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Data privacy leakage has always been a critical concern in cloud-based Internet of Things (IoT) systems. Dynamic
Symmetric Searchable Encryption (DSSE) with forward and backward privacy aims to address this issue by
enabling updates and retrievals of ciphertext on untrusted cloud server while ensuring data privacy. However,
previous research on DSSE mostly focused on single keyword search, which limits its practical application in
cloud-based IoT systems. Recently, Patranabis (NDSS 2021) [1] proposed a groundbreaking DSSE scheme for
conjunctive keyword search. However, this scheme fails to effectively handle deletion operations in certain
circumstances, resulting in inaccurate query results. Additionally, the scheme introduces unnecessary search
overhead. To overcome these problems, we present CKSE, an efficient conjunctive keyword DSSE scheme. Our
scheme improves the oblivious shared computation protocol used in the scheme of Patranabis, thus enabling
a more comprehensive deletion functionality. Furthermore, we introduce a state chain structure to reduce
the search overhead. Through security analysis and experimental evaluation, we demonstrate that our CKSE
achieves more comprehensive deletion functionality while maintaining comparable search performance and
security, compared to the oblivious dynamic cross-tags protocol of Patranabis. The combination of comprehensive
functionality, high efficiency, and security makes our CKSE an ideal choice for deployment in cloud-based IoT
systems.

can result in adverse consequences such as reputational damage, un-
necessary discrimination, and location leakage [6-8]. To protect data
privacy, a common approach is to encrypt the data before uploading
it to the cloud server. However, traditional encryption algorithms ren-

1. Introduction

With the advancement of cloud computing and the Internet of Things
(IoT), various cloud-based IoT systems, including intelligent logistics,

smart homes, and intelligent healthcare, are experiencing widespread
adoption [2-5]. During the deployment of these systems, individuals
and organizations often choose to outsource large volumes of data to
cloud servers for storage and processing. However, ensuring data pri-
vacy becomes a critical concern due to the potential lack of trustworthi-
ness of cloud servers. Unauthorized disclosure of sensitive information

der the data indistinguishable from random values, posing a challenge
when performing effective retrieval on ciphertext.

To address the aforementioned challenge, researchers have proposed
Symmetric Searchable Encryption (SSE) as a solution. SSE aims to en-
able the retrieval of ciphertext without revealing sensitive information.
An important further advancement in this field is Dynamic SSE (DSSE),
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which not only allows retrieval but also supports dynamic updates on
the encrypted database by revealing limited additional privacy informa-
tion. Unfortunately, adversaries can exploit this leaked information to
launch attacks, such as file-injection attacks [9]. In order to mitigate the
security concerns arising from this information leakage, Stefanov et al.
[10] introduced two new concepts into the DSSE: forward privacy and
backward privacy. Forward privacy ensures that newly added files to
the database do not disclose whether they contain keywords that have
been previously queried. Conversely, backward privacy guarantees that
current search queries do not disclose any information about previously
deleted files. Bost et al. [11,12] provided formal definitions for forward
and backward privacy, and three types of backward privacy were de-
fined in [12], with the security strength gradually weakening from Type-
I to Type-IIL. Building upon these concepts, several dynamic searchable
encryption schemes with forward and backward privacy were proposed
in the literature [13-20].

Nevertheless, most existing DSSE schemes with forward and back-
ward privacy only support single keyword search, which limits the
expressive efficiency of the scheme. In cloud-based IoT systems, it is
essential for DSSE to support conjunctive keyword search to enhance
the practicality of the scheme. Although running single-keyword DSSE
schemes multiple times can achieve conjunctive search, this approach
has efficiency and security issues. Specifically, the computational and
communication overhead is related to the update frequency of each
keyword, and when multiple keywords have high update frequencies,
the search performance is poor. In terms of security, the adversary may
learn the update count and timestamps of each keyword, as well as files
unrelated to the query. These additional leakages are undesirable. Re-
cent works [1,21] have proposed dynamic conjunctive keyword search
schemes with forward and backward privacy. In particular, the Oblivi-
ous Dynamic Cross-tags (ODXT) protocol, introduced in [1], is the first
efficient forward and Type-II backward private conjunctive keyword
DSSE scheme known to us. ODXT [1] builds upon the static scheme of
Oblivious Cross-tags (OXT) [22] and the single keyword DSSE scheme
known as Mitra [14]. The concept of ODXT [1] is similar to OXT [22],
where the server maintains two encrypted databases named ‘TSet’ and
‘XSet’. When a client issues a conjunctive search query, the server first
matches files containing the least frequent keyword in TSet. It then
uses cross-token and dynamic cross-tag techniques to determine whether
these files contain the remaining queried keywords in XSet. The server
returns the results to the client for further filtering. The key to enabling
dynamic conjunctive keyword search in ODXT [1] lies in the on-the-fly
computation of cross-tags and cross-tokens with each update operation.

Although ODXT [1] is more efficient than the early conjunctive
keyword DSSE schemes, it still has two drawbacks. First, it fails to
adequately consider the update type of a keyword when computing
the cross-tag, which results in the inability to perform valid delete
operations in certain circumstances. For instance, consider the fol-
lowing interaction between the client and server: [1,add,(w,,ind,)],
[2,add,(w,,ind))], [3, search,(w| Aw,)], [4,del, (w,,ind))], [5, search,
(wy A w,)]. After the delete operation at time 4, if the server performs
a search operation (w; A wy,), the results still contain ind,. It is worth
noting that similar delete operations are common in real-world scenar-
ios, and a scheme that cannot effectively handle delete operations will
yield inaccurate query results. Second, consider that the client runs an
instance of Mitra within ODXT [1]. In order to achieve retrieval in TSet,
the client needs to compute all the locations involving the least frequent
keyword in advance and send them to the server. This increases the com-
putational and communication overhead on the client side, particularly
when the least frequent keyword still has a high update frequency. Con-
sequently, the search performance degrades significantly. To sum up, the
lack of effective delete operations and the computational and communi-
cation overheads hinder the practicality of existing conjunctive keyword
DSSE schemes in cloud-IoT systems [23,24].

In this paper, our objective is to design a conjunctive keyword search
scheme with forward and backward privacy, incorporating a complete

1294

Digital Communications and Networks 11 (2025) 1293-1304
deletion function, while minimizing search overheads. We anticipate
two significant challenges that need to be addressed. First, we need
to achieve efficient deletion operations within the scheme while ensur-
ing that the search complexity remains proportional to the number of
documents containing the least frequent keywords in conjunction. This
scenario represents the optimal achievable search complexity among
conjunctive SSE schemes, as noted in [1]. Second, supporting more com-
prehensive functions inherently results in increased overheads and may
introduce additional security concerns. Striking a right balance between
functionality, efficiency, and security simultaneously within a scheme
poses a challenging task. Before proceeding to our contributions, we
provide a comprehensive review of the existing literature.

