
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan

An efficient conjunctive keyword searchable encryption for cloud-based

IoT systems ✩

Tianqi Peng a, Bei Gong a, Chong Guo a, Akhtar Badshah b, ,∗, Muhammad Waqas c,d, ,∗,

Hisham Alasmary e, Sheng Chen f ,g,

a Faculty of Information Technology, Beijing University of Technology, Beijing 100124 China
b Department of Software Engineering, University of Malakand, Dir Lower 18800, Pakistan
c School of Computing and Mathematical Sciences, Faculty of Engineering and Science, University of Greenwich, UK
d School of Engineering, Edith Cowan University, Perth, 6027 WA, Australia
e Department of Computer Science, College of Computer Science, King Khalid University, 61421, Abha, Saudi Arabia
f School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
g Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100 China

A R T I C L E I N F O A B S T R A C T

Keywords:

Symmetric searchable encryption

Conjunctive keyword search

Forward and backward privacy

Cloud server

Data privacy leakage has always been a critical concern in cloud-based Internet of Things (IoT) systems. Dynamic
Symmetric Searchable Encryption (DSSE) with forward and backward privacy aims to address this issue by
enabling updates and retrievals of ciphertext on untrusted cloud server while ensuring data privacy. However,
previous research on DSSE mostly focused on single keyword search, which limits its practical application in
cloud-based IoT systems. Recently, Patranabis (NDSS 2021) [1] proposed a groundbreaking DSSE scheme for
conjunctive keyword search. However, this scheme fails to effectively handle deletion operations in certain
circumstances, resulting in inaccurate query results. Additionally, the scheme introduces unnecessary search
overhead. To overcome these problems, we present CKSE, an efficient conjunctive keyword DSSE scheme. Our
scheme improves the oblivious shared computation protocol used in the scheme of Patranabis, thus enabling
a more comprehensive deletion functionality. Furthermore, we introduce a state chain structure to reduce
the search overhead. Through security analysis and experimental evaluation, we demonstrate that our CKSE
achieves more comprehensive deletion functionality while maintaining comparable search performance and
security, compared to the oblivious dynamic cross-tags protocol of Patranabis. The combination of comprehensive
functionality, high efficiency, and security makes our CKSE an ideal choice for deployment in cloud-based IoT
systems.

1. Introduction

With the advancement of cloud computing and the Internet of Things
(IoT), various cloud-based IoT systems, including intelligent logistics,
smart homes, and intelligent healthcare, are experiencing widespread
adoption [2--5]. During the deployment of these systems, individuals
and organizations often choose to outsource large volumes of data to
cloud servers for storage and processing. However, ensuring data pri

vacy becomes a critical concern due to the potential lack of trustworthi

ness of cloud servers. Unauthorized disclosure of sensitive information

✩ Peer review under the responsibility of the Chongqing University of Posts and Telecommunications.

* Corresponding authors.

E-mail addresses: tianqi_peng@emails.bjut.edu.cn (T. Peng), gongbei@bjut.edu.cn (B. Gong), chongguo@emails.bjut.edu.cn (C. Guo),
akhtarbadshah@uom.edu.pk (A. Badshah), engr.waqas2079@gmail.com (M. Waqas), alasmary@kku.edu.sa (H. Alasmary), sqc@soton.ac.uk (S. Chen).

can result in adverse consequences such as reputational damage, un

necessary discrimination, and location leakage [6--8]. To protect data
privacy, a common approach is to encrypt the data before uploading
it to the cloud server. However, traditional encryption algorithms ren

der the data indistinguishable from random values, posing a challenge
when performing effective retrieval on ciphertext.

To address the aforementioned challenge, researchers have proposed
Symmetric Searchable Encryption (SSE) as a solution. SSE aims to en

able the retrieval of ciphertext without revealing sensitive information.
An important further advancement in this field is Dynamic SSE (DSSE),

https://doi.org/10.1016/j.dcan.2025.03.002

Received 2 August 2024; Received in revised form 21 February 2025; Accepted 6 March 2025

Digital Communications and Networks 11 (2025) 1293–1304

Available online 13 March 2025
2352-8648/© 2025 Chongqing University of Posts and Telecommunications. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.ScienceDirect.com/
http://www.keaipublishing.com/dcan
http://orcid.org/0000-0001-7867-2657
http://orcid.org/0000-0003-0814-7544
http://orcid.org/0000-0001-6882-600X
mailto:tianqi_peng@emails.bjut.edu.cn
mailto:gongbei@bjut.edu.cn
mailto:chongguo@emails.bjut.edu.cn
mailto:akhtarbadshah@uom.edu.pk
mailto:engr.waqas2079@gmail.com
mailto:alasmary@kku.edu.sa
mailto:sqc@soton.ac.uk
https://doi.org/10.1016/j.dcan.2025.03.002
https://doi.org/10.1016/j.dcan.2025.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2025.03.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Peng, B. Gong, C. Guo et al.

which not only allows retrieval but also supports dynamic updates on
the encrypted database by revealing limited additional privacy informa

tion. Unfortunately, adversaries can exploit this leaked information to
launch attacks, such as file-injection attacks [9]. In order to mitigate the
security concerns arising from this information leakage, Stefanov et al.
[10] introduced two new concepts into the DSSE: forward privacy and
backward privacy. Forward privacy ensures that newly added files to
the database do not disclose whether they contain keywords that have
been previously queried. Conversely, backward privacy guarantees that
current search queries do not disclose any information about previously
deleted files. Bost et al. [11,12] provided formal definitions for forward
and backward privacy, and three types of backward privacy were de

fined in [12], with the security strength gradually weakening from Type

I to Type-III. Building upon these concepts, several dynamic searchable
encryption schemes with forward and backward privacy were proposed
in the literature [13--20].

Nevertheless, most existing DSSE schemes with forward and back

ward privacy only support single keyword search, which limits the
expressive efficiency of the scheme. In cloud-based IoT systems, it is
essential for DSSE to support conjunctive keyword search to enhance
the practicality of the scheme. Although running single-keyword DSSE
schemes multiple times can achieve conjunctive search, this approach
has efficiency and security issues. Specifically, the computational and
communication overhead is related to the update frequency of each
keyword, and when multiple keywords have high update frequencies,
the search performance is poor. In terms of security, the adversary may
learn the update count and timestamps of each keyword, as well as files
unrelated to the query. These additional leakages are undesirable. Re

cent works [1,21] have proposed dynamic conjunctive keyword search
schemes with forward and backward privacy. In particular, the Oblivi

ous Dynamic Cross-tags (ODXT) protocol, introduced in [1], is the first
efficient forward and Type-II backward private conjunctive keyword
DSSE scheme known to us. ODXT [1] builds upon the static scheme of
Oblivious Cross-tags (OXT) [22] and the single keyword DSSE scheme
known as Mitra [14]. The concept of ODXT [1] is similar to OXT [22],
where the server maintains two encrypted databases named ‘TSet’ and
‘XSet’. When a client issues a conjunctive search query, the server first
matches files containing the least frequent keyword in TSet. It then
uses cross-token and dynamic cross-tag techniques to determine whether
these files contain the remaining queried keywords in XSet. The server
returns the results to the client for further filtering. The key to enabling
dynamic conjunctive keyword search in ODXT [1] lies in the on-thefly
computation of cross-tags and cross-tokens with each update operation.

Although ODXT [1] is more efficient than the early conjunctive
keyword DSSE schemes, it still has two drawbacks. First, it fails to
adequately consider the update type of a keyword when computing
the cross-tag, which results in the inability to perform valid delete
operations in certain circumstances. For instance, consider the fol

lowing interaction between the client and server: [1, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)],
[2, 𝑎𝑑𝑑, (𝑤2, 𝑖𝑛𝑑1)], [3, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1 ∧𝑤2)], [4, 𝑑𝑒𝑙, (𝑤2, 𝑖𝑛𝑑1)], [5, 𝑠𝑒𝑎𝑟𝑐ℎ,
(𝑤1 ∧𝑤2)]. After the delete operation at time 4, if the server performs
a search operation (𝑤1 ∧𝑤2), the results still contain 𝑖𝑛𝑑1 . It is worth
noting that similar delete operations are common in real-world scenar

ios, and a scheme that cannot effectively handle delete operations will
yield inaccurate query results. Second, consider that the client runs an
instance of Mitra within ODXT [1]. In order to achieve retrieval in TSet,
the client needs to compute all the locations involving the least frequent
keyword in advance and send them to the server. This increases the com

putational and communication overhead on the client side, particularly
when the least frequent keyword still has a high update frequency. Con

sequently, the search performance degrades significantly. To sum up, the
lack of effective delete operations and the computational and communi

cation overheads hinder the practicality of existing conjunctive keyword
DSSE schemes in cloud-IoT systems [23,24].

In this paper, our objective is to design a conjunctive keyword search
scheme with forward and backward privacy, incorporating a complete

deletion function, while minimizing search overheads. We anticipate
two significant challenges that need to be addressed. First, we need
to achieve efficient deletion operations within the scheme while ensur

ing that the search complexity remains proportional to the number of
documents containing the least frequent keywords in conjunction. This
scenario represents the optimal achievable search complexity among
conjunctive SSE schemes, as noted in [1]. Second, supporting more com

prehensive functions inherently results in increased overheads and may
introduce additional security concerns. Striking a right balance between
functionality, efficiency, and security simultaneously within a scheme
poses a challenging task. Before proceeding to our contributions, we
provide a comprehensive review of the existing literature.

1.1. Related works

Song et al. [25] proposed the first practical SSE scheme having lin

ear search time with the size of database. Subsequently, Curtmola et al.
[26] considered leakage and constructed the first reversed-index based
scheme with sub-linear efficiency. Chase and Kamara [27] traded higher
storage complexity for the similar scheme. However, these works focus
on static settings and are not suitable for many scenarios that require
real-time data updates. To support data update on SSE and mitigate the
leakage, the forward and backward private DSSE has become an impor

tant branch in this research area.

1.1.1. Single keyword DSSE

The first sub-linear-complexity DSSE scheme was proposed by
Karama et al. [28]. Subsequent work has focused on the security, ef

ficiency, and expressiveness of DSSE. Liu et al. [29] and Yu et al. [30]
leveraged the flexibility of Attribute-Based Encryption (ABE) combined
with blockchain to enable fine-grained search and revocable functional

ities. Yin et al. [31] introduced a secure index based on access policies
and an attribute-based search token, which supports fine-grained search
with integrated access control. While these methods reduce decryption
and revocation overhead, DSSE schemes relying on ABE still face chal

lenges in resource-constrained environments.

Forward and backward privacy can address the additional privacy
leakage issues introduced by dynamic updates. The notion of forward
privacy was first proposed in [32]. Since then, several forward private
DSSE schemes supporting single keyword search have been proposed
[11,33,34]. Among them, Bost [11] proposed a pioneering forward pri

vacy scheme called Sophos, which uses the state-based approach to
reduce the overhead of the scheme. Although the trapdoor permuta

tion structure of Sophos is limited by public key operations, it provides
new ideas for subsequent research. Backward privacy was first intro

duced by Stefanov et al. [10]. Later, Bost et al. [12] formally defined
three types of backward privacy, called Type-I, Type-II and Type-III
with progressively weakening security, and a number of schemes with
various types of backward privacy were proposed in [12--17]. Chamani
et al. [14] presented three schemes, Mitra, Orion and Hours. Mitra, a
Type-II scheme, obtains better performance by using symmetric key en

cryption. Orion is a Type-I scheme based on oblivious random-access
memory, and Hours, a Type-III scheme, optimizes Orion’s performance
at the cost of leaking more information. In order to reduce the client-side
storage, Demertzis et al. [16] proposed three schemes called SDa, SDd
and Qos. SDa [16] and SDd [16] use static-to-dynamic techniques to
achieve Type-II backward privacy. Qos [16] is a quasi-optimal Type-III
backward privacy scheme. Dou et al. [35] introduced a robust scheme
that ensures both forward and backward privacy, designed to handle
more complex update and query processes. Chen et al. [36] leveraged
blockchain and hash-proof chain technologies to create a publicly ver

ifiable DSSE scheme, incorporating a novel data hiding structure that
offers both forward and backward privacy.

