SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome
SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome
SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of ‘cryptic’ epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 ‘cryptic’ pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas. [Figure not available: see fulltext.]
651-659
Zimmerman, Maxwell I.
76cd80b5-41ac-4d23-be85-e94825843e79
Porter, Justin R.
fdee078c-2dc9-43a1-936c-9186262df505
Ward, Michael D.
da487000-9f37-440b-a952-e09671f28e3b
Singh, Sukrit
39055301-1b93-4f70-aa2a-17270c81dee3
Vithani, Neha
4990e132-64a1-49f6-8b9a-94feb9619694
Meller, Artur
7f4437b3-80ff-497f-8dcb-fd9fc533c5fd
Mallimadugula, Upasana L.
0335f718-c19f-443a-8097-621d6caae334
Kuhn, Catherine E.
e53ea2c1-abdb-4269-bfa0-0ad3a39a2623
Borowsky, Jonathan H.
0bdbd4b5-c79a-4f16-8438-858b4c3b207c
Wiewiora, Rafal P.
37dd46fe-7f56-40ee-8e5c-aa26743d8f25
Hurley, Matthew F.D.
9bd171bf-9f9e-4e83-bdb6-acb32d84401b
Harbison, Aoife M.
bc5281e0-038d-4b73-b15b-b60396a88e9c
Fogarty, Carl A.
33e6619c-776e-4c6c-9161-bd0128e1d5ac
Coffland, Joseph E.
4d64b9f4-66dc-48ed-82b5-1a23413860b4
Fadda, Elisa
11ba1755-9585-44aa-a38e-a8bcfd766abb
Voelz, Vincent A.
e80991b9-a9f1-4dea-9831-9209d131ae66
Chodera, John D.
edd8963e-1f79-4847-b6d5-9320f89687d6
Bowman, Gregory R.
e1473b2d-566d-47ba-8324-17b88ea81edb
July 2021
Zimmerman, Maxwell I.
76cd80b5-41ac-4d23-be85-e94825843e79
Porter, Justin R.
fdee078c-2dc9-43a1-936c-9186262df505
Ward, Michael D.
da487000-9f37-440b-a952-e09671f28e3b
Singh, Sukrit
39055301-1b93-4f70-aa2a-17270c81dee3
Vithani, Neha
4990e132-64a1-49f6-8b9a-94feb9619694
Meller, Artur
7f4437b3-80ff-497f-8dcb-fd9fc533c5fd
Mallimadugula, Upasana L.
0335f718-c19f-443a-8097-621d6caae334
Kuhn, Catherine E.
e53ea2c1-abdb-4269-bfa0-0ad3a39a2623
Borowsky, Jonathan H.
0bdbd4b5-c79a-4f16-8438-858b4c3b207c
Wiewiora, Rafal P.
37dd46fe-7f56-40ee-8e5c-aa26743d8f25
Hurley, Matthew F.D.
9bd171bf-9f9e-4e83-bdb6-acb32d84401b
Harbison, Aoife M.
bc5281e0-038d-4b73-b15b-b60396a88e9c
Fogarty, Carl A.
33e6619c-776e-4c6c-9161-bd0128e1d5ac
Coffland, Joseph E.
4d64b9f4-66dc-48ed-82b5-1a23413860b4
Fadda, Elisa
11ba1755-9585-44aa-a38e-a8bcfd766abb
Voelz, Vincent A.
e80991b9-a9f1-4dea-9831-9209d131ae66
Chodera, John D.
edd8963e-1f79-4847-b6d5-9320f89687d6
Bowman, Gregory R.
e1473b2d-566d-47ba-8324-17b88ea81edb
Zimmerman, Maxwell I., Porter, Justin R., Ward, Michael D., Singh, Sukrit, Vithani, Neha, Meller, Artur, Mallimadugula, Upasana L., Kuhn, Catherine E., Borowsky, Jonathan H., Wiewiora, Rafal P., Hurley, Matthew F.D., Harbison, Aoife M., Fogarty, Carl A., Coffland, Joseph E., Fadda, Elisa, Voelz, Vincent A., Chodera, John D. and Bowman, Gregory R.
(2021)
SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome.
Nature Chemistry, 13 (7), .
(doi:10.1038/s41557-021-00707-0).
Abstract
SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of ‘cryptic’ epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 ‘cryptic’ pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas. [Figure not available: see fulltext.]
This record has no associated files available for download.
More information
Published date: July 2021
Additional Information:
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
Identifiers
Local EPrints ID: 499927
URI: http://eprints.soton.ac.uk/id/eprint/499927
ISSN: 1755-4330
PURE UUID: 7087f028-4d03-49ce-92fd-84c31747f1b3
Catalogue record
Date deposited: 08 Apr 2025 16:51
Last modified: 09 Apr 2025 02:09
Export record
Altmetrics
Contributors
Author:
Maxwell I. Zimmerman
Author:
Justin R. Porter
Author:
Michael D. Ward
Author:
Sukrit Singh
Author:
Neha Vithani
Author:
Artur Meller
Author:
Upasana L. Mallimadugula
Author:
Catherine E. Kuhn
Author:
Jonathan H. Borowsky
Author:
Rafal P. Wiewiora
Author:
Matthew F.D. Hurley
Author:
Aoife M. Harbison
Author:
Carl A. Fogarty
Author:
Joseph E. Coffland
Author:
Elisa Fadda
Author:
Vincent A. Voelz
Author:
John D. Chodera
Author:
Gregory R. Bowman
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics