the least frequent keywords in conjunction. ODXT [1] further optimizes 
the performance of BDXT, which is the most effective forward and back

ward conjunctive keyword scheme at present. However, as mentioned 
before, ODXT [1] suffers from ineffective deletion and high search over

head. 

1.2. Our contributions

Against the above background and to achieve more efficient conjunc

tive keyword search in real-world scenarios, we proposed a conjunctive 
keyword DSSE scheme, named CKSE. In particular, CKSE achieves more 
comprehensive deletion operations than ODXT [1], while balancing the 
efficiency and security. Table 1 shows the comparison of our scheme 
with other state-of-the-art schemes. Our contributions can be summa

rized as follows.

∙ We propose an efficient conjunctive keyword DSSE scheme called 
CKSE based on ODXT [1]. By constructing a new cross-tag that com

bines the update type with the keyword and modifying the elements 
involving the oblivious shared computation, our CKSE is capable of 
performing effective deletion operations and providing the client 
with accurate query results. Moreover, the search complexity of 
CKSE is related to the least update frequency keyword.

∙ We introduce a state chain structure to instantiate our scheme. This 
structure is a symmetric cryptographic primitive version of the pub

lic key-based trapdoor permutation structure [11]. With this state

chain structure, the client only needs to obtain the latest state of the 
keyword to execute subsequent operations, which greatly reduces 
the computational and communication overheads of the scheme.

∙ We conduct a comprehensive analysis to prove that CKSE maintains 
forward and Type-II backward privacy. Additionally, we implement 
CKSE and perform experiments to evaluate its performance in com

parison with ODXT [1]. The results demonstrate that our scheme 
achieves search performance comparable to ODXT [1].

2. Preliminaries

This section presents the notations used in the paper as well as the 
cryptographic background and definitions for SSE.

2.1. Notations

We use 𝑥
$ 
→ 𝑋 to denote that an element 𝑥 is uniformly and ran

domly sampled from the set 𝑋. For a security parameter 𝜆 ∈ ℕ, we 
refer to 𝑝𝑜𝑙𝑦(𝜆) and 𝑛𝑒𝑔𝑙(𝜆) as the unspecified polynomial and negligible 
functions of 𝜆, respectively. We store all documents and their respective 
contained keywords 𝑤 ∈ in the database 𝐃𝐁 as keyword/document 
identifier pairs (𝑤, 𝑖𝑛𝑑), where  is the set of all keywords in 𝐃𝐁, and 
𝑖𝑛𝑑 is the file identifier. We also denote by || the number of distinct 
keywords, and by 𝐃𝐁(𝑤) the set of all documents containing the key

word 𝑤.

In addition, we use 𝑞 = (𝑤1 ∧ 𝑤2⋯ ∧ 𝑤𝑛) to denote a conjunctive 
query, and assume that 𝑤1 is the least frequent term in the conjunctive, 
called 𝑠-term, while the remaining keywords in 𝑞 are called 𝑥-terms. The 
result of a conjunctive query is expressed as 𝐃𝐁(𝑞) = ∩𝑛

𝑖=1𝐃𝐁(𝑤𝑖), i.e., 
the intersection of the search results for all keywords 𝑤𝑖, 𝑖 ∈ {1,⋯ , 𝑛}.

2.2. Decisional Di˙ie-Hellman assumption

Let 𝑔 be a uniformly sampled generator for the 𝑝 = 𝑝(𝜆) order cyclic 
group 𝔾. The Decisional Di˙ie-Hellman (DDH) assumption is that for 
any Probabilistic Polynomial-Time (PPT) adversary , the probability 
of distinguishing (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) from (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐) is negligible, formally 
defined as:
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|||Pr[(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1] − Pr[(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐) = 1]|||
≤ 𝑛𝑒𝑔𝑙(𝜆) (1)

2.3. Dynamic searchable encryption

A dynamic searchable encryption scheme consists of three parts: one 
𝑆𝑒𝑡𝑢𝑝 algorithm, two protocols 𝑈𝑝𝑑𝑎𝑡𝑒 and 𝑆𝑒𝑎𝑟𝑐ℎ that are run by 
client and server, as follows.

𝑆𝑒𝑡𝑢𝑝(𝜆,𝐃𝐁) is executed unilaterally by the client. This algorithm 
takes the security parameter 𝜆 and the database 𝐃𝐁 as input and outputs 
the tuple (𝑠𝑘, 𝜎;𝐄𝐃𝐁), where 𝑠𝑘 denotes the client’s key, 𝜎 is the client’s 
local state, both of which are stored locally by the client, and 𝐄𝐃𝐁 is an 
empty encrypted database stored by the server.

𝑈𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝜎,𝑤, 𝑖𝑛𝑑, 𝑜𝑝;𝐄𝐃𝐁) is executed jointly by the client and 
server. This protocol takes (𝑠𝑘, 𝜎,𝑤, 𝑖𝑛𝑑, 𝑜𝑝) as input for the client, 
where 𝑜𝑝 ∈ (𝑎𝑑𝑑,𝑑𝑒𝑙) indicates the update type, and takes the encrypted 
database 𝐄𝐃𝐁 as input for the server. Eventually, the client gets a mod

ified local state 𝜎′ and the server gets a modified encrypted database 
𝐄𝐃𝐁′.

𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑘, 𝜎, 𝑞;𝐄𝐃𝐁) is executed jointly by the client and server. 
This protocol takes (𝑠𝑘, 𝜎, 𝑞) as input for the client, and takes 𝐄𝐃𝐁 as 
input for the client. At the end of the protocol, the client outputs the 
result of query 𝐃𝐁(𝑞).

Note that there are two definitions of dynamic searchable encryp

tion [48,49]. One is the above definition adopted in this paper. Another 
definition is to take the addition/deletion of the entire file as an up

date operation, which is functionally equivalent to performing multiple 
add/delete operations on keyword-document identifier pairs in our def

inition.

Finally, we default that after receiving the file identifier contained 
in 𝐃𝐁(𝑞), the client still needs to generate additional interaction with 
the server to obtain the actual file.

2.4. Definitions of correctness and security

Correctness. The correctness of a dynamic searchable encryption 
scheme Σ = (𝑆𝑒𝑡𝑢𝑝,𝑈𝑝𝑑𝑎𝑡𝑒,𝑆𝑒𝑎𝑟𝑐ℎ) means that for any conjunctive 
query 𝑞, the search protocol can always return the correct result 𝐃𝐁(𝑞).

Security. The security of a dynamic searchable encryption scheme 
is described by a leakage function  = (𝑆𝑡𝑝,𝑈𝑝𝑑𝑡,𝑆𝑟𝑐ℎ), where 𝑆𝑡𝑝, 
𝑈𝑝𝑑𝑡 and 𝑆𝑟𝑐ℎ represent the leakage information captured in the 
setup, update and search, respectively, which can be learned by an ad

versary.

If an adversary server cannot learn any private information except 
those contained in leakage function, the dynamic searchable encryp

tion scheme is secure. Formally, the security of a dynamic searchable 
encryption scheme can be proven by two games of IDEAL and REAL.

• REAL
Σ

(𝜆): This game first runs 𝑆𝑒𝑡𝑢𝑝(𝜆,𝐃𝐁) algorithm against 

database 𝐃𝐁 chosen by adversary  to obtain an encrypted 
database 𝐄𝐃𝐁. Then, the game executes 𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑘, 𝜎, 𝑞;𝐄𝐃𝐁) or 
𝑈𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝜎,𝑤, 𝑖𝑛𝑑, 𝑜𝑝;𝐄𝐃𝐁) protocol based on a series of queries 
𝑞𝑖 performed by . Finally, according to the returned result, adver

sary  outputs bit 𝑏 ∈ {0,1}.