To the best of our knowledge, majority of the existing forward and
backward private schemes primarily focus on supporting single keyword
search, with limited attention given to conjunctive keyword search.

Digital Communications and Networks 11 (2025) 1293–1304

1294

T. Peng, B. Gong, C. Guo et al.

Table 1
Comparison of existing schemes with proposed scheme.

Scheme Query
Type

Update
cost

Search
cost

Forward
Privacy

Backward
Privacy

[1] Conjunctive 𝑂(1) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛) ✓ II
[16] Single 𝑂(log𝑃) 𝑂(𝑎𝑤 + log𝑃) ✓ II
[16] Single 𝑂(log3 𝑃) 𝑂(𝑛𝑤 log 𝑖𝑤 + log2 ||) ✓ III
[35] Single 𝑂(|𝐷|) 𝑂(𝑎𝑤|𝐷|) ✓ I−

[40] Conjunctive 𝑂(𝑎𝑓) 𝑂(𝑎𝑤𝑚𝑖𝑛) ✓ I−

[41] Conjunctive 𝑂(1) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛) ✓ ×
[42] Conjunctive 𝑂(log𝑁 log𝑘 𝑃) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛 log𝑁 log𝑘 𝑃) ✓ I
Ours Conjunctive 𝑂(1) 𝑂(𝑛𝑎𝑤𝑚𝑖𝑛) ✓ II

𝑃 is the number of keyword/document pairs, |𝐷| is the number of total files, and |𝑠| is the
number of authorized user. For keyword 𝑤, 𝑎𝑤 is the total number of keyword updates, 𝑖𝑤 is
the total number of Add queries, 𝑛𝑤 is the number of files currently containing 𝑤, 𝑎𝑤𝑚𝑖𝑛 is the
number of the least update keyword in 𝑞 = (𝑤1 ∧𝑤2∧,⋯ ,∧𝑤𝑛), and 𝑛 is the number of keyword
in conjunctive query 𝑞. 𝑎𝑓 is the number of updates for 𝑓 .

1.1.2. Conjunctive keyword DSSE

The inclusion of conjunctive keyword search functionality greatly
enhances the practicality of SSE schemes. The first efficient conjunctive
keyword SSE scheme, OXT, was proposed by Cash et al. [22]. However,
its construction lacks the capability for data updates. To address this
limitation, Lai et al. [37] compensated for the leakage in OXT, while the
works [38] and [39] focused on forward privacy in conjunctive keyword
searches on dynamic databases. Zuo et al. [21] introduced FBDSSE-CQ,
a forward and backward private conjunctive keyword search scheme
that trades linear search overhead for efficiency. Chen et al. [40] devel

oped DSSE-DC, a conjunctive search DSSE scheme featuring a revocation
mechanism based on inner product matching. Guo et al. [41] created a
forward index using a t-puncturable pseudorandom function, combin

ing it with an inverted index to support conjunctive keyword searches.
Li et al. [42] introduced an update counter to build a bi-directional in

dex structure that supports conjunctive queries over bipartite graphs.
Their scheme also employed a new oblivious data structure for stor

ing the bi-directional index and used semantically secure encryption
to protect node information, achieving forward privacy and backward
privacy. Yuan et al. [43] presented the first sub-linear KPRP-hiding con

junctive DSSE scheme with forward and backward privacy, utilizing a
novel cryptographic primitive called Attribute Updatable Hidden Map
Encryption (AUHME). Li et al. [44] introduced the Indistinguishable Bi

nary Tree (IBtree), a highly balanced binary tree structure designed to
support conjunctive keyword searches. Additionally, numerous studies
have expanded DSSE to incorporate various advanced query functionali

ties [45--47]. More recently, MitraCONJ, BDXT and ODXT were proposed
in [1]. MitraCONJ [1] is a straightforward extension of Mitra from sin

gle keyword queries to conjunctive queries, but the computational and
communication complexity of this scheme is proportional to the sum of
the update frequency of each keyword in conjunction. BDXT [1] is the
first forward and backward private conjunctive keyword SSE scheme
with the computational and communication complexity proportional to
the least frequent keywords in conjunction. ODXT [1] further optimizes
the performance of BDXT, which is the most effective forward and back

ward conjunctive keyword scheme at present. However, as mentioned
before, ODXT [1] suffers from ineffective deletion and high search over

head.

1.2. Our contributions

Against the above background and to achieve more efficient conjunc

tive keyword search in real-world scenarios, we proposed a conjunctive
keyword DSSE scheme, named CKSE. In particular, CKSE achieves more
comprehensive deletion operations than ODXT [1], while balancing the
efficiency and security. Table 1 shows the comparison of our scheme
with other state-of-the-art schemes. Our contributions can be summa

rized as follows.

∙ We propose an efficient conjunctive keyword DSSE scheme called
CKSE based on ODXT [1]. By constructing a new cross-tag that com

bines the update type with the keyword and modifying the elements
involving the oblivious shared computation, our CKSE is capable of
performing effective deletion operations and providing the client
with accurate query results. Moreover, the search complexity of
CKSE is related to the least update frequency keyword.

∙ We introduce a state chain structure to instantiate our scheme. This
structure is a symmetric cryptographic primitive version of the pub

lic key-based trapdoor permutation structure [11]. With this state

chain structure, the client only needs to obtain the latest state of the
keyword to execute subsequent operations, which greatly reduces
the computational and communication overheads of the scheme.

∙ We conduct a comprehensive analysis to prove that CKSE maintains
forward and Type-II backward privacy. Additionally, we implement
CKSE and perform experiments to evaluate its performance in com

parison with ODXT [1]. The results demonstrate that our scheme
achieves search performance comparable to ODXT [1].

2. Preliminaries

This section presents the notations used in the paper as well as the
cryptographic background and definitions for SSE.

2.1. Notations

We use 𝑥
$
→ 𝑋 to denote that an element 𝑥 is uniformly and ran

domly sampled from the set 𝑋. For a security parameter 𝜆 ∈ ℕ, we
refer to 𝑝𝑜𝑙𝑦(𝜆) and 𝑛𝑒𝑔𝑙(𝜆) as the unspecified polynomial and negligible
functions of 𝜆, respectively. We store all documents and their respective
contained keywords 𝑤 ∈ in the database 𝐃𝐁 as keyword/document
identifier pairs (𝑤, 𝑖𝑛𝑑), where  is the set of all keywords in 𝐃𝐁, and
𝑖𝑛𝑑 is the file identifier. We also denote by || the number of distinct
keywords, and by 𝐃𝐁(𝑤) the set of all documents containing the key

word 𝑤.

In addition, we use 𝑞 = (𝑤1 ∧ 𝑤2⋯ ∧ 𝑤𝑛) to denote a conjunctive
query, and assume that 𝑤1 is the least frequent term in the conjunctive,
called 𝑠-term, while the remaining keywords in 𝑞 are called 𝑥-terms. The
result of a conjunctive query is expressed as 𝐃𝐁(𝑞) = ∩𝑛

𝑖=1𝐃𝐁(𝑤𝑖), i.e.,
the intersection of the search results for all keywords 𝑤𝑖, 𝑖 ∈ {1,⋯ , 𝑛}.

2.2. Decisional Di˙ie-Hellman assumption

Let 𝑔 be a uniformly sampled generator for the 𝑝 = 𝑝(𝜆) order cyclic
group 𝔾. The Decisional Di˙ie-Hellman (DDH) assumption is that for
any Probabilistic Polynomial-Time (PPT) adversary , the probability
of distinguishing (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) from (𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐) is negligible, formally
defined as:

Digital Communications and Networks 11 (2025) 1293–1304

1295

T. Peng, B. Gong, C. Guo et al.

|||Pr[(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) = 1] − Pr[(𝑔, 𝑔𝑎, 𝑔𝑏, 𝑔𝑐) = 1]|||
≤ 𝑛𝑒𝑔𝑙(𝜆) (1)

2.3. Dynamic searchable encryption

A dynamic searchable encryption scheme consists of three parts: one
𝑆𝑒𝑡𝑢𝑝 algorithm, two protocols 𝑈𝑝𝑑𝑎𝑡𝑒 and 𝑆𝑒𝑎𝑟𝑐ℎ that are run by
client and server, as follows.

𝑆𝑒𝑡𝑢𝑝(𝜆,𝐃𝐁) is executed unilaterally by the client. This algorithm
takes the security parameter 𝜆 and the database 𝐃𝐁 as input and outputs
the tuple (𝑠𝑘, 𝜎;𝐄𝐃𝐁), where 𝑠𝑘 denotes the client’s key, 𝜎 is the client’s
local state, both of which are stored locally by the client, and 𝐄𝐃𝐁 is an
empty encrypted database stored by the server.

𝑈𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝜎,𝑤, 𝑖𝑛𝑑, 𝑜𝑝;𝐄𝐃𝐁) is executed jointly by the client and
server. This protocol takes (𝑠𝑘, 𝜎,𝑤, 𝑖𝑛𝑑, 𝑜𝑝) as input for the client,
where 𝑜𝑝 ∈ (𝑎𝑑𝑑,𝑑𝑒𝑙) indicates the update type, and takes the encrypted
database 𝐄𝐃𝐁 as input for the server. Eventually, the client gets a mod

ified local state 𝜎′ and the server gets a modified encrypted database
𝐄𝐃𝐁′.

𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑘, 𝜎, 𝑞;𝐄𝐃𝐁) is executed jointly by the client and server.
This protocol takes (𝑠𝑘, 𝜎, 𝑞) as input for the client, and takes 𝐄𝐃𝐁 as
input for the client. At the end of the protocol, the client outputs the
result of query 𝐃𝐁(𝑞).

Note that there are two definitions of dynamic searchable encryp

tion [48,49]. One is the above definition adopted in this paper. Another
definition is to take the addition/deletion of the entire file as an up

date operation, which is functionally equivalent to performing multiple
add/delete operations on keyword-document identifier pairs in our def

inition.

Finally, we default that after receiving the file identifier contained
in 𝐃𝐁(𝑞), the client still needs to generate additional interaction with
the server to obtain the actual file.

2.4. Definitions of correctness and security

Correctness. The correctness of a dynamic searchable encryption
scheme Σ = (𝑆𝑒𝑡𝑢𝑝,𝑈𝑝𝑑𝑎𝑡𝑒,𝑆𝑒𝑎𝑟𝑐ℎ) means that for any conjunctive
query 𝑞, the search protocol can always return the correct result 𝐃𝐁(𝑞).

Security. The security of a dynamic searchable encryption scheme
is described by a leakage function  = (𝑆𝑡𝑝,𝑈𝑝𝑑𝑡,𝑆𝑟𝑐ℎ), where 𝑆𝑡𝑝,
𝑈𝑝𝑑𝑡 and 𝑆𝑟𝑐ℎ represent the leakage information captured in the
setup, update and search, respectively, which can be learned by an ad

versary.

If an adversary server cannot learn any private information except
those contained in leakage function, the dynamic searchable encryp

tion scheme is secure. Formally, the security of a dynamic searchable
encryption scheme can be proven by two games of IDEAL and REAL.

• REAL
Σ

(𝜆): This game first runs 𝑆𝑒𝑡𝑢𝑝(𝜆,𝐃𝐁) algorithm against

database 𝐃𝐁 chosen by adversary  to obtain an encrypted
database 𝐄𝐃𝐁. Then, the game executes 𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑘, 𝜎, 𝑞;𝐄𝐃𝐁) or
𝑈𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝜎,𝑤, 𝑖𝑛𝑑, 𝑜𝑝;𝐄𝐃𝐁) protocol based on a series of queries
𝑞𝑖 performed by . Finally, according to the returned result, adver

sary  outputs bit 𝑏 ∈ {0,1}.

• IDEALΣ,S(𝜆): After adversary  selects database 𝐃𝐁, simulator  re

turns encrypted database 𝐄𝐃𝐁← (𝑆𝑡𝑝(𝐃𝐁)) to  by the leakage
function. Then, simulator  executes (𝑆𝑟𝑐ℎ(𝑞𝑖)) or (𝑈𝑝𝑑𝑡(𝑞𝑖))
according to a series of queries performed by . Finally, according
to the returned result, adversary  outputs bit 𝑏 ∈ {0,1}.

