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In this work, we show that a gauge-theoretic description of Jackiw-Teitelboim (JT) gravity natu-
rally yields a Henneaux-Teitelboim (HT) unimodular gravity via a central extension of its isometry
group, valid for both flat and curved two-dimensional spacetimes. HT gravity introduces a unimod-
ular time canonically conjugate to the cosmological constant, serving as a physical time in quantum
cosmology. By studying the mini-superspace reduction of HT2 gravity, the Wheeler-DeWitt equa-
tion becomes a Schrodinger-like equation, giving a consistent and unitary quantum theory. Analysis
of the wavefunction’s probability density reveals a quantum distribution for the scale factor a, offer-
ing a quantum perspective on the expansion and contraction of the universe. In this perspective, the
possibility of reaching the singular point @ = 0 signals that topology change could occur. Finally, we
give a consistent quantum description of unimodular time that aligns seamlessly with Page-Wootters
formulation of quantum mechanics, where quantum correlations between unimodular time and JT

gravity are studied in HT2 quantum cosmology.

I. INTRODUCTION

One of the profound challenges in theoretical physics
is developing a quantum-mechanical framework that en-
compasses the entire universe. Indeed, the incompatibil-
ity between General Relativity (GR) and Quantum Me-
chanics (QM) is particularly evident in the well-known
problem of time, which arises due to the fundamentally
different treatment of time in both theories [1-5]. In GR,
time is treated as part of the spacetime fabric and there-
fore, the theory is diffeomorphism invariant. Conversely,
in QM time is treated as an external, absolute parame-
ter used to measure the evolution of a quantum system.
Indeed, the Hamiltonian constraint of a gravitational sys-
tem vanishes, therefore leading to the absence of unitary
evolution in terms of quantum states.

A more recent and promising avenue is Henneaux-
Teitelboim (HT) gravity where by converting the con-
stants of nature to dynamical variables one gets physical
relational times which are the canonical conjugates of
the dynamical “constants” [6-19]. Therefore we end up
having a physical time variable conjugate to a dynam-
ical cosmological constant [20-26], which preserves uni-
tarity and allows the construction of normalizable wave
packets [27-29]. This not only converts the Wheeler-
DeWitt equation into a Schrodinger-like equation, but
also resolves the apparent unitarity problem and gives
conserved probabilities.

In this regard, we study JT gravity as a two-
dimensional toy model for quantum gravity and quan-
tum cosmology. Ordinarily, in JT gravity the Hamilto-
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nian constraint is found to vanish, resulting in “frozen”
quantum states. In turn, this exacerbates the problem of
the absence of unitary time evolution. The missing of an
external time in (de Sitter) JT gravity has been exten-
sively discussed in the context of the CLPW framework
of algebras of observables [30-34]. In this framework, ob-
servers are treated as clocks within the gravitating sys-
tem, whose role is to fix the time translation symmetry.
Put simply, an observer is any system capable of measur-
ing time. Recently, it has also been demonstrated that
the CLPW algebras of observables is equivalent to the
Page-Wootters (PW) approach [35-41] where the total
system is described by correlations between the observer
and the gravitational system.

In this paper, we show that a physical clock naturally
emerges from a HT formulation of JT gravity, which in
turn stems from a gauge-theoretic approach—a connec-
tion previously unrecognized in the literature (such as the

CGHS model discussed in two-dimensional flat hologra-
phy) [42-51]. In this scenario, introducing unimodular
time allows the PW formalism to reach its full poten-
tial, providing a robust framework in which a genuine
notion of time evolution can be defined. Moreover, the
ability to define such a physical clock in a controlled,
lower-dimensional model of gravity opens new avenues
for studying quantum cosmology. In particular, it is es-
pecially enticing that for de Sitter space, one can study
time evolution of closed universes and topology change
at early times.

The paper is organized as follows: in section II, we
show how HT gravity naturally emerges from a gauge
formulation of JT gravity via central extensions of the
isometry group. In section III, we explore this formu-
lation in mini-superspace (MSS), where we quantize the
theory and build normalizable unimodular wave packets.
We study the probability density associated with such
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wave packets in section IV and comment on the global
topology of the spacetime. In section V, we introduce
the Page-Wootters formalism of QM and apply it to the
work done in the previous sections. We conclude with
some final remarks in section VI.

II. HENNEAUX-TEITELBOIM GRAVITY
FROM CENTRAL EXTENSIONS OF JT
GRAVITY

It is well established that GR admits a volume-
preserving diffeomorphism-invariant formulation, com-
monly referred to as unimodular gravity [6-19]. This for-
mulation is classically equivalent to GR and is achieved
by imposing the gauge fixing condition /—¢g = 1. The
seminal work of Henneaux and Teitelboim extended this
framework by restoring full diffeomorphism invariance
in unimodular gravity through the promotion of con-
stants of nature to dynamical variables [20-26]. This
parametrization becomes evident when the unimodular
condition is modified to \/—g = 0, T", treated as an on-
shell expression, with action given by

S = %/d% V=g(R—2A) + /d% Ao TH, (1)

where TH is an auxiliary vector density, and A is the
vacuum energy field (also known as the cosmological con-
stant) promoted to an off-shell variable, and on-shell con-
stant. This theory yields equations of motion identical
to those of the standard Einstein—Hilbert action.

Recent work [52, 53] has demonstrated that an abelian
reduction based on the gauge group U(1) yields an HT
gravity theory, where the HT term is replaced by the
Chern-Pontryagin topological term. The resultant action
is

S:%/d“x H(R—zA)—g—;/AF/\F, (2)

with F' = dA the curvature two-form associated with an
abelian U(1) gauge field A, and with the vector density
T* identified as the Chern-Simons current.

Although typically studied in four dimensions, HT
gravity also emerges in certain two-dimensional contexts,
though not recognized as such. In particular, various for-
mulations of JT gravity—such as those employed in flat
holography [564—-61]—are revealed to be HT gravity theo-
ries [42-51, 62, 63] in this paper.