• IDEALΣ,S(𝜆): After adversary  selects database 𝐃𝐁, simulator  re

turns encrypted database 𝐄𝐃𝐁← (𝑆𝑡𝑝(𝐃𝐁)) to  by the leakage 
function. Then, simulator  executes (𝑆𝑟𝑐ℎ(𝑞𝑖)) or (𝑈𝑝𝑑𝑡(𝑞𝑖))
according to a series of queries performed by . Finally, according 
to the returned result, adversary  outputs bit 𝑏 ∈ {0,1}.

Definition 1 (-adaptive Security). A DSSE scheme is -adaptively se

cure if for any PPT adversary , there exists an efficient simulator 
such that:

|||Pr
(
REAL

Σ

(𝜆) = 1

)
− Pr

(
IDEALΣ,𝑆 (𝜆) = 1

)|||≤ 𝑛𝑒𝑔𝑙(𝜆) (2)

2.5. Forward and backward privacy

Forward privacy. For any adversary who can observe the interac

tion between the client and server, forward privacy can ensure that the 
update does not leak information about the latest addition operation, 
which prevents the server from matching to the new update using pre

vious queries. The formal definition of forward privacy is as follows 
[12].

Definition 2 (Forward Privacy). An -adaptively-secure SSE scheme is 
forward private, if leakage function 𝑈𝑝𝑑𝑡 can be expressed in the fol

lowing form:

𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) =′(𝑜𝑝, 𝑖𝑛𝑑) (3)

where ′ is stateless function.

Backward privacy. Backward privacy ensures that the server cannot 
match files that were added and then removed. Bost at al. [12] formally 
defines three types of backward privacy: Type-I, Type-II, and Type-III. 
The security decreases from Type-I to Type-III. Type-I and Type-II are 
considered to be strong backward private, while Type-III is a weaker 
backward private. Note that Type-III backward privacy leaks the times

tamp of when the files were deleted. For cloud-IoT system, time is a crit

ical piece of information that many attacks [50,51] can exploit to break 
the security of the system. For DSSE, the adversary can correlate the in

formation of subsequent queries or make statistical inferences based on 
when the file was deleted. Therefore, for the DSSE scheme deployed in 
cloud-IoT system, it is highly desire to reach higher level of backward 
privacy. We focus on Type-II backward privacy involved in the subse

quent content. This kind of backward privacy allows the scheme to leak 
the file identifier containing the keyword 𝑤 and the timestamp, when 
keyword-identifier pair (𝑤, 𝑖𝑛𝑑) was inserted into the database, and the 
number of keyword updates. Before formally defining Type-II backward 
privacy, we introduce two related functions 𝐓𝐢𝐦𝐞𝐃𝐁(𝑤) and 𝐔𝐩𝐝𝐭(𝑤).

Let 𝐐 be a list maintaining all the search queries (𝑢,𝑤) and the up

date queries (𝑡, 𝑜𝑝, (𝑖𝑛𝑑,𝑤)), where 𝑡 denotes the timestamp of query. 
𝐓𝐢𝐦𝐞𝐃𝐁(𝑤) consists of the files containing the keywords 𝑤 that have 
not yet been deleted, along with their timestamps of insertion, that is,

𝐓𝐢𝐦𝐞𝐃𝐁(𝑤) =
{
(𝑡, 𝑖𝑛𝑑)|(𝑡, 𝑎𝑑𝑑, (𝑤, 𝑖𝑛𝑑)) ∈𝐐 and 

∀𝑡′, (𝑡′, 𝑑𝑒𝑙, (𝑤, 𝑖𝑛𝑑)) ∉𝐐
}

(4)

𝐔𝐩𝐝𝐭(𝑤) is the function that contain the timestamp of each update of 
the keyword, which is defined as:

𝐔𝐩𝐝𝐭(𝑤) =
{
𝑡|(𝑡, 𝑎𝑑𝑑, (𝑤, 𝑖𝑛𝑑)) ∈𝐐 or 

(𝑡, 𝑑𝑒𝑙, (𝑤, 𝑖𝑛𝑑)) ∈𝐐
}

(5)

Definition 3 (Backward Privacy). An -adaptively-secure SSE scheme is 
Type-II backward private, if leakage function 𝑈𝑝𝑑𝑡 and 𝑆𝑟𝑐ℎ can be 
written as following form:

𝑈𝑝𝑑𝑡(𝑜𝑝,𝑤, 𝑖𝑛𝑑) =′(𝑜𝑝,𝑤) and 
𝑆𝑟𝑐ℎ(𝑤) =′′(𝐓𝐢𝐦𝐞𝐃𝐁(𝑤),𝐔𝐩𝐝𝐭(𝑤)) (6)

where ′′ and ′′′ are stateless functions.

3. CKSE: an efficient conjunctive keyword searchable encryption 
scheme

In this section, we present our CKSE, an efficient conjunctive key

word searchable symmetric encryption scheme. This scheme achieves 
more efficient deletion operations than ODXT [1], while reducing com

munication and computational overheads as much as possible. More

over, CKSE maintains the forward and Type-II backward private.
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Fig. 1. The system model of CKSE for smart home. 

Algorithm 1 CKSE.Setup(𝜆).

Client:

1: 𝐾𝑆
$ 
←←←←←← {0,1}𝜆 for PRF 𝐹

2: 𝐾𝑋,𝐾𝑌 ,𝐾𝑍
$ 
←←←←←← {0,1}𝜆 for PRF 𝐹𝑝

3: 𝐖← empty map
Server:

4: 𝐓,𝐗← empty map

3.1. System model of CKSE

Our scheme is designed to achieve more comprehensive, efficient 
and secure conjunctive keyword search in cloud-IoT systems. Smart 
home is a typical cloud-IoT system, which includes the collection and 
transmission of data, e.g., temperature, health and air quality, etc., by 
smart devices and the query of various data by the host. Taking the 
smart home as an example, Fig. 1 shows the system model of CKSE for 
smart home. It consists of three kinds of entities as follows.

Data Owner (DO). DO encrypts the collected data and uploads it to 
the cloud server, and performs real-time updates on the data.

Data User (DU). DU initiates search queries to the cloud server and 
decrypts the obtained encrypted results.

Cloud Server (CS). CS stores the encrypted data uploaded by DO 
and performs ciphertext retrieval on the search queries issued by DU. 
CS is a semi-honest entity provided by a third party. It strictly follows 
the steps of the protocol but may curiously learn information during the 
execution process.

Like all existing DSSE schemes, the security of our scheme relies on 
a ``strong'' assumption that the client’s key can always be protected and 
will not be compromised [52]. Therefore, the issue of key sharing and 
distribution is not our concern. Since both DO and DU are legal, and DO 
can also act as DU, we refer DO and DU collectively as Clients in the 
following text.

3.2. Construction of CKSE

Although the basic idea of CKSE is similar to ODXT [1], the key 
difference between them is that CKSE achieves effective deletion by de

signing a new oblivious dynamic cross-tags. Also unlike ODXT [1] which 
uses Mitra for the instantiation, causing unnecessary computational and 
communication overhead, CKSE uses a state chain structure to complete 
the instantiation, which reduces the computation and communication 
overhead. To elucidate the core idea behind CKSE, we go back to why 
ODXT [1] lacks the above features.