Definition 1 (-adaptive Security). A DSSE scheme is -adaptively se

cure if for any PPT adversary , there exists an efficient simulator 
such that:

|||Pr
(
REAL

Σ

(𝜆) = 1

)
− Pr

(
IDEALΣ,𝑆 (𝜆) = 1

)|||≤ 𝑛𝑒𝑔𝑙(𝜆) (2)

2.5. Forward and backward privacy

Forward privacy. For any adversary who can observe the interac

tion between the client and server, forward privacy can ensure that the
update does not leak information about the latest addition operation,
which prevents the server from matching to the new update using pre

vious queries. The formal definition of forward privacy is as follows
[12].

Definition 2 (Forward Privacy). An -adaptively-secure SSE scheme is
forward private, if leakage function 𝑈𝑝𝑑𝑡 can be expressed in the fol

lowing form:

𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) =′(𝑜𝑝, 𝑖𝑛𝑑) (3)

where ′ is stateless function.

Backward privacy. Backward privacy ensures that the server cannot
match files that were added and then removed. Bost at al. [12] formally
defines three types of backward privacy: Type-I, Type-II, and Type-III.
The security decreases from Type-I to Type-III. Type-I and Type-II are
considered to be strong backward private, while Type-III is a weaker
backward private. Note that Type-III backward privacy leaks the times

tamp of when the files were deleted. For cloud-IoT system, time is a crit

ical piece of information that many attacks [50,51] can exploit to break
the security of the system. For DSSE, the adversary can correlate the in

formation of subsequent queries or make statistical inferences based on
when the file was deleted. Therefore, for the DSSE scheme deployed in
cloud-IoT system, it is highly desire to reach higher level of backward
privacy. We focus on Type-II backward privacy involved in the subse

quent content. This kind of backward privacy allows the scheme to leak
the file identifier containing the keyword 𝑤 and the timestamp, when
keyword-identifier pair (𝑤, 𝑖𝑛𝑑) was inserted into the database, and the
number of keyword updates. Before formally defining Type-II backward
privacy, we introduce two related functions 𝐓𝐢𝐦𝐞𝐃𝐁(𝑤) and 𝐔𝐩𝐝𝐭(𝑤).

Let 𝐐 be a list maintaining all the search queries (𝑢,𝑤) and the up

date queries (𝑡, 𝑜𝑝, (𝑖𝑛𝑑,𝑤)), where 𝑡 denotes the timestamp of query.
𝐓𝐢𝐦𝐞𝐃𝐁(𝑤) consists of the files containing the keywords 𝑤 that have
not yet been deleted, along with their timestamps of insertion, that is,

𝐓𝐢𝐦𝐞𝐃𝐁(𝑤) =
{
(𝑡, 𝑖𝑛𝑑)|(𝑡, 𝑎𝑑𝑑, (𝑤, 𝑖𝑛𝑑)) ∈𝐐 and

∀𝑡′, (𝑡′, 𝑑𝑒𝑙, (𝑤, 𝑖𝑛𝑑)) ∉𝐐
}

(4)

𝐔𝐩𝐝𝐭(𝑤) is the function that contain the timestamp of each update of
the keyword, which is defined as:

𝐔𝐩𝐝𝐭(𝑤) =
{
𝑡|(𝑡, 𝑎𝑑𝑑, (𝑤, 𝑖𝑛𝑑)) ∈𝐐 or

(𝑡, 𝑑𝑒𝑙, (𝑤, 𝑖𝑛𝑑)) ∈𝐐
}

(5)

Definition 3 (Backward Privacy). An -adaptively-secure SSE scheme is
Type-II backward private, if leakage function 𝑈𝑝𝑑𝑡 and 𝑆𝑟𝑐ℎ can be
written as following form:

𝑈𝑝𝑑𝑡(𝑜𝑝,𝑤, 𝑖𝑛𝑑) =′(𝑜𝑝,𝑤) and
𝑆𝑟𝑐ℎ(𝑤) =′′(𝐓𝐢𝐦𝐞𝐃𝐁(𝑤),𝐔𝐩𝐝𝐭(𝑤)) (6)

where ′′ and ′′′ are stateless functions.

3. CKSE: an efficient conjunctive keyword searchable encryption
scheme

In this section, we present our CKSE, an efficient conjunctive key

word searchable symmetric encryption scheme. This scheme achieves
more efficient deletion operations than ODXT [1], while reducing com

munication and computational overheads as much as possible. More

over, CKSE maintains the forward and Type-II backward private.

Digital Communications and Networks 11 (2025) 1293–1304

1296

T. Peng, B. Gong, C. Guo et al.

Fig. 1. The system model of CKSE for smart home.

Algorithm 1 CKSE.Setup(𝜆).

Client:

1: 𝐾𝑆
$
←←←←←← {0,1}𝜆 for PRF 𝐹

2: 𝐾𝑋,𝐾𝑌 ,𝐾𝑍
$
←←←←←← {0,1}𝜆 for PRF 𝐹𝑝

3: 𝐖← empty map
Server:

4: 𝐓,𝐗← empty map

3.1. System model of CKSE

Our scheme is designed to achieve more comprehensive, efficient
and secure conjunctive keyword search in cloud-IoT systems. Smart
home is a typical cloud-IoT system, which includes the collection and
transmission of data, e.g., temperature, health and air quality, etc., by
smart devices and the query of various data by the host. Taking the
smart home as an example, Fig. 1 shows the system model of CKSE for
smart home. It consists of three kinds of entities as follows.

Data Owner (DO). DO encrypts the collected data and uploads it to
the cloud server, and performs real-time updates on the data.

Data User (DU). DU initiates search queries to the cloud server and
decrypts the obtained encrypted results.

Cloud Server (CS). CS stores the encrypted data uploaded by DO
and performs ciphertext retrieval on the search queries issued by DU.
CS is a semi-honest entity provided by a third party. It strictly follows
the steps of the protocol but may curiously learn information during the
execution process.

Like all existing DSSE schemes, the security of our scheme relies on
a ``strong'' assumption that the client’s key can always be protected and
will not be compromised [52]. Therefore, the issue of key sharing and
distribution is not our concern. Since both DO and DU are legal, and DO
can also act as DU, we refer DO and DU collectively as Clients in the
following text.

3.2. Construction of CKSE

Although the basic idea of CKSE is similar to ODXT [1], the key
difference between them is that CKSE achieves effective deletion by de

signing a new oblivious dynamic cross-tags. Also unlike ODXT [1] which
uses Mitra for the instantiation, causing unnecessary computational and
communication overhead, CKSE uses a state chain structure to complete
the instantiation, which reduces the computation and communication
overhead. To elucidate the core idea behind CKSE, we go back to why
ODXT [1] lacks the above features.

First, ODXT [1] cannot delete a file in certain circumstances. In
order to execute effective retrieval in XSet, the cross-tag known as

Algorithm 2 CKSE.Update(𝐾𝑆,𝐾𝑋,𝐾𝑌 ,𝐾𝑍,𝐖,𝑤, 𝑖𝑛𝑑, 𝑜𝑝;𝐓,𝐗).
Client:

1: 𝐾𝑤 || 𝐾∗
𝑤
← 𝐹 (𝐾𝑆,𝑤)

2: (𝑆𝑇𝑐, 𝑐)←𝐖[𝑤]
3: if (𝑆𝑇𝑐, 𝑐) =⟂ then

4: 𝑆𝑇 0
$
←←←←←← {0,1}𝜆, 𝑐←← 0

5: end if

6: 𝑆𝑇 𝑐+1
$
←←←←←← {0,1}𝜆

7: 𝐖[𝑤]← (𝑆𝑇𝑐+1, 𝑐 + 1)
8: 𝑢𝑐+1 ←𝐻1(𝐾𝑤,𝑆𝑇𝑐+1)
9: 𝑒𝑐+1 ← (𝑖𝑛𝑑||𝑜𝑝)⊕𝐻2(𝐾∗

𝑤
, 𝑐 + 1)

10: 𝐶𝑆𝑇𝑐 ← 𝑆𝑇𝑐 ⊕𝐻3(𝐾𝑤,𝑆𝑇𝑐+1)
11: 𝛼← 𝐹𝑝(𝐾𝑌 , 𝑖𝑛𝑑) ⋅ (𝐹𝑝(𝐾𝑍,𝑤||𝑐 + 1))−1
12: 𝑥𝑡𝑎𝑔← 𝑔𝐹𝑝(𝐾𝑋 ,𝑤||𝑜𝑝)⋅𝐹𝑝(𝐾𝐼 ,𝑖𝑛𝑑)
13: 𝑆𝑒𝑛𝑑(𝑢𝑐+1, 𝑒𝑐+1, 𝐶𝑆𝑇𝑐 , 𝛼, 𝑥𝑡𝑎𝑔)𝑡𝑜𝑠𝑒𝑟𝑣𝑒𝑟

Server:

14: 𝐓[𝑢𝑐+1] = (𝑒𝑐+1, 𝐶𝑆𝑇𝑐 , 𝛼)
15: 𝐗[𝑥𝑡𝑎𝑔] = 1

𝑥𝑡𝑎𝑔 constructed by ODXT [1] is split into two parts, one part is re

lated to the pair (𝑖𝑛𝑑𝑗 , 𝑜𝑝) involving the 𝑠-term 𝑤1 and the other is
related to the 𝑥-terms 𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛. It can be seen that for the
same file, the server can only recognize the update of 𝑤1 accord

ing to the 𝑥𝑡𝑎𝑔. Consider the case given in the introduction section
again: [1, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)], [2, 𝑎𝑑𝑑, (𝑤2, 𝑖𝑛𝑑1)], [3, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1 ∧ 𝑤2)],
[4, 𝑑𝑒𝑙, (𝑤2, 𝑖𝑛𝑑1)], [5, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1 ∧ 𝑤2)]. Since the update type in the
cross-tag only corresponds to the files containing 𝑤1 , the cross-tag will
not be affected by the deletion operation at time 4. For the search query
at time 5, the final retrieval result will still contain what has been re

moved. This is clearly unreasonable (𝑤2 is not included in 𝑖𝑛𝑑1 at this
time). In addition, ODXT [1] achieves conjunctive search based on Mi

tra’s framework. During the search, the client needs to pre-compute
all the locations of update involving the 𝑠-term 𝑤1 and send them to
the server. Afterward, subsequent search operations can be performed.
However, the computational and communication overhead on the client
side scales with the frequency of 𝑤1. Consequently, when the 𝑠-term has
very high frequency of updates, the scheme will generate lots of unnec

essary search overhead.

A goal of CKSE is to incorporate the update operations of 𝑥-terms
𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛, into the oblivious cross-tag computation and make it un

necessary for clients to obtain all the locations of keywords during the
search, thereby avoiding the ineffective deletion and reducing the over

head. Algorithms 1 to 3 summarize the 𝑺𝒆𝒕𝒖𝒑, 𝑼𝒑𝒅𝒂𝒕𝒆 and 𝑺𝒆𝒂𝒓𝒄𝒉
procedures of our CKSE, respectively.

𝑺𝒆𝒕𝒖𝒑. In this algorithm, the client generates 𝜆-bit keys 𝐾𝑆 , 𝐾𝑋 , 𝐾𝑌
and 𝐾𝑍 for the Pseudo-Random Functions (PRFs) 𝐹 and 𝐹𝑝 respectively
and holds an empty set 𝐖 to store the state of each keyword. On the
server side, two empty sets 𝐓 and 𝐗 are generated to store encrypted
indexes.

𝑼𝒑𝒅𝒂𝒕𝒆. When updating a keyword/file identifier pair [𝑎𝑑𝑑∕𝑑𝑒𝑙, (𝑤,
𝑖𝑛𝑑)], the client first queries the state 𝑆𝑇𝑐 and update times 𝑐 of the
keyword 𝑤 according to 𝐖[𝑤], and then randomly generates a new
state 𝑆𝑇𝑐+1 and updates 𝐖[𝑤] (lines 1-7). Next, the client uses the new
state 𝑆𝑇𝑐+1 and several hash functions to compute encrypted entries
𝑒𝑐+1 along with location 𝑢𝑐+1, as well as a state token 𝐶𝑆𝑇𝑐 to trace the
previous state of the keyword 𝑤 (lines 8-10). More importantly, in order
to achieve subsequent conjunctive queries, the client needs to obtain
a blinding factor 𝛼 and a cross-tag 𝑥𝑡𝑎𝑔 so that the server can learn
whether a fixed file contains all the keywords in the conjunctive query
(lines 11-12). Finally, the client sends (𝑢𝑐+1, 𝑒𝑐+1,𝐶𝑆𝑇𝑐 , 𝛼, 𝑥𝑡𝑎𝑔) to the
server, who stores (𝑒𝑐+1,𝐶𝑆𝑇𝑐 , 𝛼) in 𝐓[𝑢𝑐+1] and sets the corresponding
𝐗[𝑥𝑡𝑎𝑔] to 1 (lines 13-15).