1.1. Related works

Song et al. [25] proposed the first practical SSE scheme having lin-
ear search time with the size of database. Subsequently, Curtmola et al.
[26] considered leakage and constructed the first reversed-index based
scheme with sub-linear efficiency. Chase and Kamara [27] traded higher
storage complexity for the similar scheme. However, these works focus
on static settings and are not suitable for many scenarios that require
real-time data updates. To support data update on SSE and mitigate the
leakage, the forward and backward private DSSE has become an impor-
tant branch in this research area.

1.1.1. Single keyword DSSE

The first sub-linear-complexity DSSE scheme was proposed by
Karama et al. [28]. Subsequent work has focused on the security, ef-
ficiency, and expressiveness of DSSE. Liu et al. [29] and Yu et al. [30]
leveraged the flexibility of Attribute-Based Encryption (ABE) combined
with blockchain to enable fine-grained search and revocable functional-
ities. Yin et al. [31] introduced a secure index based on access policies
and an attribute-based search token, which supports fine-grained search
with integrated access control. While these methods reduce decryption
and revocation overhead, DSSE schemes relying on ABE still face chal-
lenges in resource-constrained environments.

Forward and backward privacy can address the additional privacy
leakage issues introduced by dynamic updates. The notion of forward
privacy was first proposed in [32]. Since then, several forward private
DSSE schemes supporting single keyword search have been proposed
[11,33,34]. Among them, Bost [11] proposed a pioneering forward pri-
vacy scheme called Sophos, which uses the state-based approach to
reduce the overhead of the scheme. Although the trapdoor permuta-
tion structure of Sophos is limited by public key operations, it provides
new ideas for subsequent research. Backward privacy was first intro-
duced by Stefanov et al. [10]. Later, Bost et al. [12] formally defined
three types of backward privacy, called Type-I, Type-II and Type-III
with progressively weakening security, and a number of schemes with
various types of backward privacy were proposed in [12-17]. Chamani
et al. [14] presented three schemes, Mitra, Orion and Hours. Mitra, a
Type-II scheme, obtains better performance by using symmetric key en-
cryption. Orion is a Type-I scheme based on oblivious random-access
memory, and Hours, a Type-III scheme, optimizes Orion’s performance
at the cost of leaking more information. In order to reduce the client-side
storage, Demertzis et al. [16] proposed three schemes called SDa, SDd
and Qos. SDa [16] and SDd [16] use static-to-dynamic techniques to
achieve Type-II backward privacy. Qos [16] is a quasi-optimal Type-III
backward privacy scheme. Dou et al. [35] introduced a robust scheme
that ensures both forward and backward privacy, designed to handle
more complex update and query processes. Chen et al. [36] leveraged
blockchain and hash-proof chain technologies to create a publicly ver-
ifiable DSSE scheme, incorporating a novel data hiding structure that
offers both forward and backward privacy.

To the best of our knowledge, majority of the existing forward and
backward private schemes primarily focus on supporting single keyword
search, with limited attention given to conjunctive keyword search.
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Table 1
Comparison of existing schemes with proposed scheme.
Scheme Query Update Search Fo.rward Bakaard
Type cost cost Privacy Privacy
[1] Conjunctive o(l) O(na,,_,w ) v I
[16] Single O(log P) O(a,, +log P) v I
[16] Single O(log® P) O(n, logi, +log* W) v 111
[35] Single o(|D)) O(a,|DI) v I~
[40] Conjunctive O(a f) O(a,,_,mm ) v I~
[41] Conjunctive o(l) O(nawm) v X
[42] Conjunctive O(log N log, P) O(na,, logN log, P) v I
Ours Conjunctive o(1) O(na,, ) v I

P is the number of keyword/document pairs, |D| is the number of total files, and |s| is the
number of authorized user. For keyword w, a,, is the total number of keyword updates, i, is

the total number of Add queries, n, is the number of files currently containing w, a,,

is the

number of the least update keyword in g = (w; Aw,A, ---, Aw,,), and n is the number of keyword
in conjunctive query g. a, is the number of updates for f.

1.1.2. Conjunctive keyword DSSE

The inclusion of conjunctive keyword search functionality greatly
enhances the practicality of SSE schemes. The first efficient conjunctive
keyword SSE scheme, OXT, was proposed by Cash et al. [22]. However,
its construction lacks the capability for data updates. To address this
limitation, Lai et al. [37] compensated for the leakage in OXT, while the
works [38] and [39] focused on forward privacy in conjunctive keyword
searches on dynamic databases. Zuo et al. [21] introduced FBDSSE-CQ,
a forward and backward private conjunctive keyword search scheme
that trades linear search overhead for efficiency. Chen et al. [40] devel-
oped DSSE-DC, a conjunctive search DSSE scheme featuring a revocation
mechanism based on inner product matching. Guo et al. [41] created a
forward index using a t-puncturable pseudorandom function, combin-
ing it with an inverted index to support conjunctive keyword searches.
Li et al. [42] introduced an update counter to build a bi-directional in-
dex structure that supports conjunctive queries over bipartite graphs.
Their scheme also employed a new oblivious data structure for stor-
ing the bi-directional index and used semantically secure encryption
to protect node information, achieving forward privacy and backward
privacy. Yuan et al. [43] presented the first sub-linear KPRP-hiding con-
junctive DSSE scheme with forward and backward privacy, utilizing a
novel cryptographic primitive called Attribute Updatable Hidden Map
Encryption (AUHME). Li et al. [44] introduced the Indistinguishable Bi-
nary Tree (IBtree), a highly balanced binary tree structure designed to
support conjunctive keyword searches. Additionally, numerous studies
have expanded DSSE to incorporate various advanced query functionali-
ties [45-47]. More recently, Mitracqy;, BDXT and ODXT were proposed
in [1]. Mitracgyy [1] is a straightforward extension of Mitra from sin-
gle keyword queries to conjunctive queries, but the computational and
communication complexity of this scheme is proportional to the sum of
the update frequency of each keyword in conjunction. BDXT [1] is the
first forward and backward private conjunctive keyword SSE scheme
with the computational and communication complexity proportional to
the least frequent keywords in conjunction. ODXT [1] further optimizes
the performance of BDXT, which is the most effective forward and back-
ward conjunctive keyword scheme at present. However, as mentioned
before, ODXT [1] suffers from ineffective deletion and high search over-
head.