First, ODXT [1] cannot delete a file in certain circumstances. In 
order to execute effective retrieval in XSet, the cross-tag known as 

Algorithm 2 CKSE.Update(𝐾𝑆,𝐾𝑋,𝐾𝑌 ,𝐾𝑍,𝐖,𝑤, 𝑖𝑛𝑑, 𝑜𝑝;𝐓,𝐗).
Client:

1: 𝐾𝑤 || 𝐾∗
𝑤
← 𝐹 (𝐾𝑆,𝑤)

2: (𝑆𝑇𝑐, 𝑐)←𝐖[𝑤]
3: if (𝑆𝑇𝑐, 𝑐) =⟂ then

4: 𝑆𝑇 0
$ 
←←←←←← {0,1}𝜆, 𝑐←← 0

5: end if

6: 𝑆𝑇 𝑐+1
$ 
←←←←←← {0,1}𝜆

7: 𝐖[𝑤]← (𝑆𝑇𝑐+1, 𝑐 + 1)
8: 𝑢𝑐+1 ←𝐻1(𝐾𝑤,𝑆𝑇𝑐+1)
9: 𝑒𝑐+1 ← (𝑖𝑛𝑑||𝑜𝑝)⊕𝐻2(𝐾∗

𝑤
, 𝑐 + 1)

10: 𝐶𝑆𝑇𝑐 ← 𝑆𝑇𝑐 ⊕𝐻3(𝐾𝑤,𝑆𝑇𝑐+1)
11: 𝛼← 𝐹𝑝(𝐾𝑌 , 𝑖𝑛𝑑) ⋅ (𝐹𝑝(𝐾𝑍,𝑤||𝑐 + 1))−1
12: 𝑥𝑡𝑎𝑔← 𝑔𝐹𝑝(𝐾𝑋 ,𝑤||𝑜𝑝)⋅𝐹𝑝(𝐾𝐼 ,𝑖𝑛𝑑)
13: 𝑆𝑒𝑛𝑑(𝑢𝑐+1, 𝑒𝑐+1, 𝐶𝑆𝑇𝑐 , 𝛼, 𝑥𝑡𝑎𝑔)𝑡𝑜𝑠𝑒𝑟𝑣𝑒𝑟

Server:

14: 𝐓[𝑢𝑐+1] = (𝑒𝑐+1, 𝐶𝑆𝑇𝑐 , 𝛼)
15: 𝐗[𝑥𝑡𝑎𝑔] = 1

𝑥𝑡𝑎𝑔 constructed by ODXT [1] is split into two parts, one part is re

lated to the pair (𝑖𝑛𝑑𝑗 , 𝑜𝑝) involving the 𝑠-term 𝑤1 and the other is 
related to the 𝑥-terms 𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛. It can be seen that for the 
same file, the server can only recognize the update of 𝑤1 accord

ing to the 𝑥𝑡𝑎𝑔. Consider the case given in the introduction section 
again: [1, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)], [2, 𝑎𝑑𝑑, (𝑤2, 𝑖𝑛𝑑1)], [3, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1 ∧ 𝑤2)], 
[4, 𝑑𝑒𝑙, (𝑤2, 𝑖𝑛𝑑1)], [5, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1 ∧ 𝑤2)]. Since the update type in the 
cross-tag only corresponds to the files containing 𝑤1 , the cross-tag will 
not be affected by the deletion operation at time 4. For the search query 
at time 5, the final retrieval result will still contain what has been re

moved. This is clearly unreasonable (𝑤2 is not included in 𝑖𝑛𝑑1 at this 
time). In addition, ODXT [1] achieves conjunctive search based on Mi

tra’s framework. During the search, the client needs to pre-compute 
all the locations of update involving the 𝑠-term 𝑤1 and send them to 
the server. Afterward, subsequent search operations can be performed. 
However, the computational and communication overhead on the client 
side scales with the frequency of 𝑤1. Consequently, when the 𝑠-term has 
very high frequency of updates, the scheme will generate lots of unnec

essary search overhead.

A goal of CKSE is to incorporate the update operations of 𝑥-terms 
𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛, into the oblivious cross-tag computation and make it un

necessary for clients to obtain all the locations of keywords during the 
search, thereby avoiding the ineffective deletion and reducing the over

head. Algorithms 1 to 3 summarize the 𝑺𝒆𝒕𝒖𝒑, 𝑼𝒑𝒅𝒂𝒕𝒆 and 𝑺𝒆𝒂𝒓𝒄𝒉
procedures of our CKSE, respectively.

𝑺𝒆𝒕𝒖𝒑. In this algorithm, the client generates 𝜆-bit keys 𝐾𝑆 , 𝐾𝑋 , 𝐾𝑌
and 𝐾𝑍 for the Pseudo-Random Functions (PRFs) 𝐹 and 𝐹𝑝 respectively 
and holds an empty set 𝐖 to store the state of each keyword. On the 
server side, two empty sets 𝐓 and 𝐗 are generated to store encrypted 
indexes.

𝑼𝒑𝒅𝒂𝒕𝒆. When updating a keyword/file identifier pair [𝑎𝑑𝑑∕𝑑𝑒𝑙, (𝑤, 
𝑖𝑛𝑑)], the client first queries the state 𝑆𝑇𝑐 and update times 𝑐 of the 
keyword 𝑤 according to 𝐖[𝑤], and then randomly generates a new 
state 𝑆𝑇𝑐+1 and updates 𝐖[𝑤] (lines 1-7). Next, the client uses the new 
state 𝑆𝑇𝑐+1 and several hash functions to compute encrypted entries 
𝑒𝑐+1 along with location 𝑢𝑐+1, as well as a state token 𝐶𝑆𝑇𝑐 to trace the 
previous state of the keyword 𝑤 (lines 8-10). More importantly, in order 
to achieve subsequent conjunctive queries, the client needs to obtain 
a blinding factor 𝛼 and a cross-tag 𝑥𝑡𝑎𝑔 so that the server can learn 
whether a fixed file contains all the keywords in the conjunctive query 
(lines 11-12). Finally, the client sends (𝑢𝑐+1, 𝑒𝑐+1,𝐶𝑆𝑇𝑐 , 𝛼, 𝑥𝑡𝑎𝑔) to the 
server, who stores (𝑒𝑐+1,𝐶𝑆𝑇𝑐 , 𝛼) in 𝐓[𝑢𝑐+1] and sets the corresponding 
𝐗[𝑥𝑡𝑎𝑔] to 1 (lines 13-15).