𝑺𝒆𝒂𝒓𝒄𝒉. Assume that 𝑤1 is the keyword with the least update fre

quency. In order to achieve the search query for (𝑤1 ∧𝑤2 ∧⋯∧𝑤𝑛), the
client uses the currently state of the 𝑠-term 𝑤1 to get the cross-token pair
(𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 , 𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙) of 𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛, which involves each update of

Digital Communications and Networks 11 (2025) 1293–1304

1297

T. Peng, B. Gong, C. Guo et al.

Algorithm 3 CKSE.Search(𝐾𝑆,𝐾𝑋,𝐾𝑌 ,𝐾𝑍,𝐖,𝑤;𝐓,𝐗).
Client:

1: Assume 𝑤1 is the keyword with least updates

2: 𝐾𝑤 || 𝐾∗
𝑤
← 𝐹 (𝐾𝑆,𝑤1)

3: (𝑆𝑇𝑐1 , 𝑐1)←𝐖[𝑤1]
4: for 𝑗 = 1 to 𝑐1 do

5: for 𝑖 = 2 to 𝑛 do

6: 𝐱𝐭𝐨𝐤𝐞𝐧[𝑖, 𝑗]← 𝑔𝐹𝑝(𝐾𝑋 ,𝑤𝑖||𝑎𝑑𝑑∕𝑑𝑒𝑙)⋅𝐹𝑝(𝐾𝑍 ,𝑤1 ||𝑗)
7: end for

8: end for

9: Send (𝐾𝑤,𝑆𝑇𝑐1 , 𝑐1,𝐱𝐭𝐨𝐤𝐞𝐧[1],⋯ ,𝐱𝐭𝐨𝐤𝐞𝐧[𝑐1]) to server

Server:

10: 𝐕𝐚𝐥← ∅
11: for j = 𝑐1 to 1 do

12: 𝑐𝑛𝑡𝑗 = 1
13: 𝑢𝑗 ←𝐻1(𝐾𝑤,𝑆𝑇𝑗)
14: (𝑒𝑗 ,𝐶𝑆𝑇𝑗−1 , 𝛼𝑗)← 𝐓[𝑢𝑗]
15: for i = 2 to 𝑛 do

16: (𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 , 𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙)← 𝐱𝐭𝐨𝐤𝐞𝐧[𝑖, 𝑗]
17: if 𝐗[(𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑)𝛼𝑗] = 1,𝐗[(𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙)𝛼𝑗] =⟂ then

18: 𝑐𝑛𝑡𝑗 = 𝑐𝑛𝑡𝑗 + 1
19: end if

20: end for

21: 𝐕𝐚𝐥← (𝑐𝑛𝑡𝑗 , 𝑒𝑗 , 𝑗)
22: 𝑆𝑇𝑗−1 ← 𝐶𝑆𝑇𝑗−1 ⊕𝐻3(𝐾𝑤,𝑆𝑇𝑗)
23: end for

24: Send 𝐕𝐚𝐥 to client

Client:

25: 𝐑𝐞𝐬← ∅
26: for each (𝑐𝑛𝑡𝑗 , 𝑒𝑗 , 𝑗) ∈𝐕𝐚𝐥 do

27: (𝑖𝑛𝑑𝑗 ||𝑜𝑝𝑗)← 𝑒𝑗 ⊕𝐻2(𝐾∗
𝑤
, 𝑗)

28: if 𝑜𝑝𝑗 = 𝑎𝑑𝑑, 𝑐𝑛𝑡𝑗 = 𝑛 then

29: 𝐑𝐞𝐬←𝐑𝐞𝐬 ∪ 𝑖𝑛𝑑𝑗
30: else if 𝑜𝑝𝑗 = 𝑎𝑑𝑑, 𝑐𝑛𝑡𝑗 > 0 then

31: 𝐑𝐞𝐬←𝐑𝐞𝐬 ⧵ 𝑖𝑛𝑑𝑗
32: end if

33: end for

34: return 𝐑𝐞𝐬

𝑤1. The search token (𝐾𝑤,𝑆𝑇𝑐1 , 𝑐1,𝐱𝐭𝐨𝐤𝐞𝐧) is then sent to the server
(lines 20-29). After receiving the search token, the server first computes
the location 𝑢𝑗 according to the current state of 𝑤1 , and takes out the
current encrypted entry 𝑒𝑗 , state token 𝐶𝑆𝑇𝑗−1 and blinding factor 𝛼𝑗
from 𝐓[𝑢𝑗] (lines 32-34). Upon using (𝑥𝑡𝑜𝑘𝑒𝑛𝑎𝑑𝑑 , 𝑥𝑡𝑜𝑘𝑒𝑛𝑑𝑒𝑙) and 𝛼𝑗 to
obtain the cross-tag 𝑥𝑡𝑎𝑔, the server exploits it to learn whether the cur

rent update contains 𝑤𝑖, 𝑖 ∈ 2,⋯ , 𝑛 (lines 35-40). Similar to locations,
the server also observes 𝑥𝑡𝑎𝑔 during the update. The encrypted entry
and counter are then stored in the list 𝐕𝐚𝐥, and the state token and the
current state are used to infer a previous state by the server (lines 41-42).
Iteratively (lines 31-43), the server obtains all the states and correspond

ing encrypted entries about (𝑤1 ∧𝑤2 ∧⋯ ∧𝑤𝑛), and sends 𝐕𝐚𝐥 to the
client (line 44). Finally, the client decrypts the encrypted entries locally
and further filters them (lines 45-55).

We now further explain the important features of our CKSE.

3.2.1. New cross-tag

To support conjunctive keyword search while achieving efficient
deletion operations, the first important feature of CKSE is to construct a
new cross-tag as:

𝑥𝑡𝑎𝑔𝑖,𝑗,𝑜𝑝 ← 𝑔𝐹𝑝(𝐾𝑋,𝑤𝑖||𝑜𝑝)⋅𝐹𝑝(𝐾𝑌 ,𝑖𝑛𝑑𝑗) (7)

Conceptually, our cross-tag is also divided into two parts. But unlike
ODXT [1], we integrate the update types of 𝑤𝑖 , 𝑖 ∈2,⋯ , 𝑛, into the gen

eration of cross-tag. The first part of our cross tag contains 𝑤𝑖 along
with update type, and the second part is only related to the file identi

fier containing 𝑤1. Next, to perform effective conjunctive retrieval with
new cross-tag, we modify the cross-token to add/delete token pairs as:

𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑎𝑑𝑑 ← 𝑔𝐹𝑝(𝐾𝑋,𝑤𝑖||𝑎𝑑𝑑)⋅𝐹𝑝(𝐾𝑍,𝑤1||𝑗)
𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑑𝑒𝑙 ← 𝑔𝐹𝑝(𝐾𝑋,𝑤𝑖||𝑑𝑒𝑙)⋅𝐹𝑝(𝐾𝑍,𝑤1||𝑗) (8)

Upon receiving the add/delete token pairs, the server obtains a blind
factor 𝛼𝑗 involving the 𝑗𝑡ℎ update of 𝑤1 from TSet:

𝛼𝑗 ← 𝐹𝑝(𝐾𝐼 , 𝑖𝑛𝑑𝑗) ⋅ (𝐹𝑝(𝐾𝑍,𝑤1||𝑗))−1 (9)

Given the add/delete token pairs 𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑜𝑝, 𝑜𝑝 = {𝑎𝑑𝑑,𝑑𝑒𝑙} and a blind
factor 𝛼𝑗 , the server can easily carries out the oblivious cross-tag com

putation as:

𝑥𝑡𝑎𝑔𝑖,𝑗 =
(
𝑥𝑡𝑜𝑘𝑒𝑛𝑖,𝑗,𝑜𝑝

)𝛼𝑗 (10)

thereby detecting whether each update of 𝑤1 contains the 𝑥-term 𝑤𝑖.
To see why this is useful, recall that in our CKSE, we bundle the

update types with keywords and introduce them into the oblivious cross

tag computation. After the delete operation on 𝑥-term is completed, the
cross-tag calculated by the server using the add/delete token pair during
the search can implicitly identify the deletion update, while the delete
operations related to 𝑠-term are filtered out locally by the client, thereby
avoiding the ineffective deletion.

3.2.2. State chain structure

CKSE achieves comprehensive deletion operations based on ODXT
[1] but it would need more overheads to do so (e.g., additional group
exponentiation operations). It is known that some existing schemes us

ing a state-based approach impose less overhead [11,33,34]. Inspired by
the hash chain, we exploit a state chain structure to reduce the compu

tational and communication overhead on the client side. This structure
enables the client to perform subsequent conjunctive queries only by
obtaining the latest state of 𝑠-term 𝑤1 during the search. Concretely, in
the update protocol, the client randomly generates a state 𝑆𝑇 for each
update of the keyword and stores it in 𝐖. More importantly, this state is
connected by a state token 𝐶𝑆𝑇 . Therefore, the client only takes out the
current state of the keyword 𝑤1 from 𝐖 and sends it along with the lat

est state token to the server during the search. The server uses the state
token to trace back to the previous state of 𝑤1 , i.e., each update of 𝑤1.
Fig. 2 depicts this state chain structure.

Note that this structure can also support CKSE to achieve forward
privacy. Previously, many forward privacy schemes were constructed
based on Oblivious RAM (ORAM) structures. The main issue with this
approach is the high communication cost caused by using ORAM-like
structures. Only a few DSSE schemes avoid using ORAM. Among them,
Bost et al. [11] proposed a one-way trapdoor permutation, which ef

fectively reduces communication costs but is still limited by public-key
cryptographic primitives. The advantage of the state chain structure lies
in its use of symmetric cryptographic primitives, ensuring forward pri

vacy based on the same principle as [11].

3.3. Efficiency of CKSE

3.3.1. Client and server storage

In CKSE, the client stores four 𝜆-bit secret keys, 𝐾𝑆 , 𝐾𝑋 , 𝐾𝑌 and 𝐾𝑍 ,
for PRFs 𝐹 and 𝐹𝑝, respectively, and a map 𝐖 containing the states of
all the keywords. Initially, 𝐖 is the empty map, and after 𝑁 updates,
the size of 𝐖 grows to 𝑂(|| ⋅ log𝑁), where || is the total number
of keywords. On the server side, it needs to store the maps 𝐓 and 𝐗,
and they are both initialized to be empty. After 𝑁 updates, the server
storage grows to 𝑂(𝑁). It is clear that the client storage grows logarith

mically with the number of update operations and the server storage
grows linearly with the number of update operations.

3.3.2. Update and search overhead

During the update, since the numbers of operations for client and
server are constant, the computational overheads of both scale with
𝑂(1), and the same is true for communication overheads of updating
a single keywordfile identifier pair (𝑤, 𝑖𝑛𝑑). In the search protocol, for

Digital Communications and Networks 11 (2025) 1293–1304

1298

T. Peng, B. Gong, C. Guo et al.

Fig. 2. The state chain structure.

each update of 𝑤1, the client needs to execute only 𝑛 − 1 exponential
operations, compared to the overhead of computing all the locations
of updates involving 𝑤1 required by ODXT [1]. Therefore, the com

putational complexity is 𝑂((𝑛 − 1) ⋅ 𝑎𝑤1
) and the same is true for the

communication overhead, where 𝑎𝑤 is the total number of updates for
𝑤1. For the server, the computational and communication complexity
are 𝑂(𝑛 ⋅ 𝑎𝑤1

) and 𝑂(𝑎𝑤1
), respectively, which are the same as ODXT

[1].

3.4. Security analysis

We now show that CKSE achieves forward privacy and Type-II back

ward privacy. The evolution of each state of keywords plays an impor

tant role in a search query, and the states of keywords are randomly
generated during the update. For the server, the value of each state is
indistinguishable from a random value, and the server cannot infer the
future state and state token of the keyword using the current search
token (containing the current state and state token of the keyword).
Therefore, CKSE leaks no information during the update, and the for

ward privacy is guaranteed.

In the search protocol, the server obtains a series of locations for 𝑠
term 𝑤1 which have been observed previously in the update protocol.
This leakage helps the server to learn the timestamp of each update for
𝑤1. In addition, for each update (𝑜𝑝𝑗 , (𝑤1, 𝑖𝑛𝑑𝑗)) of 𝑤1, the server learns
the number of updates of the form (𝑜𝑝𝑗 , (𝑤𝑖, 𝑖𝑛𝑑𝑗)) for each 𝑥-term 𝑤𝑖,
𝑖 ∈ 2,⋯ , 𝑛, along with the corresponding timestamp for each update.
The definition of the above leakage is as follows:

𝐔𝐩𝐝𝐭(𝑞) =𝐔𝐩𝐝𝐭(𝑤1)
⋃(𝑛 ⋃

𝑖=2
𝐔𝐩𝐝𝐭(𝑤1,𝑤𝑖)

)
(11)

where 𝑞 is a conjunctive search query and

𝐔𝐩𝐝𝐭(𝑤1,𝑤𝑖) =
{
(𝑡1, 𝑡𝑖)|(𝑡1, 𝑜𝑝, (𝑤1, 𝑖𝑛𝑑)) ∈𝐐 and

(𝑡𝑖, 𝑜𝑝, (𝑤𝑖, 𝑖𝑛𝑑)) ∈𝐐
}

(12)

Except for the above leakage, the server cannot obtain any information
that breaks the backward privacy of CKSE. We use the leakage function
 = (𝑆𝑡𝑝,𝑈𝑝𝑑𝑡,𝑆𝑟𝑐ℎ) defined in section 2.5 to describe the leakages
as mentioned above. After the leakage is captured, the formal definition
of our scheme’s leakage functions is as follows:

𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) = (⟂)

𝑆𝑟𝑐ℎ(𝑞) = (𝐓𝐢𝐦𝐞𝐃𝐁(𝑞),𝐔𝐩𝐝𝐭(𝑞)) (13)

According to Definition 2 of forward privacy and Definition 3 of back

ward privacy, our scheme achieves forward privacy and Type-II back

ward privacy.

Formally, the forward privacy and Type-II backward privacy of CKSE
is summarized in the following theorem.

Theorem 1. (Security of CKSE) Assume that 𝐹 and 𝐹𝑝 are secure
pseudorandom function, the DDH assumption holds over the group ,
and 𝐻1, 𝐻2 and 𝐻3 are hash functions modeled as random oracles.
CKSE is an -adaptively secure SSE scheme with the leakage functions
𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) =⟂ and 𝑆𝑟𝑐ℎ(𝑞) = (𝐓𝐢𝐦𝐞𝐃𝐁(𝑞),𝐔𝐩𝐝𝐭(𝑞)).

Proof. See Appendix. □

4. Performance evaluation

In this section, we implement CKSE, and compare it with the two ex

isting schemes, MitraCONJ [1] is an instantiation of the naïve solution,
and comparison with it can show the advantages of the conjunctive key

word search scheme, and ODXT [1] is the baseline of our scheme, and
comparison with it can best verify our goal of achieving comprehensive
deletion operations without compromising efficiency and security. Addi

tionally, in order to clearly demonstrate the performance improvement
of the state chain structure for CKSE, we utilize ODXT [1] to instanti

ate CKSE under the Mitra framework, named CKSEMitra, and compare
its performance with CKSE.

4.1. Implementation and settings

We implement CKSE and CKSEMitra in Python 3.10 and use PyCrypto
library and Sagemath library to achieve symmetric cryptographic op

erations and group-based operations, respectively. Specifically, we use
AES-256 to realize PRFs 𝐹 and 𝐹𝑝, SHA-256 for all hash operations 𝐻1,
𝐻2 and 𝐻3, and the elliptic curve Curve25519 [53] for group operations
in CKSE. Our scheme aims to provide efficient, privacy-preserving ci

phertext retrieval and data updates in a cloud environment. IoT devices
serve as auxiliary components responsible for collecting and uploading
data, without impacting the core search performance of the scheme. All
experiments were conducted on workstations equipped with an Intel(R)
Core(TM) i7-14700K CPU (3.40 GHz), 32GB and 16GB RAM, running
the Windows 11 (64-bit) operating system. When evaluating MitraCONJ
[1] and ODXT [1], we use the Python code released by Patranabis and
Mukhopadhyay [1]. To provide a fair comparison, the specific imple

mentations of CKSE and CKSEMitra are the same as ODXT [1].

We test the performance of the schemes compared using the data
from Enron email dataset,1 which is derived from the real world and
consists of multiple folders containing email messages from about 150
different users. We choose 30109 emails in the sent-email folder as the
file set, and apply the keyword extraction process of [54,55] to obtain
77,000 unique keywords, which exclude some stopwords like ‘a’, ‘the’
and ‘so’. All the experiments are repeated 10 times and the results are
averaged over the ten runs.

1 Enron Email Dataset: available online at https://www.cs.cmu.edu/~enron/.

Digital Communications and Networks 11 (2025) 1293–1304

1299

https://www.cs.cmu.edu/~enron/

T. Peng, B. Gong, C. Guo et al.

Fig. 3. Client and server computation times for two-keyword conjunctive search query 𝑞 = (𝑤1 ∧𝑤2).

Table 2
Comparison of Update Computational Overheads [ms].

|𝐃𝐁| Scheme
MitraCONJ [1] ODXT [1] CKSEMitra CKSE

10 2.9 12.5 12.5 13.4
100 35.3 131.3 131.3 137.4
1000 242.3 1202.3 1202.3 1213.6
10000 1934.2 11534.1 11534.1 11640.3

4.2. Update time performance

We first compare the computational overheads of the four schemes
in the update operation. We generate variable update entries with sizes
|𝐃𝐁| = 10 ∼ 10000, where each entry consists of a keyword and a
file identifier, and test each scheme’s overall update computational
overhead. Table 2 shows that the update computational overhead of
MitraCONJ [1] is the least, about one order of magnitude smaller than
those of the other schemes. This is because MitraCONJ [1] only needs to
consider update process for single keyword. It does not need to prepare
for the subsequent conjunctive keyword search like ODXT [1], CKSEMitra
and CKSE, which greatly reduces the computational overhead of the up

date. However, the excellent update performance of MitraCONJ [1] is
at the cost of higher overhead in the search, as will be shown later.
Since the operations of ODXT [1] and CKSEMitra during the update are
the same, they maintain the same computational overheads. The com

putational overhead of our CKSE is slightly higher than ODXT [1] and
CKSEMitra. This is because unlike ODXT [1] and CKSEMitra, CKSE ex

ecutes additional hash and 𝑋𝑂𝑅 operations in the update. However,
these additional operations will help CKSE to perform better during the
search.

4.3. Search time performance

We next compare the computational overheads of the client and
server for the four schemes in the cases of two-keyword conjunctive
queries 𝑞 =(𝑤1∧𝑤2) and four-keyword conjunctive queries 𝑞 =(𝑤1∧⋯∧

𝑤4). We execute two types of experiments in each case. In the first type,
we set the update frequency of the 𝑠-term 𝑤1 to constant |Updt(𝑤1)| =3
and the update frequency of the 𝑥-term 𝑤2 to |Updt(𝑤2)| =3 × 100 ∼
3×104, while in the second type, we set |Updt(𝑤1)| to 3×100 ∼ 3×104
and fix |Updt(𝑤2)| =3 × 104. Additionally, in the case of four-keyword
conjunctive queries 𝑞 =(𝑤1 ∧ ⋯ ∧ 𝑤4), the values of |Updt(𝑤3)| and |Updt(𝑤4)| remain constant at 3 × 104 for both the experimental types.

4.3.1. Two-keyword conjunctions

Fig. 3 compares the computational overheads of the client and
server for the four schemes in the two-keyword conjunctive search.
The first thing to note is that the computational overheads of ODXT
[1], CKSEMitra and CKSE are proportional to the update frequency of
𝑠-term 𝑤1, and they are independent of the update frequency of 𝑥

term 𝑤2, which is consistent with our analysis of CKSE in Subsec

tion 3.2. By contrast, the computational overhead of MitraCONJ [1] is
mainly proportional to the update frequency of 𝑥-term 𝑤2, and its com

putational overhead is higher than the other schemes in most cases
(when |Updt(𝑤1)| =3 × 101, |Updt(𝑤2)| =3 × 104, CKSE takes 45.8 ms,
CKSEMitra takes 61.1 ms, ODXT [1] takes 35.2 ms, and MitraCONJ [1]
takes 857.3 ms, which is more than 20 times the cost of other schemes).
On client side, CKSE outperforms CKSEMitra, and it matches ODXT [1].
This is due to the fact that compared to CKSEMitra , CKSE does not
need to compute all the locations of the keywords, and compared to
ODXT [1], CKSE does not need to compute all the locations of the
keywords but requires an additional cross-token 𝑥𝑡𝑜𝑘𝑒𝑛{𝑎𝑑𝑑∕𝑑𝑒𝑙} (when
|Updt(𝑤1)| =3× 104, |Updt(𝑤2)| =3× 104, CKSE takes 19.3 s, CKSEMitra
takes 32.5 s). On server side, CKSE has slightly higher computational
overhead than ODXT [1], and it matches CKSEMitra. Although the search
computational overhead of CKSE is slightly higher than ODXT [1], CKSE
supports more efficient deletion function, which is critical in practice.

4.3.2. Multi-keyword conjunctions

In Fig. 4, we compare the computational overheads of the client and
server for the four schemes in the four-keyword conjunctive queries
𝑞 =(𝑤1 ∧ ⋯ ∧ 𝑤4). The trends of the four schemes in Fig. 4 are sim

ilar to those shown in Fig. 3, with one obvious exception. Specifi

Digital Communications and Networks 11 (2025) 1293–1304

1300

T. Peng, B. Gong, C. Guo et al.

Fig. 4. Computation times for client and server in a multi-keyword conjunctive search query 𝑞 = (𝑤1 ∧⋯ ∧𝑤4). In (a)-(c), |Updt(𝑤3)| = |Updt(𝑤4)| = 3 × 104 .

cally, in Fig. 4(a)-(c), the computational overhead of MitraCONJ [1]
is no longer proportional to the update frequency of 𝑤2. This is be

cause the keywords 𝑤3 and 𝑤4 have the higher update frequency
|Updt(𝑤3)| = |Updt(𝑤4)| = 3×104 in 𝑥-terms, which increases the com

putational overhead of MitraCONJ [1] to an extremely high level (when
|Updt(𝑤1)| =3 × 100, |Updt(𝑤2)| = |Updt(𝑤3)| = |Updt(𝑤4)| = 3 × 104,
CKSE takes 11.1 ms, CKSEMitra takes 13.4 ms, ODXT [1] takes 9.4 ms,
and MitraCONJ [1] takes 2430.3 ms, which is much more expensive than
other schemes).

4.4. Communication performance

In Fig. 5, we compare the communication overheads for the four
schemes in two-keyword conjunctive search. For ODXT [1], CKSEMitra
and CKSE, the communication overheads increase with the update fre

quency of 𝑠-term 𝑤1, while the communication overhead of MitraCONJ
[1] increases with the update frequency of 𝑥-term 𝑤2. Moreover, the
communication overhead of MitraCONJ [1] is much higher than the other
schemes. In addition, CKSE slightly outperforms CKSEMitra and is very
close to ODXT [1]. This is due to the fact that compared to CKSEMitra,
CKSE omits the transmission of each location of 𝑠-term 𝑤1, and com

pared to ODXT [1], CKSE omits the transmission of each location of
𝑠-term 𝑤1 but needs to transmit additional cross-token.