This structure arises naturally when JT gravity is for-
mulated from a gauge-theoretic perspective (see figure
1). The standard JT action, without the inclusion of
boundary terms, is given by

Syt = %/d% V=g9(R - 2)), (3)

where A is the “cosmological constant” that ensures that
upon variation of the dilaton field ¢, we have the on-
shell expression R = 2\. The dilaton equation of motion

A=0 A=0
A = Const.

FIG. 1: Diagram illustrating various reductions of the
general HT9 gravity theory. The double arrows indicate
the gauge formulations of the KSY and CJ gravity
models.

is obtained from the metric variation of the action:

(Vuau - g,ul/[l)¢ = /\guu¢- (4)

The global spacetime geometry depends on the value of
A: it is de Sitter (dS) for A > 0 and anti-de Sitter (AdS)
for A < 0.

Of particular interest is the JT gravity action (3) with
non-vanishing A, which possesses a gauge theoretical for-
mulation based on the s[(2,R)-algebra [64-67]:

[Py, Py) = 2\ J0p = —Aean
[Pav j] = —Gabe. (5)

The resulting first-order formulation is a BF theory with
action given by

S=/<B,F>=/BQT‘Z+§(§—/\E), (6)

where B = B“Pa—l—gjis a zero-form Lagrange multiplier,
and

F=dA+AAA=T"P,+RJ, (7)

is the curvature two-form associated with the connection
one-form A = e*P, + wJ for the s[(2,R)-algebra. Here,
the Einstein-Cartan (EC) variables are the zweibein e®
and dual spin-connection w = %eabwab, with associated
torsion T = De® and dual curvature R = £’ Ry, = dw.
The dual area two-form is > = %eabE“b, where 2% = e A

eb. In this context, one can show that the on-shell action
reduces to an Einstein-Cartan action for JT gravity

Syr = / (R — 25, (8)

with vanishing torsion imposed by the Lagrange multi-
plier B* and B identified with the dilaton ¢.

Building on top of the requirements for an HT gravity
theory, one can formulate a two-dimensional unimodular
JT gravity model (HT5), described by the action:

Sur, == %/d% \/?g(¢(R—2A)—2A)+/d2x Aautﬂ).
9



The distinction between A and A is crucial: A deter-
mines the global spacetime geometry on-shell, while A
serves as the vacuum energy field, similar to its role in
four-dimensional HT gravity. In this section, we demon-
strate that the action (9) emerges naturally from a gauge-
invariant formulation of JT gravity and study its features.

A. HT; as a gauge-invariant formulation of JT
gravity

We want to show that a gauge formulation of (9) arises
from a BF formulation, akin to JT gravity. For that, we
follow Kim, Soh, and Yee (KSY) [47, 48], where they
consider an extension of JT gravity via a vacuum cosmo-
logical constant term:

Sksy = %/d% \/Tg(qb(R —2)) — 2A). (10)

The on-shell expressions are obtain by varying the action
with respect to ¢ and g,,,,, respectively:

R =2), (11)
(Vuaz/ - g;n/D)¢ = ()‘(b + A)guu- (12)
A gauge invariant formulation of this model with A # 0

is based on an abelian central extension of the isometry
group of spacetime, that is a BF theory with Lie algebra:

A~

sl(2,R) 2 sl(2,R) @ u(l), (13)

and commutation relations given by:
[Pa, Pb] = _)\fabj+ €anl, (14)
[Pa, J] = =€, P, (15)

where I is the central element given by the u(1) subal-

gebra. With this algebra, one can construct an s((2, R)-
valued connection one-form:

A =P, +&J + Al (16)
and associated curvature two-form given by
F=T"P,+(R—\Y)J + (F+ %)L (17)

Here, F' = dA is the u(1)-valued curvature two-form with
associated connection one-form A. Using the above cur-
vature F and giewﬁning the Lagrange multiplier zero-form
B = B*P, + BJ + BI, the BF action reduces to

S= /BaT“ LR AT AF+5),  (18)

where we set B = ¢ + A and B = —\¢ — A using the
trace identities induced from the Casimir invariant (see
[50]). The vanishing of torsion gives the on-shell action,

corresponding to an EC formulation of a gauge invariant
first-order action for the KSY model given by:

Sur, = /qs(é —AX) — A(F + %), (19)

Transitioning to the second-order formulation, we recover
the same action as in (9), which is:

Sur, = % / d?z \/—gp(R—2\)+ / d*z /—gA(e" 0, A,-1),
(20)
where the vector density T* is identified with the dual of
the abelian gauge field, A" = e*” A,,. Here, "’ denotes
the Levi-Civita symbol.!
The variation of the action with respect to ¢, g,.,, A*
and A, respectively, yields the following equations of mo-
tion:

R =2\, (21)
(Vuaz/ - gm/D)¢ = ()‘(b + A)guua (22)
(9HA =0, (23)
V=G = AR (24)

From the first three equations of motion, the on-shell dy-
namics of HT5 match those of the KSY model, provided
that the unimodular condition (24) is satisfied. There-
fore, the classical dynamics remain unchanged and they
describe the same physics [8, 14]. Indeed, A is promoted
to a phase-space variable, canonically conjugate to the
zero-mode of A°, which is referred to as unimodular time
8]

)

Ta(t) ;:/ dy A°
3¢

:—/ dx Ay
>y 2,

where ¥, are constant time hypersurfaces and A° = —A4;.
This definition of unimodular time ensures that it is
monotonically increasing and describes a physical “flow
of time”: identifying it with spacetime volume to the past
of ¥, down to a conventional time-zero ¥y leaf [20-26],
we have the on-shell expression

Xy
ATy = d*z /—g =: Vol (X, U Xp). (26)
3o

Simple counting of constraints shows that the theory has
no new local degrees of freedom, justifying the appear-
ance of the topological term 0, 4*. There is an additional
U(1) gauge symmetry of the HT9 action: a gauge trans-
formation of A"

Al — AP X, (27)

kv

1 We denote e*” by the Levi-Civita tensor given by e*¥ = —-



with 9,x* = 0 ensuring that there is one gauge degree
of freedom left. This implies the invariance of the action
(20).