𝑺𝒆𝒂𝒓𝒄𝒉. Assume that 𝑤1 is the keyword with the least update fre

quency. In order to achieve the search query for (𝑤1 ∧𝑤2 ∧⋯∧𝑤𝑛), the 
client uses the currently state of the 𝑠-term 𝑤1 to get the cross-token pair 
(𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 , 𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙) of 𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛, which involves each update of 
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Algorithm 3 CKSE.Search(𝐾𝑆,𝐾𝑋,𝐾𝑌 ,𝐾𝑍,𝐖,𝑤;𝐓,𝐗).
Client:

1: Assume 𝑤1 is the keyword with least updates

2: 𝐾𝑤 || 𝐾∗
𝑤
← 𝐹 (𝐾𝑆,𝑤1)

3: (𝑆𝑇𝑐1 , 𝑐1)←𝐖[𝑤1]
4: for 𝑗 = 1 to 𝑐1 do

5: for 𝑖 = 2 to 𝑛 do

6: 𝐱𝐭𝐨𝐤𝐞𝐧[𝑖, 𝑗]← 𝑔𝐹𝑝(𝐾𝑋 ,𝑤𝑖||𝑎𝑑𝑑∕𝑑𝑒𝑙)⋅𝐹𝑝(𝐾𝑍 ,𝑤1 ||𝑗)
7: end for

8: end for

9: Send (𝐾𝑤,𝑆𝑇𝑐1 , 𝑐1,𝐱𝐭𝐨𝐤𝐞𝐧[1],⋯ ,𝐱𝐭𝐨𝐤𝐞𝐧[𝑐1]) to server

Server:

10: 𝐕𝐚𝐥← ∅
11: for j = 𝑐1 to 1 do

12: 𝑐𝑛𝑡𝑗 = 1
13: 𝑢𝑗 ←𝐻1(𝐾𝑤,𝑆𝑇𝑗 )
14: (𝑒𝑗 ,𝐶𝑆𝑇𝑗−1 , 𝛼𝑗 )← 𝐓[𝑢𝑗 ]
15: for i = 2 to 𝑛 do

16: (𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 , 𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙)← 𝐱𝐭𝐨𝐤𝐞𝐧[𝑖, 𝑗]
17: if 𝐗[(𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 )𝛼𝑗 ] = 1,𝐗[(𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙)𝛼𝑗 ] =⟂ then

18: 𝑐𝑛𝑡𝑗 = 𝑐𝑛𝑡𝑗 + 1
19: end if

20: end for

21: 𝐕𝐚𝐥← (𝑐𝑛𝑡𝑗 , 𝑒𝑗 , 𝑗)
22: 𝑆𝑇𝑗−1 ← 𝐶𝑆𝑇𝑗−1 ⊕𝐻3(𝐾𝑤,𝑆𝑇𝑗 )
23: end for

24: Send 𝐕𝐚𝐥 to client

Client:

25: 𝐑𝐞𝐬← ∅
26: for each (𝑐𝑛𝑡𝑗 , 𝑒𝑗 , 𝑗) ∈𝐕𝐚𝐥 do

27: (𝑖𝑛𝑑𝑗 ||𝑜𝑝𝑗 )← 𝑒𝑗 ⊕𝐻2(𝐾∗
𝑤
, 𝑗)

28: if 𝑜𝑝𝑗 = 𝑎𝑑𝑑, 𝑐𝑛𝑡𝑗 = 𝑛 then

29: 𝐑𝐞𝐬←𝐑𝐞𝐬 ∪ 𝑖𝑛𝑑𝑗
30: else if 𝑜𝑝𝑗 = 𝑎𝑑𝑑, 𝑐𝑛𝑡𝑗 > 0 then

31: 𝐑𝐞𝐬←𝐑𝐞𝐬 ⧵ 𝑖𝑛𝑑𝑗
32: end if

33: end for

34: return 𝐑𝐞𝐬

𝑤1. The search token (𝐾𝑤,𝑆𝑇𝑐1 , 𝑐1,𝐱𝐭𝐨𝐤𝐞𝐧) is then sent to the server 
(lines 20-29). After receiving the search token, the server first computes 
the location 𝑢𝑗 according to the current state of 𝑤1 , and takes out the 
current encrypted entry 𝑒𝑗 , state token 𝐶𝑆𝑇𝑗−1 and blinding factor 𝛼𝑗
from 𝐓[𝑢𝑗 ] (lines 32-34). Upon using (𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 , 𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙) and 𝛼𝑗 to 
obtain the cross-tag 𝑥𝑡𝑎𝑔, the server exploits it to learn whether the cur

rent update contains 𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛 (lines 35-40). Similar to locations, 
the server also observes 𝑥𝑡𝑎𝑔 during the update. The encrypted entry 
and counter are then stored in the list 𝐕𝐚𝐥, and the state token and the 
current state are used to infer a previous state by the server (lines 41-42). 
Iteratively (lines 31-43), the server obtains all the states and correspond

ing encrypted entries about (𝑤1 ∧𝑤2 ∧⋯ ∧𝑤𝑛), and sends 𝐕𝐚𝐥 to the 
client (line 44). Finally, the client decrypts the encrypted entries locally 
and further filters them (lines 45-55).

We now further explain the important features of our CKSE.

3.2.1. New cross-tag

To support conjunctive keyword search while achieving efficient 
deletion operations, the first important feature of CKSE is to construct a 
new cross-tag as:

𝑥𝑡𝑎𝑔𝑖,𝑗,𝑜𝑝 ← 𝑔𝐹𝑝(𝐾𝑋,𝑤𝑖||𝑜𝑝)⋅𝐹𝑝(𝐾𝑌 ,𝑖𝑛𝑑𝑗 ) (7)

Conceptually, our cross-tag is also divided into two parts. But unlike 
ODXT [1], we integrate the update types of 𝑤𝑖 , 𝑖 ∈2,⋯ , 𝑛, into the gen

eration of cross-tag. The first part of our cross tag contains 𝑤𝑖 along 
with update type, and the second part is only related to the file identi

fier containing 𝑤1. Next, to perform effective conjunctive retrieval with 
new cross-tag, we modify the cross-token to add/delete token pairs as:

𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑎𝑑𝑑 ← 𝑔𝐹𝑝(𝐾𝑋,𝑤𝑖||𝑎𝑑𝑑)⋅𝐹𝑝(𝐾𝑍,𝑤1||𝑗)
𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑑𝑒𝑙 ← 𝑔𝐹𝑝(𝐾𝑋,𝑤𝑖||𝑑𝑒𝑙)⋅𝐹𝑝(𝐾𝑍,𝑤1||𝑗) (8)

Upon receiving the add/delete token pairs, the server obtains a blind 
factor 𝛼𝑗 involving the 𝑗𝑡ℎ update of 𝑤1 from TSet:

𝛼𝑗 ← 𝐹𝑝(𝐾𝐼 , 𝑖𝑛𝑑𝑗 ) ⋅ (𝐹𝑝(𝐾𝑍,𝑤1||𝑗))−1 (9)

Given the add/delete token pairs 𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑜𝑝, 𝑜𝑝 = {𝑎𝑑𝑑,𝑑𝑒𝑙} and a blind 
factor 𝛼𝑗 , the server can easily carries out the oblivious cross-tag com

putation as:

𝑥𝑡𝑎𝑔𝑖,𝑗 =
(
𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑜𝑝

)𝛼𝑗 (10)

thereby detecting whether each update of 𝑤1 contains the 𝑥-term 𝑤𝑖.
To see why this is useful, recall that in our CKSE, we bundle the 

update types with keywords and introduce them into the oblivious cross

tag computation. After the delete operation on 𝑥-term is completed, the 
cross-tag calculated by the server using the add/delete token pair during 
the search can implicitly identify the deletion update, while the delete 
operations related to 𝑠-term are filtered out locally by the client, thereby 
avoiding the ineffective deletion.