To sum up, the performance of MitraCONJ [1] is generally worse
than the other three schemes in terms of both computational overhead
and communication overhead. For our approach, CKSE outperforms
CKSEMitra, which shows the effectiveness of the state chain structure.
More importantly, compared to the state-of-the-art ODXT [1], CKSE has
a similar performance. It is worth recapping that our CKSE maintains
the same security level as ODXT [1], i.e., forward and Type-II backward
privacy, and unlike ODXT [1], our CKSE can achieve efficient deletion
operation in any case.

4.5. Query result performance

After performing different deletion operations, we compare the
query results of ODXT [1] and CKSE involving search query 𝑞 = (𝑤1 ∧

Fig. 5. Communication overheads in two-keyword conjunctive search query 𝑞 =
(𝑤1 ∧𝑤2).

𝑤2). We first select 100 files containing the keyword 𝑤1 and 𝑤2, and
then delete 𝑤1 and 𝑤2 from the Top (T) 10%, T 20%, Bottom (B) 10%,
and B 20% of the file set, respectively. Finally, we collect the query re

sults of each scheme under different deletion scenarios. Note that 𝑤1 is
the 𝑠-term.

Digital Communications and Networks 11 (2025) 1293–1304

1301

T. Peng, B. Gong, C. Guo et al.

Fig. 6. The query results of search query 𝑞 = (𝑤1 ∧𝑤2).

After performing deletion updates, the comparison between the
query results of ODXT [1] and CKSE and the ground truth is illustrated
in Fig. 6. It can be seen that CKSE consistently produces the same query
results as the real results in all the 16 cases, whereas ODXT [1] fails to
achieve accurate query results in 10 out of 16 cases. Ideally, deletion op

erations involving either 𝑤1 or 𝑤2 should have an impact on the final
query result. However, the query result of ODXT [1] only changes with
deletion operations involving 𝑤1, and it remains unaffected by deletion

operations involving 𝑤2, which results in ODXT [1] being able to obtain
accurate query results only when the set of documents with deletions of
𝑤1 includes the documents with deletions of 𝑤2. This limitation arises
from the fact that the cross-tag 𝑥𝑡𝑎𝑔 computed by ODXT [1] during the
search query can only respond to the update type corresponding to 𝑠
term 𝑤1, but ignores the update type of other keywords in conjunction.
Consequently, ODXT [1] fails to detect deletion operations on keywords
other than the 𝑠-term 𝑤1, resulting in discrepancy between the query
results and the actual results. In contrast, CKSE incorporates the update
types of each keyword into the design of the new cross-tag, enabling
it to effectively respond to deletion operations for every keyword. As a
result, CKSE consistently achieves accurate query results across various
scenarios.

5. Conclusions and future work

In this work, we have designed an effective and efficient conjunc

tive keyword DSSE scheme called CKSE based on the state-of-the-art
ODXT [1]. However, unlike ODXT [1], our scheme supports update op

erations in any scenario, especially for robust deletion operations, which
enable the client to obtain accurate query results. Additionally, we have
adopted a state chain structure to save unnecessary ODXT [1] operations
during the search and achieve efficient search performance. In terms of
security, our CKSE leaks no information in update and moderates leak

age during the search to achieve forward privacy and Type-II backward
privacy. In summary, our CKSE design comprehensively considers func

tionality, efficiency and security, and it offers an ideal scheme for cloud

IoT systems. In the future, extending CKSE to support more expressive
queries, e.g., boolean queries, is meaningful, which will strengthen the
practical applications of our scheme.

Moreover, the proposed scheme operates under the assumption that
the client’s key remains secure at all times, without addressing the po

tential risks associated with key sharing. This oversight presents chal

lenges in real-world applications, where key exposure could allow an
adversary to compromise the encrypted database and monitor update
and search activities. Moreover, our scheme primarily focuses on mini

mizing access pattern leakage but fails to consider the vulnerability to
keyword guessing attacks, which are a common concern in public key
searchable encryption schemes. In future work, we aim to explore and
address these two issues in DSSE, which will enable us to develop a more
secure scheme for cloud-IoT systems.

CRediT authorship contribution statement

Tianqi Peng: Writing -- original draft, Validation, Supervision,
Project administration, Methodology, Formal analysis, Data curation,
Conceptualization. Bei Gong: Validation, Supervision, Software, Re

sources, Project administration, Methodology, Investigation, Fund

ing acquisition, Formal analysis. Chong Guo: Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Akhtar Badshah: Writing -- original draft,
Visualization, Validation, Supervision, Software, Resources. Muham

mad Waqas: Writing -- review & editing, Writing -- original draft, Visu

alization, Validation, Supervision, Formal analysis. Hisham Alasmary:
Writing -- review & editing, Validation, Supervision, Project adminis

tration, Funding acquisition. Sheng Chen: Writing -- review & editing,
Visualization, Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Digital Communications and Networks 11 (2025) 1293–1304

1302

T. Peng, B. Gong, C. Guo et al.

Acknowledgements

This work was supported in part by the Major Science and Tech

nology Projects in Yunnan Province (202202AD080013). The authors
also extend their appreciation at King Khalid University for funding this
work through Large Group Project under grant number RGP.2/373/45.

Appendix A. Proof of Theorem 1

We use the REAL-IDEAL model mentioned in Subsection 2.4 to prove
the security of CKSE. Specifically, a sequence of games is constructed
from REAL

Σ

(𝜆) and reached to IDEALΣ, (𝜆). We prove that REAL

Σ

(𝜆)

and IDEALΣ, (𝜆) are indistinguishable by proving the indistinguishabil

ity between two adjacent games.

Game 𝐺0: 𝐺0 is the real world game REAL
Σ

(𝜆).

Game 𝐺1: The difference between 𝐺1 and 𝐺0 is that 𝐺1 replaces
PRFs 𝐹 (𝐾𝑆, ⋅), 𝐹𝑝(𝐾𝑋, ⋅), 𝐹𝑝(𝐾𝑌 , ⋅) and 𝐹𝑝(𝐾𝑍, ⋅) with random func

tions 𝐺𝑆 (⋅), 𝐺𝑋 (⋅), 𝐺𝑌 (⋅) and 𝐺𝑍 (⋅), respectively. Specifically, 𝐺𝑆 (⋅)
is uniformly sampled from the set of all random functions on (0,1)𝜆,
while 𝐺𝑋 (⋅), 𝐺𝑌 (⋅) and 𝐺𝑍 (⋅) are uniformly sampled from the set of all
random functions on ℤ∗

𝑝
. Since we cannot distinguish a pseudo-random

function from a truly random function, 𝐺1 and 𝐺0 are indistinguishable.

Game 𝐺2: The difference between 𝐺2 and 𝐺1 is that 𝐺2 no longer
calls 𝐻1, 𝐻2 and 𝐻3 to generate location 𝑢, encrypted entry 𝑒 and state
token 𝐶𝑆𝑇 in the update protocol, but uses random numbers instead.
Taking 𝐻1 and 𝑢 as an example, it replaces 𝑢← 𝐻1(𝐾𝑤,𝑆𝑇𝑐+1) with

𝑢
$
←←←←←←← {0,1}𝜆 and executes 𝐋[𝐾𝑤||𝑆𝑇𝑐+1] ← 𝑢, where 𝐋 is a mapping

maintained by 𝐺2. Afterward, 𝐇𝟏[𝐾𝑤||𝑆𝑇𝑐+1]← 𝐋[𝐾𝑤||𝑆𝑇𝑐+1] is exe

cuted in the search protocol, where 𝐇1 is the table of the random oracles
𝐻1. Thus, 𝐇1 is not updated immediately, and when an adversary ac

cesses 𝐇1[𝐾𝑤||𝑆𝑇𝑐+1] before a search query is issued, 𝐇1[𝐾𝑤||𝑆𝑇𝑐+1]
will randomly generate a value 𝑢∗ that is not equal to 𝑢. If the adver

sary queries 𝐇1[𝐾𝑤||𝑆𝑇𝑐+1] again after next search query, it will get
the value 𝑢 that has been updated to 𝐇1. By observing the difference
between the two queries, the adversary knows that it is in game 𝐺2.
We now show that the probability of this case is negligible. Based on
the above discussion, it is clear that this case will only take place if
the adversary uses 𝐾𝑤||𝑆𝑇𝑐+1 to query 𝐇1. Since 𝑆𝑇𝑐+1 is randomly
generated, the adversary chooses 𝑆𝑇𝑐+1 with probability 1

2𝜆 + 𝑛𝑒𝑔𝑙(𝜆).
Assuming that a PPT adversary makes at most 𝑝 = 𝑝𝑜𝑙𝑦(𝜆) guesses, the
probability of adversary choosing 𝑆𝑇𝑐+1 is 𝑝

2𝜆 + 𝑝 ⋅ 𝑛𝑒𝑔𝑙(𝜆), which is
negligible. 𝐻2 and 𝐻3 are processed in the same way as 𝐻1 in 𝐺2.
Therefore, 𝐺2 and 𝐺1 are indistinguishable.

Game 𝐺3: The difference between 𝐺3 and 𝐺2 is that in the search
protocol of 𝐺3, the manner of generating 𝑥𝑡𝑜𝑘𝑒𝑛 is changed. Specifically,
for a conjunctive query 𝑞 = (𝑤1 ∧𝑤2 ∧⋯ ∧𝑤𝑛), 𝐺3 first looks up the
update query history of adversary to obtain the set of update operations
involving 𝑠-term 𝑤1. Then, it computes 𝛼 and 𝑥𝑡𝑎𝑔 involving each 𝑥

term 𝑤𝑖 in conjunction 𝑞, and obtains 𝑥𝑡𝑜𝑘𝑒𝑛 as 𝑥𝑡𝑜𝑘𝑒𝑛 = 𝑥𝑡𝑎𝑔1∕𝛼 . It is
clear that the distribution of each 𝑥𝑡𝑜𝑘𝑒𝑛 value in 𝐺3 is the same as its
distribution in 𝐺2. Therefore, 𝐺3 and 𝐺2 are indistinguishable.

Game 𝐺4: The difference between 𝐺4 and 𝐺3 is that the manner of
generating 𝛼 is changed in the update protocol of 𝐺4. Specifically, 𝐺4

replace computing 𝛼 in 𝐺3 with random sampling 𝛼
$
→ℤ∗

𝑝
. Note that 𝛼

in 𝐺3 is computed by 𝐺𝑌 (⋅) and the inverse of 𝐺𝑍 (⋅), where 𝐺𝑌 (⋅) and
𝐺𝑍 (⋅) are uniformly sampled from the set of all random functions on
ℤ∗
𝑝
, and the value of 𝛼 in 𝐺4 is also uniform and independent random

distribution on ℤ∗
𝑝
. Therefore, 𝐺4 and 𝐺3 are indistinguishable.

Game 𝐺5: The difference between 𝐺5 and 𝐺4 is that the manner of
generating 𝑥𝑡𝑎𝑔 is changed in the update protocol of 𝐺5. Specifically,
𝐺5 replace computing 𝑥𝑡𝑎𝑔 in 𝐺4 with random sampling 𝑔𝛾 , where 𝑔

is an uniformly sampled generator for the group 𝔾 and 𝛾
$
→ ℤ∗

𝑝
. Since

the DDH assumption holds in the group 𝔾, the probability of a PPT
adversary distinguishing 𝑥𝑡𝑎𝑔 = 𝑔𝐺𝑋 (⋅)⋅𝐺𝑌 (⋅) in 𝐺4 from 𝑥𝑡𝑎𝑔 = 𝑔𝛾 in 𝐺5
is negligible. Therefore, 𝐺5 and 𝐺4 are indistinguishable.

Game 𝐺6: The difference between 𝐺6 and 𝐺5 is that the manner of
computing the maps involving 𝑢, 𝑒 and 𝐶𝑆𝑇 are changed in the update
and search protocol of 𝐺6. Specifically, still taking 𝑢 as an example,

𝐺6 replace 𝐋[𝐾𝑤||𝑆𝑇𝑐+1] $
←←←←←←← {0,1}𝜆 with 𝐋[𝑡]

$
←←←←←←← {0,1}𝜆, where 𝑡 is the

timestamp for each update operation. Note that each state of keyword is
different in 𝐺5, and the values sampled uniformly randomly are never
the same when input two different timestamps in 𝐺6 . The map involving
𝑒 and 𝐶𝑆𝑇 are processed in the same way as 𝐋[⋅] in 𝐺5. This implies that
𝐺6 and 𝐺5 are indistinguishable.