1.2. Our contributions

Against the above background and to achieve more efficient conjunc-
tive keyword search in real-world scenarios, we proposed a conjunctive
keyword DSSE scheme, named CKSE. In particular, CKSE achieves more
comprehensive deletion operations than ODXT [1], while balancing the
efficiency and security. Table 1 shows the comparison of our scheme
with other state-of-the-art schemes. Our contributions can be summa-
rized as follows.
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« We propose an efficient conjunctive keyword DSSE scheme called
CKSE based on ODXT [1]. By constructing a new cross-tag that com-
bines the update type with the keyword and modifying the elements
involving the oblivious shared computation, our CKSE is capable of
performing effective deletion operations and providing the client
with accurate query results. Moreover, the search complexity of
CKSE is related to the least update frequency keyword.

We introduce a state chain structure to instantiate our scheme. This
structure is a symmetric cryptographic primitive version of the pub-
lic key-based trapdoor permutation structure [11]. With this state-
chain structure, the client only needs to obtain the latest state of the
keyword to execute subsequent operations, which greatly reduces
the computational and communication overheads of the scheme.
We conduct a comprehensive analysis to prove that CKSE maintains
forward and Type-II backward privacy. Additionally, we implement
CKSE and perform experiments to evaluate its performance in com-
parison with ODXT [1]. The results demonstrate that our scheme
achieves search performance comparable to ODXT [1].

2. Preliminaries

This section presents the notations used in the paper as well as the
cryptographic background and definitions for SSE.

2.1. Notations

We use x i X to denote that an element x is uniformly and ran-
domly sampled from the set X. For a security parameter A € N, we
refer to poly(A) and negl(A) as the unspecified polynomial and negligible
functions of A, respectively. We store all documents and their respective
contained keywords w € W in the database DB as keyword/document
identifier pairs (w, ind), where W is the set of all keywords in DB, and
ind is the file identifier. We also denote by |W| the number of distinct
keywords, and by DB(w) the set of all documents containing the key-
word w.

In addition, we use ¢ = (w; A w, -+ A w,) to denote a conjunctive
query, and assume that w is the least frequent term in the conjunctive,
called s-term, while the remaining keywords in g are called x-terms. The
result of a conjunctive query is expressed as DB(q) = nl’.’=1DB(w[), ie.,
the intersection of the search results for all keywords w;,i € {1,---,n}.

2.2. Decisional Diffie-Hellman assumption

Let g be a uniformly sampled generator for the p = p(4) order cyclic
group G. The Decisional Diffie-Hellman (DDH) assumption is that for
any Probabilistic Polynomial-Time (PPT) adversary A, the probability
of distinguishing (g, g2, g%, %) from (g, g%, g°, g°) is negligible, formally
defined as:
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PriA(g. g% g, &) = 11 - PrlA(g, g% 8", &%) = 11
< negl(2) 1)

2.3. Dynamic searchable encryption

A dynamic searchable encryption scheme consists of three parts: one
Setup algorithm, two protocols Update and Search that are run by
client and server, as follows.

Setup(4,DB) is executed unilaterally by the client. This algorithm
takes the security parameter A and the database DB as input and outputs
the tuple (sk, o; EDB), where sk denotes the client’s key, o is the client’s
local state, both of which are stored locally by the client, and EDB is an
empty encrypted database stored by the server.

Update(sk,o,w,ind,op; EDB) is executed jointly by the client and
server. This protocol takes (sk,o,w,ind,op) as input for the client,
where op € (add, del) indicates the update type, and takes the encrypted
database EDB as input for the server. Eventually, the client gets a mod-
ified local state ¢’ and the server gets a modified encrypted database
EDB'.

Search(sk,o,q;EDB) is executed jointly by the client and server.
This protocol takes (sk,o,q) as input for the client, and takes EDB as
input for the client. At the end of the protocol, the client outputs the
result of query DB(g).

Note that there are two definitions of dynamic searchable encryp-
tion [48,49]. One is the above definition adopted in this paper. Another
definition is to take the addition/deletion of the entire file as an up-
date operation, which is functionally equivalent to performing multiple
add/delete operations on keyword-document identifier pairs in our def-
inition.

Finally, we default that after receiving the file identifier contained
in DB(q), the client still needs to generate additional interaction with
the server to obtain the actual file.

2.4. Definitions of correctness and security

Correctness. The correctness of a dynamic searchable encryption
scheme X = (Setup,Update, Search) means that for any conjunctive
query g, the search protocol can always return the correct result DB(g).

Security. The security of a dynamic searchable encryption scheme
is described by a leakage function £ = (£57, £UPd! Srehy where £57,
L£UPdt and £57¢h represent the leakage information captured in the
setup, update and search, respectively, which can be learned by an ad-
versary.

If an adversary server cannot learn any private information except
those contained in leakage function, the dynamic searchable encryp-
tion scheme is secure. Formally, the security of a dynamic searchable
encryption scheme can be proven by two games of Ipg,; and Rgay .

* Rg ALi(/l): This game first runs Setup(4,DB) algorithm against
database DB chosen by adversary .4 to obtain an encrypted
database EDB. Then, the game executes Search(sk,o,q; EDB) or
Update(sk,o,w,ind,op; EDB) protocol based on a series of queries
g; performed by A. Finally, according to the returned result, adver-
sary A outputs bit b € {0,1}.

Ipg ALJZ‘LS(A): After adversary A selects database DB, simulator S re-
turns encrypted database EDB «— S(£57(DB)) to A by the leakage
function. Then, simulator S executes S(£5" ‘h(q,-)) or S (EU"d’(q,-))
according to a series of queries performed by .A. Finally, according
to the returned result, adversary A outputs bit b € {0, 1}.

Definition 1 (L-adaptive Security). A DSSE scheme is L-adaptively se-
cure if for any PPT adversary A, there exists an efficient simulator S
such that:

|Pr (Rpar3(A=1)—Pr (IDEALZS(/D:I) ) < negl(d) (2
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2.5. Forward and backward privacy

Forward privacy. For any adversary who can observe the interac-
tion between the client and server, forward privacy can ensure that the
update does not leak information about the latest addition operation,
which prevents the server from matching to the new update using pre-
vious queries. The formal definition of forward privacy is as follows
[12].

Definition 2 (Forward Privacy). An L-adaptively-secure SSE scheme is
forward private, if leakage function L£UPdt can be expressed in the fol-
lowing form:

LY (op, (w, ind)) = L' (op, ind) 3)

where £’ is stateless function.