3.2.2. State chain structure

CKSE achieves comprehensive deletion operations based on ODXT 
[1] but it would need more overheads to do so (e.g., additional group 
exponentiation operations). It is known that some existing schemes us

ing a state-based approach impose less overhead [11,33,34]. Inspired by 
the hash chain, we exploit a state chain structure to reduce the compu

tational and communication overhead on the client side. This structure 
enables the client to perform subsequent conjunctive queries only by 
obtaining the latest state of 𝑠-term 𝑤1 during the search. Concretely, in 
the update protocol, the client randomly generates a state 𝑆𝑇 for each 
update of the keyword and stores it in 𝐖. More importantly, this state is 
connected by a state token 𝐶𝑆𝑇 . Therefore, the client only takes out the 
current state of the keyword 𝑤1 from 𝐖 and sends it along with the lat

est state token to the server during the search. The server uses the state 
token to trace back to the previous state of 𝑤1 , i.e., each update of 𝑤1. 
Fig. 2 depicts this state chain structure.

Note that this structure can also support CKSE to achieve forward 
privacy. Previously, many forward privacy schemes were constructed 
based on Oblivious RAM (ORAM) structures. The main issue with this 
approach is the high communication cost caused by using ORAM-like 
structures. Only a few DSSE schemes avoid using ORAM. Among them, 
Bost et al. [11] proposed a one-way trapdoor permutation, which ef

fectively reduces communication costs but is still limited by public-key 
cryptographic primitives. The advantage of the state chain structure lies 
in its use of symmetric cryptographic primitives, ensuring forward pri

vacy based on the same principle as [11].

3.3. Efficiency of CKSE

3.3.1. Client and server storage

In CKSE, the client stores four 𝜆-bit secret keys, 𝐾𝑆 , 𝐾𝑋 , 𝐾𝑌 and 𝐾𝑍 , 
for PRFs 𝐹 and 𝐹𝑝, respectively, and a map 𝐖 containing the states of 
all the keywords. Initially, 𝐖 is the empty map, and after 𝑁 updates, 
the size of 𝐖 grows to 𝑂(|| ⋅ log𝑁), where || is the total number 
of keywords. On the server side, it needs to store the maps 𝐓 and 𝐗, 
and they are both initialized to be empty. After 𝑁 updates, the server 
storage grows to 𝑂(𝑁). It is clear that the client storage grows logarith

mically with the number of update operations and the server storage 
grows linearly with the number of update operations.

3.3.2. Update and search overhead

During the update, since the numbers of operations for client and 
server are constant, the computational overheads of both scale with 
𝑂(1), and the same is true for communication overheads of updating 
a single keywordfile identifier pair (𝑤, 𝑖𝑛𝑑). In the search protocol, for 
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Fig. 2. The state chain structure. 

each update of 𝑤1, the client needs to execute only 𝑛 − 1 exponential 
operations, compared to the overhead of computing all the locations 
of updates involving 𝑤1 required by ODXT [1]. Therefore, the com

putational complexity is 𝑂((𝑛 − 1) ⋅ 𝑎𝑤1
) and the same is true for the 

communication overhead, where 𝑎𝑤 is the total number of updates for 
𝑤1. For the server, the computational and communication complexity 
are 𝑂(𝑛 ⋅ 𝑎𝑤1

) and 𝑂(𝑎𝑤1
), respectively, which are the same as ODXT 

[1].

3.4. Security analysis

We now show that CKSE achieves forward privacy and Type-II back

ward privacy. The evolution of each state of keywords plays an impor

tant role in a search query, and the states of keywords are randomly 
generated during the update. For the server, the value of each state is 
indistinguishable from a random value, and the server cannot infer the 
future state and state token of the keyword using the current search 
token (containing the current state and state token of the keyword). 
Therefore, CKSE leaks no information during the update, and the for

ward privacy is guaranteed.

In the search protocol, the server obtains a series of locations for 𝑠
term 𝑤1 which have been observed previously in the update protocol. 
This leakage helps the server to learn the timestamp of each update for 
𝑤1. In addition, for each update (𝑜𝑝𝑗 , (𝑤1, 𝑖𝑛𝑑𝑗 )) of 𝑤1, the server learns 
the number of updates of the form (𝑜𝑝𝑗 , (𝑤𝑖, 𝑖𝑛𝑑𝑗 )) for each 𝑥-term 𝑤𝑖, 
𝑖 ∈ 2,⋯ , 𝑛, along with the corresponding timestamp for each update. 
The definition of the above leakage is as follows:

𝐔𝐩𝐝𝐭(𝑞) =𝐔𝐩𝐝𝐭(𝑤1)
⋃( 𝑛 ⋃

𝑖=2 
𝐔𝐩𝐝𝐭(𝑤1,𝑤𝑖)

)
(11)

where 𝑞 is a conjunctive search query and

𝐔𝐩𝐝𝐭(𝑤1,𝑤𝑖) =
{
(𝑡1, 𝑡𝑖)|(𝑡1, 𝑜𝑝, (𝑤1, 𝑖𝑛𝑑)) ∈𝐐 and 

(𝑡𝑖, 𝑜𝑝, (𝑤𝑖, 𝑖𝑛𝑑)) ∈𝐐
}

(12)

Except for the above leakage, the server cannot obtain any information 
that breaks the backward privacy of CKSE. We use the leakage function 
 = (𝑆𝑡𝑝,𝑈𝑝𝑑𝑡,𝑆𝑟𝑐ℎ) defined in section 2.5 to describe the leakages 
as mentioned above. After the leakage is captured, the formal definition 
of our scheme’s leakage functions is as follows:

𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) = (⟂)

𝑆𝑟𝑐ℎ(𝑞) = (𝐓𝐢𝐦𝐞𝐃𝐁(𝑞),𝐔𝐩𝐝𝐭(𝑞)) (13)

According to Definition 2 of forward privacy and Definition 3 of back

ward privacy, our scheme achieves forward privacy and Type-II back

ward privacy.

Formally, the forward privacy and Type-II backward privacy of CKSE 
is summarized in the following theorem.

Theorem 1. (Security of CKSE) Assume that 𝐹 and 𝐹𝑝 are secure 
pseudorandom function, the DDH assumption holds over the group , 
and 𝐻1, 𝐻2 and 𝐻3 are hash functions modeled as random oracles. 
CKSE is an -adaptively secure SSE scheme with the leakage functions 
𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) =⟂ and 𝑆𝑟𝑐ℎ(𝑞) = (𝐓𝐢𝐦𝐞𝐃𝐁(𝑞),𝐔𝐩𝐝𝐭(𝑞)).

Proof. See Appendix. □

4. Performance evaluation

In this section, we implement CKSE, and compare it with the two ex

isting schemes, MitraCONJ [1] is an instantiation of the naïve solution, 
and comparison with it can show the advantages of the conjunctive key

word search scheme, and ODXT [1] is the baseline of our scheme, and 
comparison with it can best verify our goal of achieving comprehensive 
deletion operations without compromising efficiency and security. Addi

tionally, in order to clearly demonstrate the performance improvement 
of the state chain structure for CKSE, we utilize ODXT [1] to instanti

ate CKSE under the Mitra framework, named CKSEMitra, and compare 
its performance with CKSE.