It is important to notice that unlike its four-
dimensional cousin, the U(1)-reduction of HT gravity (2)
in two dimensions is naturally emergent from the ex-
tended algebra. The Chern-Pontryagin term F A F' in
four dimensions is therefore naturally replaced in two di-
mensions with the first Chern class F'.

B. Maxwell algebra and C/GﬁS-model as flat HT»
gravity

In this section, we note that setting A = 0 in the KSY
model (10) yields what is known in the literature as the
Cangemi—Jackiw (CJ) gravity model [42], which can also
be viewed as a Weyl rescaling of the CGHS model [62].
Recently, growing interest in two-dimensional flat holog-
raphy called the CGHS-model and its close connection to
the complex SYK model [54-57, 59-61, 68] have reignited
attention towards this model. Indeed, to study CJ the-
ory at different temperatures, it is necessary to allow the
vacuum cosmological constant A to vary — precisely as
achieved by the unimodular extension — which controls
the Rindler inverse temperature 8 ~ +.

The CJ action is given by

1
Sar=75 /d% V=g(¢R —21), (28)
with on-shell expressions given by

R=0, (29)
(Vuaz/ - g;w[])¢ = Aguu. (30)

A consistent gauge construction in terms of Einstein-
Cartan variables does exist for the CJ model [42-45, 49].
For this, we take the gauge group as the isometry group
of flat two-dimensional spacetime, ISO'(1,1), and cen-
trally extend it via U(1). The resulting Maxwell algebra
has corresponding commutation relations given by the
A =0 limit of (14):

[Po, Py) = €D,  [Pu,J] = —¢€.P. (31)

With the algebra defined as above, one can construct
a gauge theory based on @(1, 1) 2iso(1,1) ®u(l). Pro-
ceeding in a similar manner to the previous section, the
A =0 curvature F is

F=TP, + RJ+ (F+%)I. (32)

The BF action (18) reduces to
S = /BaT“ +¢R—A(F+7%), (33)

where now B = ¢ + A and B = —A. Therefore the on-
shell action is given by the flat EC formulation of CJ

gravity model:
Scans :/gbR—A(F+E)

= % / @z /=g|oR + 20 (70,4, ~1)]. (349

Variation with respect to the dilaton and the metric
yields the same classical dynamics as CJ gravity, estab-
lishing that flat HTy (A = 0) and CJ gravity are on-shell
equivalent theories. Moreover, the unimodular condition
for flat HTy gravity remains unchanged from the A # 0
HT, gravity, given by 0, A" = \/—g.

III. QUANTUM COSMOLOGY IN DE SITTER
HT,; GRAVITY

As an application of HT gravity, we explore the quan-
tum cosmology of closed universes in de Sitter space. To
begin, we introduce the mini-superspace (MSS) metric of
dS in KSY gravity and highlight the differences arising
from the HT3 model. Subsequently, we perform a canon-
ical quantization of both theories, with a particular focus
on the implications for the probability amplitudes asso-
ciated with the wavefunction of the universe.

A. Mini-superspace KSY gravity

To construct the MSS KSY gravity action, the starting
point is through its associated EC formulation (19) with
constant A:

Sksy = /fﬁ(f2 — %) - A%, (35)

where A is now just the vacuum cosmological constant
and A = 1 gives the globally de Sitter spacetime ge-
ometry. Note that we are using the more general KSY
model-which contains the cosmological constant term-—
rather than standard JT gravity, in order to introduce
the HT term in the next section. In two dimensions, the
MSS metric takes a rather simple form:

ds* = —N?dt? + a?d%?, (36)

where N(t) is the lapse function (usually gauge fixed to
unity) and a(t) is the scale factor that often appears in
cosmological models. dX? is the metric on the homoge-
neous and isotropic, constant-time slice, spatial hyper-
surface 3.

From the on-shell condition R = 2, we obtain a global
de Sitter geometry. Consequently, the natural choice of
coordinates is global dSs, where spatial hypersurfaces are
closed universes described by circles S': we can identify
dY = df, where 6 € S'. The metric for a closed universe
in global dS9 coordinates is therefore given by

ds* = —dt? + cosh?(t)d6>. (37)



Geometrically, this describes a universe that is contract-
ing at early times and expanding at later times, with a
minimal length a(0) = 1 reached at ¢ = 0, as the scale
factor is simply a(t) = cosh(t). On the other hand, the
equation of motion for the dilaton field will give the so-
lution

@(t) = Pp sinh(t) — A. (38)

Both the scale factor and dilaton expressions derived
above are solutions to the Friedmann equations in a
global de Sitter space.

Performing straightforward calculations, one finds that
the dual area form is

S = Na dt A db, (39)
and that the dual curvature form is given by:
R=1bdtAdo, (40)

where b = a/N is written for convenience. Since nothing
in the action depends on the angular parameter 6, we
define the co-moving volume as v, = f df. Note that
in units of v. = 1 (which we adopt in this paper), the
scale factor a and the coordinate volume v = av. are the
same. After integration by parts, the action (35) in MSS
reduces to

Sksy = —/dt (f\? +Na(¢+A)>, (41)

where the boundary term cancels exactly with the
Gibbon-Hawking-York (GHY) term

;o (42)
oM

a
Sary = — / d0 /THlgn I = —y 2
oM N

with ¢, the boundary value of the dilaton and K the
extrinsic curvature.

The canonical momenta are easy to read off, each as-
sociated to the dilaton and scale factor, respectively:

a ¢
p(i):_ﬁa Paz—ﬁ- (43)

Consequently, the Hamiltonian H of the MSS KSY grav-
ity takes the form

H = —Np,py + Na(¢ + A) = aNC, (44)

where C is the KSY gravity Hamiltonian constraint given
by

1
C=—pq (a>p¢+¢+A~ (45)
The action in canonical form is therefore rewritten as

Sksy = / dt <p¢¢5 + paa — aNc>. (46)

The Hamiltonian constraint equation C = 0 is obtained
as an on-shell expression when the action is varied with
respect to the lapse function:

Cz—pa(i>p¢+¢+./\=0. (47)

Notably, the choice of the operator ordering p,a™'p, in
the Hamiltonian constraint is carefully chosen to ensure
that the canonical quantization of the theory yields the
Hartle-Hawking solution for the wavefunction of the uni-
verse.