Simulator: In IDEALΣ,S(𝜆), the simulator  generates a view accord

ing to the given leakage function

𝑈𝑝𝑑𝑡(𝑜𝑝, (𝑤, 𝑖𝑛𝑑)) =⟂

𝑆𝑟𝑐ℎ(𝑞) = (𝐓𝐢𝐦𝐞𝐃𝐁(𝑞),𝐔𝐩𝐝𝐭(𝑞))

where 𝐓𝐢𝐦𝐞𝐃𝐁(𝑞) and 𝐔𝐩𝐝𝐭(𝑞) are defined in (4) and (5) of Subsec

tion 2.5. Specifically, from 𝑈𝑝𝑑𝑡,  gains no information about update
operations, and a series of variables are generated by  as done by 𝐺6.
In the search protocol,  uses 𝐔𝐩𝐝𝐭(𝑞) to learn the number of updates
involving the 𝑠-term 𝑤1, as well as the corresponding timestamp and
𝑥-term leakage for each update operation. It can also learn the final set
of file identifiers in the conjunction by using 𝐓𝐢𝐦𝐞𝐃𝐁(𝑞). Moreover, 
can learn whether two (or more) conjunctive queries contain the same
𝑠-term 𝑤1 by using 𝐔𝐩𝐝𝐭(𝑞1) and 𝐔𝐩𝐝𝐭(𝑞2). Note that the view gener

ated by  using the above information is identical to the view in 𝐺6.

This completes the proof of Theorem 1.

References

[1] S. Patranabis, D. Mukhopadhyay, Forward and backward private conjunctive search

able symmetric encryption, in: 28th Annual Network and Distributed System Secu

rity Symposium (NDSS 2021), The Internet Society, 2021.

[2] L. Chen, J. Li, J. Li, Toward forward and backward private dynamic searchable
symmetric encryption supporting data deduplication and conjunctive queries, IEEE
Internet Things J. 10 (19) (2023) 17408--17423.

[3] G.S. Poh, P. Gope, J. Ning, Privhome: privacy-preserving authenticated communi

cation in smart home environment, IEEE Trans. Dependable Secure Comput. 18 (3)
(2019) 1095--1107.

[4] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, J. Yu, Direct acyclic graph-based
ledger for Internet of things: performance and security analysis, IEEE/ACM Trans.
Netw. 28 (4) (2020) 1643--1656.

[5] W. Liu, B. Cao, M. Peng, Web3 technologies: challenges and opportunities, IEEE
Netw. 38 (3) (2024) 187--193.

[6] J. Shu, X. Jia, K. Yang, H. Wang, Privacy-preserving task recommendation services
for crowdsourcing, IEEE Trans. Serv. Comput. 14 (1) (2018) 235--247.

[7] C. Zhang, L. Zhu, C. Xu, J. Ni, C. Huang, X. Shen, Location privacy-preserving task
recommendation with geometric range query in mobile crowdsensing, IEEE Trans.
Mob. Comput. 21 (12) (2021) 4410--4425.

[8] B. Cao, Z. Wang, L. Zhang, D. Feng, M. Peng, L. Zhang, Z. Han, Blockchain systems,
technologies, and applications: a methodology perspective, IEEE Commun. Surv. Tu

tor. 25 (1) (2022) 353--385.

[9] Y. Zhang, J. Katz, C. Papamanthou, All your queries are belong to us: the power of
{file-injection} attacks on searchable encryption, in: 25th USENIX Security Sympo

sium (USENIX Security, vol. 16, 2016, pp. 707--720.

[10] C.B. Papamanthou, E. Stefanov, E. Shi, Practical dynamic searchable encryption with
small leakage, in: Proc. Netw. Distrib. Syst. Secur, Symp, 2014, pp. 23--26.

[11] R. Bost, ∑ 𝑜𝜙𝑜𝜉: forward secure searchable encryption, in: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, 2016,
pp. 1143--1154.

[12] R. Bost, B. Minaud, O. Ohrimenko, Forward and backward private searchable
encryption from constrained cryptographic primitives, in: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 1465--1482.

[13] S.-F. Sun, X. Yuan, J.K. Liu, R. Steinfeld, A. Sakzad, V. Vo, S. Nepal, Practical
backward-secure searchable encryption from symmetric puncturable encryption, in:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica

tions Security, 2018, pp. 763--780.

[14] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, R. Jalili, New constructions
for forward and backward private symmetric searchable encryption, in: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 1038--1055.

[15] C. Zuo, S.-F. Sun, J.K. Liu, J. Shao, J. Pieprzyk, Dynamic searchable symmetric en

cryption with forward and stronger backward privacy, in: European Symposium on
Research in Computer Security, Springer, 2019, pp. 283--303.

Digital Communications and Networks 11 (2025) 1293–1304

1303

http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA89FF9A2A231282D767540B67D863D81s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA89FF9A2A231282D767540B67D863D81s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA89FF9A2A231282D767540B67D863D81s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6BBD1BC74F40CDA501BA4B309240DBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6BBD1BC74F40CDA501BA4B309240DBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6BBD1BC74F40CDA501BA4B309240DBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCFA79CE8EDCD9834DC25D18256FC1A26s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCFA79CE8EDCD9834DC25D18256FC1A26s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCFA79CE8EDCD9834DC25D18256FC1A26s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCA427312AAB2B022B9A12565F498E776s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCA427312AAB2B022B9A12565F498E776s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCA427312AAB2B022B9A12565F498E776s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibC4F9EE7D1AA5FE7DBDDCA4DE0E9D9862s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibC4F9EE7D1AA5FE7DBDDCA4DE0E9D9862s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA3EF1E8EBBE8A0EBBA5FD2F6A368ECA4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA3EF1E8EBBE8A0EBBA5FD2F6A368ECA4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib08835018E7F90FCF262517BF88EB4D72s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib08835018E7F90FCF262517BF88EB4D72s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib08835018E7F90FCF262517BF88EB4D72s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib378EE3A5C96998F47F1726959ECECC3Es1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib378EE3A5C96998F47F1726959ECECC3Es1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib378EE3A5C96998F47F1726959ECECC3Es1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib19D932C9B4F16A627E25905A33EB4698s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib19D932C9B4F16A627E25905A33EB4698s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibF1530A72052B2D1F8C07F3DFE83DCC95s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibF1530A72052B2D1F8C07F3DFE83DCC95s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibF1530A72052B2D1F8C07F3DFE83DCC95s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9DD65862E1412BB03F1883EE733BB987s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9DD65862E1412BB03F1883EE733BB987s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9DD65862E1412BB03F1883EE733BB987s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9DD65862E1412BB03F1883EE733BB987s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9F1D698E7116CB0782F01C5F573CAD4Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9F1D698E7116CB0782F01C5F573CAD4Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9F1D698E7116CB0782F01C5F573CAD4Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib9F1D698E7116CB0782F01C5F573CAD4Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4320388546B0BC22A02F90CBD2B85F1Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4320388546B0BC22A02F90CBD2B85F1Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4320388546B0BC22A02F90CBD2B85F1Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4320388546B0BC22A02F90CBD2B85F1Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib80DAA8C86B5804B4C8790B063320EA8Bs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib80DAA8C86B5804B4C8790B063320EA8Bs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib80DAA8C86B5804B4C8790B063320EA8Bs1

T. Peng, B. Gong, C. Guo et al.

[16] I. Demertzis, J.G. Chamani, D. Papadopoulos, C. Papamanthou, Dynamic searchable
encryption with small client storage, Cryptology ePrint Archive.

[17] S.-F. Sun, R. Steinfeld, S. Lai, X. Yuan, A. Sakzad, J.K. Liu, S. Nepal, D. Gu, Prac

tical non-interactive searchable encryption with forward and backward privacy, in:
Usenix Network and Distributed System Security Symposium 2021, The Internet So

ciety, 2021.

[18] P. Xu, W. Susilo, W. Wang, T. Chen, Q. Wu, K. Liang, H. Jin, ROSE: robust searchable
encryption with forward and backward security, IEEE Trans. Inf. Forensics Secur. 17
(2022) 1115--1130.

[19] P. Zhang, Y. Chui, H. Liu, Z. Yang, D. Wu, R. Wang, Efficient and privacy-preserving
search over edge–cloud collaborative entity in IoT, IEEE Internet Things J. 10 (4)
(2021) 3192--3205.

[20] R. Zhou, X. Zhang, X. Wang, G. Yang, H.-N. Dai, M. Liu, Device-oriented keyword

searchable encryption scheme for cloud-assisted industrial IoT, IEEE Internet Things
J. 9 (18) (2021) 17098--17109.

[21] C. Zuo, S.-F. Sun, J.K. Liu, J. Shao, J. Pieprzyk, G. Wei, Forward and backward private
dynamic searchable symmetric encryption for conjunctive queries, Cryptology ePrint
Archive.

[22] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, M. Steiner, Highly-scalable
searchable symmetric encryption with support for Boolean queries, in: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part I, Springer, 2013, pp. 353--373.

[23] M. Haus, M. Waqas, A.Y. Ding, Y. Li, S. Tarkoma, J. Ott, Security and privacy in
device-to-device (d2d) communication: a review, IEEE Commun. Surv. Tutor. 19 (2)
(2017) 1054--1079.

[24] M. Waqas, S. Tu, Z. Halim, S.U. Rehman, G. Abbas, Z.H. Abbas, The role of artificial
intelligence and machine learning in wireless networks security: principle, practice
and challenges, Artif. Intell. Rev. 55 (7) (2022) 5215--5261.

[25] D.X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted data,
in: Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, IEEE,
2000, pp. 44--55.

[26] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric encryption:
improved definitions and efficient constructions, J. Comput. Secur. 19 (5) (2011)
895--934.

[27] M. Chase, S. Kamara, Structured encryption and controlled disclosure, in: Advances
in Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 5-9,
2010., in: Proceedings, vol. 16, Springer, 2010, pp. 577--594.

[28] S. Kamara, C. Papamanthou, T. Roeder, Dynamic searchable symmetric encryption,
in: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, 2012, pp. 965--976.

[29] S. Liu, J. Yu, Y. Xiao, Z. Wan, S. Wang, B. Yan, BC-SABE: blockchain-aided search

able attribute-based encryption for cloud-IoT, IEEE Internet Things J. 7 (9) (2020)
7851--7867.

[30] J. Yu, S. Liu, M. Xu, H. Guo, F. Zhong, W. Cheng, An efficient revocable and search

able MA-ABE scheme with blockchain assistance for C-IoT, IEEE Internet Things J.
10 (3) (2022) 2754--2766.

[31] H. Yin, W. Zhang, H. Deng, Z. Qin, K. Li, An attribute-based searchable encryption
scheme for cloud-assisted IIoT, IEEE Internet Things J. 10 (12) (2023) 11014--11023.

[32] Y.-C. Chang, M. Mitzenmacher, Privacy preserving keyword searches on remote en

crypted data, in: International Conference on Applied Cryptography and Network
Security, Springer, 2005, pp. 442--455.

[33] Y. Wei, S. Lv, X. Guo, Z. Liu, Y. Huang, B. Li, FSSE: forward secure searchable en

cryption with keyed-block chains, Inf. Sci. 500 (2019) 113--126.

[34] X. Song, C. Dong, D. Yuan, Q. Xu, M. Zhao, Forward private searchable symmetric
encryption with optimized I/O efficiency, IEEE Trans. Dependable Secure Comput.
17 (5) (2018) 912--927.

[35] H. Dou, Z. Dan, P. Xu, W. Wang, S. Xu, T. Chen, H. Jin, Dynamic searchable symmet

ric encryption with strong security and robustness, IEEE Trans. Inf. Forensics Secur.,
https://doi.org/10.1109/TIFS.2024.3350330.

[36] B. Chen, T. Xiang, D. He, H. Li, K.-K.R. Choo, BPVSE: publicly verifiable searchable
encryption for cloud-assisted electronic health records, IEEE Trans. Inf. Forensics
Secur. 18 (2023) 3171--3184.

[37] S. Lai, S. Patranabis, A. Sakzad, J.K. Liu, D. Mukhopadhyay, R. Steinfeld, S.-F. Sun, D.
Liu, C. Zuo, Result pattern hiding searchable encryption for conjunctive queries, in:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 745--762.