Backward privacy. Backward privacy ensures that the server cannot
match files that were added and then removed. Bost at al. [12] formally
defines three types of backward privacy: Type-I, Type-II, and Type-III.
The security decreases from Type-I to Type-IIl. Type-I and Type-II are
considered to be strong backward private, while Type-III is a weaker
backward private. Note that Type-III backward privacy leaks the times-
tamp of when the files were deleted. For cloud-IoT system, time is a crit-
ical piece of information that many attacks [50,51] can exploit to break
the security of the system. For DSSE, the adversary can correlate the in-
formation of subsequent queries or make statistical inferences based on
when the file was deleted. Therefore, for the DSSE scheme deployed in
cloud-IoT system, it is highly desire to reach higher level of backward
privacy. We focus on Type-II backward privacy involved in the subse-
quent content. This kind of backward privacy allows the scheme to leak
the file identifier containing the keyword w and the timestamp, when
keyword-identifier pair (w, ind) was inserted into the database, and the
number of keyword updates. Before formally defining Type-II backward
privacy, we introduce two related functions TimeDB(w) and Updt(w).

Let Q be a list maintaining all the search queries (1, w) and the up-
date queries (t,o0p, (ind,w)), where t denotes the timestamp of query.
TimeDB(w) consists of the files containing the keywords w that have
not yet been deleted, along with their timestamps of insertion, that is,

TimeDB(w) ={(t, ind)|(t,add,(w,ind)) € Q and
v (' del, (w,ind)) & Q} @
Updt(w) is the function that contain the timestamp of each update of
the keyword, which is defined as:
Updt(w) ={t|(t,add, (w,ind)) € Q or
(t,del,(w,ind)) € Q} (5)

Definition 3 (Backward Privacy). An L-adaptively-secure SSE scheme is
Type-II backward private, if leakage function £U?% and £57" can be
written as following form:

LYP (op,w,ind) = L' (op, w) and

£57¢h () = £ (TimeDB(w), Updt(w)) ©®

where £ and £ are stateless functions.

3. CKSE: an efficient conjunctive keyword searchable encryption
scheme

In this section, we present our CKSE, an efficient conjunctive key-
word searchable symmetric encryption scheme. This scheme achieves
more efficient deletion operations than ODXT [1], while reducing com-
munication and computational overheads as much as possible. More-
over, CKSE maintains the forward and Type-II backward private.
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Fig. 1. The system model of CKSE for smart home.

Algorithm 1 CKSE.Setup(A).
Client:
1: Ky hl {0,1}* for PRF F
2 Ky, Ky, K, . {0,1}* for PRF F,
3: W « empty map
Server:
4: T,X « empty map

3.1. System model of CKSE

Our scheme is designed to achieve more comprehensive, efficient
and secure conjunctive keyword search in cloud-IoT systems. Smart
home is a typical cloud-IoT system, which includes the collection and
transmission of data, e.g., temperature, health and air quality, etc., by
smart devices and the query of various data by the host. Taking the
smart home as an example, Fig. 1 shows the system model of CKSE for
smart home. It consists of three kinds of entities as follows.

Data Owner (DO). DO encrypts the collected data and uploads it to
the cloud server, and performs real-time updates on the data.

Data User (DU). DU initiates search queries to the cloud server and
decrypts the obtained encrypted results.

Cloud Server (CS). CS stores the encrypted data uploaded by DO
and performs ciphertext retrieval on the search queries issued by DU.
CS is a semi-honest entity provided by a third party. It strictly follows
the steps of the protocol but may curiously learn information during the
execution process.

Like all existing DSSE schemes, the security of our scheme relies on
a “strong” assumption that the client’s key can always be protected and
will not be compromised [52]. Therefore, the issue of key sharing and
distribution is not our concern. Since both DO and DU are legal, and DO
can also act as DU, we refer DO and DU collectively as Clients in the
following text.

3.2. Construction of CKSE

Although the basic idea of CKSE is similar to ODXT [1], the key
difference between them is that CKSE achieves effective deletion by de-
signing a new oblivious dynamic cross-tags. Also unlike ODXT [1] which
uses Mitra for the instantiation, causing unnecessary computational and
communication overhead, CKSE uses a state chain structure to complete
the instantiation, which reduces the computation and communication
overhead. To elucidate the core idea behind CKSE, we go back to why
ODXT [1] lacks the above features.

First, ODXT [1] cannot delete a file in certain circumstances. In
order to execute effective retrieval in XSet, the cross-tag known as
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Algorithm 2 CKSE.Update(Kg, Ky, Ky, K,,W,w,ind,op;T,X).
Client:
¢ K, || K < F(Kg,w)
2 (ST,,c) < W[w]
: if (ST,,c) =1 then

ST0<$—{0,1}{C<_0
: end if
: ST 4, <$—{0 1}
: Wlw] < (ST,yp,c+ 1)
Uepy < H (Kw’ c+])
€yl < (i"d”ﬂp) & HZ(K:_,vC +1)
: Csy, < ST, @ Hy(K,, ST,y
: a < F(Ky,ind)- (F, (K, wlle+1)7!
: xtag « glrKxwllop) £ (K .ind)
: Send(Ugyy, €41, Csy @, xtag)toserver
Server: ¢
14: Tlueyy] = (ecyys Cor )
15: X[xtag] =

e e
w N = O

xtag constructed by ODXT [1] is split into two parts, one part is re-
lated to the pair (ind;,op) involving the s-term w; and the other is
related to the x-terms w;, i € 2,---,n. It can be seen that for the
same file, the server can only recognize the update of w; accord-
ing to the xtag. Consider the case given in the introduction section
again: [1,add,(w;,ind,)], [2,add,(w,,ind,)], [3,search,(w; A w,)l,
[4,del,(w,,ind})], [5,search,(w; A w,)]. Since the update type in the
cross-tag only corresponds to the files containing w,, the cross-tag will
not be affected by the deletion operation at time 4. For the search query
at time 5, the final retrieval result will still contain what has been re-
moved. This is clearly unreasonable (w, is not included in ind; at this
time). In addition, ODXT [1] achieves conjunctive search based on Mi-
tra’s framework. During the search, the client needs to pre-compute
all the locations of update involving the s-term w; and send them to
the server. Afterward, subsequent search operations can be performed.
However, the computational and communication overhead on the client
side scales with the frequency of w;. Consequently, when the s-term has
very high frequency of updates, the scheme will generate lots of unnec-
essary search overhead.

A goal of CKSE is to incorporate the update operations of x-terms
w;, i €2,--+,n, into the oblivious cross-tag computation and make it un-
necessary for clients to obtain all the locations of keywords during the
search, thereby avoiding the ineffective deletion and reducing the over-
head. Algorithms 1 to 3 summarize the Setup, Update and Search
procedures of our CKSE, respectively.

Setup. In this algorithm, the client generates A-bit keys Ky, Ky, Ky
and K, for the Pseudo-Random Functions (PRFs) F and F, » respectively
and holds an empty set W to store the state of each keyword. On the
server side, two empty sets T and X are generated to store encrypted
indexes.