Starting from the canonical pairs, the equal-time Pois-
son brackets are given by:

{6.p6} ={a.pa} =1 (48)

With the phase space variables promoted to linear op-
erators acting on the KSY Hilbert space, we have the
following prescription on the momentum observables:

0

0
Py — Dy = _i%’ Pa = Dy =~ (49)

Oa

Under this quantization scheme, the Hamiltonian con-
straint is transformed into the Wheeler-DeWitt (WdW)
equation for MSS KSY gravity:

[aa <ia¢) + ;U’(gb)]i/z(a, 6,A) =0,  (50)

where we define the potential U(¢) = ¢? + 2¢A and in-
troduce ¥ as the wavefunction of the universe.

A solution to the WdW equation described above is
the so-called Hartle-Hawking (HH) wavefunction [69-81].
We shall consider here both the expanding and contract-
ing branches of the HH wavefunction, in the asymptotic
limit with a¢ > 1. The solution then becomes a linear
superposition of plane waves

1/J(a>¢7A) = a,’(/J, (a7¢7 A) +OZ+¢+ (a7¢7 A)a (51)

where ¥4 (a, gb,A) = eTVU(®) corresponds to the con-
tracting and expanding wavefunctions for plus and mi-
nus, respectively.

Note that from the start A is a fixed constant (off-shell
and on-shell). In HTy gravity, this fixed constant is pro-
moted to an off-shell variable, but on-shell free constant.
In addition, one has the freedom to consider solutions
of the form ¥(a,¢,A) = A(A)Y(a,¢,A) for some nor-
malizable amplitude A(A), which also solves the WdW
equation. An issue involving the Hartle-Hawking solu-
tion is that it is not square-integrable with respect to
the DeWitt norm (a variant of the Klein-Gordon norm)
[69, 75, 77, 78]. This is partially solved by introducing
normalizable amplitudes [74, 81]. However, this requires
a summation (or integration) over A, which is a-priori
fixed in JT gravity. Furthermore, the theory fails to
evolve unitarily, as pointed out in [30-34], an issue tied
to the absence of an observer in a closed universe. In the



next section, we show that both problems are resolved
by transitioning from the KSY model to HTy gravity.

An alternative approach to obtain the HH wavefunc-
tions is through a semi-classical WKB approximation,
where the wavefunction is given by

77[}((1'7 d)? A) ~ eison_SheH7 (52)

where Son_shen is the on-shell action for the KSY model.
In this context, boundary terms play a crucial role, par-
ticularly the inclusion of the GHY term (and other pos-
sible holographic counterterms):

So = Sanay + Sct.

The presence of a spacelike boundary at time infinity is
especially significant for a holographic treatment of the
theory—for instance, the Schwarzian modes residing at
future infinity. However, such considerations lie beyond
the scope of this paper. Accordingly, we shall disregard
the boundary dynamics in our analysis and instead focus
on investigating the bulk properties of MSS HT5 gravity.

B. Quantization of MSS HT,

As before, the Einstein-Cartan action for the two-
dimensional Henneaux-Teitelboim gravity theory is given
by (19), which in MSS takes the rather simple form:

Sur, = —/dt (‘f\? — AT +Na(<z>+A)). (53)

From the perspective of gauge theory, we have in the
action Tp = —Ay. This is apparent in global dSs coor-
dinates for a closed spatial slice S', where we have the
unimodular time explicitly written as

r- [ 4
Sl

where in units of v, = 1, Th = —Ay. Throughout this
section, we shall keep the notation T to denote the phys-
ical time variable.

In addition to the canonical momenta of the KSY
model given in (43), we gain an extra canonical momen-
tum conjugate to the unimodular time, as expected from
HT,s gravity:

o = —v. Ay, (54)

pTA = A, (55)
with equal-time Poisson bracket given by
{TA,A} =1. (56)

The Hamiltonian of HT5 is identical to that of KSY grav-
ity. The action in its canonical form has the additional
canonical momenta conjugate to the unimodular time:

SHTQ = /dt (pngi.) + pea + pTATA — aNC) . (57)

However, due to the fact that there exists a canonical
momentum A conjugate to Ty, one has the on shell ex-
pression

CZCJT+pTA=CJT+A=0, (58)

where Cyr is the JT gravity Hamiltonian constraint:

1
Crn=-p( 3 Jps+ o, (59)

where we use again the correct ordering of the phase
space variables to reproduce the HH wavefunction so-
lutions of the universe for HTy gravity.

Similarly to the quantization of the MSS KSY model,
we shall perform a canonical quantization of HT;. We
demonstrate how unitary evolution and a well-defined
normalizable inner product emerge within HTy gravity,
thus resolving the aforementioned issues in JT gravity.

We start by first using the prescription that the canon-
ical momenta are replaced by derivatives with respect to
their conjugate pairs:

P — Dy = —i6—¢, Do — Dy = —i%, (60)

pPry — Pry = —1 (61)

Ty
From (58), the Hamiltonian constraint then becomes in
the Ty representation:

{aa <«18“’) - z’ag] U(a,;Th) =0.  (62)

This is indeed a Schrédinger-like equation with Hamilto-
nian given by Cjr:

i (0,6 Th) = e 6T, (63)
A

Notice that unlike the WdW equation in JT gravity,
we now have a time-dependent wavefunction ¥(a, ¢; T ).
To obtain this wavefunction, we need to start by deter-
mining the time-independent ¥ (a, ¢, A) (or ¥(a,d,A) =
A(AN)Y(a, ¢, A) since it also solves the WdW equation).
This has been solved in the previous section due to
the fact that the time-independent solution satisfies the
WdAW equation of KSY gravity. We thus need to be in
the pr, = A representation, that is writing an eigenfunc-
tion equation:

Cyr¥(a, ¢, A) = {aa<ia¢> +¢]\Il(a,¢, A)
= —AU(a,$,A). (64)

This tells us that the energy eigenvalues for the JT grav-
ity Hamiltonian constraint are simply given by the vac-
uum cosmological constant A.