4.1. Implementation and settings

We implement CKSE and CKSEMitra in Python 3.10 and use PyCrypto 
library and Sagemath library to achieve symmetric cryptographic op

erations and group-based operations, respectively. Specifically, we use 
AES-256 to realize PRFs 𝐹 and 𝐹𝑝, SHA-256 for all hash operations 𝐻1, 
𝐻2 and 𝐻3, and the elliptic curve Curve25519 [53] for group operations 
in CKSE. Our scheme aims to provide efficient, privacy-preserving ci

phertext retrieval and data updates in a cloud environment. IoT devices 
serve as auxiliary components responsible for collecting and uploading 
data, without impacting the core search performance of the scheme. All 
experiments were conducted on workstations equipped with an Intel(R) 
Core(TM) i7-14700K CPU (3.40 GHz), 32GB and 16GB RAM, running 
the Windows 11 (64-bit) operating system. When evaluating MitraCONJ
[1] and ODXT [1], we use the Python code released by Patranabis and 
Mukhopadhyay [1]. To provide a fair comparison, the specific imple

mentations of CKSE and CKSEMitra are the same as ODXT [1].

We test the performance of the schemes compared using the data 
from Enron email dataset,1 which is derived from the real world and 
consists of multiple folders containing email messages from about 150 
different users. We choose 30109 emails in the sent-email folder as the 
file set, and apply the keyword extraction process of [54,55] to obtain 
77,000 unique keywords, which exclude some stopwords like ‘a’, ‘the’ 
and ‘so’. All the experiments are repeated 10 times and the results are 
averaged over the ten runs.

1 Enron Email Dataset: available online at https://www.cs.cmu.edu/~enron/.
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Fig. 3. Client and server computation times for two-keyword conjunctive search query 𝑞 = (𝑤1 ∧𝑤2). 

Table 2
Comparison of Update Computational Overheads [ms].

|𝐃𝐁| Scheme 
MitraCONJ [1] ODXT [1] CKSEMitra CKSE 

10 2.9 12.5 12.5 13.4 
100 35.3 131.3 131.3 137.4 
1000 242.3 1202.3 1202.3 1213.6 
10000 1934.2 11534.1 11534.1 11640.3 

4.2. Update time performance

We first compare the computational overheads of the four schemes 
in the update operation. We generate variable update entries with sizes 
|𝐃𝐁| = 10 ∼ 10000, where each entry consists of a keyword and a 
file identifier, and test each scheme’s overall update computational 
overhead. Table 2 shows that the update computational overhead of 
MitraCONJ [1] is the least, about one order of magnitude smaller than 
those of the other schemes. This is because MitraCONJ [1] only needs to 
consider update process for single keyword. It does not need to prepare 
for the subsequent conjunctive keyword search like ODXT [1], CKSEMitra
and CKSE, which greatly reduces the computational overhead of the up

date. However, the excellent update performance of MitraCONJ [1] is 
at the cost of higher overhead in the search, as will be shown later. 
Since the operations of ODXT [1] and CKSEMitra during the update are 
the same, they maintain the same computational overheads. The com

putational overhead of our CKSE is slightly higher than ODXT [1] and 
CKSEMitra. This is because unlike ODXT [1] and CKSEMitra, CKSE ex

ecutes additional hash and 𝑋𝑂𝑅 operations in the update. However, 
these additional operations will help CKSE to perform better during the 
search.

4.3. Search time performance

We next compare the computational overheads of the client and 
server for the four schemes in the cases of two-keyword conjunctive 
queries 𝑞 =(𝑤1∧𝑤2) and four-keyword conjunctive queries 𝑞 =(𝑤1∧⋯∧

𝑤4). We execute two types of experiments in each case. In the first type, 
we set the update frequency of the 𝑠-term 𝑤1 to constant |Updt(𝑤1)| =3
and the update frequency of the 𝑥-term 𝑤2 to |Updt(𝑤2)| =3 × 100 ∼
3×104, while in the second type, we set |Updt(𝑤1)| to 3×100 ∼ 3×104
and fix |Updt(𝑤2)| =3 × 104. Additionally, in the case of four-keyword 
conjunctive queries 𝑞 =(𝑤1 ∧ ⋯ ∧ 𝑤4), the values of |Updt(𝑤3)| and |Updt(𝑤4)| remain constant at 3 × 104 for both the experimental types.

4.3.1. Two-keyword conjunctions

Fig. 3 compares the computational overheads of the client and 
server for the four schemes in the two-keyword conjunctive search. 
The first thing to note is that the computational overheads of ODXT 
[1], CKSEMitra and CKSE are proportional to the update frequency of 
𝑠-term 𝑤1, and they are independent of the update frequency of 𝑥

term 𝑤2, which is consistent with our analysis of CKSE in Subsec

tion 3.2. By contrast, the computational overhead of MitraCONJ [1] is 
mainly proportional to the update frequency of 𝑥-term 𝑤2, and its com

putational overhead is higher than the other schemes in most cases 
(when |Updt(𝑤1)| =3 × 101, |Updt(𝑤2)| =3 × 104, CKSE takes 45.8 ms, 
CKSEMitra takes 61.1 ms, ODXT [1] takes 35.2 ms, and MitraCONJ [1] 
takes 857.3 ms, which is more than 20 times the cost of other schemes). 
On client side, CKSE outperforms CKSEMitra, and it matches ODXT [1]. 
This is due to the fact that compared to CKSEMitra , CKSE does not 
need to compute all the locations of the keywords, and compared to 
ODXT [1], CKSE does not need to compute all the locations of the 
keywords but requires an additional cross-token 𝑥𝑡𝑜𝑘𝑒𝑛{𝑎𝑑𝑑∕𝑑𝑒𝑙} (when 
|Updt(𝑤1)| =3× 104, |Updt(𝑤2)| =3× 104, CKSE takes 19.3 s, CKSEMitra
takes 32.5 s). On server side, CKSE has slightly higher computational 
overhead than ODXT [1], and it matches CKSEMitra. Although the search 
computational overhead of CKSE is slightly higher than ODXT [1], CKSE 
supports more efficient deletion function, which is critical in practice.

4.3.2. Multi-keyword conjunctions

In Fig. 4, we compare the computational overheads of the client and 
server for the four schemes in the four-keyword conjunctive queries 
𝑞 =(𝑤1 ∧ ⋯ ∧ 𝑤4). The trends of the four schemes in Fig. 4 are sim

ilar to those shown in Fig. 3, with one obvious exception. Specifi
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Fig. 4. Computation times for client and server in a multi-keyword conjunctive search query 𝑞 = (𝑤1 ∧⋯ ∧𝑤4). In (a)-(c), |Updt(𝑤3)| = |Updt(𝑤4)| = 3 × 104 . 

cally, in Fig. 4(a)-(c), the computational overhead of MitraCONJ [1] 
is no longer proportional to the update frequency of 𝑤2. This is be

cause the keywords 𝑤3 and 𝑤4 have the higher update frequency 
|Updt(𝑤3)| = |Updt(𝑤4)| = 3×104 in 𝑥-terms, which increases the com

putational overhead of MitraCONJ [1] to an extremely high level (when 
|Updt(𝑤1)| =3 × 100, |Updt(𝑤2)| = |Updt(𝑤3)| = |Updt(𝑤4)| = 3 × 104, 
CKSE takes 11.1 ms, CKSEMitra takes 13.4 ms, ODXT [1] takes 9.4 ms, 
and MitraCONJ [1] takes 2430.3 ms, which is much more expensive than 
other schemes).