U pdate. When updating a keyword/file identifier pair [add /del, (w,
ind)], the client first queries the state S7, and update times c of the
keyword w according to W[w], and then randomly generates a new
state ST, ; and updates W[w] (lines 1-7). Next, the client uses the new
state ST, and several hash functions to compute encrypted entries

e.41 along with location u., |, as well as a state token Cgr, to trace the
previous state of the keyword w (lines 8-10). More importantly, in order
to achieve subsequent conjunctive queries, the client needs to obtain
a blinding factor a and a cross-tag xtag so that the server can learn
whether a fixed file contains all the keywords in the conjunctive query
(lines 11-12). Finally, the client sends (ucH,ecH,CSTC,a, xtag) to the
server, who stores (e.,1, Cgr,, @) in T[u,,,] and sets the corresponding
X[xtag] to 1 (lines 13-15).

Search. Assume that w, is the keyword with the least update fre-
quency. In order to achieve the search query for (w; Aw, A - Aw,,), the
client uses the currently state of the s-term w; to get the cross-token pair
(xtoken,; , xtokeny,;) of w;,i €2,---,n, which involves each update of
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Algorithm 3 CKSE.Search(Kg, Ky, Ky, K, W, w; T, X).
Client:

: Assume w is the keyword with least updates

s K, |1 K} < F(Kg,w))

: (STc, ,¢1) < Wlw, ]

: for j=1toc, do

for i=2tondo

xtoken[i, j] < g

end for

: end for

: Send (KW,STCI,cl,xtoken[l],~--
Server:

10: Val <

11: forj = ¢, to 1 do

12: cnt; = 1

13: u; < H,(K,,ST;)

14: (e/,CSTH,aj) — T[uj]

15: fori = 2tondo

F,(Ky.w;lladd/del) F,(Kz.w, 1))

© ® N O U s WN =

,xtoken[c, ]) to server

16: (xtoken,qq, xtoken,,) < xtoken[i, j]

17: if X[(xtoken,44)% 1= 1,X[(xtokeny,)%]=1 then
18: cnt; =cnt; +1

19: end if

20: end for
21: Val<—(cntj,ej,j)
220 ST, «Cgp @ Hy(K,,ST)
23: end for
24: Send Val to client
Client:
25: Res <
26: for each (cntj,ej,j) € Val do
27: (ind;||op;) < e; ® H,(K},, j)
28: if opj=add,cntj=nthen

29: Res < Res U ind;

30: else if op;=add,cnt; >0 then
31: Res < Res \ ind;

32: end if

33: end for

34: return Res

w;. The search token (Kw,STq,cl,xtoken) is then sent to the server
(lines 20-29). After receiving the search token, the server first computes
the location u; according to the current state of w;, and takes out the
current encrypted entry e, state token CSTF , and blinding factor a
from T[y;] (lines 32-34). Upon using (xtoken,, ,xtoken,,;) and a; to
obtain the cross-tag xtag, the server exploits it to learn whether the cur-
rent update contains w;,i €2, ---,n (lines 35-40). Similar to locations,
the server also observes xtag during the update. The encrypted entry
and counter are then stored in the list Val, and the state token and the
current state are used to infer a previous state by the server (lines 41-42).
Iteratively (lines 31-43), the server obtains all the states and correspond-
ing encrypted entries about (w; A w, A -+ Aw,), and sends Val to the
client (line 44). Finally, the client decrypts the encrypted entries locally
and further filters them (lines 45-55).
We now further explain the important features of our CKSE.

3.2.1. New cross-tag

To support conjunctive keyword search while achieving efficient
deletion operations, the first important feature of CKSE is to construct a
new cross-tag as:

F,(Kx .willop)-F,(Ky ind;)

()

Conceptually, our cross-tag is also divided into two parts. But unlike
ODXT [1], we integrate the update types of w;, i€2, -+, n, into the gen-
eration of cross-tag. The first part of our cross tag contains w; along
with update type, and the second part is only related to the file identi-
fier containing w. Next, to perform effective conjunctive retrieval with
new cross-tag, we modify the cross-token to add/delete token pairs as:

xtag; Jop &
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(Kx w; IIHdd) Fp(Kz.wy 1))
(8

xtoken; ; ;40 < &P
Fy(Kx.willdel)-Fy(Kz,wi 1))

xtoken[’j,de, —g
Upon receiving the add/delete token pairs, the server obtains a blind
factor «; involving the Jj™* update of w; from TSet:

a; < Fy(K,ind}) - (F)(Kz,w, /)7 ©

Given the add/delete token pairs xtoken; ; ,,,0op = {add,del} and a blind
factor a;, the server can easily carries out the oblivious cross-tag com-
putatlon as:

(xtoken 10)

xtag; ;= x/op)aj
thereby detecting whether each update of w, contains the x-term w.

To see why this is useful, recall that in our CKSE, we bundle the
update types with keywords and introduce them into the oblivious cross-
tag computation. After the delete operation on x-term is completed, the
cross-tag calculated by the server using the add/delete token pair during
the search can implicitly identify the deletion update, while the delete
operations related to s-term are filtered out locally by the client, thereby
avoiding the ineffective deletion.

3.2.2. State chain structure

CKSE achieves comprehensive deletion operations based on ODXT
[1] but it would need more overheads to do so (e.g., additional group
exponentiation operations). It is known that some existing schemes us-
ing a state-based approach impose less overhead [11,33,34]. Inspired by
the hash chain, we exploit a state chain structure to reduce the compu-
tational and communication overhead on the client side. This structure
enables the client to perform subsequent conjunctive queries only by
obtaining the latest state of s-term w; during the search. Concretely, in
the update protocol, the client randomly generates a state ST for each
update of the keyword and stores it in W. More importantly, this state is
connected by a state token Cg;. Therefore, the client only takes out the
current state of the keyword w; from W and sends it along with the lat-
est state token to the server during the search. The server uses the state
token to trace back to the previous state of w;, i.e., each update of w;.
Fig. 2 depicts this state chain structure.

Note that this structure can also support CKSE to achieve forward
privacy. Previously, many forward privacy schemes were constructed
based on Oblivious RAM (ORAM) structures. The main issue with this
approach is the high communication cost caused by using ORAM-like
structures. Only a few DSSE schemes avoid using ORAM. Among them,
Bost et al. [11] proposed a one-way trapdoor permutation, which ef-
fectively reduces communication costs but is still limited by public-key
cryptographic primitives. The advantage of the state chain structure lies
in its use of symmetric cryptographic primitives, ensuring forward pri-
vacy based on the same principle as [11].