Once again, in the context of HT gravity, A is a free
parameter that is constant on-shell. This allows the pos-
sibility of having a superposition of A-states, something



that is not possible for KSY (and JT) gravity alone. In-
deed, the time-dependent wavefunction can be written as
a superposition of these wavefunction, multiplied by some
amplitude. That is, we have solutions to the Schrédinger
equation given by:

U(a,d;Th) = /\(/i% eiATAA(A)w(a,qﬁ, A). (65)

Here, we have used unitary evolution of the wavefunction
U(a, ¢; Th), dictacted by Schrodinger dynamics. We can
now invert this formula to obtain the amplitude A(A) in
terms of the wave function U(a, ¢; Th):

A(A) = /da efiATAd)*(a,qb,A)\I/(a,gb; Th). (66)

To define a physical Hilbert space, we introduce the
inner product on the space of solutions to the time-
dependent wavefunctions ¥(a, ¢; Ty ) to be

(04 [Wy) = / dA Az (M) Ay (), (67)

with norm simply given by the modulus-square of the
amplitudes:

(U|W) = /dA A, (68)

This product is automatically conserved with respect to
unimodular time, i.e. unitarity is satisfied, since it is
defined in terms of time-independent amplitudes.

To construct the time-independent part of the wave-
function as a superposition of wave packets, we take the
amplitude A(A) to be a Gaussian distribution centered
at Ag with standard deviation o, :

A= Ag)?
A(A) _(27701%A)i exp<( 40%:)) > (69)

This assumption is justified by the fact that delta func-
tion amplitudes do not produce wave packet solutions to
the Schrodinger equation, and moreover they have infi-
nite norm, which is a non desired feature. Given that we
have unitarity, it is reasonable to define physical states as
any state derived from a normalized Gaussian amplitude,
which satisfies (U|¥) = 1.

Notably, in JT gravity, the inner product is defined by
the DeWitt inner product [69, 75, 77, 78]. This resembles
the Klein-Gordon inner product, as the WdW equation
can be viewed as a Klein-Gordon equation in the light-
cone coordinates (a,¢). This similarity underscores the
absence of standard unitary evolution for wavefunctions
in JT gravity, precluding the definition of a conventional
Schrodinger inner product. However, we highlight that
such a unitary evolution becomes feasible when unimod-
ular time is introduced, enabling the definition of the
physical inner product, as given by (67).

IV. TOWARDS UNITARY QUANTUM
COSMOLOGY AND TOPOLOGY CHANGE IN
HT,

Consider the contracting and expanding branches of
the HH wavefunction solution in KSY model, separately:

Uy (a,¢,A) = ar A(N)i(a, o, AN). (70)

Then, using the normalized Gaussian amplitude (69)
and integrating over A in (65), we find the asymptotic
solution in the limit a¢ > 1:

802, \ % 4
e (a,61T) & (=2 ) T T T N Tty (g, ),
(71)

where 94 (a,¢) = e*"*? is the HH solution for MSS JT
gravity. It can be further checked that this gives the
correct norm as expected, i.e. from Plancherel theorem
we get:

’2

(T|0) = /jo dA |A(A) (72)

_ /Oo da |V (a,¢;Ty))* = 1. (73)
0

[AE:Check the last equality using (71).] Therefore, it is
quite straightforward to see that the probability density
given by ‘\I/i(a,qb; Th) 2, is found to follow a Gaussian
distribution for a contracting and expanding closed uni-
verse, with its peak corresponding to the semi-classical
WKB value.

However, we are also interested in examining linear
combinations of the two branches, akin to (51). That
is, consider the following time-dependent wavefunction
solution

dA
Vi

Inverting the wavefunction gives an inversion formula for
the amplitudes that now reads

U(a,;Ty) = A(A) AT (w, + ¢¢+). (74)

da

AW = [ o=

AN (a, 6 Ty) (vy — i ). (T5)

Consequently, we anticipate the emergence of interfer-
ence terms in the probability density ’\I/(a, ®; TA)IQ, aris-
ing from the cross-terms ¥} (a, )¢+ (a,¢). Indeed, we
define the probability density as

2

Pla, ¢, Tx) = [V(a,;Ta)|", (76)

where ¥(a, ¢; T ) is obtained by substituting (51) in (65).
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FIG. 2: Probability P(a, ¢, Tr), according to Eq. (76), for times Tx = 0, 100, 120 and 200, with o7 = 0.01 and
¢ = 100. For |Tx| ~ or the probability has many oscillations inside the envelope, but these disappear as |T} |
increases, as illustrated. We see that for increasing |Tx| > o, the width of the probability decreases, that is the
uncertainty in a decreases.

This is plotted in figure 2. The interference between the
two quantum states becomes noticeable when | T | ~ o, ;
however, at later times, as |Tp| > or,, the states sepa-
rate and evolve into independent, sharply peaked semi-
classical WKB states that continue to narrow as unimod-
ular time progresses. Thus, significant physics occurs
around |Tp| ~ o7, (with Tp = 0 in the plots). This prob-
ability density integrates to one, as it should according
to (72) for all times, confirming unitarity in the theory.
Classically, the universe exhibits a bouncing de Sitter ge-
ometry in unimodular time, as shown in figure 3. To
see why, consider the global de Sitter metric with scale
factor a(t) = cosh(t). Imposing the on-shell unimodular
condition

V=g=T° = a(t)="Tx, (77)
we find that on-shell, unimodular time is
Ta(t) = dt a(t) = sinh(t), vt e R. (78)

PP

Since T explicitly depends on the coordinate time ¢,
we observe that Ty = 0 at ¢ = 0. Thus, for vanishing
unimodular time, the scale factor reaches the bouncing
point a = 1.