4.4. Communication performance

In Fig. 5, we compare the communication overheads for the four 
schemes in two-keyword conjunctive search. For ODXT [1], CKSEMitra
and CKSE, the communication overheads increase with the update fre

quency of 𝑠-term 𝑤1, while the communication overhead of MitraCONJ
[1] increases with the update frequency of 𝑥-term 𝑤2. Moreover, the 
communication overhead of MitraCONJ [1] is much higher than the other 
schemes. In addition, CKSE slightly outperforms CKSEMitra and is very 
close to ODXT [1]. This is due to the fact that compared to CKSEMitra, 
CKSE omits the transmission of each location of 𝑠-term 𝑤1, and com

pared to ODXT [1], CKSE omits the transmission of each location of 
𝑠-term 𝑤1 but needs to transmit additional cross-token.

To sum up, the performance of MitraCONJ [1] is generally worse 
than the other three schemes in terms of both computational overhead 
and communication overhead. For our approach, CKSE outperforms 
CKSEMitra, which shows the effectiveness of the state chain structure. 
More importantly, compared to the state-of-the-art ODXT [1], CKSE has 
a similar performance. It is worth recapping that our CKSE maintains 
the same security level as ODXT [1], i.e., forward and Type-II backward 
privacy, and unlike ODXT [1], our CKSE can achieve efficient deletion 
operation in any case.

4.5. Query result performance

After performing different deletion operations, we compare the 
query results of ODXT [1] and CKSE involving search query 𝑞 = (𝑤1 ∧

Fig. 5. Communication overheads in two-keyword conjunctive search query 𝑞 =
(𝑤1 ∧𝑤2).

𝑤2). We first select 100 files containing the keyword 𝑤1 and 𝑤2, and 
then delete 𝑤1 and 𝑤2 from the Top (T) 10%, T 20%, Bottom (B) 10%, 
and B 20% of the file set, respectively. Finally, we collect the query re

sults of each scheme under different deletion scenarios. Note that 𝑤1 is 
the 𝑠-term.
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Fig. 6. The query results of search query 𝑞 = (𝑤1 ∧𝑤2). 

After performing deletion updates, the comparison between the 
query results of ODXT [1] and CKSE and the ground truth is illustrated 
in Fig. 6. It can be seen that CKSE consistently produces the same query 
results as the real results in all the 16 cases, whereas ODXT [1] fails to 
achieve accurate query results in 10 out of 16 cases. Ideally, deletion op

erations involving either 𝑤1 or 𝑤2 should have an impact on the final 
query result. However, the query result of ODXT [1] only changes with 
deletion operations involving 𝑤1, and it remains unaffected by deletion 

operations involving 𝑤2, which results in ODXT [1] being able to obtain 
accurate query results only when the set of documents with deletions of 
𝑤1 includes the documents with deletions of 𝑤2. This limitation arises 
from the fact that the cross-tag 𝑥𝑡𝑎𝑔 computed by ODXT [1] during the 
search query can only respond to the update type corresponding to 𝑠
term 𝑤1, but ignores the update type of other keywords in conjunction. 
Consequently, ODXT [1] fails to detect deletion operations on keywords 
other than the 𝑠-term 𝑤1, resulting in discrepancy between the query 
results and the actual results. In contrast, CKSE incorporates the update 
types of each keyword into the design of the new cross-tag, enabling 
it to effectively respond to deletion operations for every keyword. As a 
result, CKSE consistently achieves accurate query results across various 
scenarios.

5. Conclusions and future work

In this work, we have designed an effective and efficient conjunc

tive keyword DSSE scheme called CKSE based on the state-of-the-art 
ODXT [1]. However, unlike ODXT [1], our scheme supports update op

erations in any scenario, especially for robust deletion operations, which 
enable the client to obtain accurate query results. Additionally, we have 
adopted a state chain structure to save unnecessary ODXT [1] operations 
during the search and achieve efficient search performance. In terms of 
security, our CKSE leaks no information in update and moderates leak

age during the search to achieve forward privacy and Type-II backward 
privacy. In summary, our CKSE design comprehensively considers func

tionality, efficiency and security, and it offers an ideal scheme for cloud

IoT systems. In the future, extending CKSE to support more expressive 
queries, e.g., boolean queries, is meaningful, which will strengthen the 
practical applications of our scheme.

Moreover, the proposed scheme operates under the assumption that 
the client’s key remains secure at all times, without addressing the po

tential risks associated with key sharing. This oversight presents chal

lenges in real-world applications, where key exposure could allow an 
adversary to compromise the encrypted database and monitor update 
and search activities. Moreover, our scheme primarily focuses on mini

mizing access pattern leakage but fails to consider the vulnerability to 
keyword guessing attacks, which are a common concern in public key 
searchable encryption schemes. In future work, we aim to explore and 
address these two issues in DSSE, which will enable us to develop a more 
secure scheme for cloud-IoT systems.

CRediT authorship contribution statement

Tianqi Peng: Writing -- original draft, Validation, Supervision, 
Project administration, Methodology, Formal analysis, Data curation, 
Conceptualization. Bei Gong: Validation, Supervision, Software, Re

sources, Project administration, Methodology, Investigation, Fund

ing acquisition, Formal analysis. Chong Guo: Project administration, 
Methodology, Investigation, Funding acquisition, Formal analysis, Data 
curation, Conceptualization. Akhtar Badshah: Writing -- original draft, 
Visualization, Validation, Supervision, Software, Resources. Muham

mad Waqas: Writing -- review & editing, Writing -- original draft, Visu

alization, Validation, Supervision, Formal analysis. Hisham Alasmary: 
Writing -- review & editing, Validation, Supervision, Project adminis

tration, Funding acquisition. Sheng Chen: Writing -- review & editing, 
Visualization, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Digital Communications and Networks 11 (2025) 1293–1304 

1302 



T. Peng, B. Gong, C. Guo et al. 

Acknowledgements

This work was supported in part by the Major Science and Tech

nology Projects in Yunnan Province (202202AD080013). The authors 
also extend their appreciation at King Khalid University for funding this 
work through Large Group Project under grant number RGP.2/373/45.

Appendix A. Proof of Theorem 1

We use the REAL-IDEAL model mentioned in Subsection 2.4 to prove 
the security of CKSE. Specifically, a sequence of games is constructed 
from REAL

Σ

(𝜆) and reached to IDEALΣ, (𝜆). We prove that REAL

Σ

(𝜆)

and IDEALΣ, (𝜆) are indistinguishable by proving the indistinguishabil

ity between two adjacent games.

Game 𝐺0: 𝐺0 is the real world game REAL
Σ

(𝜆).

Game 𝐺1: The difference between 𝐺1 and 𝐺0 is that 𝐺1 replaces 
PRFs 𝐹 (𝐾𝑆, ⋅), 𝐹𝑝(𝐾𝑋, ⋅), 𝐹𝑝(𝐾𝑌 , ⋅) and 𝐹𝑝(𝐾𝑍, ⋅) with random func

tions 𝐺𝑆 (⋅), 𝐺𝑋 (⋅), 𝐺𝑌 (⋅) and 𝐺𝑍 (⋅), respectively. Specifically, 𝐺𝑆 (⋅)
is uniformly sampled from the set of all random functions on (0,1)𝜆, 
while 𝐺𝑋 (⋅), 𝐺𝑌 (⋅) and 𝐺𝑍 (⋅) are uniformly sampled from the set of all 
random functions on ℤ∗

𝑝
. Since we cannot distinguish a pseudo-random 

function from a truly random function, 𝐺1 and 𝐺0 are indistinguishable.