3.3. Efficiency of CKSE

3.3.1. Client and server storage

In CKSE, the client stores four A-bit secret keys, K¢, Ky, Ky and K,
for PRFs F and F), respectively, and a map W containing the states of
all the keywords. Initially, W is the empty map, and after N updates,
the size of W grows to O(|W)]| - log N), where |W)| is the total number
of keywords. On the server side, it needs to store the maps T and X,
and they are both initialized to be empty. After N updates, the server
storage grows to O(N). It is clear that the client storage grows logarith-
mically with the number of update operations and the server storage
grows linearly with the number of update operations.

3.3.2. Update and search overhead

During the update, since the numbers of operations for client and
server are constant, the computational overheads of both scale with
O(1), and the same is true for communication overheads of updating
a single keyword-file identifier pair (w, ind). In the search protocol, for
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Fig. 2. The state chain structure.

each update of w;, the client needs to execute only n — 1 exponential
operations, compared to the overhead of computing all the locations
of updates involving w; required by ODXT [1]. Therefore, the com-
putational complexity is O((n — 1) - aw]) and the same is true for the
communication overhead, where a,, is the total number of updates for
w. For the server, the computational and communication complexity
are O(n - awl) and O(awl ), respectively, which are the same as ODXT

[11.
3.4. Security analysis

We now show that CKSE achieves forward privacy and Type-II back-
ward privacy. The evolution of each state of keywords plays an impor-
tant role in a search query, and the states of keywords are randomly
generated during the update. For the server, the value of each state is
indistinguishable from a random value, and the server cannot infer the
future state and state token of the keyword using the current search
token (containing the current state and state token of the keyword).
Therefore, CKSE leaks no information during the update, and the for-
ward privacy is guaranteed.

In the search protocol, the server obtains a series of locations for s-
term w; which have been observed previously in the update protocol.
This leakage helps the server to learn the timestamp of each update for
w; . In addition, for each update (op ;,(wy,ind))) of w,, the server learns
the number of updates of the form (op 5 (W, ind;)) for each x-term w;,
i €2, ,n, along with the corresponding timestamp for each update.
The definition of the above leakage is as follows:

n
Updt(q) = Updt(w)) | (U Updt(w,, wl-)) an
i=2
where g is a conjunctive search query and
Updt(w,, w;) ={(t,.1,)|(t,,0p, (w;,ind)) € Q and
(t;,0p,(w;,ind)) € Q} 12

Except for the above leakage, the server cannot obtain any information
that breaks the backward privacy of CKSE. We use the leakage function
L= (LS5, cUrdt £Srehy defined in section 2.5 to describe the leakages
as mentioned above. After the leakage is captured, the formal definition
of our scheme’s leakage functions is as follows:

LY (op, (w, ind)) = (L)

£57"(q) = (TimeDB(q), Updt(q)) (13)

According to Definition 2 of forward privacy and Definition 3 of back-
ward privacy, our scheme achieves forward privacy and Type-II back-
ward privacy.

Formally, the forward privacy and Type-II backward privacy of CKSE
is summarized in the following theorem.
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Theorem 1. (Security of CKSE) Assume that F and F, are secure
pseudorandom function, the DDH assumption holds over the group G,
and H,, H, and H; are hash functions modeled as random oracles.
CKSE is an L-adaptively secure SSE scheme with the leakage functions
LY (op, (w,ind)) =L and £L57"(q) = (TimeDB(q), Updt(g)).

Proof. See Appendix. []

4. Performance evaluation

In this section, we implement CKSE, and compare it with the two ex-
isting schemes, Mitracgy; [1] is an instantiation of the naive solution,
and comparison with it can show the advantages of the conjunctive key-
word search scheme, and ODXT [1] is the baseline of our scheme, and
comparison with it can best verify our goal of achieving comprehensive
deletion operations without compromising efficiency and security. Addi-
tionally, in order to clearly demonstrate the performance improvement
of the state chain structure for CKSE, we utilize ODXT [1] to instanti-
ate CKSE under the Mitra framework, named CKSEy;;,,, and compare
its performance with CKSE.

4.1. Implementation and settings

We implement CKSE and CKSE,;,, in Python 3.10 and use PyCrypto
library and Sagemath library to achieve symmetric cryptographic op-
erations and group-based operations, respectively. Specifically, we use
AES-256 to realize PRFs F and F, »» SHA-256 for all hash operations H,
H, and H3, and the elliptic curve Curve25519 [53] for group operations
in CKSE. Our scheme aims to provide efficient, privacy-preserving ci-
phertext retrieval and data updates in a cloud environment. IoT devices
serve as auxiliary components responsible for collecting and uploading
data, without impacting the core search performance of the scheme. All
experiments were conducted on workstations equipped with an Intel(R)
Core(TM) i7-14700K CPU (3.40 GHz), 32GB and 16GB RAM, running
the Windows 11 (64-bit) operating system. When evaluating Mitracgyy
[1] and ODXT [1], we use the Python code released by Patranabis and
Mukhopadhyay [1]. To provide a fair comparison, the specific imple-
mentations of CKSE and CKSEyy;,, are the same as ODXT [1].

We test the performance of the schemes compared using the data
from Enron email dataset,! which is derived from the real world and
consists of multiple folders containing email messages from about 150
different users. We choose 30109 emails in the sent-email folder as the
file set, and apply the keyword extraction process of [54,55] to obtain
77,000 unique keywords, which exclude some stopwords like ‘a’, ‘the’
and ‘so’. All the experiments are repeated 10 times and the results are
averaged over the ten runs.

! Enron Email Dataset: available online at https://www.cs.cmu.edu/~enron/.
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Fig. 3. Client and server computation times for two-keyword conjunctive search query g = (w;, A w,).

Table 2

Comparison of Update Computational Overheads [ms].
|DB| Scheme

Mitracgy [1] ~ ODXT [1]  CKSEy;,,  CKSE

10 2.9 12,5 12,5 13.4
100 35.3 131.3 131.3 137.4
1000 242.3 1202.3 1202.3 1213.6
10000 1934.2 11534.1 11534.1 11640.3

4.2. Update time performance

We first compare the computational overheads of the four schemes
in the update operation. We generate variable update entries with sizes
IDB| = 10 ~ 10000, where each entry consists of a keyword and a
file identifier, and test each scheme’s overall update computational
overhead. Table 2 shows that the update computational overhead of
Mitracoyy [1] is the least, about one order of magnitude smaller than
those of the other schemes. This is because Mitracqyy [1] only needs to
consider update process for single keyword. It does not need to prepare
for the subsequent conjunctive keyword search like ODXT [1], CKSEi(ra
and CKSE, which greatly reduces the computational overhead of the up-
date. However, the excellent update performance of Mitracgy; [1] is
at the cost of higher overhead in the search, as will be shown later.
Since the operations of ODXT [1] and CKSE\y;,, during the update are
the same, they maintain the same computational overheads. The com-
putational overhead of our CKSE is slightly higher than ODXT [1] and
CKSE\;ira- This is because unlike ODXT [1] and CKSEy;,, CKSE ex-
ecutes additional hash and XOR operations in the update. However,
these additional operations will help CKSE to perform better during the
search.