At early unimodular times |Tx| ~ o1, , due to quantum
interference of the contracting incident and expanding
reflected waves, the classical de Sitter geometry can un-
dergo quantum deformations. In particular, the universe
may evolve towards the singular point ¢ = 0, enabling
a transition from a circular spatial topology to a point
and back again. One can interpret this as a crunching
universe, followed by the creation of an expanding uni-
verse at ¢ = 0 with a bang. Therefore in this scenario,
the universe undergoes a topology change process.

A preliminary interpretation of the results goes as fol-
lows: we extend JT gravity theory by allowing the vac-
uum cosmological constant A to vary off-shell through
the introduction of unimodular time. This modification
allows the wavefunction to be in different energy eigen-
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FIG. 3: Schematic drawing for the on-shell unitary time
evolution of global de Sitter geometry in unimodular
time.

states of A within the quantum theory. Consequently,
quantum deformations of the global de Sitter geometry
at early unimodular times can be viewed as the universe
occupying various A-dependent energy levels.

Additionally, we find that the Hartle-Hawking “no-
boundary proposal” does not appear to be applicable in
this context. The no-boundary proposal might be rel-
evant in scenarios where the universe is exclusively ex-
panding or contracting, with the wavefunction peaking
at all unimodular times and without the presence of any
quantum interference effects. However, these statements
should be treated with caution, as a comprehensive path-
integral formulation in this framework is needed to better
illuminate these situations. Although these features war-
rant further investigation, a detailed discussion is beyond
the scope of this paper.

V. PAGE-WOOTTERS QUANTIZATION OF
HT, GRAVITY

We have seen that two-dimensional Henneaux-
Teitelboim gravity offers a consistent classical resolu-
tion to the problem of time by introducing unimodu-
lar time, which is canonically conjugate to the vacuum
cosmological constant A. Additionally, we have devel-
oped a unitary quantum cosmological description of two-
dimensional de Sitter spacetime, incorporating both the
time-dependent and time-independent Hartle-Hawking
wavefunctions. A key objective is to give a proper quan-
tization scheme that aligns with the results presented in
the previous section. Here, we achieve this by integrat-
ing unimodular gravity with the Page-Wootters (PW)
formalism of quantum mechanics.

A. Clocks, systems and the universe in the PW
formalism

In quantum mechanics, time T appears as a classi-
cal parameter in the Schriodinger equation, leading to
time-dependent quantum states |¢)(7T')), subject to uni-
tary evolution and probability conservation. This notion
of a “physical time” seems to be missing within quantum
gravity, where quantum states are annihilated by con-
straint operators, indicating the absence of both unitary
evolution and probability conservation, as the quantum
states appear to be “frozen in time”. It is thus of great
importance to be able to give a fully quantum description
of time.

The starting point of PW formalism [35-39] is to con-
sider time as an external quantum degree of freedom by
assigning to it its own “clock” Hilbert space Hc. One
can then consider clock states |T') in H¢, defined via the
time operator in its spectral decomposition

T = /dT T|TYT|. (79)

Throughout the paper, we shall assume that time is de-
scribed by idealized clocks: the clock states are taken to
satisfy the orthogonality condition

(T|T'y = §(T — T). (80)

With that being said, the clock Hilbert space can be
viewed as the space of square-integrable function H¢ =
L?(R).

Since time has an associated canonically conjugate mo-
menta Hg and satisfies the commutation relation on Hg

[T, Hc) =i, (81)
we have the clock Hamiltonian operator fi\c defined as

Heo = /dfc EclEc)éc]. (82)

Here, |Ec) are “clock” energy eigenstates that lives in the
clock Hilbert space, which also satisfies an orthogonality
relation. Furthermore, the time and clock Hamiltonian
eigenstates are Fourier duals of one another:

o) = [ o= e m). (53)

The two eigenstates are thus related by exponentiation
RERYA

N

As a consequence, the clock Hamiltonian operator /ﬁc in
the time T representation satisfies

(TEc) = (84)

Ho|T) =~ |T). (85)



This will play a pivotal role in defining the Schrodinger
equation below.

To further define a quantum state of an explicit physi-
cal system, we introduce the “system” Hilbert space Hs.
Quantum states associated to the system are |¢), and an

associated Hamiltonian operator /}Ts acting on it:

Hs|p) = Es |[v), (86)

where Eg is the energy (eigenvalue) of the system. The
system has an associated phase space with generalized
coordinates @ = {¢} and conjugate generalized momenta
Py = {py}. When promoted to linear operators acting
on Hg, they satisfy the spectral decomposition:

Q1Q)=QQ), (87)
PolQ) = —idg|Q), (88)

where |@) is an eigenstate of the system coordinate op-
erator. Any state |¢)) € Hg can be written as a linear
superposition of |Q) states. The specific form of @ de-
pends on the physical system under consideration. This
will be explicitly given when considering the MSS JT
gravity model in the next section.

To define correlations among the clock and the sys-
tem, we construct the so-called “universe” Hilbert space
H = Hc ® Hs. This is described by the noninteracting
composite quantum system formed by the clock and sys-
tem Hilbert spaces. The associated “universe” quantum
states are then denoted by |¥)). The full Hamiltonian of
the universe is thus given by

H=Hc®1ls+1c® Hs, (89)

where the resolution of the identity on the respective sub-
spaces are

1c ::/dT )T :/dA |A)A], (90)
is:= [ dQ |axal. (91)

So far, we have given the kinematical Hilbert space. To
define the physical Hilbert space of the universe, we iden-
tify physical states on H as those annihilated by the uni-
verse Hamiltonian:

H|W)) = 0. (92)

This is akin to the Wheeler-DeWitt equation of the uni-
verse. Note that since the universe Hamiltonian annihi-
lates physical states of the universe, they are not subject
to unitary time evolution. This is what is meant by frozen
(or static) quantum states.