Game 𝐺2: The difference between 𝐺2 and 𝐺1 is that 𝐺2 no longer 
calls 𝐻1, 𝐻2 and 𝐻3 to generate location 𝑢, encrypted entry 𝑒 and state 
token 𝐶𝑆𝑇 in the update protocol, but uses random numbers instead. 
Taking 𝐻1 and 𝑢 as an example, it replaces 𝑢← 𝐻1(𝐾𝑤,𝑆𝑇𝑐+1) with 

𝑢
$ 
←←←←←←← {0,1}𝜆 and executes 𝐋[𝐾𝑤||𝑆𝑇𝑐+1] ← 𝑢, where 𝐋 is a mapping 

maintained by 𝐺2. Afterward, 𝐇𝟏[𝐾𝑤||𝑆𝑇𝑐+1]← 𝐋[𝐾𝑤||𝑆𝑇𝑐+1] is exe

cuted in the search protocol, where 𝐇1 is the table of the random oracles 
𝐻1. Thus, 𝐇1 is not updated immediately, and when an adversary ac

cesses 𝐇1[𝐾𝑤||𝑆𝑇𝑐+1] before a search query is issued, 𝐇1[𝐾𝑤||𝑆𝑇𝑐+1]
will randomly generate a value 𝑢∗ that is not equal to 𝑢. If the adver

sary queries 𝐇1[𝐾𝑤||𝑆𝑇𝑐+1] again after next search query, it will get 
the value 𝑢 that has been updated to 𝐇1. By observing the difference 
between the two queries, the adversary knows that it is in game 𝐺2. 
We now show that the probability of this case is negligible. Based on 
the above discussion, it is clear that this case will only take place if 
the adversary uses 𝐾𝑤||𝑆𝑇𝑐+1 to query 𝐇1. Since 𝑆𝑇𝑐+1 is randomly 
generated, the adversary chooses 𝑆𝑇𝑐+1 with probability 1 

2𝜆 + 𝑛𝑒𝑔𝑙(𝜆). 
Assuming that a PPT adversary makes at most 𝑝 = 𝑝𝑜𝑙𝑦(𝜆) guesses, the 
probability of adversary choosing 𝑆𝑇𝑐+1 is 𝑝 

2𝜆 + 𝑝 ⋅ 𝑛𝑒𝑔𝑙(𝜆), which is 
negligible. 𝐻2 and 𝐻3 are processed in the same way as 𝐻1 in 𝐺2. 
Therefore, 𝐺2 and 𝐺1 are indistinguishable.

Game 𝐺3: The difference between 𝐺3 and 𝐺2 is that in the search 
protocol of 𝐺3, the manner of generating 𝑥𝑡𝑜𝑘𝑒𝑛 is changed. Specifically, 
for a conjunctive query 𝑞 = (𝑤1 ∧𝑤2 ∧⋯ ∧𝑤𝑛), 𝐺3 first looks up the 
update query history of adversary to obtain the set of update operations 
involving 𝑠-term 𝑤1. Then, it computes 𝛼 and 𝑥𝑡𝑎𝑔 involving each 𝑥

term 𝑤𝑖 in conjunction 𝑞, and obtains 𝑥𝑡𝑜𝑘𝑒𝑛 as 𝑥𝑡𝑜𝑘𝑒𝑛 = 𝑥𝑡𝑎𝑔1∕𝛼 . It is 
clear that the distribution of each 𝑥𝑡𝑜𝑘𝑒𝑛 value in 𝐺3 is the same as its 
distribution in 𝐺2. Therefore, 𝐺3 and 𝐺2 are indistinguishable.

Game 𝐺4: The difference between 𝐺4 and 𝐺3 is that the manner of 
generating 𝛼 is changed in the update protocol of 𝐺4. Specifically, 𝐺4

replace computing 𝛼 in 𝐺3 with random sampling 𝛼
$ 
→ℤ∗

𝑝
. Note that 𝛼

in 𝐺3 is computed by 𝐺𝑌 (⋅) and the inverse of 𝐺𝑍 (⋅), where 𝐺𝑌 (⋅) and 
𝐺𝑍 (⋅) are uniformly sampled from the set of all random functions on 
ℤ∗
𝑝
, and the value of 𝛼 in 𝐺4 is also uniform and independent random 

distribution on ℤ∗
𝑝
. Therefore, 𝐺4 and 𝐺3 are indistinguishable.

Game 𝐺5: The difference between 𝐺5 and 𝐺4 is that the manner of 
generating 𝑥𝑡𝑎𝑔 is changed in the update protocol of 𝐺5. Specifically, 
𝐺5 replace computing 𝑥𝑡𝑎𝑔 in 𝐺4 with random sampling 𝑔𝛾 , where 𝑔

is an uniformly sampled generator for the group 𝔾 and 𝛾
$ 
→ ℤ∗

𝑝
. Since 

the DDH assumption holds in the group 𝔾, the probability of a PPT 
adversary distinguishing 𝑥𝑡𝑎𝑔 = 𝑔𝐺𝑋 (⋅)⋅𝐺𝑌 (⋅) in 𝐺4 from 𝑥𝑡𝑎𝑔 = 𝑔𝛾 in 𝐺5
is negligible. Therefore, 𝐺5 and 𝐺4 are indistinguishable.

Game 𝐺6: The difference between 𝐺6 and 𝐺5 is that the manner of 
computing the maps involving 𝑢, 𝑒 and 𝐶𝑆𝑇 are changed in the update 
and search protocol of 𝐺6. Specifically, still taking 𝑢 as an example, 

𝐺6 replace 𝐋[𝐾𝑤||𝑆𝑇𝑐+1] $ 
←←←←←←← {0,1}𝜆 with 𝐋[𝑡]

$ 
←←←←←←← {0,1}𝜆, where 𝑡 is the 

timestamp for each update operation. Note that each state of keyword is 
different in 𝐺5, and the values sampled uniformly randomly are never 
the same when input two different timestamps in 𝐺6 . The map involving 
𝑒 and 𝐶𝑆𝑇 are processed in the same way as 𝐋[⋅] in 𝐺5. This implies that 
𝐺6 and 𝐺5 are indistinguishable.

Simulator: In IDEALΣ,S(𝜆), the simulator  generates a view accord

ing to the given leakage function

𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) =⟂

𝑆𝑟𝑐ℎ(𝑞) = (𝐓𝐢𝐦𝐞𝐃𝐁(𝑞),𝐔𝐩𝐝𝐭(𝑞))

where 𝐓𝐢𝐦𝐞𝐃𝐁(𝑞) and 𝐔𝐩𝐝𝐭(𝑞) are defined in (4) and (5) of Subsec

tion 2.5. Specifically, from 𝑈𝑝𝑑𝑡,  gains no information about update 
operations, and a series of variables are generated by  as done by 𝐺6. 
In the search protocol,  uses 𝐔𝐩𝐝𝐭(𝑞) to learn the number of updates 
involving the 𝑠-term 𝑤1, as well as the corresponding timestamp and 
𝑥-term leakage for each update operation. It can also learn the final set 
of file identifiers in the conjunction by using 𝐓𝐢𝐦𝐞𝐃𝐁(𝑞). Moreover, 
can learn whether two (or more) conjunctive queries contain the same 
𝑠-term 𝑤1 by using 𝐔𝐩𝐝𝐭(𝑞1) and 𝐔𝐩𝐝𝐭(𝑞2). Note that the view gener

ated by  using the above information is identical to the view in 𝐺6.

This completes the proof of Theorem 1.
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