4.3. Search time performance
We next compare the computational overheads of the client and

server for the four schemes in the cases of two-keyword conjunctive
queries g=(w; Aw,) and four-keyword conjunctive queries g=(w; A - A

1300

w,). We execute two types of experiments in each case. In the first type,
we set the update frequency of the s-term w, to constant |Updt(w,)|=3
and the update frequency of the x-term w, to |Updt(w,)]=3 x 100 ~
3 x 10*, while in the second type, we set |Updt(w, )| to 3 x 109 ~ 3 x 10*
and fix |Updt(w,)| =3 x 10*. Additionally, in the case of four-keyword
conjunctive queries g=(w; A -~ A wy), the values of |Updt(w;)| and
|Updt(w,)| remain constant at 3 X 10* for both the experimental types.

4.3.1. Two-keyword conjunctions

Fig. 3 compares the computational overheads of the client and
server for the four schemes in the two-keyword conjunctive search.
The first thing to note is that the computational overheads of ODXT
[1], CKSEy;i;o and CKSE are proportional to the update frequency of
s-term w;, and they are independent of the update frequency of x-
term w,, which is consistent with our analysis of CKSE in Subsec-
tion 3.2. By contrast, the computational overhead of Mitracqgyy [1] is
mainly proportional to the update frequency of x-term w,, and its com-
putational overhead is higher than the other schemes in most cases
(when |Updt(w,)|=3 x 10!, |Updt(w,)|=3 x 10%, CKSE takes 45.8 ms,
CKSE\i.ro takes 61.1 ms, ODXT [1] takes 35.2 ms, and Mitracoyy [1]
takes 857.3 ms, which is more than 20 times the cost of other schemes).
On client side, CKSE outperforms CKSEyy;.,, and it matches ODXT [1].
This is due to the fact that compared to CKSEy;,,, CKSE does not
need to compute all the locations of the keywords, and compared to
ODXT [1], CKSE does not need to compute all the locations of the
keywords but requires an additional cross-token xtoken 4, /g0y (When
[Updt(w;)| =3 x 10%, [Updt(w,)|=3 x 10*, CKSE takes 19.3 s, CKSEpira
takes 32.5 s). On server side, CKSE has slightly higher computational
overhead than ODXT [1], and it matches CKSEyy;,,,. Although the search
computational overhead of CKSE is slightly higher than ODXT [1], CKSE
supports more efficient deletion function, which is critical in practice.

4.3.2. Multi-keyword conjunctions

In Fig. 4, we compare the computational overheads of the client and
server for the four schemes in the four-keyword conjunctive queries
q=(w; A -+ A wy). The trends of the four schemes in Fig. 4 are sim-
ilar to those shown in Fig. 3, with one obvious exception. Specifi-
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Fig. 4. Computation times for client and server in a multi-keyword conjunctive search query ¢ = (w; A - A wy). In (a)-(c), |Updt(w,)| = [Updt(w,)| = 3 x 10*.

cally, in Fig. 4(a)-(c), the computational overhead of Mitracgoyy [1]
is no longer proportional to the update frequency of w,. This is be-
cause the keywords w; and w, have the higher update frequency
|Updt(ws;)| = |Updt(w,)| =3 x 10* in x-terms, which increases the com-
putational overhead of Mitracgy; [1] to an extremely high level (when
|Updt(w; )| =3 x 10°, [Updt(,)| = [Updt(ws)| = [Updt(wy)] = 3 x 10%,
CKSE takes 11.1 ms, CKSEy;;;, takes 13.4 ms, ODXT [1] takes 9.4 ms,
and Mitracqgyy [1] takes 2430.3 ms, which is much more expensive than
other schemes).

4.4. Communication performance

In Fig. 5, we compare the communication overheads for the four
schemes in two-keyword conjunctive search. For ODXT [1], CKSEy;;a
and CKSE, the communication overheads increase with the update fre-
quency of s-term w;, while the communication overhead of Mitracqy;
[1] increases with the update frequency of x-term w,. Moreover, the
communication overhead of Mitracqy; [1] is much higher than the other
schemes. In addition, CKSE slightly outperforms CKSEy;,, and is very
close to ODXT [1]. This is due to the fact that compared to CKSEy;(;4,
CKSE omits the transmission of each location of s-term w;, and com-
pared to ODXT [1], CKSE omits the transmission of each location of
s-term w; but needs to transmit additional cross-token.

To sum up, the performance of Mitracgy; [1] is generally worse
than the other three schemes in terms of both computational overhead
and communication overhead. For our approach, CKSE outperforms
CKSE\iira» Which shows the effectiveness of the state chain structure.
More importantly, compared to the state-of-the-art ODXT [1], CKSE has
a similar performance. It is worth recapping that our CKSE maintains
the same security level as ODXT [1], i.e., forward and Type-II backward
privacy, and unlike ODXT [1], our CKSE can achieve efficient deletion
operation in any case.

4.5. Query result performance

After performing different deletion operations, we compare the
query results of ODXT [1] and CKSE involving search query g = (w; A
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Fig. 5. Communication overheads in two-keyword conjunctive search query g =
(wy A w,).

w,). We first select 100 files containing the keyword w; and w,, and
then delete w; and w, from the Top (T) 10%, T 20%, Bottom (B) 10%,
and B 20% of the file set, respectively. Finally, we collect the query re-
sults of each scheme under different deletion scenarios. Note that w; is
the s-term.
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Fig. 6. The query results of search query g = (w, A w,).

After performing deletion updates, the comparison between the
query results of ODXT [1] and CKSE and the ground truth is illustrated
in Fig. 6. It can be seen that CKSE consistently produces the same query
results as the real results in all the 16 cases, whereas ODXT [1] fails to
achieve accurate query results in 10 out of 16 cases. Ideally, deletion op-
erations involving either w,; or w, should have an impact on the final
query result. However, the query result of ODXT [1] only changes with
deletion operations involving w,, and it remains unaffected by deletion
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operations involving w,, which results in ODXT [1] being able to obtain
accurate query results only when the set of documents with deletions of
w, includes the documents with deletions of w,. This limitation arises
from the fact that the cross-tag xtag computed by ODXT [1] during the
search query can only respond to the update type corresponding to s-
term w,, but ignores the update type of other keywords in conjunction.
Consequently, ODXT [1] fails to detect deletion operations on keywords
other than the s-term w,, resulting in discrepancy between the query
results and the actual results. In contrast, CKSE incorporates the update
types of each keyword into the design of the new cross-tag, enabling
it to effectively respond to deletion operations for every keyword. As a
result, CKSE consistently achieves accurate query results across various
scenarios.