In order to get time-dependent quantum states subject
to the standard Schrdédinger equation, we demand the
system to be time-dependent. In PW formalism, this
is achieved by projecting the clock to the system: the
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conditioned quantum states denoted |W(T)) € Hgr are
then defined as follows:

V(1)) =

These states are defined on a subspace of the system
Hilbert space and are subject to time evolution. This
can be seen by taking the Wheeler-DeWitt equation of
the universe and projecting it to Hgc:

(T| ® Ts|®)). (93)

= Hg [¥(T)).

(94)
We therefore get unitary time evolution of system quan-
tum states according to

(T2 1s)HP) =0 = z—mf( )

U(T)) = s |9(0)), (95)

where |[¥(0)) = |¥(T =0))
independent Schrodinger equation:

satisfies the time-

Hs [W(0)) = Es |(0)). (96)

It can be seen from (83) that inverting the Fourier trans-

form gives
0= [ e, (97)

We can therefore write the time-independent quantum
state |¥(0)) in terms of |U(H¢)), that is:

dEc
V2T

We can also condition states with the clock Hamilto-
nian eigenkets |E¢) and obtain the “dual” Schrédinger
equation:

[W(0)) = W (Ec)) - (98)

((Ec|@Ts)HIW)) =0 = Hs |¥(Ec)) = —Ec [ (E)).

(99)
It can be read off that the energy of the system is given by
FEg = —&¢, in agreement with the fact that the classical

Hamiltonian of the universe vanishes.

To obtain wavefunctions of the form ¥ (Q;T), we
perform the bracket operation (Q|¥(7T)). The time-
dependent wavefunction solution can thus be written as
a superposition of energy wavefunctions:

déc
Var

One can also assume that the time-independent solutions
are given via a (possibly Gaussian) amplitude A(Ec),
such that ¥(Q,Ec) = A(Ec)v(Q, Ec):

V(Q;T) = e“cTw(Q, &c). (100)

déc
V2T

These are also solved by the Schrédinger equation. In
this case, we obtain wave packets ¥(Q;T), whereas for

U(Q;T) = et A(E)Y(Q, Ec). (101)



¥(Q, Ec), these are not necessarily wave packets (for in-
stance it can be a plane-wave solution).

[AE: Add inversion formula and define the inner prod-
uct from that.

We would like to end this section by mentioning the
inner product on H. Since we want normalizable wave-
functions on the system that are subject to probability
conservation, we consider the physical inner product on
the universe quantum states to be given by

(01]W2) = (W] (ITHT| @ Ts) [P2)).

Using the fact that the universe quantum state can be
written as an entangled state of the clock and system
states:

(102)

) = [ ar 7)), (103)
the physical inner product is written as
(W1|Ws) = (U1 (T)|Wo(T))
_ / dEo AL(E)As(Ee).  (104)
Thus, the physical norm is simply
(U|w) = /dec |A(E))? (105)

One can also write this as an integral over ) and obtain
an expression for the probability density

P@Q.T) = |¥(Q;T)|".

Indeed, from (105), if the amplitudes are normalized
Gaussian distributions, then it is clear that the norm is
one and thus all the probabilities add-up to one.

(106)

B. PW quantization of HT2 mini-superspace

With the PW formalism established, we can now
consider its application to two-dimensional Henneaux-
Teitelboim gravity. For that, we first define the universe
Hilbert space in terms of correlations between the clock
and system subspaces. The universe being de Sitter HT,
gravity in mini-superspace, the system is going to be JT
gravity and the clock is given by unimodular time Tjy.

The Hilbert space of HT is

HHTg = HTA ® Hjyr. (107)

In the unimodular time subspace Hr,, time is an op-
erator that satisfies 7'y |TA) = Ta |Ta), where unimod-
ular time eigenstates are orthogonal, realizing idealized
clocks. Similarly, the clock Hamiltonian is given by the
canonically conjugate momentum of unimodular time
Pr, = A that satisfies K\A) = AJA), with orthogonal
A-eigenstates. One can therefore write (103) as

) = [y T2 BT = [da ), (10s)
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where we have the conditional states on the JT gravity
Hilbert subspace:

(U (Tr)) = (Ta] ® Tyr|¥)),
() = (Al ® Tyr| D).

(109)
(110)

The relation (108) shows that |¥)) provides a complete
description of the temporal evolution of the JT gravity
system by representing it in terms of correlations between
the latter and the degree of freedom of the unimodular
time.

From the resolution of the identity

ir, :/dTA | TANT | :/dA |A)A], (111)

and the fact that (Tx|A) = \/%GMTA, the Fourier duality
expression (83) simply becomes

[ dTy

A) = | —= ATy . 112
Indeed, at time T) = 0, we have that
dA
0)= | — |A). 113
o= [ = (113

Finally, the action of A on unimodular time eigenstates
is given by the derivative expression

~ d
R[13) = =i 7). (114)
Going back to the Hilbert space of JT gravity, we first
define the generalized coordinates as the coordinates on
the mini-superspace: this is given by the scale factor a(t)
and the dilaton ¢(t). Thus @ = {a, ¢}, with associated
momenta Py = {pa,pe}. We define on Hjr the following
resolution of the identity

Ty = / da |a,d)a, @, (115)

where we take constant-¢ slices (corresponding to
constant-coordinate time ¢ slice). Indeed, these eigen-
states satisfy the orthogonality relation at equal ¢ = ¢':

(a,9ld’,¢) = d(a —a’).

The choice of orthogonality is motivated from the fact
that we care about the size of each slice (given by the
scale factor). We thus look for differently sized universes
for a given constant-¢ slice.

Promoting the phase-space variables to operators act-
ing on HjT, we have the following eigenstate equations
of relevance

ala,¢) = ala,¢),
bla,d) = dla,¢),

(116)

ﬁa |CL, ¢> = 77’3(1 |a‘7 ¢> )
ﬁq& |a7 ¢> = _Za¢ ‘av ¢> .

(117)
(118)



States |¢) € Hyr can be written as a superposition of
eigenstates, provided the state is subject to Hamiltonian
dynamics.