[38] S. Kamara, T. Moataz, Boolean searchable symmetric encryption with worst-case
sub-linear complexity, in: Advances in Cryptology–EUROCRYPT 2017: 36th Annual
International Conference on the Theory and Applications of Cryptographic Tech

niques, Paris, France, April 30--May 4, 2017, Proceedings, Part III 36, Springer, 2017,
pp. 94--124.

[39] Z. Wu, K. Li, VBTree: forward secure conjunctive queries over encrypted data for
cloud computing, VLDB J. 28 (1) (2019) 25--46.

[40] D. Zeng, A. Badshah, S. Tu, M. Waqas, Z. Han, A security-enhanced ultra-lightweight
and anonymous user authentication protocol for telehealthcare information systems,
IEEE Trans. Mob. Comput. (2025), https://doi.org/10.1109/TMC.2025.3526519.

[41] C. Guo, W. Li, X. Tang, K.-K.R. Choo, Y. Liu, Forward private verifiable dynamic
searchable symmetric encryption with efficient conjunctive query, IEEE Trans. De

pendable Secure Comput. 21 (2) (2023) 746--763.

[42] M. Li, C. Jia, R. Du, W. Shao, Forward and backward secure searchable encryp

tion scheme supporting conjunctive queries over bipartite graphs, IEEE Trans. Cloud
Comput. 11 (1) (2021) 1091--1102.

[43] D. Yuan, C. Zuo, S. Cui, G. Russello, Result-pattern-hiding conjunctive searchable
symmetric encryption with forward and backward privacy, in: Proceedings on Pri

vacy Enhancing Technologies, https://doi.org/10.56553/popets-2023-0040.

[44] R. Li, A.X. Liu, Adaptively secure and fast processing of conjunctive queries over
encrypted data, IEEE Trans. Knowl. Data Eng. 34 (4) (2020) 1588--1602.

[45] Y. Li, J. Ning, J. Chen, Secure and practical wildcard searchable encryption system
based on inner product, IEEE Trans. Serv. Comput. 16 (3) (2022) 2178--2190.

[46] F. Liu, K. Xue, J. Yang, J. Zhang, Z. Huang, J. Li, D.S. Wei, Volume-hiding range
searchable symmetric encryption for large-scale datasets, IEEE Trans. Dependable
Secure Comput., https://doi.org/10.1109/TDSC.2023.3335304.

[47] M. Xie, X. Yang, H. Hong, G. Wei, Z. Zhang, A novel verifiable Chinese multi-keyword
fuzzy rank searchable encryption scheme in cloud environments, Future Gener. Com

put. Syst. 153 (2024) 287--300.

[48] B. Gong, G. Zheng, M. Waqas, S. Tu, S. Chen, Lcdma: lightweight cross-domain mu

tual identity authentication scheme for Internet of things, IEEE Internet Things J.
10 (14) (2023) 12590--12602.

[49] B. Gong, C. Guo, C. Guo, Y. Sun, M. Waqas, S. Chen, Slim: a secure and lightweight
multi-authority attribute-based signcryption scheme for iot, IEEE Trans. Inf. Foren

sics Secur. 19 (2023) 1299--1312.

[50] S. Feghhi, D.J. Leith, A web traffic analysis attack using only timing information,
IEEE Trans. Inf. Forensics Secur. 11 (8) (2016) 1747--1759.

[51] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, T.H. Lai, Sgxpectre: stealing intel secrets
from sgx enclaves via speculative execution, in: 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), IEEE, 2019, pp. 142--157.

[52] T. Chen, P. Xu, S. Picek, B. Luo, W. Susilo, H. Jin, K. Liang, The power of bamboo: on
the post-compromise security for searchable symmetric encryption, in: 30th Annual
Network and Distributed System Security Symposium, NDSS 2023, 2023.

[53] D.J. Bernstein, Curve25519: new Di˙ie-Hellman speed records, in: Public Key
Cryptography-PKC 2006: 9th International Conference on Theory and Practice in
Public-Key Cryptography, New York, NY, USA, April 24-26, 2006. Proceedings 9,
Springer, 2006, pp. 207--228.

[54] Z. Shang, S. Oya, A. Peter, F. Kerschbaum, Obfuscated access and search patterns in
searchable encryption, preprint, arXiv:2102.09651.

[55] M.S. Islam, M. Kuzu, M. Kantarcioglu, Access pattern disclosure on searchable en

cryption: ramification, attack and mitigation, in: Ndss, vol. 20, Citeseer, 2012, p. 12.

Digital Communications and Networks 11 (2025) 1293–1304

1304

http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA2C9EFE79A609412CD3F6E8F29D2DD25s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA2C9EFE79A609412CD3F6E8F29D2DD25s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA2C9EFE79A609412CD3F6E8F29D2DD25s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA2C9EFE79A609412CD3F6E8F29D2DD25s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD95C64948ABFC29F90F681FA8B00DEC7s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD95C64948ABFC29F90F681FA8B00DEC7s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD95C64948ABFC29F90F681FA8B00DEC7s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib790D7AE1DB7A0487EB1BAEF86CDA6D19s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib790D7AE1DB7A0487EB1BAEF86CDA6D19s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib790D7AE1DB7A0487EB1BAEF86CDA6D19s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibFE6BC778C2B4F965C677B9C0EE3E67C9s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibFE6BC778C2B4F965C677B9C0EE3E67C9s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibFE6BC778C2B4F965C677B9C0EE3E67C9s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib069B30DB06D047A398F9EB0940D3279Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib069B30DB06D047A398F9EB0940D3279Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib069B30DB06D047A398F9EB0940D3279Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib069B30DB06D047A398F9EB0940D3279Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB6E3A4CE515F387C35A926EEE8A36884s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB6E3A4CE515F387C35A926EEE8A36884s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB6E3A4CE515F387C35A926EEE8A36884s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB958B241DE80FA56C473269901E3EBFCs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB958B241DE80FA56C473269901E3EBFCs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB958B241DE80FA56C473269901E3EBFCs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib816681F7EC9C9061B5C183095AFF399Es1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib816681F7EC9C9061B5C183095AFF399Es1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib816681F7EC9C9061B5C183095AFF399Es1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD4FEC8C97D75DA0EEF533367338241BFs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD4FEC8C97D75DA0EEF533367338241BFs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD4FEC8C97D75DA0EEF533367338241BFs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibEAFF692E84900D6B0999355ABB0F3E43s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibEAFF692E84900D6B0999355ABB0F3E43s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibEAFF692E84900D6B0999355ABB0F3E43s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibEAFF692E84900D6B0999355ABB0F3E43s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib39F324EF11E8B207A2863509CA88352As1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib39F324EF11E8B207A2863509CA88352As1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib39F324EF11E8B207A2863509CA88352As1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB3CAC280C62A29F50C72E426951CDC0Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB3CAC280C62A29F50C72E426951CDC0Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibB3CAC280C62A29F50C72E426951CDC0Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib42985057F26294CB82D13E0FE51C9D8Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib42985057F26294CB82D13E0FE51C9D8Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib42985057F26294CB82D13E0FE51C9D8Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCB16A20C0214510C1B31546717089B28s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibCB16A20C0214510C1B31546717089B28s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib1CC8609760EAD5D8406B5A85E294C88Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib1CC8609760EAD5D8406B5A85E294C88Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib1CC8609760EAD5D8406B5A85E294C88Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD244953CCA638489363CF2E17669FAF0s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibD244953CCA638489363CF2E17669FAF0s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibE16B5B7F26F54214445CBE38D72C2828s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibE16B5B7F26F54214445CBE38D72C2828s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibE16B5B7F26F54214445CBE38D72C2828s1
https://doi.org/10.1109/TIFS.2024.3350330
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib727B5D691F99BADBCAC07DD192F923BAs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib727B5D691F99BADBCAC07DD192F923BAs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib727B5D691F99BADBCAC07DD192F923BAs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib3DFCFA1D02366258F32D52F80EE3FBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib3DFCFA1D02366258F32D52F80EE3FBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib3DFCFA1D02366258F32D52F80EE3FBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib3DFCFA1D02366258F32D52F80EE3FBFEs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib49BE5D9B3BE7ABA70928FF6E29FEDA7Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib49BE5D9B3BE7ABA70928FF6E29FEDA7Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib49BE5D9B3BE7ABA70928FF6E29FEDA7Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib49BE5D9B3BE7ABA70928FF6E29FEDA7Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib49BE5D9B3BE7ABA70928FF6E29FEDA7Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib974F8E3414A1248E71D6FC7B6A6551C5s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib974F8E3414A1248E71D6FC7B6A6551C5s1
https://doi.org/10.1109/TMC.2025.3526519
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib436651560244CBFF2873474AE66D7AADs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib436651560244CBFF2873474AE66D7AADs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib436651560244CBFF2873474AE66D7AADs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib5B6E14DEB70598E86163AAB4B9C68A8As1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib5B6E14DEB70598E86163AAB4B9C68A8As1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib5B6E14DEB70598E86163AAB4B9C68A8As1
https://doi.org/10.56553/popets-2023-0040
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib8769B8D55CF759B5C2DCA178EEC7DF0Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib8769B8D55CF759B5C2DCA178EEC7DF0Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA3AE7158805399DB58FE0A6BC415D813s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA3AE7158805399DB58FE0A6BC415D813s1
https://doi.org/10.1109/TDSC.2023.3335304
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4CD99F7D3E33BB228E30B5304B4345E4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4CD99F7D3E33BB228E30B5304B4345E4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib4CD99F7D3E33BB228E30B5304B4345E4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib2328A6F7A975626801D3B82C15ADF764s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib2328A6F7A975626801D3B82C15ADF764s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib2328A6F7A975626801D3B82C15ADF764s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib623FFBDD579F06873BAE40B7FC1BA74Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib623FFBDD579F06873BAE40B7FC1BA74Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib623FFBDD579F06873BAE40B7FC1BA74Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib038A9696368132464A880BDEC7903BFAs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib038A9696368132464A880BDEC7903BFAs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibFED06BEB5A2D47D8ADC405DF0D85A7C4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibFED06BEB5A2D47D8ADC405DF0D85A7C4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibFED06BEB5A2D47D8ADC405DF0D85A7C4s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA12F3A24D17019CB604193BD0575ABB5s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA12F3A24D17019CB604193BD0575ABB5s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibA12F3A24D17019CB604193BD0575ABB5s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6B8E5E9520304BFDBF74FA045375911Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6B8E5E9520304BFDBF74FA045375911Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6B8E5E9520304BFDBF74FA045375911Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib6B8E5E9520304BFDBF74FA045375911Fs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibF34EC410C6632F0FD1DE1118694EA524s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bibF34EC410C6632F0FD1DE1118694EA524s1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib2EE6986E22831D3D91B0971635AC4F7Cs1
http://refhub.elsevier.com/S2352-8648(25)00024-0/bib2EE6986E22831D3D91B0971635AC4F7Cs1

	An efficient conjunctive keyword searchable encryption for cloud-based IoT systems
	1 Introduction
	1.1 Related works
	1.1.1 Single keyword DSSE
	1.1.2 Conjunctive keyword DSSE

	1.2 Our contributions

	2 Preliminaries
	2.1 Notations
	2.2 Decisional Diffie-Hellman assumption
	2.3 Dynamic searchable encryption
	2.4 Definitions of correctness and security
	2.5 Forward and backward privacy

	3 CKSE: an efficient conjunctive keyword searchable encryption scheme
	3.1 System model of CKSE
	3.2 Construction of CKSE
	3.2.1 New cross-tag
	3.2.2 State chain structure

	3.3 Efficiency of CKSE
	3.3.1 Client and server storage
	3.3.2 Update and search overhead

	3.4 Security analysis

	4 Performance evaluation
	4.1 Implementation and settings
	4.2 Update time performance
	4.3 Search time performance
	4.3.1 Two-keyword conjunctions
	4.3.2 Multi-keyword conjunctions

	4.4 Communication performance
	4.5 Query result performance

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Proof of Theorem 1
	References