5. Conclusions and future work

In this work, we have designed an effective and efficient conjunc-
tive keyword DSSE scheme called CKSE based on the state-of-the-art
ODXT [1]. However, unlike ODXT [1], our scheme supports update op-
erations in any scenario, especially for robust deletion operations, which
enable the client to obtain accurate query results. Additionally, we have
adopted a state chain structure to save unnecessary ODXT [1] operations
during the search and achieve efficient search performance. In terms of
security, our CKSE leaks no information in update and moderates leak-
age during the search to achieve forward privacy and Type-II backward
privacy. In summary, our CKSE design comprehensively considers func-
tionality, efficiency and security, and it offers an ideal scheme for cloud-
IoT systems. In the future, extending CKSE to support more expressive
queries, e.g., boolean queries, is meaningful, which will strengthen the
practical applications of our scheme.

Moreover, the proposed scheme operates under the assumption that
the client’s key remains secure at all times, without addressing the po-
tential risks associated with key sharing. This oversight presents chal-
lenges in real-world applications, where key exposure could allow an
adversary to compromise the encrypted database and monitor update
and search activities. Moreover, our scheme primarily focuses on mini-
mizing access pattern leakage but fails to consider the vulnerability to
keyword guessing attacks, which are a common concern in public key
searchable encryption schemes. In future work, we aim to explore and
address these two issues in DSSE, which will enable us to develop a more
secure scheme for cloud-IoT systems.
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Appendix A. Proof of Theorem 1

We use the Rgap -Ipga;, model mentioned in Subsection 2.4 to prove
the security of CKSE. Specifically, a sequence of games is constructed
from REALi(A) and reached to IDEALi’ s(4). We prove that REALi(A)
and Ipg ALi, (4) are indistinguishable by proving the indistinguishabil-
ity between two adjacent games.

Game G,: G is the real world game Rg ALi(/I).

Game Gq: The difference between G, and G is that G| replaces
PRFs F(Kg,-), F,(Kx,"), F,(Ky,") and Fy(Kz,-) with random func-
tions Gg(), Gx(-), Gy(-) and G,(-), respectively. Specifically, G¢(-)
is uniformly sampled from the set of all random functions on (0, D4,
while Gx(-), Gy(-) and G () are uniformly sampled from the set of all
random functions on Z*. Since we cannot distinguish a pseudo-random
function from a truly random function, G, and G, are indistinguishable.

Game G,: The difference between G, and G is that G, no longer
calls H,, H, and H; to generate location u, encrypted entry e and state
token Cgr in the update protocol, but uses random numbers instead.
Taking H; and u as an example, it replaces u — H(K,,,ST, ) with

u <$— {0,1}* and executes L[K,||ST.,] < u, where L is a mapping
maintained by G,. Afterward, Hy[K ,||ST,, ] < L[K||ST,.,] is exe-
cuted in the search protocol, where H; is the table of the random oracles
H,. Thus, H; is not updated immediately, and when an adversary ac-
cesses H;[K,||ST,, ] before a search query is issued, H,[K,||.ST,,]
will randomly generate a value u* that is not equal to u. If the adver-
sary queries H;[K,,||ST,, ] again after next search query, it will get
the value u that has been updated to H;. By observing the difference
between the two queries, the adversary knows that it is in game G,.
We now show that the probability of this case is negligible. Based on
the above discussion, it is clear that this case will only take place if
the adversary uses K,,||ST,,, to query H,. Since ST, is randomly
generated, the adversary chooses ST, ; with probability 2% + negl(4).
Assuming that a PPT adversary makes at most p = poly(1) guesses, the
probability of adversary choosing ST, is 2% + p - negl(4), which is
negligible. H, and H; are processed in the same way as H; in G,.
Therefore, G, and G are indistinguishable.

Game G;: The difference between G5 and G, is that in the search
protocol of G5, the manner of generating xtoken is changed. Specifically,
for a conjunctive query g = (w; A w, A -+ Aw,), G5 first looks up the
update query history of adversary to obtain the set of update operations
involving s-term w;. Then, it computes a and xtag involving each x-
term w; in conjunction ¢, and obtains xtoken as xtoken = xtag!/®. It is
clear that the distribution of each xtoken value in Gj is the same as its
distribution in G,. Therefore, G5 and G, are indistinguishable.

Game G,: The difference between G, and Gj is that the manner of
generating « is changed in the update protocol of G,. Specifically, G,

replace computing « in G5 with random sampling « i Z*. Note that «
in G5 is computed by Gy (-) and the inverse of G ,(-), where Gy (-) and
G ,(-) are uniformly sampled from the set of all random functions on
Z*, and the value of a in G, is also uniform and independent random
distribution on Z;. Therefore, G4 and G5 are indistinguishable.

Game Gj5: The difference between G5 and G, is that the manner of
generating xtag is changed in the update protocol of G5. Specifically,
G5 replace computing xtag in G, with random sampling g”, where g

is an uniformly sampled generator for the group G and y i Z*. Since
the DDH assumption holds in the group G, the probability of a PPT
adversary distinguishing xtag = gx©6v() in G, from xtag = g’ in G
is negligible. Therefore, G5 and G, are indistinguishable.

1303

Digital Communications and Networks 11 (2025) 1293-1304
Game Gg: The difference between G4 and G5 is that the manner of
computing the maps involving u, e and Cg are changed in the update
and search protocol of Gg. Specifically, still taking « as an example,

Gg replace L[K || ST, ] <$— {0,1 }’l with L[7] <$— {0,1 }”1, where 7 is the
timestamp for each update operation. Note that each state of keyword is
different in G5, and the values sampled uniformly randomly are never
the same when input two different timestamps in G4. The map involving
e and Cgp are processed in the same way as L[-] in Gs. This implies that
G¢ and G5 are indistinguishable.

Simulator: In Ipg ALi,s(’l)’ the simulator S generates a view accord-
ing to the given leakage function

LY (op, (w,ind)) =L
£57"(q) = (TimeDB(q), Updt(q))

where TimeDB(g) and Updt(gq) are defined in (4) and (5) of Subsec-
tion 2.5. Specifically, from £U?4!, S gains no information about update
operations, and a series of variables are generated by S as done by Gg.
In the search protocol, S uses Updt(g) to learn the number of updates
involving the s-term w, as well as the corresponding timestamp and
x-term leakage for each update operation. It can also learn the final set
of file identifiers in the conjunction by using TimeDB(q). Moreover, S
can learn whether two (or more) conjunctive queries contain the same
s-term w,; by using Updt(q;) and Updt(qg,). Note that the view gener-
ated by S using the above information is identical to the view in Gg.
This completes the proof of Theorem 1.
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