This is the case when we take the full Hilbert space of
Henneaux-Teitelboim gravity. One can define the Hamil-
tonian constraint and promoting it to an operator C,
annihilating physical states |¥)):

clw)) =0, (119)
where the Hamiltonian operator of the universe is written
in terms of Cyr (the JT gravity Hamiltonian) (59), and
the unimodular time Hamiltonian (55). For that, we take
the general form of the Hamiltonian of the universe (89)
and write it as

/C\:K®ﬁJT+iTA ®/C\JT. (120)
The WdW equation can be conditioned to be that of

Schrodinger equation by projecting the universe states
to states living in JT gravity Hilbert space:

(TaeTm)Cle)) =0 — i [W(T1) = Cor W(TL).

(121)
The quantum states |¥U(7Tx)) are thus subject to unitary
time evolution in unimodular time

[U(Ty)) = e % | (0)) . (122)

Using (113), we have a relation between the time-
dependent and independent JT gravity quantum states:

dA

V2
dA

~J Ver

where we used the “dual” Schrédinger equation (99):

U(Ty)) = o~ TACrr (7))

MW (A)), (123)

Cor|[T(A)) = —A[T(A)) =  Eyp=-A (124)
Assuming a Gaussian state for the energy-eigenstates
written as |¥(A)) = A(A)|¥(A)), we have recovered a

quantum state version of (65):

dA
V2

Note that the wavefunction expression (65) is recovered
upon performing (a, ¢|U(Ty)) = ¥(a, ¢; Tr).

The final thing to check is whether the physical inner
products match in both approaches. Indeed, using the
PW inner product given in (102), we find that

(W(Th)) = N AA) [1h(A))- (125)

(‘I’l\‘lb) = (U1 (Th)|V2(Th))
:/dA AT(A)Az(A) = (W1 |Ws) . (126)
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This matches the inner product defined in (67), and the
norm of PW also agrees:

(W0 = (U] W,) = /dA AN, (127)
which is unity for normalized Gaussian amplitudes.

Some comments are in order, especially regarding
quantum interference effects within the formalism. In-
deed, as discussed in the previous section, the WdW
equation solves both for the expanding and contracting
wavefunctions. That is, there is the freedom of consider-
ing their quantum superposition. In that case, we expect
the emergence of interference terms at the level of prob-
ability densities. This is translated in the PW formalism
by first defining the time-independent states on Hjr to
be

[ (A)) + 1|94 (A))
N :

Therefore, the time-dependent states are now written as

[p(A)) = (128)

W) = [ A (- () + 10 ().

(129)
The inner product is known to be time-independent,
hence respecting unitarity, that is

(W1 (Ta)[W2(Th)) = (¥1(0)|W2(0)) .

The norm is therefore also conserved and so is the total
probability. The interference terms arise at the level of
the probability amplitude, which are obtained from

(130)

<wwww=lﬁmwwmw@www

:/Oo da |W(a, 6, A)|* (131)

0

This is normalizable if the amplitudes A(A) are Gaussian
amplitudes.

VI. DISCUSSIONS

The common theme of this work is that a gauge-
invariant formulation of Jackiw-Teitelboim (JT) grav-
ity with a vacuum cosmological constant A natu-
rally emerges as a two-dimensional Henneaux—Teitelboim
(HT) gravity theory.

By gauging the isometry group of two-dimensional
spacetime and introducing an abelian U(1) central exten-
sion, one obtains HT gravity, which shares the same on-
shell dynamics—and therefore the same physical content—
as JT gravity. In this framework, A is promoted to an off-
shell variable that becomes fixed on-shell. Furthermore,
the unimodular condition introduces a natural physical
time called unimodular time that is canonically conjugate
to A. Moreover, the flat-space analog of this formulation,



known as CJ (or Weyl-rescaled CGHS) gravity, admits a
similar central extension and retains the core features of
“flat” HT gravity (or the CGHS-model).

With HT. gravity in hand, we illustrate its utility
by performing a mini-superspace reduction in a two-
dimensional quantum cosmology framework. In par-
ticular, introducing unimodular time transforms the
Wheeler-DeWitt equation into a Schrodinger-like equa-
tion, thereby ensuring unitary evolution of quantum
states. Consequently, the inner product is well-defined,
leading to a consistent quantum-mechanical description
of two-dimensional de Sitter gravity. By solving the
Schrédinger equation, we obtain explicit normalizable
and unitary time-dependent wavefunctions for the global
dS; geometry, represented by expanding and contract-
ing branches described through the unimodular Har-
tle-Hawking wave packets.

Analyzing the probability density shows that, at dif-
ferent unimodular times T, the scale factor a follows a
probability distribution, thus providing a quantum ac-
count of the universe’s expansion and contraction. No-
tably, at early unimodular times, quantum interference
between the expanding and contracting branches domi-
nates. In particular, at T = 0, this interference persists
beyond the classical region, leading to the possibility of
the global de Sitter geometry to be deformed and undergo
topology change at the singular point a = 0.

The study of quantum correlations between external
physical time (or “clocks” in terms of unimodular time)
and JT gravity leads to a Page-Wootters formulation
of HT9 quantum gravity. Promoting the HT gravity
Hamiltonian constraint to a linear operator that annihi-
lates physical states yields the Schrodinger equation by
Tx-state conditioning. This gives unitary evolution and
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probability conservation of quantum states, as expected.

A natural next step is to investigate how HT, grav-
ity behaves within a holographic framework, especially
through its path-integral formulation and potential con-
nections to random matrix theory. Studying these as-
pects could uncover new insights into how HTy grav-
ity fits into broader holographic paradigms. Another
promising avenue involves exploring topology change in-
volving higher topologies and two-dimensional flat holog-
raphy, given the extensive existing literature on flat
holography in two dimensions [54-57, 59-61]. Estab-
lishing concrete links between the HT5 formalism and
holographic approaches may not only deepen our under-
standing of low-dimensional quantum gravity, but also
offer novel perspectives on the role of topology in holo-
graphic setups. Finally, it would be intriguing to explore
whether in higher dimensions (such as three and four di-
mensions), HT gravity theories naturally emerge from a
gauge-theoretic formulation akin to the approach devel-
oped in this work.
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